Another Proof of the Erdős-Mordell Theorem

Hojoo Lee

Abstract

We give a proof of the famous Erdős-Mordell inequality using Ptolemy's theorem.

The following neat inequality is well-known:
Theorem. If from a point O inside a given triangle $A B C$ perpendiculars $O D, O E$, $O F$ are drawn to its sides, then $O A+O B+O C \geq 2(O D+O E+O F)$. Equality holds if and only if triangle $A B C$ is equilateral.

Figure 1
This was conjectured by Paul Erdős in 1935, and first proved by Louis Mordell in the same year. Several proofs of this inequality have been given, using Ptolemy's theorem by André Avez [5], angular computations with similar triangles by Leon Bankoff [2], area inequality by V. Komornik [6], or using trigonometry by Mordell and Barrow [1]. The purpose of this note is to give another elementary proof using Ptolemy's theorem.

Proof. Let $H G$ denote the orthogonal projections of $B C$ on the line $F E$. See Figure 2. Then, we have $B C \geq H G=H F+F E+E G$. It follows from $\angle B F H=\angle A F E=\angle A O E$ that the right triangles $B F H$ and $A O E$ are similar and $H F=\frac{O E}{O A} B F$. In a like manner we find that $E G=\frac{O F}{O A} C E$. Ptolemy's theorem applied to $A F O E$ gives

$$
O A \cdot F E=A F \cdot O E+A E \cdot O F \quad \text { or } \quad F E=\frac{A F \cdot O E+A E \cdot O F}{O A} .
$$

Combining these, we have

$$
B C \geq \frac{O E}{O A} B F+\frac{A F \cdot O E+A E \cdot O F}{O A}+\frac{O F}{O A} C E,
$$

Figure 2
or
$B C \cdot O A \geq O E \cdot B F+A F \cdot O E+A E \cdot O F+O F \cdot C E=O E \cdot A B+O F \cdot A C$.
Dividing by $B C$, we have $O A \geq \frac{A B}{B C} O E+\frac{A C}{B C} O F$.
Applying the same reasoning to other projections, we have

$$
O B \geq \frac{B C}{C A} O F+\frac{B A}{C A} O D \quad \text { and } \quad O C \geq \frac{C A}{A B} O D+\frac{C B}{A B} O E .
$$

Adding these inequalities, we have
$O A+O B+O C \geq\left(\frac{B A}{C A}+\frac{C A}{A B}\right) O D+\left(\frac{A B}{B C}+\frac{C B}{A B}\right) O E+\left(\frac{A C}{B C}+\frac{B C}{C A}\right) O F$.
It follows from this and the inequality $\frac{x}{y}+\frac{y}{x} \geq 2$ (for positive real numbers x, y) that

$$
O A+O B+O C \geq 2(O D+O E+O F)
$$

It is easy to check that equality holds if and only if $A B=B C=C A$ and O is the circumcenter of $A B C$.

References

[1] P. Erdős, L. J. Mordell, and D. F. Barrow, Problem 3740, Amer. Math. Monthly, 42 (1935) 396; solutions, ibid., 44 (1937) 252 - 254.
[2] L. Bankoff, An elementary proof of the Erdős-Mordell theorem, Amer. Math. Monthly, 65 (1958) 521.
[3] A. Oppenheim, The Erdős inequality and other inequalities for a triangle, Amer. Math. Monthly, 68 (1961), 226-230.
[4] L. Carlitz, Some inequalities for a triangle, Amer. Math. Monthly, 71 (1964) $881-885$.
[5] A. Avez, A short proof of a theorem of Erdős and Mordell, Amer. Math. Monthly, 100 (1993) 60 -62.
[6] V. Komornik, A short proof of the Erdős-Mordell theorem, Amer. Math. Monthly, 104 (1997) 57 -60 .

Hojoo Lee: Department of Mathematics, Kwangwoon University, Wolgye-Dong, Nowon-Gu, Seoul 139-701, Korea

E-mail address: leehojoo@hotmail.com

