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Some Properties of the Lemoine Point
Alexei Myakishev

Abstract. The Lemoine pointK, of AABC has special properties involving
centroids of pedal triangles. These properties motivate a definition of Lemoine
field, F', and a coordinatization of the plane&fA BC using perpendicular axes

that pass througk’. These principal axes are symmetrically related to two other
lines: one passing through the isodynamic centers, and the other, the isogonic
centers.

1. Introduction

Let A’ B’C’ be the pedal triangle of an arbitrary poiriin the plane of a triangle
ABC, and consider the vector fieH defined byF(Z) = ZA' + ZB' + ZC'. It
is well known thatF(Z) is the zero vector if and only i is the Lemoine point,
K, also called the symmedian point. We cBlthe Lemoine field of AABC and
K thebalance point of F.

Figure 1 Figure 2

The Lemoine field may be regarded as a physical force field. Any gbinthis
field then has a natural motion along a certain curve, or trajectory. See Figure 1.
We shall determine parametric equations for these trajectories and find, as a result,
special properties of the lines that bisect the angles between the line of the isogonic
centers and the line of the isodynamic centera\afBC'.
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2. TheLemoine equation

In the standard cartesian coordinate system, pladeBC so that4 = (0,0),
B = (c,0), C = (m,n), and writeZ = (z,y). For any linePz + Qy + R = 0,
the vectorH from Z to the projection ofZ on the line has components

he= — 2 "
T P22 - P24 Q?
From these, one find the components of the three vectors whose sum @i&fifles

(Px+ Qy + R), hy (Px+ Qy+ R).

| vector || T — component | Yy — component |
ZA/ —n(nz+y(c—m)—cn) | (m—c)(nz+ylc—m)—cn)
TLQ-é-(C—m)Q n2(+(c—m)§
/ —n(nz—my) m(nz—my
B ENTLETLE " mZin?
ZC' 0 —y

The components of the Lemoine fidit{Z) = ZA’ + ZB' + ZC' are given by
Fp=—(az+By) +dz,  Fy=—(Br+7y) +dy,

where
2 2 R n(c—m)
m2n+n2 + n2+(27m)2’ ﬂ - mQTZQ + nZ+(c—m)2’
— 1 _|_ m2 _|_ (Cfm)Q .
’y - m2+n2 n2+(cfm)2’
d, = < _ d. — _cnle=m)
T 7 n24(c—m)?? Y7 n2+(c—-m)?-
See Figure 2. Assuming a unit mass at each pginlewton’s Second Law now
gives a system of differential equations:

o =

o' = —(ax + By) +doy, Y = —(Bz 4+ yy) + dy,

where the derivatives are with respect to timé\Ne now translate the origin from
(0,0) to the balance poinid,, d, ), which is the Lemoine poink’, thereby obtain-
ing the system

" =—(ax+By), y'=—(Bz+y),

which has the matrix form
x" x
=-M , 1
(y> (y> )

whereM = (g 5) We shall refer to (1) as thisemoine eguation.

3. Eigenvalues of the matrix M

In order to solve equation (1), we first find eigenvalugsind Ay of M. These
are the solutions of the equatioh/ — A\I| = 0,i.e, (a« = A)(y —A) — # =0, or

M —(a+ DA+ (ay— %) =0.
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Thus

m?+n?  n?+ (c—m)?
m?2+n?  n?4 (c—m)?
Writing a, b, ¢ for the sidelengthgBC|, |C A|, |AB| respectively, we find the
determinant

Mth=a+y=1+ — 3.

2

n
|M|:04’Y—52:W

The discriminant of the characteristic equatidn- (o + )\ + (ay — 3%) = 0'is
given by

(a®> +b* + %) > 0.

D= (a+7)?—4(ay—B%) = (a—7)*+43% > 0. ()

Case 1: equal eigenvalues \y = Ay = % In this caseD = 0 and (2) yields5 =0
anda = ~. To reduce notation, write = ¢ — m. Then sinces = 0, we have

mQL-H’LQ - pg_’_LnQ, SO that
(m — p)(mp —n*) =0, (3)
Also, sincea = ~, we find after mild simplifications
nt — (m? + p*)n? — 3m?p? = 0. ()

Equation (3) imples that, = p or mp = n?. If m = p, then equation (4) has
solutionsn = v/3m = v/3p. Consequently’ = (%c, @c) so thatAABC is
equilateral. However, ifnp = n?, then equation (4) leads e + p)? = 0, so that

¢ = 0, a contradiction. Therefore from equation (3) we obtain this conclusfon:
the eigenvalues are equal, then AABC isequilateral.

Case 2: distinct eigenvalues \; o = %. HereD > 0, and\; 2 > 0 according
to (2). We choose to consider the implications when

=0, a#r. (5)
We omit an easy proof that these conditions corresponAdB C being a right

triangle or an isosceles triangle. In the former case, w#ite a® + b2. Then the
characteristic equation yields eigenvalueand~, and

n? n?  n2(a®+0b%) n??

o= — + - = = e 1’

b2 a2 a?b? a?b?

sinceab = nc = twice the area of the right triangle. Sinaet v = 3, v = 2.

4. General solution of the Lemoine equation

According to a well known theorem of linear algebra, rotation of the coordinate
system aboufs gives the system’ = —\;x, 3y’ = —\y. Let us call the axes of
this coordinate system thgincipal axes of the Lemoine field.

Note that if AABC' is a right triangle or an isosceles triangle (cf. conditions
(5)), then the angle of rotation is zero, afdis on an altitude of the triangle. In
this case, one of the principal axes is that altitude, and the other is parallel to the
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corresponding side. Also M ABC' is a right triangle, therk is the midpoint of
that altitude.
In the general case, the solution of the Lemoine equation is given by

T = ¢1 coswit + ¢g sinwot, Yy = c3 coswit + ¢4 sin wat, (6)

wherew; = /A1, we = /Ag. Initial conditionsz(0) = g, y(0) = yo, 2/(0) = 0,
y'(0) = 0 reduce (6) to

x = xgcoswit, Y = Yo cos wat, @)

with w; > 0, we > 0, w? + w3 = 3. Equations (7) show that each trajectory is
bounded. If\; = \,, then the trajectory is a line segment; otherwise, (7) represents
a Lissajous curve or an almost-everywhere rectangle-filling curve, accordifig as
is rational or not.

5. Lemoine sequences and centroidal orbits

Returning to the Lemoine field, supposes, is an arbitrary point, andz, is
the centroid of the pedal triangle &f. Let Z/ be the point to whiclF translates
Zy. Itis well known thatG, lies on the lineZ,Z) at a distance of that from
Zp to Z}. With this in mind, define inductively theemoine sequence of %, as
the sequencéZ, Z,, Zs, .. .), whereZ,,, for n > 1, is the centroid of the pedal
triangle of Z,,_;. Writing the centroid of the pedal triangle & asZ; = (z1,41),
we obtain3(z; — z9) = —A\1xo and

1 1 1
x1 3(3 1)%0 372705 Y1 = 3 %0

Accordingly, the Lemoine sequence is given with respect to the principal axes by

oo (B ())

Since%)\l and%)\g are betwee and1, the pointsZ, approach0,0) asn — oc.
That is, the Lemoine sequence of every point converges to the Lemoine point.
Representation (8) shows that lies on the curvéz, y) = (zou', yov'), where
u = Xy andv = ;. We call this curve theentroidal orbit of Z. See Figure
3. Reversing the directions of axes if necessary, we may assums, tivab and

yo > 0, so that elimination of gives

ﬁ_(ﬁ)k, p v (9)

Yo ) lnu’

Equation (9) expresses the centroidal orbitpf= (z, yo). Note that ifw; =
ws, thenv = u, and the orbit is a line. Now leX; andY be the points in which
line ZG z meets the principal axes. By (8),

ZGzl _ X2 12Gz| _ M
GzXzl M |GzYz| A2

(10)
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Figure 3

These equations imply thatif A BC' is equilateral with cente®, then the centroid
Gz is the midpoint of segme@G.
As another consequence of (10), suppdséBC is a right triangle; letH be
the line parallel to the hypotenuse and passing through the midpoint of the altitude
H' to the hypotenuse. LeY andY be the points in which lin&Z G; meetsH and
H', respectively. ThetnZGz| : | XGz| = |YGz| : |ZGz| =2: 1.

6. Theprincipal axes of the Lemoinefield

Physically, the principal axes may be described as the locus of points in the plane
of AABC along which the “direction” of the Lemoine sequence remains constant.
That is, if Zy lies on one of the principal axes, then all the poifitsZs, . .. lie on
that axis also.

In this section, we turn to the geometry of the principal axes. Relative to the
coordinate system adopted{B, the principal axes have equations= 0 andy =
0. Equation (8) therefore shows that4§ lies on one of these two perpendicular
lines, thenZ, lies on that line also, for alt > 1.

Let A;, A, denote the isodynamic points, aig, F» the isogonic centers, of
ANABC. Call lines A Ay and Fy F5 the isodynamic axis and theisogonic axis
respectively?

Lemma 1. Suppose Z and Z’ are a pair of isogonal conjugate points. Let O and
O’ be the circumcircles of the pedal triangles of Z and Z'. Then O = O’, and the
center of O isthe midpoint between Z and Z7'.

The pointsFi, Fs, Ai, Ao are indexed aXi13, X14, X15, X16 and discussed in [2].
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B C

Figure 4

A proof is given in Johnson [1, pp.155-156]. See Figure 4.

Now suppose thaf = A;,. ThenZ’' = Fj, and, according to Lemma 1, the
pedal triangles ofZ and Z' have the same circumcircle, whose centkrs the
midpoint betweend; and F;. Since the pedal triangle of; is equilateral, the
point O is the centroid of the pedal triangle df.

Next, supposd. is a line not identical to either of the principal axes. Iebe
the reflection ofZ, about one of the principal axes. Thé&his also the reflection of
L about the other principal axis. We cdlland L' a symmetric pair of lines.

Lemma 2. Suppose that Gp isthe centroid of the pedal triangle of a point P, and
that @ isthereflection of P in Gp. Then there exists a symmetric pair of lines, one
passing through P and the other passing through Q.

Proof. With respect to the principal axes, write= (zp,yp) andQ = (zg,yq).
ThenGp = (3Xozp, $\yp), and3Aezp = zp + z@, SO that

2 1 1
rQ = (g)\Q — 1) rp = 5(2)\2 — ()\1 + )\2))%1) = g()\g — )\1)1‘]3.

Likewise, yo = 2yp(A1 — A2). It follows that 72 = —‘;—g. This equation shows
that the liney = g—i -z passing througt® and the liney = i’—g -z passing through
@ are symmetric about the principal axgs= 0 andz = 0. See Figure 5. O

Theorem. The principal axes of the Lemoine field are the bisectors of the angles
formed at the intersection of the isodynamic and isogonic axes in the Lemoine
point.

Proof. In Lemma 2, takeP = A; and@ = F;. The symmetric pair of lines are
then the isodynamic and isogonic axes. Their symmetry about the principal axes
is equivalent to the statement that these axes are the asserted bisectors. [
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Figure 5
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