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Abstract. Itis well known that perpendicularity yields an involution on the line
at infinity £°° mapping perpendicular directions to each other. Many notions of
triangle geometry depend on this involution. Since in projective geometry the
perpendicular involution is not different from other involutions, theorems using
standard perpendicularity in fact are valid more generally.

In this paper we will classify alternative perpendicularities by replacing the
orthocenterH by a pointP and £~ by a line¢. We show what coordinates
undergo with these changes and give some applications.

1. Introduction

In the Euclidean plane we consider a reference triadgh”. We shall perform
calculations using homogeneous barycentric coordinates. In these calcu(gtions
g : h) denotes the barycentrics of a point, while m : n| denotes the line with
equationz + my + nz = 0. The line at infinity£L>, for example, has coordinates
[1:1:1].

Perpendicularity yields an involution on the line at infinity, mapping perpendic-
ular directions to each other. We call this involutithe standard perpendicularity,
and generalize it by replacing the orthocenkeiby another pointP with coordi-
nates(f : g : h), stipulating that the cevians @t be “perpendicular” to the corre-
sponding sidelines ol BC. To ensure thaP is outside the sidelines of BC, we
assumefgh # 0.

Further we let the role of> be taken over by another life= [l : m : n] not
containingP. To ensure that does not pass through any of the verticesi&C,
we assumémn # 0 as well. We denote bif.]* the intersection of a liné with £.

When we replacéf by P and£> by ¢, we speak ofP/-perpendicularity.

Many notions of triangle geometry, like rectangular hyperbolas, circles, and
isogonal conjugacy, depend on the standard perpendicularity. Replacing the stan-
dard perpendicularity byP/-perpendicularity has its effects on these notions. Also,
with the replacement of the line of infinitg>, we have to replace affine notions
like midpoint and the center of a conic by their projective generalizations. So it
may seem that there is a lot of triangle geometry to be redone, having to prove
many generalizations. Nevertheless, there are at least two advantages in making
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calculations in generalized perpendicularities. (1) Calculations using coordinates
in P-perpendicularity are in general easier and more transparent than when we use
specific expressions for the orthocentér (2) We give ourselves the opportunity

to work with different perpendicularities simultaneously. Here, we may find new
interesting views to the triangle in the Euclidean context.

2. P{-Perpendicularity

In the following we assume some basic results on involutions. These can be
found in standard textbooks on projective geometry, such as [2, 3, 8].

2.1 Pt-rectangular conics. We generalize the fact that all hyperbolas from the
pencil throughA, B, C, H are rectangular hyperbolas. LBtbe the pencil of cir-
cumconics througtP. The elements oP we call P/-rectangular conics. Accord-
ing to Desargues’ extended Involution Theorem (see, for examplgl §25.4], [8,
p.153], or [3,§6.72]) each member ¢ must intersect a linéin two points, which
are images under an involutiop,. This involution we call the?/-perpendicularity.

Since an involution is determined by two pairs of images,can be defined
by the degenerate members of the pencil, the pairs of (iB€§ PA), (AC, PB),
and(AB, PC). Two of these pairs are sufficient.

If two lines L and M intersec¥ in a pair of images ofpy, then we say that they
are P/-perpendicular, and writé 1 p, M. Note that for any, this perpendicular-
ity replaces the altitudes of a triangle by the ceviang afs linesP/-perpendicular
to the corresponding sides.

The involutionTp, has two fixed points;, and.Js, real if rp, is hyperbolic, and
complex ifrpy is elliptic.

Again, by Desargues’ Involution Theorem, every nondegenerate tridhglé>;
has the property that the lines through the vertieégperpendicular to the opposite
sides are concurrent at a point. We call this point of concurrencBtrmthocenter
of the triangle.

Remark. In order to be able to make use of the notions of parallelism and mid-
points, and to perform calculations with simpler coordinates, it may be convenient
to only replaceH by P, but not£> by another line. In this case we speaki®f
perpendicularity. Eacl?/-perpendicularity corresponds to theperpendicularity

for an appropriate) by the mappingsz : y : 2) < (lz : my : nz).?

2.2 Representation of 7p, in coordinates.

Theorem 1. For P = (f : g : h) and £ = [l : m : n], the P¢-perpendicularity is
given by

s (fsgu ) e (HORR) SRS 2] R 201 )

m n
(1)

These mappings can be constructed by(them : n)-reciprocal conjugacy followed by iso-
tomic conjugacy and conversely, as explained in [4].
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Proof. Let L be a line passing through' with [L]* = (fz : gz : hz), and let
Br, = LNAB = (fr : g : 0). We will consider triangleAB;,C. We have
noted above that th&/-altitudes of triangleA B;,C' are concurrent. Two of them
are very easy to identify. Th&/-altitude fromC simply isCP = [—g : f : 0].
On the other hand, sindBP)’ = (fm : —If — hn : hm), the P¢-altitude from
Bris[—hmgr : hmfr : fmgr + flfr + hnfr]. These twaP/-altitudes intersect
in the point:?

X = (f(fmgr + flfr +hnfr) : gn(hfr — fhr) : hm(fgr — gfrg)).
Finally, we find that the third?/-altitude meetd in

[ax) = (f(ghLz_ hgr) . g(han; fhr) . h(fgLn— 9fL)> ,

which indeed satisfies (1). a

3. P/-circles

Generalizing the fact that in the standard perpendicularity, all circles pass through
the two circular points at infinity, we definef&/-circle to be any conic through the
fixed points.J; and.J, of the involutionTp,. This viewpoint leads to another way
of determining the involution, based on the following well known fact, which can
be found, for example, in [Z5.3]:

Let a conicC intersect a line. in two points/ and.J. The involu-
tion 7 on L with fixed points/ and.J can be found as follows: Let
X be apoint on, then7(X) is the point of intersection of and
the polar of X with respect t.

Itis clear that applying this to &¢-circle with line ¢ we get the involutionp,.

In particular this shows us that in ary/-circle C a radius and the tangent b
through its endpoint ar@-perpendicular. Knowing this, and restricting ourselves
to P-circles, i.e.l = £, we can conclude that alP-circles are homothetic in the
sense that parallel radii of tw-circles have parallel tangents, or equivalently, that
two parallel radii of twoP-circles have a ratio that is independent of its direcfion.

We now identify the most importar/-circle.

Theorem 2. The conic Opy:
flgm + hn)yz + g(fl + hn)xz + h(fl+ gm)zy =0 2
isthe P/-circumcircle.

Proof. Clearly A, B andC are on the conic given by the equation. Lkt (f :
g1 : h1), then with (1) the condition thaf is a fixed point ofrp, gives

(fghl —fah  figh — fohi fglh—f19h> —(fg1:h)

l m n

2In computing the coordinates af, we have have used of the fact th#t + mgr, + nhr = 0.

SNote here that the ratio might involve a real radius and a complex radius. This happens for
instance when we have in the real plane two hyperbolas sharing asymptotes, but on alternative sides
of these asymptotes.
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which, under the conditiosf;l + gym + hin = 0, is equivalent to (2). This shows
that the fixed points;; and.J; of 7p lie onCp and proves the theorem. O

As the ‘center’ ofOp, we use the pole of with respect toOp,. This is the
point

mg+nh If +nh If +mg
Opy = i P ~ .

3.1 P/-Nine Point Circle. The ‘centers’ ofP¢-rectangular conicg,e., elements
of the pencilP of conics through4, B, C, P, form a conic through the traces of
P, # the ‘midpoints’® of the triangle sides, and also the ‘midpoints’ 4P, BP
andCP. This conicNp, is an analogue of the nine-point conics, its center is the
‘midpoint’ of P andOpy.

The conic throug4, B, C, P, andJ; (or J5) clearly must be tangent t§ so
that J; (J1) is the ‘center’ of this conic. So both and.J; lie on Npy, which
makes it aP/{-circle.

4. P{¢-conjugacy

In standard perpendicularity we have the isogonal conjuga@s the natural
(reciprocal) conjugacy. It can be defined by combining involutions on the pencils
of lines through the vertices A BC. The involution that goes with the pencil
throughA is defined by two pairs of lines. The first pairA®3 and AC, the second
pair is formed by the lines through perpendicular tcA B and toAC. Of course
this involution maps to each other lines throughmaking opposite angles téB
and AC respectively. Similarly we have involutions on the pencil througland
C'. The isogonal conjugacy is found by taking the images of the cevians of a point
P under the three involutions. These images concur in the isogonal conjugate of
P.

This isogonal conjugacy finds it8-perpendicular cognate in the following re-
ciprocal conjugacy:

mg + nh lf +nh) h({lf+m
Tpgc:((L‘:y:Z)H(f( gl ) . 9(f +nh) h(f g)>, 3)
T my nz
which we will call theP/-conjugacy. This naming is not unique, since for each line
¢’ there is a point) so that theP/- andQ/-conjugacies are equal. In particular, if
£ = L, this reciprocal conjugacy is

&y 2) e <f(g+h):g(h+f) : h(f+g)>.

x Y z

“These are the ‘centers’ of the degenerate elemerys of
The ‘midpoint’ of XY is the harmonic conjugate ¢fXY* with respect toX andY. The
‘midpoints’ of the triangle sides are also the traces of the trilinear pole of
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Clearly theP/-conjugacy map$ to Op,. This provides us with a construction
of the conjugacy. See [4].From (2) it is also clear that this conjugacy transforms
Cpy into £ and back.

Now we note that any reciprocal conjugacy maps any line to a circumconic of
ABC, and conversely. In particular, any line throu@h, is mapped to a conic
from the pencilP, a P{-rectangular conic. This shows that,. maps theP/-
perpendicularity to the involution o®p, mapping each poin¥ to the second
point of intersection 0Op, X with Cp,.

The four points

(i\/W:j:\/g(lf;_nh) :i\/h(lf;:mg)>

are the fixed points of th&/-conjugacy. They are the centers of tRé-circles
tritangent to the sidelines of BC.

5. Applications of P-perpendicularity

As mentioned before, it is convenient not to change the line at infifittynto
£ and speak only oP-perpendicularity. This notion is certainly less general. Nev-
ertheless, it works with simpler coordinates and it allows one to make use of paral-
lelism and ratios in the usual way. For instance, the Euler line is generalized quite
easily, because the coordinatespfare(g +h: f+ h: f + g), so that it is easy
to see thalPG : GOp =2 : 1.

We give a couple of examples illustrating the convenience of the notidp of
perpendicularity in computations and understanding.

5.1 Construction of ellipses. Note that the equation (1) does not change when we
exchangdf :g:h)and(xz:y: z). Sowe have:

Proposition 3. P lieson Og, if and only if Q) lieson Opy.

When we restrict ourselves tB-perpendicularity, Proposition 3 is helpful in
finding the axes of a circumellipse of a triangle. Let's say that the ellipép i$
If we find the fourth intersectiorX” of a circumellipse and the circumcircle, then
the X -circumcircleOx passes through as well asP, and thus it is a rectangular
hyperbola as well as B-rectangular conic. This means that the asymptot&gof
must correspond to the directions of the axes of the ellipse. These yield indeed the
only diameters of the ellipse to which the tangents at the endpoints are (standard)
perpendicular. Note also that this shows that all conics throligh, C, X, apart
from the circumcircle have parallel axes. Figure 1 illustrates the case ke,
the centroid, and( = Steiner point. Here)x = is the Kiepert hyperbola.

The knowledge of’-perpendicularity can be helpful when we try to draw conics
in dynamic geometry software. This can be done without using foci.

6in [4] we can find more ways to construct tRé-conjugacy, for instance, by using the degenerate
triangle whereA P, BP andC' P meet(.
"When we know the centedp of Op, we can findP by the ratioOpG : GP =1 : 2.
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Figure 1

If we have the cente®p of a conic through three given points, sayC, we
easily findP as well. Also by reflecting one of the vertices, s&ythroughOp we
have the endpoints of a diameter, s&y... Then if we let a linen go throughA,
and a linen which is P-perpendicular ten throughA.. Their point of intersection
lies on theP-circle throughABC'. See Figure 2.

5.2 Smson-Wallace lines. Given a generic finite poin’ = (z : y : 2), let
A" € BC be the point such that’ X || AP, and letB’ andC’ be defined likewise,
then we calld’ B’C’ thetriangle of P-traces of X. This triangle is represented by
the following matrix:

A’ 0 gr+(g+h)y hx+(g+h)z
M=| B | = fy+(f+hx 0 hy + (f + h)z 4)
c’ fz+(f+g9)r gz+(f+9)y 0

We are interested in the conic that plays a role similar to the circumcircle in the
occurrence of Simson-Wallace linéslo do so, we find that!’ B'C” is degenerate

8in [5] Miguel de Guznan generalizes the Simson-Wallace line more drastically. He allows three
arbitrary directions of projection, with the only restriction that these directions are not all equal, each
not parallel to the side to which it projects.
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Figure 2

iff determinant| M| = 0, which can be rewritten as
(f+g+h)(z+y+2)(fyz + goz + hay) = 0, (5)

where
f=flg+h), G=g(f+h), h=h(f+g).

Using thatX and P are finite points, (5) can be rewritten into (2), so that the locus
is the P-circle Cp. See Figure 3.

Figure 3
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We further remark that since the rows of matfix in (4) add up to(f + g +
h)X + (x+y+ 2) P, the P-Simson-Wallace linel’ B'C" bisects the segmen¥ P
whenX € Cp. Thus, the point of intersection of B’C’ and X P lies onNp.

5.3 Thelsogonal Theorem. The following theorem generalizes the Isogonal The-
orem.® We shall make use of the involutions 4, 7pp and 7pc that the P-
conjugacy causes on the pencil of lines throughB andC respectively.

Theorem 4. For I € {A, B,C}, consider lines{; and /; unequal to sidelines of
ABC that areimagesunder 7p;. Let A; = IgNly, B1 = lcNly and Cy = 1aNl.
We call A;B1C; a P-conjugate triangle Then triangles ABC and 4, B;C, are
per spective.

Figure 4

Proof. ForI € {A,B,C}, let P = (x; : yr : 21) € Iy be a point different from
I. We find, for instancela = [0 : 24 : —ya] andl}, = [§/yc : —f/zc : 0).
ConsequentlyB; = (fya/zc : gya/yc : §za/yc). In the same way we find
coordinates ford; and(C so that theP-conjugate triangled; B, C is given by

Ay frc/xs  fyo/rs hac/zp
By ) =\ fya/zc gyalve gzalye
Ch hxp/za §z/ya hzp/za

With these coordinates it is not difficult to verify that B,C; is perspective to
ABC. This we leave to the reader. O

This theorem states that a triangle B, C; with /BAC, = /CAB,, ZCBA, = /ABC,
andZACB; = ZBCA; is perspective tod BC. See [1, p.55], also [6, 9], and [7, Theorem 6D].
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Interchanging the linel and?; in Theorem 4 above, we see that fReconjugates
of A; B1C4 form atriangled; BoCs perspective tod BC' as well. This is its desmic
mate.'® Now, each triangle perspective #BC' is mapped to its desmic mate by
a reciprocal conjugacy. From this and Theorem 4 we see that the conditions ‘per-
spective taA BC" and ‘desmic mate is also an image under a reciprocal conjugacy’
are equivalent.

5.3.1 EachP-conjugate triangle can be written in coordinates as

Ay f w v
Bl = M1 = w g 2~L
Ch v u h
Let a secondP-conjugate triangle be given by
Az f w v
By | =M= W g U
Cy Vi U h

Considering linear combinationtd/; + uM, it is clear that the following proposi-
tion holds.

Proposition 5. Let A1 B1C; and A; B>C5 be two distinct P-conjugate triangles.
Define A’ = A1 A> N BC and B’, C’ analogously. Then A’ B’C’ isa cevian trian-
gle. Infact, if A”B”C" is such that the cross ratios (A; Ay A’A"), (B1BB'B")
and (C1C,C'C") are equal, then A” B"C" is perspective to ABC aswell.

The following corollary uses that the points where the cevianB ofeet(™ is
a P-conjugate triangle.

Corollary 6. Let A; B;C; bea P-conjugate triangle. Let A’ bethe P-perpendicular
projections of A; on BC, B; on C' A, and C, on AB respectively. Let A”B"C"

be such that A/Al : A”Al = B,Bl : B”Bl = 0’01 : C”Cl = t, then A"B"C"

is perspective to ABC'. Ast varies, the perspector traverses the P-rectangular

circumconic through the perspector of 4 B1C.

5.4. The Darboux cubic. We conclude with an observation on the analogues of the
Darboux cubic. It is well known that the locus of pointswhose pedal triangles
are perspective td BC'is a cubic curve, the Darboux cubic. We generalize this to
triangles of P-traces.

First, let us consider the lines connecting the verticed BIC' and the triangle
of P-traces ofX given in (4). Lety;; denote the entry in rowand column; of
(4), then we find as matrix of coefficients of these lines

0 —pi3  p12
N=| o3 0 —par |. (6)
—H32 431 0

10see for instance [4].
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These lines concur iffiet N = 0. This leads to the cubic equation

(—f+g+m)z(hy? =g2*)+(f —g+h)y(f2° —ha®)+(f +9—h)z(g2° — fy?) :(%
We will refer to this cubic as thé>-Darboux cubic. The cubic consists of the
points@ such that) and itsP-conjugate are collinear with the poifit f + g+ h :
f—g+h:f+g— h),which is the reflection of in Op.

It is seen easily from (4) and (6) that if we intercharige ¢ : h) and(x : y : 2),
then (7) remains unchanged. From this we can conclude:

Proposition 7. For two points P and @ be two points not on the sidelines of trian-
gle ABC, P lies on the Q-Darboux cubic if and only if @ lies on the P-Darboux
cubic.

This example, and others §5.1, demonstrate the fruitfulness of considering
different perpendicularities simultaneously.
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