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Cubics Associated with Triangles of Equal Areas

Clark Kimberling

Abstract. The locus of a poinK for which the cevian triangle oX and that of

its isogonal conjugate have equal areas is a cubic that passes through the 1st and
2nd Brocard points. Generalizing from isogonal conjugaté’tsoconjugate

yields a cubicZ (U, P) passing throughU; if X is on Z(U, P) then theP-
isoconjugate ofX is on Z(U, P) and this point is collinear witt andU. A
generalized equal areas culli¢P) is presented as a special caseZdt/, P).

If o = ared AABC), then the locus o whose cevian triangle has prescribed
oriented ared(o is a cubicA(P), andP is determined i has a certain form.
Various points are proved to lie ok(P).

1. Introduction

For any pointX = « : 8 : v (homogeneous trilinear coordinates) not a vertex
of AABC, let

0 8 v 0 v B
T=| a 0 ~ and T'=|~v 0 a |,
a B 0 6 «a 0

so thatT is the cevian triangle oK, and7 is the cevian triangle of the isogonal
conjugate ofX. Let o be the area o\ ABC', and assume that does not lie on

a sidelineAABC. Then oriented areas are given (e.g. [3, p.35]) in terms of the
sidelengths:, b, ¢ by

0 kB kiy 0 hy Lp
b b
area(T) = g—z keao 0 kovy |, area(T") = % loy 0 la |,
g k3a k3ﬁ 0 g lgﬁ lgoé 0
wherek; andl; are normalizers: Thus,
area(T) = k1koksaBvyabe and area(T") = l1l2l30&ﬂ"}/ab6’
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fp=a: [ : v is not on the line£* at infinity, then the normalizek makesha, h3, hy the
directed distances fror® to sidelinesBC, C A, AB, respectively, an& = 20/(acc + b3 + ).
If PisonL> andafy # 0, then the normalizer is8 := 1/a + 1/8 + 1/v; if P isonL> and
afy =0, thenh := 1.
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Figure 1. Trianglest’ B’C’ andA” B”C" have equal areas

so that are@’) = aredT") if and only if k; ko ks = 11l5l3. Substituting yields
1 1 I 1 1
b3+cy cy+aa aa+bB  by+cf ca+ay aB+bo’
which simplifies to

a(b? — )a(B? =) +b(c® — a®)B(y* — a?) + c(a® — b*)y(a® — %) = 0. (1)

In the parlance of [4, p.240], equation (1) represents the self-isogonal cubic
Z(Xs512), and, in the terminology of [1, 2], the auto-isogonal cubic having pivot
X512. 2 Itis easy to verify that the following 24 points lie on this cubic:

verticesA, B, C,

incenterX; and excenters,

Steiner pointXgyg and its isogonal conjugat&s;, (see Figure 1),
vertices of the cevian triangle 0fs;o,

1st and 2nd Brocard poinf2; and2s,

X5120 X7 and X512(© Xo9, Wwhere(© denotes Ceva conjugate,

(X5120X71) ! and (X512© Xo9) !, where()~! denotes isogonal conjugate,
vertices of trianglel; below,
vertices of trianglel; below.

2X, is theith triangle center as indexed in [5].
3This “equal-areas cubic” was the subject of a presentation by the author at the CRCC geometry
meeting hosted by Douglas Hofstadter at Indiana University, March 23-25, 1999.
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The vertices of the bicentfitriangleT; are

—ab :a® : be, ca: —be: b2, A ab: —ca, 2)
and those ofl; are
—ac: be:a?, b : —ba : ca, ab: c?: —ch. 3)

Regarding (2)—ab : a® : be is the point other thanal and©; in which line A,
meetsZ(Xs12). Similarly, lines AQ; and CQ); meetZ(Xs512) in the other two
points in (2). Likewise, the points in (3) lie on lineK, BQs, CQ,. The points
in (3) are isogonal conjugates of those in (2).

Vertex A’ := —ab : a? : bc is the intersection of thé€'-side of the anticomple-
mentary triangle and th8-exsymmedian, these being the lines + b3 = 0 and
ca + ay = 0. The other five vertices are similarly constructed.

Other descriptions of (X512) are easy to check: (i) the locus of a poift
collinear with its isogonal conjugate and;,, and (ii) the locus of) for which
the line joining@ and its isogonal conjugate is parallel to the liné€,.

2. I'soconjugates and reciprocal conjugates

In the literature, isoconjugates are defined in terms of trilinears and reciprocal
conjugates are defined in terms of barycentrics. We shall, in this section, use the
notations(z : y : z); and(z : y : 2), to indicate trilinears and barycentrics,
respectively®

Definition 1. [6] SupposeP = (p: ¢ : r);andX = (z: y : z); are points, neither
on a sideline oA ABC. The P-isoconjugate ofX is the point
(P- X)t_1 = (qryz : rpzx : pqry):.
On the left side, the subscripsignifies trilinear multiplication and division.
Definition 2. [3] SupposeP = (p: q:r),andX = (x : y : z), are points not on
a sideline ofA ABC'. The P-reciprocal conjugate aoX is the point
(P/X)p = (pyz : qzx : ray)yp.
In keeping with the meanings of “iso-" and “reciprocal”,
X-isoconjugate o = P-isoconjugate ofX,

G

P-reciprocal conjugate ok’

whereG, the centroid, is the identity corresponding to barycentric division.

X-reciprocal conjugate aP =

“4Definitions of bicentric triangle, bicentric pair of points, and triangle center are given in [5,
Glossary]. Iff(a,b,c) : g(a,b,c) : h(a,b,c) is the A-vertex of a bicentric triangle, then the-
vertex ish(b, c,a) : f(b,c,a) : g(b,c,a) and theC-vertex isg(c, a, b) : h(c,a,b) : f(c,a,b).

A point X with trilinearsa : 8 : v has barycentricaa : b3 : ¢y. For points not onC®,
trilinears are proportional to the directed distances betw€end the sideline&8C,CA, AB, re-
spectively, whereas barycentrics are proportional to the oriented areas of triah§l€s XC A,

X AB, respectively.
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3. Thecubic Z(U, P)

In this section, all coordinates are trilinears; for exampte; 3 : v) appears
asa : 3 :~. Supposd/ =u :v:wandP = p: g : r are points, neither on a
sideline of AABC'. We generalize the cubig(U) defined in [4, p.240] to a cubic
Z(U, P), defined as the locus of a poiit = « : 3 : «y for which the pointd/, X,
and theP-isoconjugate ofX are collinear. This requirement is equivalent to

u v w
(0% ﬁ Y = 07 (4)
qrBy rpya  pgof

hence to
upa(qB® — rv%) +vgB(ry* — pa®) + wry(ga® — rB%) = 0.
Equation (4) implies these properties:

(i) Z(U,P) is self P-isoconjugate;
(i) UeZ(U,P),
(i) if X € Z(U, P), thenX, U, and(P - X); ! are collinear.

The following ten points lie o (U, P):

the verticesA, B, C,
the vertices of the cevian triangle &f namely,

O:v:w, wu:0:w, uw:v:0; (5)

and the points invariant undét-isoconjugation:

1 1 1
i ©)
—_1 1 1 1 —1 1 1 1 —1 (7)

\/Tj:%:%, %:%:W, ﬁﬁ%

As an illustration of (i), the cubicg (U, X;) and Z (U, X3,) are self-isogonal
conjugate and self-isotomic conjugate, respectively. Named cubics of the type
Z(U, X1) include the Thomson{ = X3), Darboux U = X5), Neuberg U =
X3p), Ortho U = X4), and Feuerbacti{ = X5). The Lucas cubic i€ (Xg9, X31),
and the SpiekelZ (Xg, X55). Table 1 offers a few less familiar cubics.

It is easy to check that the points

UOXy1=—-u+v+w:u—v+w:u+v—w,
1 1 1 1 1.1 1 1 1.1 1 1
UOU '=(——4+=+—): (= —=+—): (= +—— —
© u( u? 02 w2) (u2 v2 w2) (u2 v2 w2)
lie on Z(U). Since their isogonal conjugates also lies(), we have four more
points onZ (U, P) in the special case th#t = X.

v w
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|U | P |Centerson cubi¢(U, P)

Xsss | X1 | Xu, Xo, X, X32, X6, Xog, X385, X511, X604

X395 | X1 | X1, Xo, X, X14, X16, X138, X62, X305

X306 | X1 | X1, Xo, X, X3, Xi5, X7, X61, X306

KXaze | X1 | Xu, X30, X74, X110, X476, X523, X526

X | Xo | Xo, X31, Xao, Xy3, X5, X57, Xg1, X171, X365, X846, X893
Xsoa | Xo | Xe, X7, Xo, X37, X715, X386, X857, X192, X256, X366, X894, X1045
X309 | X31 | X2, Xg0, X77, X189, X280, X300, X318, X320, X347, X962
Xogg | Xs5 | X2, X7, Xs1, X174, X226, X554, X559, X1020, X1081, X1082
Xog1 | Xogg | X1, X6, Xa2, X57, Xo39, X291, X292, X672, X804

Xogo | Xoss | X1, Xo, X3, Xg7, X171, Xogs, Xoa1, Xog1, Xogo

Table 1

4. Trilinear generalization: I'(P)

Next we seek the locus of a poiftt = « : § : ~ (trilinears) for which the cevian
triangleT” and the cevian triangle

R 0 ry g¢p
T=1| r 0 p«
af pa 0

of the P-isoconjugate ofX have equal areas. For this, the method leading to (1)
yields a cubic denoted by(P):

ap(rb*—qc*) (g% —r7?)+bg(pc® —ra®) B(ry* —pa®)+cr(qa® —pb?)y(pa® —qB%) = 0,
(8)

except forP = X3; = a® : b? : ¢?; that is, except wherP-isoconjugation is

isotomic conjugation, for which the two triangles have equal areas fo¥t alfhe

cubic (8) isZ (U, P) for

U =U(P) = a(rb* — ¢c®) : b(pc? — ra?) : c(qa® — pb?),

a point on£*°. As in Section 3, the verticed, B, C' and the points (5)-(7) lie on

L'(P).

Let U* denote theP-isoconjugate of/. This is the trilinear pole of the line
X Xo, whereX = % : g : =, the P-isoconjugate ofX,. Van Lamoen has noted
that sincel lies on the trilinear polat., of the P-isoconjugate of the centroid (i.e.,
L has equatio + % + =L = 0), andU also lies onL>, we haveU* lying on
the Steiner circumellipse and on the conic

Sl =, )

this being theP-isoconjugate ofL>.

Theorem 1. Suppose P, and P; are distinct points, collinear with but not equal to
X31. Then U(PQ) = U(Pl)
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Proof. Write P, = p1 : ¢1 : mp and P, = py : ¢2 : 7. Then for somes =
s(a,b,¢) #0,
2 2 _ 2 _
a” = sp1 + p2, b° = sq1 + qo, c” = sry+ro,
so that forf(a, b, ¢) := a[(¢® — sr1)b? — (b*> — sq1)c?], we have

U(Py) = f(a;b;¢) : f(b,c,a) : f(c,a,b)
= a(sc?q — sb*r1) : b(sa®ry — sc?py) : c(sb*py — sa’qy)
=U(P).
O

Example 1. For each point” on the lineX; X3, the pivotU(P) is the isogonal
conjugate {512) of the Steiner pointXyg). Such pointsP include the Schiffler
point (X5), the isogonal conjugateXgs) of the Spieker center, and the isogonal
conjugate g3) of the Clawson point.

The cubicI'(P) meets£> in three points. Aside frond/, the other two are
whereL> meets the conic (9). If (9) is an ellipse, then the two points are nonreal.
In caseP is the incenter, so that the cubic is the equal areas cubic, the two points
are given in [6, p.116] by the rati8s

etiB . TiA L .

Theorem 2. The generalized Brocard points defined by

%:E:p—b and T—b:lz:@ (10)
b ¢ «a c a b

lieonT'(P).

Proof. Writing ordered triples for the two points, we have

(a(rb® — qc), b(pc® — ra®), c(qa® — pb?))

qc ra pb rb pc qa
= abe abe
showingU as a linear combination of the points in (10). Since those two are
isogonal conjugates collinear with, they lie on( P). O

If P is a triangle center, then the generalized Brocard points (10) comprise a
bicentric pair of points. 11$8, we offer geometric constructions for such points.

5The pair is also given by-1 : e=C : ¥ and bye™'C : —1 : e, Multiplying the three
together and then by 1 gives cubes in “central form” with first coordinates

cos(B — C) xisin(B - C).

The other coordinates are now given from the first by cyclic permutations.
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5. Barycentric generalization: T'(P)

Here, we seek the locus of a poifit = « : § : v (barycentrics) for which the
cevian triangle of theP-reciprocal conjugate ok and that QfX have equal areas.
The method presented #1 yields a cubic that we denote ByP):

plg—r)a(rf?—gv*) +q(r—p)B(py* —ra®)+r(p—g)y(qa” —ps®) = 0, (11)
In particular, the equal areas cubic (1) is given by (11) using
(p:q:7)y=(a®:0%: %),
In contrast to (11), if equation (1) is written a&, b, ¢, o, 3,v) = 0, then
5(047/87/77 CL, b7C) = S(CL, b) C,O[,,B,’Y),

a symmetry stemming from the use of trilinear coordinates and isogonal conjuga-
tion.

6. A sextic

For comparison with the cubic(P) of §4, it is natural to ask about the locus of
a pointX for which the anticevian triangle of and that of its isogonal conjugate
have equal areas. The result is easily found to be the self-isogonal sextic

afy(—aa +bB + cy)(aa — b3 + ¢y)(aa + b3 — ¢)
= (=aBy+bya+caf)(afy — bya + caB)(apy + bya — caf),

onwhichlieA, B, C, the incenter, excenters, and the two Brocard points. Remark-
ably, the verticesA, B, C are triple points of this sextic.

7. Prescribed area cubic: A(P)

SupposeP = p : ¢ : r (trilinears) is a point, and lek ¢ be the oriented area of
the cevian triangle of. The method used i§il shows that itX = « : 3 : ~, then
the cevian triangle oKX has ared{o if

1R2R3a0CcQp”Y = o,
k1 koksabcafy = 8K o (12)

20 andk, andks are obtained cyclically. Substituting into (12) and

wherek; = e
simplifying gives

K—9. pa_ qb e .
bg+cr cr+ap ap-+bg

The locus ofX for which (13) holds is therefore given by the equation
(bg + cr)(cr + ap)(ap + bg)afy — pgr(bB + cy)(cy + aa)(ac +bB) = 0. (14)

We call this curve theorescribed area cubic for P (or for K) and denote it by
A(P). One salient feature of(P), easily checked by substituting

B

aa’ b2B37 2y
for «, 3, v, respectively, into the left side of (14), is thatP) is self-isotomic. That
is, if X lies on A(P) but not on a sideline o ABC, then so does its isotomic

(13)
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conjugate, which we denote b’? (Of course, we already know that(P) is
self-isotomic, by the note just after (8)). N
If (bg—cr)(cr—ap)(ap—bq) # 0, then the line”P> meetsA(P) in three points,

namelyP, P, and the point

, a’p?® — begr ‘ b2q% — carp ‘ cr? — abpg

T a2p(bg —er)  Pqler —ap)  Er(ap—bg)’

If P is atriangle center on(P), thenP, P, andP’ are triangle centers ah(P).
Since P’ is not collinear with the others, three triangle centersAqg#¥’) can be
found as points of intersection af( P) with the lines joining” to P, P, andP’.
Then more central lines are defined, bearing triangle centers that i¢ ) and
so on. Some duplication of centers thus defined inductively can be expected, but
one wonders if, for many choices &f, this scheme accounts for infinitely many
centers lying om\(P).

It is easy to check that(P) meets the line at infinity in the following points:

A:==0:c:—b, B':=—c:0:a, C':=b:—a:0.

Three more points are found by intersecting lide4, PB’, PC’ with A(P):

A" =bep: Prib’q, B':=c*rcaq:a®p, C":=b%q:d*p: abr.

A construction for4” is given by the equation” = PA’ N PA.
Line AP meetsA(P) in the collinear pointsA, P, and, as is easily checked, the
point

Writing this and its cyclical cousins integrally, we have these pointa @n):
begr : a’pq : a’rp, b2pq : carp : b3qr, Arp : Aqr : abpyg.

We have seen for give® how to form K. It is of interest to reverse these.

Suppose a prescribed area is specifie&aswhereK has the form
k(a,b, c)k(b,c,a)k(c, a,b)
in which k(a, b, ¢) is homogeneous of degree zerodirb, c. ’ We abbreviate the
factors a%:,, ky, k. and seek a poinP = p : ¢ : r satisfying
2abcpqr

(bq + cr)(er + ap)(ap + bg)
Solving the system obtained cyclically from
_ V2ap
Cbg+er

K = kokpk, =

ka

(15)

yields
k kpy k

T (V21 ka) B(V2 k) (V2 + ke)

That is,k(ta, tb, tc) = k(a, b, c), wheret is an indeterminate.

p:q:rT
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except fork, = —+/2, which results from (15) with? = X5;,. The following
table offers a variety of examples:

3
| P [ kJV2 |
a
X1 bic
X5 1
sin 2A
X3 sin 2B+sin 2C
X tan A
4 tan B;)thanc
Xi0 e
X7 bc
b
Xsro | pro
25
Xgr3 PacZ
Table 2

Next, supposé/ = u : v : w is a point, not on a sideline adk ABC, and let

P = oe : wa : u_b

b c a

Write out K as in (13), and use not (15), but instead, put
\3/§a2u

b2w + v’
corresponding to the poilf - Xg = ua : vb : we, in the sense that the cevian
triangle of U - X and that of P have equal areas. Likewise, the cevian triangle of
the point

ko =

P = wb Lue. v
c a b’

has the same are&,o. The pointsP and P are essentially those of Theorem 2.

Three special cases among the cubi¢®) deserve further comment. First, for
K =2, corresponding t&® = X512, equation (14) takes the form

(ac + b3 + cy)(befBy + caya + abaf) = 0. (16)
SinceL™ is given by the equationa + b3 + ¢y = 0 and the Steiner circumellipse
is given by
befBy + caya + abafl = 0,

the points satisfying (16) occupy the line and the ellipse together. J.H. Weaver [8]
discusses the cubic.

Second, whernk' = %, the cubicA(P) is merely a single point, the centroid.
Finally, we note that\ (X) passes through these points:

a:b:c, a:c:b, b:c:a, b:a:c, c:a:b, c:b:a. @an

8. Constructions

In the preceding sections, certain algebraically defined points, as in (17), have
appeared. In this section, we offer Euclidean constructions for such points.For
gvenU = v : v :wandX = z : y : z and let us begin with the trilinear
product, quotient, and square root, denoted respectively by, U/ X, andy/'X.
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Constructions for closely related barycentric product, quotient, and square root are

given in [9], and these constructions are easily adapted to give the trilinear results.
We turn now to a construction fromY of the pointz : z : y. In preparation,

decree apositive the side of lined B that containg”, and also the side of lin€' A

that containsB. The opposite sides will be calledgative.

B

Figure 2. ConstructiondfV =z : z:yfromX =z :y: z

Let X’ be the foot of the perpendicular froii on line AB, and letX” be the
foot of the perpendicular fronX” on line C A. Let M be the midpoint of segment
X'X", and letO be the circle centered & and passing through. Line X’ X"
meets circle® in two points; letY” be the one closer td/, as in Figure 2, and let
Z' be the reflection o in M. If X is on the positive side aiB andZ is on the
positive side of”' A, or if X is on the negative side of B andZ is on the negative
side of C A, then letZ = Z’; otherwise letZ be the reflection ofZ in line C A.

Now line L throughZ parallel to lineC' A has directed distande: from line C A,
wherekz is the directed distance from linBC of the line I through X parallel
to BC.Let R = LN L' Line CR has equatiora = z3. Let L” be the reflection
of line AX about the internal angle bisector giC AB. This line has equation
y3 = zv. Geometrically and algebraically, itis clearthat z : y = CRN L",
labeledV in Figure 2.

One may similarly construct the poigt : z : x as the intersection of lines
z(8 = zy andza = yB. Then any one of the six points

TiY:iz, XT:1ZY, Y:1zZ:T, Y:x:z, Z:1TY, Z:Y:I,

can serve as a starting point for constructing the other five. (A previous appear-
ance of these six points is [4, p.243], where an equation for the Yff conic, passing
through the six points, is given.)

The methods of this section apply, in particular, to the constructing of the gener-
alized Brocard points (10); e.g., for givéh=p : ¢ : r, constructP := ¢ : r : p,
and then construd?® - Q;.
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