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Cubics Associated with Triangles of Equal Areas

Clark Kimberling

Abstract. The locus of a pointX for which the cevian triangle ofX and that of
its isogonal conjugate have equal areas is a cubic that passes through the 1st and
2nd Brocard points. Generalizing from isogonal conjugate toP -isoconjugate
yields a cubicZ(U, P ) passing throughU ; if X is on Z(U, P ) then theP -
isoconjugate ofX is on Z(U, P ) and this point is collinear withX andU . A
generalized equal areas cubicΓ(P ) is presented as a special case ofZ(U, P ).
If σ = area(�ABC), then the locus ofX whose cevian triangle has prescribed
oriented areaKσ is a cubicΛ(P ), andP is determined ifK has a certain form.
Various points are proved to lie onΛ(P ).

1. Introduction

For any pointX = α : β : γ (homogeneous trilinear coordinates) not a vertex
of �ABC, let

T =


 0 β γ
α 0 γ
α β 0


 and T ′ =


 0 γ β
γ 0 α
β α 0


 ,

so thatT is the cevian triangle ofX, andT′ is the cevian triangle of the isogonal
conjugate ofX. Let σ be the area of�ABC, and assume thatX does not lie on
a sideline�ABC. Then oriented areas are given (e.g. [3, p.35]) in terms of the
sidelengthsa, b, c by

area(T ) =
abc

8σ2

∣∣∣∣∣∣
0 k1β k1γ
k2α 0 k2γ
k3α k3β 0

∣∣∣∣∣∣ , area(T ′) =
abc

8σ2

∣∣∣∣∣∣
0 l1γ l1β
l2γ 0 l2α
l3β l3α 0

∣∣∣∣∣∣ ,
whereki andli are normalizers.1 Thus,

area(T ) =
k1k2k3αβγabc

4σ2
and area(T ′) =

l1l2l3αβγabc

8σ2
,
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1If P = α : β : γ is not on the lineL∞ at infinity, then the normalizerh makeshα, hβ, hγ the

directed distances fromP to sidelinesBC, CA, AB, respectively, andh = 2σ/(aα + bβ + cγ).
If P is onL∞ andαβγ �= 0, then the normalizer ish := 1/α + 1/β + 1/γ; if P is onL∞ and
αβγ = 0, thenh := 1.
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Figure 1. TrianglesA′B′C′ andA′′B′′C′′ have equal areas

so that area(T ) = area(T ′) if and only if k1k2k3 = l1l2l3. Substituting yields

1
bβ + cγ

· 1
cγ + aα

· 1
aα+ bβ

=
1

bγ + cβ
· 1
cα+ aγ

· 1
aβ + bα

,

which simplifies to

a(b2 − c2)α(β2 − γ2) + b(c2 − a2)β(γ2 −α2) + c(a2 − b2)γ(α2 − β2) = 0. (1)

In the parlance of [4, p.240], equation (1) represents the self-isogonal cubic
Z(X512), and, in the terminology of [1, 2], the auto-isogonal cubic having pivot
X512. 2 It is easy to verify that the following 24 points lie on this cubic:3

verticesA,B,C,
incenterX1 and excenters,
Steiner pointX99 and its isogonal conjugateX512 (see Figure 1),
vertices of the cevian triangle ofX512,
1st and 2nd Brocard pointsΩ1 andΩ2,
X512 c©X1 andX512 c©X99, where c© denotes Ceva conjugate,
(X512 c©X1)−1 and(X512 c©X99)−1, where()−1 denotes isogonal conjugate,
vertices of triangleT1 below,
vertices of triangleT2 below.

2Xi is theith triangle center as indexed in [5].
3This “equal-areas cubic” was the subject of a presentation by the author at the CRCC geometry

meeting hosted by Douglas Hofstadter at Indiana University, March 23-25, 1999.
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The vertices of the bicentric4 triangleT1 are

−ab : a2 : bc, ca : −bc : b2, c2 : ab : −ca, (2)

and those ofT2 are

−ac : bc : a2, b2 : −ba : ca, ab : c2 : −cb. (3)

Regarding (2),−ab : a2 : bc is the point other thanA andΩ1 in which lineAΩ1

meetsZ(X512). Similarly, linesAΩ1 andCΩ1 meetZ(X512) in the other two
points in (2). Likewise, the points in (3) lie on linesAΩ2, BΩ2, CΩ2. The points
in (3) are isogonal conjugates of those in (2).

VertexA′ := −ab : a2 : bc is the intersection of theC-side of the anticomple-
mentary triangle and theB-exsymmedian, these being the linesaα + bβ = 0 and
cα+ aγ = 0. The other five vertices are similarly constructed.

Other descriptions ofZ(X512) are easy to check: (i) the locus of a pointQ
collinear with its isogonal conjugate andX512, and (ii) the locus ofQ for which
the line joiningQ and its isogonal conjugate is parallel to the lineΩ1Ω2.

2. Isoconjugates and reciprocal conjugates

In the literature, isoconjugates are defined in terms of trilinears and reciprocal
conjugates are defined in terms of barycentrics. We shall, in this section, use the
notations(x : y : z)t and (x : y : z)b to indicate trilinears and barycentrics,
respectively.5

Definition 1. [6] SupposeP = (p : q : r)t andX = (x : y : z)t are points, neither
on a sideline of�ABC. TheP -isoconjugate ofX is the point

(P ·X)−1
t = (qryz : rpzx : pqxy)t.

On the left side, the subscriptt signifies trilinear multiplication and division.

Definition 2. [3] SupposeP = (p : q : r)b andX = (x : y : z)b are points not on
a sideline of�ABC. TheP -reciprocal conjugate ofX is the point

(P/X)b = (pyz : qzx : rxy)b.

In keeping with the meanings of “iso-” and “reciprocal”,

X-isoconjugate ofP = P -isoconjugate ofX,

X-reciprocal conjugate ofP =
G

P -reciprocal conjugate ofX
,

whereG, the centroid, is the identity corresponding to barycentric division.

4Definitions of bicentric triangle, bicentric pair of points, and triangle center are given in [5,
Glossary]. Iff(a, b, c) : g(a, b, c) : h(a, b, c) is theA-vertex of a bicentric triangle, then theB-
vertex ish(b, c, a) : f(b, c, a) : g(b, c, a) and theC-vertex isg(c, a, b) : h(c, a, b) : f(c, a, b).

5A point X with trilinearsα : β : γ has barycentricsaα : bβ : cγ. For points not onL∞,
trilinears are proportional to the directed distances betweenX and the sidelinesBC, CA, AB, re-
spectively, whereas barycentrics are proportional to the oriented areas of trianglesXBC, XCA,
XAB, respectively.
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3. The cubic Z(U,P )

In this section, all coordinates are trilinears; for example,(α : β : γ)t appears
asα : β : γ. SupposeU = u : v : w andP = p : q : r are points, neither on a
sideline of�ABC. We generalize the cubicZ(U) defined in [4, p.240] to a cubic
Z(U,P ), defined as the locus of a pointX = α : β : γ for which the pointsU ,X,
and theP -isoconjugate ofX are collinear. This requirement is equivalent to∣∣∣∣∣∣

u v w
α β γ

qrβγ rpγα pqαβ

∣∣∣∣∣∣ = 0, (4)

hence to

upα(qβ2 − rγ2) + vqβ(rγ2 − pα2) +wrγ(qα2 − rβ2) = 0.

Equation (4) implies these properties:

(i) Z(U,P ) is self P-isoconjugate;
(ii) U ∈ Z(U,P );
(iii) if X ∈ Z(U,P ), thenX, U , and(P ·X)−1

t are collinear.

The following ten points lie onZ(U,P ):

the verticesA,B,C;
the vertices of the cevian triangle ofU , namely,

0 : v : w, u : 0 : w, u : v : 0; (5)

and the points invariant underP -isoconjugation:

1√
p

:
1√
q

:
1√
r
, (6)

−1√
p

:
1√
q

:
1√
r
,

1√
p

:
−1√
q

:
1√
r
,

1√
p

:
1√
q

:
−1√
r
. (7)

As an illustration of (i), the cubicsZ(U,X1) andZ(U,X31) are self-isogonal
conjugate and self-isotomic conjugate, respectively. Named cubics of the type
Z(U,X1) include the Thomson (U = X2), Darboux (U = X20), Neuberg (U =
X30), Ortho (U = X4), and Feuerbach (U = X5). The Lucas cubic isZ(X69,X31),
and the Spieker,Z(X8,X58). Table 1 offers a few less familiar cubics.

It is easy to check that the points

U c©X1 = −u+ v + w : u− v + w : u+ v − w,
U c©U−1 =

1
u

(− 1
u2

+
1
v2

+
1
w2

) :
1
v
(

1
u2

− 1
v2

+
1
w2

) :
1
w

(
1
u2

+
1
v2

− 1
w2

)

lie onZ(U). Since their isogonal conjugates also lie onZ(U), we have four more
points onZ(U,P ) in the special case thatP = X1.
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U P Centers on cubicZ(U,P )
X385 X1 X1,X2,X6,X32,X76,X98,X385,X511,X694

X395 X1 X1,X2,X6,X14,X16,X18,X62,X395

X396 X1 X1,X2,X6,X13,X15,X17,X61,X396

X476 X1 X1,X30,X74,X110,X476,X523,X526

X171 X2 X2,X31,X42,X43,X55,X57,X81,X171,X365,X846,X893

X894 X6 X6,X7,X9,X37,X75,X86,X87,X192,X256,X366,X894,X1045

X309 X31 X2,X40,X77,X189,X280,X309,X318,X329,X347,X962

X226 X55 X2,X57,X81,X174,X226,X554,X559,X1029,X1081,X1082

X291 X239 X1,X6,X42,X57,X239,X291,X292,X672,X894

X292 X238 X1,X2,X37,X87,X171,X238,X241,X291,X292

Table 1

4. Trilinear generalization: Γ(P )

Next we seek the locus of a pointX = α : β : γ (trilinears) for which the cevian
triangleT and the cevian triangle

T̂ =


 0 rγ qβ
rγ 0 pα
qβ pα 0




of theP -isoconjugate ofX have equal areas. For this, the method leading to (1)
yields a cubic denoted byΓ(P ):

ap(rb2−qc2)α(qβ2−rγ2)+bq(pc2−ra2)β(rγ2−pα2)+cr(qa2−pb2)γ(pα2−qβ2) = 0,
(8)

except forP = X31 = a2 : b2 : c2; that is, except whenP -isoconjugation is
isotomic conjugation, for which the two triangles have equal areas for allX. The
cubic (8) isZ(U,P ) for

U = U(P ) = a(rb2 − qc2) : b(pc2 − ra2) : c(qa2 − pb2),
a point onL∞. As in Section 3, the verticesA,B,C and the points (5)-(7) lie on
Γ(P ).

Let U∗ denote theP -isoconjugate ofU . This is the trilinear pole of the line
XX2, whereX = a

p : b
q : c

r , theP -isoconjugate ofX2. Van Lamoen has noted
that sinceU lies on the trilinear polar,L, of theP -isoconjugate of the centroid (i.e.,
L has equationpα

a + qβ
b + rγ

c = 0), andU also lies onL∞, we haveU∗ lying on
the Steiner circumellipse and on the conic

pa

α
+
qb

β
+
rc

γ
= 0, (9)

this being theP -isoconjugate ofL∞.

Theorem 1. Suppose P1 and P2 are distinct points, collinear with but not equal to
X31. Then U(P2) = U(P1).
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Proof. Write P1 = p1 : q1 : r1 andP2 = p2 : q2 : r2. Then for somes =
s(a, b, c) �= 0,

a2 = sp1 + p2, b2 = sq1 + q2, c2 = sr1 + r2,

so that forf(a, b, c) := a[(c2 − sr1)b2 − (b2 − sq1)c2], we have

U(P2) = f(a, b, c) : f(b, c, a) : f(c, a, b)

= a(sc2q1 − sb2r1) : b(sa2r1 − sc2p1) : c(sb2p1 − sa2q1)

= U(P1).

�

Example 1. For each pointP on the lineX1X31, the pivotU(P ) is the isogonal
conjugate (X512) of the Steiner point (X99). Such pointsP include the Schiffler
point (X21), the isogonal conjugate (X58) of the Spieker center, and the isogonal
conjugate (X63) of the Clawson point.

The cubicΓ(P ) meetsL∞ in three points. Aside fromU , the other two are
whereL∞ meets the conic (9). If (9) is an ellipse, then the two points are nonreal.
In caseP is the incenter, so that the cubic is the equal areas cubic, the two points
are given in [6, p.116] by the ratios6

e±iB : e∓iA : −1.

Theorem 2. The generalized Brocard points defined by

qc

b
:
ra

c
:
pb

a
and

rb

c
:
pc

a
:
qa

b
(10)

lie on Γ(P ).

Proof. Writing ordered triples for the two points, we have

(a(rb2 − qc2), b(pc2 − ra2), c(qa2 − pb2))
= abc(

qc

b
,
ra

c
,
pb

a
) + abc(

rb

c
,
pc

a
,
qa

b
),

showingU as a linear combination of the points in (10). Since those two are
isogonal conjugates collinear withU , they lie onΓ(P ). �

If P is a triangle center, then the generalized Brocard points (10) comprise a
bicentric pair of points. In§8, we offer geometric constructions for such points.

6The pair is also given by−1 : e±iC : e∓iB and bye∓iC : −1 : e±iA. Multiplying the three
together and then by−1 gives cubes in “central form” with first coordinates

cos(B − C) ± i sin(B − C).

The other coordinates are now given from the first by cyclic permutations.



Cubics associated with triangles of equal areas 167

5. Barycentric generalization: Γ̂(P )

Here, we seek the locus of a pointX = α : β : γ (barycentrics) for which the
cevian triangle of theP -reciprocal conjugate ofX and that ofX have equal areas.
The method presented in§1 yields a cubic that we denote byΓ̂(P ):

p(q−r)α(rβ2−qγ2)+q(r−p)β(pγ2−rα2)+r(p−q)γ(qα2−pβ2) = 0, (11)

In particular, the equal areas cubic (1) is given by (11) using

(p : q : r)b = (a2 : b2 : c2)b.

In contrast to (11), if equation (1) is written ass(a, b, c, α, β, γ) = 0, then

s(α, β, γ, a, b, c) = s(a, b, c, α, β, γ),

a symmetry stemming from the use of trilinear coordinates and isogonal conjuga-
tion.

6. A sextic

For comparison with the cubicΓ(P ) of §4, it is natural to ask about the locus of
a pointX for which the anticevian triangle ofX and that of its isogonal conjugate
have equal areas. The result is easily found to be the self-isogonal sextic

αβγ(−aα + bβ + cγ)(aα − bβ + cγ)(aα + bβ − cγ)
= (−aβγ + bγα+ cαβ)(aβγ − bγα+ cαβ)(aβγ + bγα− cαβ),

on which lieA,B,C, the incenter, excenters, and the two Brocard points. Remark-
ably, the verticesA,B,C are triple points of this sextic.

7. Prescribed area cubic: Λ(P )

SupposeP = p : q : r (trilinears) is a point, and letKσ be the oriented area of
the cevian triangle ofP . The method used in§1 shows that ifX = α : β : γ, then
the cevian triangle ofX has areaKσ if

k1k2k3abcαβγ = 8Kσ3, (12)

wherek1 = 2σ
bβ+cγ andk2 andk3 are obtained cyclically. Substituting into (12) and

simplifying gives

K = 2 · pa

bq + cr
· qb

cr + ap
· rc

ap+ bq
. (13)

The locus ofX for which (13) holds is therefore given by the equation

(bq+ cr)(cr+ ap)(ap+ bq)αβγ − pqr(bβ+ cγ)(cγ + aα)(aα+ bβ) = 0. (14)

We call this curve theprescribed area cubic for P (or for K) and denote it by
Λ(P ). One salient feature ofΛ(P ), easily checked by substituting

1
a2α

,
1
b2β

,
1
c2γ

for α, β, γ, respectively, into the left side of (14), is thatΛ(P ) is self-isotomic. That
is, if X lies onΛ(P ) but not on a sideline of�ABC, then so does its isotomic
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conjugate, which we denote bỹX. (Of course, we already know thatΛ(P ) is
self-isotomic, by the note just after (8)).

If (bq−cr)(cr−ap)(ap−bq) �= 0, then the linePP̃ meetsΛ(P ) in three points,
namelyP , P̃ , and the point

P ′ :=
a2p2 − bcqr
a2p(bq − cr) :

b2q2 − carp
b2q(cr − ap) :

c2r2 − abpq
c2r(ap− bq) .

If P is a triangle center onΛ(P ), thenP̃ , P ′, andP̃ ′ are triangle centers onΛ(P ).
SinceP̃ ′ is not collinear with the others, three triangle centers onΛ(P ) can be
found as points of intersection ofΛ(P ) with the lines joining̃P ′ to P , P̃ , andP ′.
Then more central lines are defined, bearing triangle centers that lie onΛ(P ), and
so on. Some duplication of centers thus defined inductively can be expected, but
one wonders if, for many choices ofP , this scheme accounts for infinitely many
centers lying onΛ(P ).

It is easy to check thatΛ(P ) meets the line at infinity in the following points:

A′ := 0 : c : −b, B′ := −c : 0 : a, C ′ := b : −a : 0.

Three more points are found by intersecting linesPA′, PB′, PC ′ with Λ(P ):

A′′ := bcp : c2r : b2q, B′′ := c2r : caq : a2p, C ′′ := b2q : a2p : abr.

A construction forA′′ is given by the equationA′′ = PA′ ∩ P̃A.
LineAP meetsΛ(P ) in the collinear pointsA, P , and, as is easily checked, the

point
bcqr

pa2
: q : r.

Writing this and its cyclical cousins integrally, we have these points onΛ(P ):

bcqr : a2pq : a2rp, b2pq : carp : b2qr, c2rp : c2qr : abpq.

We have seen for givenP how to formK. It is of interest to reverse these.
Suppose a prescribed area is specified asKσ, whereK has the form

k(a, b, c)k(b, c, a)k(c, a, b)

in which k(a, b, c) is homogeneous of degree zero ina, b, c. 7 We abbreviate the
factors aska, kb, kc and seek a pointP = p : q : r satisfying

K = kakbkc =
2abcpqr

(bq + cr)(cr + ap)(ap + bq)
.

Solving the system obtained cyclically from

ka =
3
√

2ap
bq + cr

(15)

yields

p : q : r =
ka

a( 3
√

2 + ka)
:

kb

b( 3
√

2 + kb)
:

kc

c( 3
√

2 + kc)

7That is,k(ta, tb, tc) = k(a, b, c), wheret is an indeterminate.
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except forka = − 3
√

2, which results from (15) withP = X512. The following
table offers a variety of examples:

P ka/
3
√

2
X1

a
b+c

X2 1
X3

sin 2A
sin 2B+sin 2C

X4
tan A

tan B+tan C

X10
b+c
a

X57 − a
b+c

X870
bc

b2+c2

X873
2bc

b2+c2

Table 2

Next, supposeU = u : v : w is a point, not on a sideline of�ABC, and let

P =
vc

b
:
wa

c
:
ub

a
.

Write outK as in (13), and use not (15), but instead, put

ka =
3
√

2a2u

b2w + c2v
,

corresponding to the pointU · X6 = ua : vb : wc, in the sense that the cevian
triangle ofU ·X6 and that ofP have equal areas. Likewise, the cevian triangle of
the point

P ′ =
wb

c
:
uc

a
:
va

b
,

has the same area,Kσ. The pointsP andP′ are essentially those of Theorem 2.
Three special cases among the cubicsΛ(P ) deserve further comment. First, for

K = 2, corresponding toP = X512, equation (14) takes the form

(aα+ bβ + cγ)(bcβγ + caγα+ abαβ) = 0. (16)

SinceL∞ is given by the equationaα+ bβ+ cγ = 0 and the Steiner circumellipse
is given by

bcβγ + caγα + abαβ = 0,
the points satisfying (16) occupy the line and the ellipse together. J.H. Weaver [8]
discusses the cubic.

Second, whenK = 1
4 , the cubicΛ(P ) is merely a single point, the centroid.

Finally, we note thatΛ(X6) passes through these points:

a : b : c, a : c : b, b : c : a, b : a : c, c : a : b, c : b : a. (17)

8. Constructions

In the preceding sections, certain algebraically defined points, as in (17), have
appeared. In this section, we offer Euclidean constructions for such points.For
given U = u : v : w andX = x : y : z and let us begin with the trilinear
product, quotient, and square root, denoted respectively byU ·X, U/X, and

√
X .
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Constructions for closely related barycentric product, quotient, and square root are
given in [9], and these constructions are easily adapted to give the trilinear results.

We turn now to a construction fromX of the pointx : z : y. In preparation,
decree aspositive the side of lineAB that containsC, and also the side of lineCA
that containsB. The opposite sides will be callednegative.

W

X′

X′′

X

Y

Z

RX

B

A

C

M

Figure 2. Construction ofW = x : z : y from X = x : y : z

LetX ′ be the foot of the perpendicular fromX on lineAB, and letX′′ be the
foot of the perpendicular fromX′ on lineCA. LetM be the midpoint of segment
X ′X ′′, and letO be the circle centered atX′ and passing throughX. LineX′X ′′
meets circleO in two points; letY be the one closer toM , as in Figure 2, and let
Z ’ be the reflection ofY in M. If X is on the positive side ofAB andZ′ is on the
positive side ofCA, or if X is on the negative side ofAB andZ′ is on the negative
side ofCA, then letZ = Z′; otherwise letZ be the reflection ofZ′ in lineCA.

Now lineL throughZ parallel to lineCA has directed distancekz from lineCA,
wherekx is the directed distance from lineBC of the lineL′ throughX parallel
toBC. LetR = L∩L′. LineCR has equationzα = xβ. LetL′′ be the reflection
of line AX about the internal angle bisector of∠CAB. This line has equation
yβ = zγ. Geometrically and algebraically, it is clear thatx : z : y = CR ∩ L′′,
labeledW in Figure 2.

One may similarly construct the pointy : z : x as the intersection of lines
xβ = zγ andzα = yβ. Then any one of the six points

x : y : z, x : z : y, y : z : x, y : x : z, z : x : y, z : y : x,

can serve as a starting point for constructing the other five. (A previous appear-
ance of these six points is [4, p.243], where an equation for the Yff conic, passing
through the six points, is given.)

The methods of this section apply, in particular, to the constructing of the gener-
alized Brocard points (10); e.g., for givenP = p : q : r, constructP′ := q : r : p,
and then constructP ′ · Ω1.
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