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Collineations, Conjugacies, and Cubics

Clark Kimberling

Abstract. If F is an involution andϕ a suitable collineation, thenϕ ◦ F ◦ ϕ−1

is an involution; this form includes well-known conjugacies and new conjuga-
cies, includingaleph, beth, complementary, andanticomplementary. If Z(U)
is the self-isogonal cubic with pivotU , thenϕ carriesZ(U) to a pivotal cubic.
Particular attention is given to the Darboux and Lucas cubics,D andL, and
conjugacy-preserving mappings betweenD andL are formulated.

1. Introduction

The defining property of the kind of mapping calledcollineation is that it carries
lines to lines. Matrix algebra lends itself nicely to collineations as in [1, Chapter
XI] and [5]. In order to investigate collineation-induced conjugacies, especially
with regard to triangle centers, suppose that an arbitrary pointP in the plane of
�ABC has homogeneous trilinear coordinatesp : q : r relative to�ABC, and
write

A = 1 : 0 : 0, B = 0 : 1 : 0, C = 0 : 0 : 1,
so that 

 A
B
C


 =


 1 0 0

0 1 0
0 0 1


 .

Suppose now that suitably chosen pointsPi = pi : qi : ri andP ′
i = p′i : q′i : r′i

for i = 1, 2, 3, 4 are given and that we wish to represent the unique collineationϕ
that maps eachPi to P ′

i . (Precise criteria for “suitably chosen” will be determined
soon.) Let

P =


 p1 q1 r1

p2 q2 r2

p3 q3 r3


 , P

′ =


 p′1 q′1 r′1

p′2 q′2 r′2
p′3 q′3 r′3


 .

We seek a matrixM such thatϕ(X) = XM for every pointX = x : y : z, where
X is represented as a1 × 3 matrix:

X =
(

x y z
)

In particular, we wish to have

PM = DP
′ and P4M =

(
gp′4 gq′4 gr′4

)
,
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where

D =


 d 0 0

0 e 0
0 0 f




for some multipliersd, e, f , g. By homogeneity, we can, and do, putg = 1. Then
substitutingP

−1
DP

′ for M givesP4P
−1

D = P
′
4(P

′)−1. Writing out both sides
leads to

d =
(q′2r′3 − q′3r′2)p′4 + (r′2p′3 − r′3p′2)q′4 + (p′2q′3 − p′3q′2)r′4
(q2r3 − q3r2)p4 + (r2p3 − r3p2)q4 + (p2q3 − p3q2)r4

,

e =
(q′3r

′
1 − q′1r

′
3)p

′
4 + (r′3p

′
1 − r′1p

′
3)q

′
4 + (p′3q

′
1 − p′1q

′
3)r

′
4

(q3r1 − q1r3)p4 + (r3p1 − r1p3)q4 + (p3q1 − p1q3)r4
,

f =
(q′1r′2 − q′2r′1)p′4 + (r′1p′2 − r′2p′1)q′4 + (p′1q′2 − p′2q′1)r′4
(q1r2 − q2r1)p4 + (r1p2 − r2p1)q4 + (p1q2 − p1q2)r4

.

The pointD := d : e : f is clearly expressible as quotients of determinants:

D =

∣∣∣∣∣∣
p′4 q′4 r′4
p′2 q′2 r′2
p′3 q′3 r′3

∣∣∣∣∣∣∣∣∣∣∣∣
p4 q4 r4

p2 q2 r2

p3 q3 r3

∣∣∣∣∣∣
:

∣∣∣∣∣∣
p′4 q′4 r′4
p′3 q′3 r′3
p′1 q′1 r′1

∣∣∣∣∣∣∣∣∣∣∣∣
p4 q4 r4

p3 q3 r3

p1 q1 r1

∣∣∣∣∣∣
:

∣∣∣∣∣∣
p′4 q′4 r′4
p′1 q′1 r′1
p′2 q′2 r′2

∣∣∣∣∣∣∣∣∣∣∣∣
p4 q4 r4

p1 q1 r1

p2 q2 r2

∣∣∣∣∣∣
.

With D determined1, we write

M = P
−1

DP
′

and are now in a position to state the conditions to be assumed about the eight
initial points:

(i) P andP
′ are nonsingular;

(ii) the denominators in the expressions ford, e, f are nonzero;
(iii) def �= 0.
Conditions (i) and (ii) imply that the collineationϕ is given byϕ(X) = XM,

and (iii) ensures thatϕ−1(X) = XM
−1. A collineationϕ satisfying (i)-(iii) will

be calledregular. If ϕ is regular then clearlyϕ−1 is regular.
If the eight initial points are centers (i.e., triangle centers) for which no three

Pi are collinear and no threeP′
i are collinear, then for every centerX, the image

ϕ(X) is a center. IfP1, P2, P3 are respectively theA-, B-, C- vertices of a central
triangle [3, pp. 53-57] andP4 is a center, and if the same is true forP′

i for i = 1,
2, 3, 4, then in this case, too,ϕ carries centers to centers.

1A geometric realization ofD follows. LetP̂ denote the circle

(p1α + p2β + p3γ)(aα + bβ + cγ) + p4(aβγ + bγα + cαβ) = 0,

and letQ̂, R̂, P̂ ′, Q̂′, R̂′ be the circles likewise formed from the pointsPi andP ′
i . Following [3,

p.225], letΛ andΛ′ be the radical centers of circleŝP , Q̂, R̂ andP̂ ′, Q̂′, R̂′, respectively. ThenD
is the trilinear quotientΛ/Λ′.
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The representationϕ(X) = XM shows that forX = x : y : z, the imageϕ(X)
has the form

f1x + g1y + h1z : f2x + g2y + h2z : f3x + g3y + h3z.

Consequently, ifΛ is a curve homogeneous of degreen ≥ 1 in α, β, γ, then
ϕ(Λ) is also a curve homogeneous of degreen in α, β, γ. In particular,ϕ carries
a circumconic onto a conic that circumscribes the triangle having verticesϕ(A),
ϕ(B), ϕ(C), and likewise for higher order curves. We shall, in§5, concentrate on
cubic curves.

Example 1. Suppose

P = p : q : r, U = u : v : w, U ′ = u′ : v′ : w′

are points, none lying on a sideline of�ABC, andU′ is not on a sideline of the
cevian triangle ofP (whose vertices are the rows of matrixP

′ shown below). Then
the collineationϕ that carriesABC to P

′ andU to U ′ is regular. We have

P
′ =


 0 q r

p 0 r
p q 0


 , and (P′)−1 =

1
|P′|


 −p q r

p −q r
p q −r


 ,

leading to

ϕ(X) = XM = p(ey + fz) : q(fz + dx) : r(dx + ey), (1)

where

d : e : f =
1
u

(
−u′

p
+

v′

q
+

w′

r

)
:

1
v

(
u′

p
− v′

q
+

w′

r

)
:

1
w

(
u′

p
+

v′

q
− w′

r

)
.

(2)

Example 2. Continuing from Example 1,ϕ−1 is the collineation given by

ϕ−1(X) = XM
−1 =

1
d

(
−x

p
+

y

q
+

z

r

)
:

1
e

(
x

p
− y

q
+

z

r

)
:

1
f

(
x

p
+

y

q
− z

r

)
. (3)

2. Conjugacies induced by collineations

SupposeF is a mapping on the plane of�ABC andϕ is a regular collineation,
and consider the following diagram:

F (X) ϕ(F (X))

X ϕ(X)

On writing ϕ(X) asP, we havem(P ) = ϕ(F (ϕ−1(P ))). If F (F (X)) = X,
thenm(m(P )) = P ; in other words, ifF is an involution, thenm is an involution.
We turn now to Examples 3-10, in whichF is a well-known involution andϕ is
the collineation in Example 1 or a special case thereof. In Examples 11 and 12,ϕ
is complementation and anticomplementation, respectively.
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Example 3. For any pointX = x : y : z not on a sideline of�ABC, the isogonal
conjugate ofX is given by

F (X) =
1
x

:
1
y

:
1
z
.

SupposeP,U, ϕ are as in Example 1. The involutionm given bym(X) = ϕ(F (ϕ−1(X)))
will be formulated: equation (3) implies

F (ϕ−1(X)) =
d

−x
p + y

q + z
r

:
e

x
p − y

q + z
r

:
f

x
p + y

q − z
r

,

and substituting these coordinates into (1) leads to

m(X) = m1 : m2 : m3, (4)

where

m1 = m1(p, q, r, x, y, z) = p

(
e2

x
p − y

q + z
r

+
f2

x
p + y

q − z
r

)
(5)

andm2 andm3 are determined cyclically fromm1; for example,m2(p, q, r, x, y, z) =
m1(q, r, p, y, z, x).

In particular, ifU = 1 : 1 : 1 andU′ = p : q : r, then from equation (2), we
haved : e : f = 1 : 1 : 1, and (5) simplifies to

m(X) = x

(
−x

p
+

y

q
+

z

r

)
: y
(
x

p
− y

q
+

z

r

)
: z
(
x

p
+

y

q
− z

r

)
.

This is theP -Ceva conjugate ofX, constructed [3, p. 57] as the perspector of the
cevian triangle ofP and the anticevian triangle ofX.

Example 4. Continuing with isogonal conjugacy forF and withϕ as in Example
3 (with U = 1 : 1 : 1 andU ′ = p : q : r), here we useϕ−1 in place ofϕ, so that
m(X) = ϕ−1(F (ϕ(X)). The result is (4), with

m1 = −q2r2x2 + r2p2y2 + p2q2z2 + (−q2r2 + r2p2 + p2q2)(yz + zx + xy).

In this case,m(X) is theP -aleph conjugate of X.

Let

n(X) =
1

y + z
:

1
z + x

:
1

x + y
.

ThenX = n(X)-aleph conjugate ofX. Another easily checked property is that a
necessary and sufficient condition that

X = X-aleph conjugate of the incenter

is thatX = incenter or elseX lies on the conicβγ + γα + αβ = 0.
In [4], various triples(m(X), P,X) are listed. A selection of these permuted

to (X,P,m(X)) appears in Table 1. The notationXi refers to the indexing of
triangle centers in [4]. For example,

X57 =
1

b + c− a
:

1
c + a− b

:
1

a + b− c
= tan

A

2
: tan

B

2
: tan

C

2
,
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abbreviated in Table 1 and later tables as “57, tan A
2 ”. In Table 1 and the sequel,

the areaσ of �ABC is given by

16σ2 = (a + b + c)(−a + b + c)(a − b + c)(a + b− c).

Table 1. Selected aleph conjugates

center,X P P -aleph conj. ofX

57, tan A
2 7, sec2 A

2 57, tan A
2

63, cot A 2, 1
a 1, 1

57, tan A
2 174, sec A

2 1, 1
2, 1

a 86, bc
b+c 2, 1

a

3, cosA 21, 1
cos B+cos C 3, cosA

43, ab + ac− bc 1, 1 9, b + c− a

610, σ2 − a2 cotA 2, 1
a 19, tan A

165, tan B
2 + tan C

2 − tan A
2 100, 1

b−c 101, a
b−c

Example 5. Here,F is reflection about the circumcenter:

F (x : y : z) = 2R cosA− hx : 2R cosB − hy : 2R cosC − hz,

whereR = circumradius, andh normalizes2 X. Keepingϕ as in Example 4, we
find

m1(x, y, z) = 2abc(cos B + cos C)

(
x(b + c − a)

p
+

y(c + a − b)

q
+

z(a + b − c)

r

)
− 16σ2x,

which, via (4), defines theP -beth conjugate of X.

Table 2. Selected beth conjugates

center,X P P -beth conj. ofX

110, a
b2−c2

643, b+c−a
b2−c2

643, b+c−a
b2−c2

6, a 101, a
b−c 6, a

4, secA 8, csc2 A
2 40, cos B + cosC − cosA− 1

190, bc
b−c 9, b + c− a 292, a/(a2 − bc)

11, 1 − cos(B − C) 11, 1 − cos(B − C) 244, (1 − cos(B −C)) sin2 A
2

1, 1 99, bc
b2−c2

85, b2c2

b+c−a

10, b+c
a 100, 1

b−c 73, cosA(cosB + cosC)
3, cosA 21, 1

cos B+cos C 56, 1 − cosA

Among readily verifiable properties of beth-conjugates are these:
(i) ϕ(X3) is collinear with every pair{X,m(X)}.
(ii) Since each lineL throughX3 has two points fixed under reflection inX3,

the lineϕ(L) has two points that are fixed bym, namelyϕ(X3) andϕ(L ∩ L∞).

2If X /∈ L∞, thenh = 2σ/(ax + by + cz); if X ∈ L∞ andxyz �= 0, thenh = 1/x + 1/y +
1/z; otherwise,h = 1. For X /∈ L∞, the nonhomogeneous representation forX as the ordered
triple (hx, hy, hz) gives the actual directed distanceshx, hy, hz from X to sidelinesBC, CA, AB,
respectively.
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(iii) When P = X21, ϕ carries the Euler lineL(3, 4, 20, 30) to L(1, 3, 56, 36),
on which them-fixed points areX1 andX36, andϕ carries the lineL(1, 3, 40, 517)
to L(21, 1, 58, 1078), on which them-fixed points areX1 andX1078.

(iv) If X lies on the circumcircle, then theX21-beth conjugate,X′, of X lies on
the circumcircle. Such pairs(X,X′) include(Xi,Xj) for these(i, j): (99, 741),
(100, 106), (101, 105), (102, 108), (103, 934), (104, 109), (110, 759).

(v) P = P -beth conjugate ofX if and only if X = P ·X56 (trilinear product).

Example 6. Continuing Example 5 withϕ−1 in place ofϕ leads to theP -gimel
conjugate of X, defined via (4) by

m1(x, y, z) = 2abc
(
−cosA

p
+

cosB
q

+
cosC

r

)
S − 8σ2x,

whereS = x(bq + cr) + y(cr + ap) + z(ap + bq).
It is easy to check that ifP ∈ L∞, thenm(X1) = X1.

Table 3. Selected gimel conjugates

center,X P P -gimel conjugate ofX

1, 1 3, cosA 1, 1
3, cosA 283, cos A

cos B+cos C 3, cosA
30, cosA− 2 cosB cosC 8, csc2 A

2 30, cosA− 2 cosB cosC
4, secA 21, 1

cos B+cos C 4, secA

219, cos A cot A
2 63, cot A 6, a

Example 7. For distinct pointsX′ = x′ : y′ : z′ andX = x : y : z, neither lying
on a sideline of�ABC, theX′-Hirst inverse ofX is defined [4, Glossary] by

y′z′x2 − x′2yz : z′x′y2 − y′2zx : x′y′z2 − z′2xy.

We chooseX′ = U = U ′ = 1 : 1 : 1. Keepingϕ as in Example 4, forX �= P we
obtainm as in expression (4), with

m1(x, y, z) = p

(
y

q
− z

r

)2

+ x

(
2x
p

− y

q
− z

r

)
.

In this example,m(X) defines theP -daleth conjugate of X. The symbolω in
Table 5 represents the Brocard angle of�ABC.

Table 4. Selected daleth conjugates

center,X P P -daleth conjugate ofX

518, b2 + c2 − a(b + c) 1, 1 37, b + c
1, 1 1, 1 44, b + c− 2a

511, cos(A + ω) 3, cosA 216, sin 2A cos(B − C)
125, cos A sin2(B − C) 4, secA 125, cosA sin2(B − C)

511, cos(A + ω) 6, a 39, a(b2 + c2)
672, a(b2 + c2 − a(b + c)) 6, a 42, a(b + c)

396, cos(B − C) + 2 cos(A− π
3 ) 13, csc(A + π

3 ) 30, cosA− 2 cosB cosC
395, cos(B − C) + 2 cos(A + π

3 ) 14, csc(A− π
3 ) 30, cosA− 2 cosB cosC
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Among properties of daleth conjugacy that can be straightforwardly demon-
strated is that for givenP , a pointX satisfies the equation

P = P -daleth conjugate ofX

if and only if X lies on the trilinear polar ofP .

Example 8. Continuing Example 7, we useϕ−1 in place ofϕ and define the re-
sulting imagem(X) as theP -he conjugate of X.3 We havem as in (4) with

m1(x, y, z) = −p(y + z)2 + q(z + x)2 + r(x + y)2

+
qr

p
(x + y)(x + z) − rp

q
(y + z)(y + x) − pq

r
(z + x)(z + y).

Table 5. Selected he conjugates

center,X P P -he conjugate ofX

239, bc(a2 − bc) 2, 1
a 9, b + c− a

36, 1 − 2 cosA 6, a 43, cscB + cscC − cscA
514, b−c

a 7, sec2 A
2 57, tan A

2
661, cot B − cotC 21, 1

cos B+cos C 3, cosA
101, a

b−c 100, 1
b−c 101, a

b−c

Example 9. TheX1-Ceva conjugate ofX not lying on a sideline of is�ABC is
the point

−x(−x + y + z) : y(x− y + z) : z(x + y − z).
Taking this forF and keepingϕ as in Example 4 leads to

m1(x, y, z) = p(x2q2r2 + 2p2(ry − qz)2 − pqr2xy − pq2rxz),

which viam as in (4) defines theP -waw conjugate of X.

Table 6. Selected waw conjugates

center,X P P -waw conjugate ofX

37, b + c 1, 1 354, (b − c)2 − ab− ac

5, cos(B − C) 2, 1
a 141, bc(b2 + c2)

10, b+c
a 2, 1

a 142, b + c− (b−c)2

a
53, tanA cos(B − C) 4, secA 427, (b2 + c2) secA

51, a2 cos(B − C) 6, a 39, a(b2 + c2)

Example 10. Continuing Example 9 withϕ−1 in place ofϕ gives

m1(x, y, z) = p(y + z)2 − ry2 − qz2 + (p− r)xy + (p− q)xz,

which viam as in (4) defines theP -zayin conjugate of X. WhenP = incenter,
this conjugacy is isogonal conjugacy. Other cases are given in Table 7.

3The fifth letter of the Hebrew alphabet ishe, homophonous withhay.
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Table 7. Selected zayin conjugates

center,X P P -zayin conjugate ofX

9, b + c− a 2, 1
a 9, b + c− a

101, a
b−c 2, 1

a 661, cot B − cotC
108, sinA

sec B−sec C 3, cosA 656, tan B − tanC

109, sinA
cos B−cos C 4, secA 656, tan B − tanC

43, ab + ac− bc 6, a 43, ab + ac− bc

57, tan A
2 7, sec2 A

2 57, tan A
2

40, cosB + cosC − cosA− 1 8, csc2 A
2 40, cosB + cosC − cosA− 1

Example 11. The complement of a pointX not onL∞ is the pointX′ satisfying
the vector equation −−−→

X ′X2 =
1
2
−−−→
X2X.

If X = x : y : z, then

X ′ =
by + cz

a
:
cz + ax

b
:
ax + by

c
. (6)

If X ∈ L∞, then (6) defines the complement ofX. The mappingϕ(X) = X′ is a
collineation. LetP = p : q : r be a point not on a sideline of�ABC, and let

F (X) =
1
px

:
1
qy

:
1
rz

,

theP -isoconjugate ofX. Thenm as in (4) is given by

m1(x, y, z) =
1
a

(
b2

q(ax− by + cz)
+

c2

r(ax + by − cz)

)
and defines theP -complementary conjugate of X. TheX1-complementary con-
jugate ofX2, for example, is the symmedian point of the medial triangle,X141,
andX10 is its ownX1-complementary conjugate. Moreover,X1-complementary
conjugacy carriesL∞ onto the nine-point circle. Further examples follow:

Table 8. Selected complementary conjugates

centerX P P -complementary conjugate ofX

10, b+c
a 2, 1

a 141, bc(b2 + c2)
10, b+c

a 3, cosA 3, cosA
10, b+c

a 4, secA 5, cos(B − C)
10, b+c

a 6, a 2, 1
a

141, bc(b2 + c2) 7, sec2 A
2 142, b + c− (b−c)2

a
9, b + c− a 9, b + c− a 141, bc(b2 + c2)

2, 1
a 19, tan A 5, cos(B − C)

125, cos A sin2(B − C) 10, b+c
a 513, b − c
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Example 12. The anticomplement of a pointX is the pointX′′ given by

X ′′ =
−ax + by + cz

a
:
ax− by + cz

b
:
ax + by − cz

c
.

KeepingF andϕ as in Example 11, we haveϕ−1(X) = X ′′ and definem by
m = ϕ−1 ◦ F ◦ ϕ, Thus,m(X) is determined as in (4) from

m1(x, y, z) =
1
a

(
b2

q(ax + cz)
+

c2

r(ax + by)
− a2

p(by + cz)

)
.

Here,m(X) defines theP -anticomplementary conjugate of X. For example, the
centroid is theX1-anticomplementary conjugate ofX69 (the symmedian point of
the anticomplementary triangle), and the Nagel point,X8, is its own selfX1-
anticomplementary conjugate. Moreover,X1-anticomplementary conjugacy car-
ries the nine-point circle ontoL∞. Further examples follow:

Table 9. Selected anticomplementary conjugates

center,X P P -anticomplementary conj. ofX

3, cosA 1, 1 4, secA
5, cos(B − C) 1, 1 20, cosA− cosB cosC

10, b+c
a 2, 1

a 69, bc(b2 + c2 − a2)
10, b+c

a 3, cosA 20, cosA− cosB cosC
10, b+c

a 4, secA 4, secA

10, b+c
a 6, a 2, 1

a
5, cos(B − C) 19, tan A 2, 1

a

125, cos A sin2(B −C) 10, b+c
a 513, b − c

3. The Darboux cubic, D

This section formulates a mappingΨ on the plane of�ABC; this mapping
preserves two pivotal properties of the Darboux cubicD. In Section 4,Ψ(D) is
recognized as the Lucas cubic. In Section 5, collineations will be applied toD,
carrying it to cubics having two pivotal configurations with properties analogous
to those ofD.

The Darboux cubic is the locus of a pointX such that the pedal triangle ofX is a
cevian triangle. The pedal triangle ofX has for itsA-vertex the point in which the
line throughX perpendicular to lineBC meets lineBC, and likewise for theB-
andC- vertices. We denote these three vertices byXA,XB ,XC , respectively. To
say that their triangle is a cevian triangle means that the linesAXA, BXB , CXC

concur. LetΨ(P ) denote the point of concurrence. In order to obtain a formula for
Ψ, we begin with the pedal triangle ofP :

 XA

XB

XC


 =


 0 β + αc1 γ + αb1

α + βc1 0 γ + βa1

α + γb1 β + γa1 0


 ,
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wherea1 = cosA, b1 = cosB, c1 = cosC. Then

BXB ∩ CXC =(α + βc1)(α + γb1) : (β + γa1)(α + βc1) : (γ + βa1)(α + γb1),

CXC ∩AXA =(α + γb1)(β + αc1) : (β + γa1)(β + αc1) : (γ + αb1)(β + γa1),

AXA ∩BXB =(α + βc1)(γ + αb1) : (β + αc1)(γ + βa1) : (γ + αb1)(γ + βa1).

Each of these three points isΨ(X). Multiplying and taking the cube root gives
the following result:

Ψ(X) = ψ(α, β, γ, a, b, c) : ψ(β, γ, α, b, c, a) : ψ(γ, α, β, c, a, b),

where

ψ(α, β, γ, a, b, c) = [(α + βc1)2(α + γb1)2(β + αc1)(γ + αb1)]1/3.

The Darboux cubic is one of a family of cubicsZ(U) given by the form (e.g.,
[3, p.240])

uα(β2 − γ2) + vβ(γ2 − α2) + wγ(α2 − β2) = 0, (7)

where the pointU = u : v : w is called the pivot ofZ(U), in accord with
the collinearity ofU, X, and the isogonal conjugate,X−1, of X, for every point
X = α : β : γ onZ(U). The Darboux cubic isZ(X20); that is,

(a1 − b1c1)α(β2 − γ2) + (b1 − c1a1)β(γ2 − α2) + (c1 − a1b1)γ(α2 − β2) = 0.

This curve has a secondary pivot, the circumcenter,X3, in the sense that ifX lies
onD, then so does the reflection ofX in X3. SinceX3 itself lies onD, we have
here a second system of collinear triples onD.

The two types of pivoting lead to chains of centers onD:

X1
refl−→ X40

isog−→ X84
refl−→ · · · (8)

X3
isog−→ X4

refl−→ X20
isog−→ X64

refl−→ · · · . (9)

Each of the centers in (8) and (9) has a trilinear representation in polynomials with
all coefficients integers. One wonders if all such centers onD can be generated by
a finite collection of chains using reflection and isogonal conjugation as in (8) and
(9).

4. The Lucas cubic, L

Transposing the roles of pedal and cevian triangles in the description ofD leads
to the Lucas cubic,L, i.e., the locus of a pointX = α : β : γ whose cevian triangle
is a pedal triangle. Mimicking the steps in Section 3 leads to

Ψ−1(X) = λ(α, β, γ, a, b, c) : λ(β, γ, α, b, c, a) : λ(γ, α, β, c, a, b),

whereλ(α, β, γ, a, b, c) =

{[α2 − (αa1 −γc1)(αa1 −βb1)]([(αβ +γ(αa1 −βb1)][(αγ +β(αa1 −γc1)]}1/3.

It is well known [1, p.155] that “the feet of the perpendiculars from two isogo-
nally conjugate points lie on a circle; that is, isogonal conjugates have a common



Collineations, conjugacies, and cubics 31

pedal circle. . . ” Consequently,L is self-cyclocevian conjugate [3, p. 226]. Since
L is also self-isotomic conjugate, certain centers onL are generated in chains:

X7
isot−→ X8

cycl−→ X189
isot−→ X329

cycl−→ · · · (10)

X2
cycl−→ X4

isot−→ X69
cycl−→ X253

isot−→ X20
cycl−→ · · · . (11)

The mappingΨ, of course, carriesD to L, isogonal conjugate pairs onD to
cyclocevian conjugate pairs onL, reflection-in-circumcenter pairs onD to isotomic
conjugate pairs onL, and chains (8) and (9) to chains (10) and (11).

5. Cubics of the form ϕ(Z(U))

Every line passing through the pivot of the Darboux cubicD meetsD in a pair
of isogonal conjugates, and every line through the secondary pivotX3 of D meets
D in a reflection-pair. We wish to obtain generalizations of these pivotal properties
by applying collineations toD. As a heuristic venture, we apply toD trilinear
division by a pointP = p : q : r for which pqr �= 0: the setD/P of pointsX/P
asX traversesD is easily seen to be the cubic

(a1 − b1c1)px(q2y2 − r2z2) + (b1 − c1a1)qy(r2z2 − p2x2)

+(c1 − a1b1)rz(p2x2 − q2y2) = 0.

This is the self-P -isoconjugate cubic with pivotX20/P and secondary pivotX3/P .
The cubicD/P , for some choices ofP , passes through many “known points,” of
course, and this is true if forD we substitute any cubic that passes through many
“known points”.

The above preliminary venture suggests applying a variety of collineations to
various cubicsZ(U). To this end, we shall call a regular collineationϕ a tricentral
collineation if there exists a mappingm1 such that

ϕ(α : β : γ) = m1(α : β : γ) : m1(β : γ : α) : m1(γ : α : β) (12)

for all α : β : γ. In this case,ϕ−1 has the form given by

n1(α : β : γ) : n1(β : γ : α) : n1(γ : α : β),

hence is tricentral.
The tricentral collineation (12) carriesZ(U) in (7) to the cubicϕ(Z(U)) having

equation
uα̂(β̂2 − γ̂2) + vβ̂(γ̂2 − α̂2) + wγ̂(α̂2 − β̂2) = 0, (13)

where
α̂ : β̂ : γ̂ = n1(α : β : γ) : n1(β : γ : α) : n1(γ : α : β).

Example 13. Let

ϕ(α : β : γ) = p(β + γ) : q(γ + α) : r(α + β),

so that

ϕ−1(α : β : γ) = −α

p
+

β

q
+

γ

r
:
α

p
− β

q
+

γ

r
:
α

p
+

β

q
− γ

r
.



32 C. Kimberling

In accord with (13), the cubicϕ(Z(U)) has equation

uα

p

(
−α

p
+

β

q
+

γ

r

)(
β

q
− γ

r

)
+

vβ

q

(
α

p
− β

q
+

γ

r

)(
γ

r
− α

p

)

+
wγ

r

(
α

p
+

β

q
− γ

r

)(
α

p
− β

q

)
= 0.

Isogonic conjugate pairs onZ(U) are carried as in Example 3 toP -Ceva con-
jugate pairs onϕ(Z(U)). Indeed, each collinear tripleX,U,X−1 is carried to a
collinear triple, so thatϕ(U) is a pivot forϕ(Z(U)).

If U = X20, so thatZ(U) is the Darboux cubic, then collinear triplesX, X3, X̃ ,
whereX̃ denotes the reflection ofX in X3, are carried to collinear triplesϕ(X),
ϕ(X3), ϕ(X̃), whereϕ(X̃) is theP -beth conjugate ofX, as in Example 5.

Example 14. Continuing Example 13 withϕ−1 in place ofϕ, the cubicϕ−1(Z(U))
is given by

s(u, v,w, p, q, r, α, β, γ)+s(v,w, u, q, r, p, β, γ, α)+s(w, u, v, r, p, q, γ, α, β) = 0,

where

s(u, v,w, p, q, r, α, β, γ) = up(β + γ)(q2(γ + α)2 − r2(α + β)2).

Collinear triplesX,U,X−1 onZ(U) yield collinear triples onϕ−1(Z(U)), so that
ϕ−1(U) is a pivot forϕ−1(Z(U)). The pointϕ−1(X−1) is theP -aleph conjugate
of X, as in Example 4.

On the Darboux cubic, collinear triplesX,X3, X̃, yield collinear triplesϕ−1(X),
ϕ−1(X3), ϕ−1(X̃), this last point being theP -gimel conjugate ofX, as in Exam-
ple 6.
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