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Abstract. If F'is an involution andp a suitable collineation, thepo F o ¢+

is an involution; this form includes well-known conjugacies and new conjuga-
cies, includingaleph, beth, complementary, and anticomplementary. If Z(U)

is the self-isogonal cubic with pivat, theny carriesZ(U) to a pivotal cubic.
Particular attention is given to the Darboux and Lucas cubizsand L, and
conjugacy-preserving mappings betwderand L are formulated.

1. Introduction

The defining property of the kind of mapping calleallineation is that it carries
lines to lines. Matrix algebra lends itself nicely to collineations as in [1, Chapter
XlI] and [5]. In order to investigate collineation-induced conjugacies, especially
with regard to triangle centers, suppose that an arbitrary poimt the plane of
ANABC has homogeneous trilinear coordinates g : r relative to AABC, and
write

A=1:0:0, B=0:1:0, C=0:0:1,
so that
A 10
B = 01
C 0 0
Suppose now that suitably chosen poifts= p; : ¢; : 7, and P/ = p), : ¢} : 7|

(2
fori = 1,2,3,4 are given and that we wish to represent the unique collineation
that maps eacl?, to P/. (Precise criteria for “suitably chosen” will be determined

soon.) Let

— o O

Po@1oT / P4
P=1\| p q@ r |, Pr=1 py g5 19
pP3 q3 T3 pé qé T:,%

We seek a matri®l such thatp(X) = XM for every pointX = z : y : z, where
X is represented aslax 3 matrix:

X = ( T Yy z )
In particular, we wish to have
PM =DP' and PM = ( gapy 94y grhy ),
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where
d 0 0

D= 0 e O
00 f
for some multipliersd, e, f, g. By homogeneity, we can, and do, put 1. Then
substitutingP~'DP’ for M gives P,P~'D = P, (P')~1. Writing out both sides
leads to
Phas — P3q5)Ty
P2g3 — P3q2)ra’

J = (g575 — q379)P}y
4

T2p3 - T3P2 qfl
(QQT:s — 437r2)p 4

Top3 — T'3P2)q

5Py + (11 5) ( )T
)pa + ( ) ( )
(q3r1 — qyr3)py + (rspy — rip3)q) + (Psq) — Pias)r)
(q3m1 — qir3)pa + (r3p1 — r1p3)qa + (P31 — P1g3)Ta’
Vpy + (7] Dy + ( D7)

F o= (q175 — aar1)py + (riph — raph)ay + (P1d5 — Padi)ry
(qir2 — q2r1)pa + (r1p2 — r2p1)qa + (P12 — P1G2)7T4
The pointD := d : e : f is clearly expressible as quotients of determinants:

Py dy T P dy Tl Py dy T
Py g5 T Py g5 T3 Pioa T
/ / / / / / / / /
D— by g3 T3 | | P @1 Ti| | P2 Gy T2
P4 q4 T4 pPa Q4 T4 P4 q4 T4
P2 q2 T2 b3 g3 T3 Pr g1 71
pP3 g3 T3 P @1 7" P2 q2 T2

With D determined, we write
M =P~ 'DP

and are now in a position to state the conditions to be assumed about the eight
initial points:

(i) P and® are nonsingular;

(ii) the denominators in the expressions e, f are nonzero;

(iii) def # 0.

Conditions (i) and (ii) imply that the collineatiop is given byp(X) = XM,
and (iii) ensures thap=!(X) = XM~!. A collineation satisfying (i)-(iii) will
be calledregular. If ¢ is regular then clearly! is regular.

If the eight initial points are centers.€., triangle centers) for which no three
P; are collinear and no threE are collinear, then for every centéf, the image
»(X) is acenter. IfP,, P, P5 are respectively thd-, B-, C- vertices of a central
triangle [3, pp. 53-57] and, is a center, and if the same is true fgrfor i = 1,

2, 3, 4, then in this case, togp,carries centers to centers.

Ia geometric realization ob follows. Let P denote the circle
(pra+ p2fB + psy)(aa + b3 + ) + pa(aBy + bya + caff) =0,
and letQ, R, P', Q', R’ be the circles likewise formed from the poins and P;. Following [3,

p.225], letA andA’ be the radical centers of circlés O, R andP’, Q’, ', respectively. TherD
is the trilinear quotient\ /A’.
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The representatiop(X) = XM shows that folX = = : y : 2, the imagep(X)
has the form

fiz+ g1y + hiz : foxr + goy + hoz : fsx + g3y + hsz.

Consequently, ifA is a curve homogeneous of degree> 1 in «, 3, v, then
©(A) is also a curve homogeneous of degrei@ «, 3, . In particular,p carries
a circumconic onto a conic that circumscribes the triangle having verticds,
o(B), ¢(C), and likewise for higher order curves. We shall§ concentrate on
cubic curves.

Example 1. Suppose

P=p:q:nmn U= u:v:w, U= :v:uw
are points, none lying on a sideline 6fABC, andU' is not on a sideline of the
cevian triangle of? (whose vertices are the rows of matkxshown below). Then
the collineationy that carriesABC to I’ andU to U’ is regular. We have

0 g r 1 —-p q T
P=|p 0], and P)'=—| p —q r ,
||
p q 0 p q -r
leading to
p(X) = XM = p(ey + fz) : q(fz + dz) : r(dz + ey), 1)
where
1 T VA V7 1 /v o W 1 /v o W
die: f=~--——+—+—):"|———+—):=[—F+———].
U P q r v\p ¢ r w\p ¢ r

(2)

Example 2. Continuing from Example 1, ! is the collineation given by

@1(X)_XM1_1<_£+y+£):l(z_gg);l(fﬂ_z),(3)
d\ p q r) e\p q r) f\p q 1

2. Conjugaciesinduced by collineations

Supposer is a mapping on the plane 8f ABC andy is a regular collineation,
and consider the following diagram:

X

P (X)

F(X)

P(F(X))

On writing p(X) as P, we havem(P) = o(F(¢~1(P))). If F(F(X)) = X,
thenm(m(P)) = P; in other words, ifF' is an involution, thenn is an involution.
We turn now to Examples 3-10, in which is a well-known involution and is
the collineation in Example 1 or a special case thereof. In Examples 11 agd 12,
is complementation and anticomplementation, respectively.
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Example 3. For any pointX = z : y : z not on a sideline o\ ABC, the isogonal
conjugate ofX is given by
1 1 1
F(X) —_— E . a . ;.
SupposeP, U, ¢ are as in Example 1. The involutien given bym(X) = o(F (¢ 1(X)))
will be formulated: equation (3) implies

d e f
F(QO_I(X)) = x Y z : x i z : x Y z)
TpTetE P TgTr vty Th
and substituting these coordinates into (1) leads to
m(X) =mq : mg : ms, 4
where
€2 f2
mlzml(pqurvxvyvz):p E_g+§+£+g_§ (5)
p q r P q r

andmy andms are determined cyclically fromn, ; for examplema(p, ¢, 7, z,y, 2) =
ml(Q7 np,Y, =z, 15')

In particular, ifU =1:1:1andU’ = p: q : r, then from equation (2), we
haved:e: f =1:1:1, and (5) simplifies to

x z x z x z
m(X) =z _I4YLE Ly ToVLE) (2482,
p qg r p qg T p qg r

This is theP-Ceva conjugate oK, constructed [3, p. 57] as the perspector of the
cevian triangle ofP and the anticevian triangle of.

Example 4. Continuing with isogonal conjugacy fdr and withy as in Example
3(WwWithU = 1:1:1andU’ = p:q:r), here we use~! in place ofyp, so that
m(X) = ¢ Y (F(o(X)). The result is (4), with

my = —¢*r2x? + 2%y + 0?2 4 (=P it 4 pP ) (yz + 2o+ ay).
In this casem(X) is the P-aleph conjugate of X.

Let

111
y+z z4+x x4y
ThenX = n(X)-aleph conjugate oK. Another easily checked property is that a
necessary and sufficient condition that

X = X-aleph conjugate of the incenter

is that X = incenter or elseX lies on the coni@y + va + af = 0.

In [4], various triples(m(X), P, X) are listed. A selection of these permuted
to (X, P,m(X)) appears in Table 1. The notatio%j refers to the indexing of
triangle centers in [4]. For example,
| 1 A B C

: : = tan — : tan — : tan —
b+c—a c+a—-b a+b—c altg stan s tan g,

n(X) =

X57 =
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abbreviated in Table 1 and later tables a%,“tané". In Table 1 and the sequel,
the arear of AABC is given by

1602 = (a+b+c)(—a+b+c)a—b+c)a+b—c).

Table 1. Selected aleph conjugates

| center,X | P | P-aleph con;. ofX |
57, tan é 7,sec? % 57, tan é
63, cot A 2,1 1,1
57,tan 5 174,sec 4 1,1
1 b 1
2,1 86, ? 2,1
S,COSA 21,m S,COSA
43, ab + ac — bc 1,1 9,b+c—a
610,0% — a’ cot A 2,1 19,tan A
165,tan 2 +tan§ —tan 4 | 100, ;7 101, 7%

Example5. Here,F is reflection about the circumcenter:
F(z:y:2z)= 2RcosA—hx :2Rcos B—hy:2RcosC — hz,

where R = circumradius, and, normalize$ X. Keepingy as in Example 4, we
find

ma(z,y, z) = 2abe(cos B + cos C) <x(b+c—a) + ylera-?) + z(a—!—b—c)) — 1607z,
p q r

which, via (4), defines th&-beth conjugate of X.

Table 2.  Selected beth conjugates

| center, X | P | P-beth conj. ofX |
110, 7% 643, =g 643, g
6,a 101, 3% 6,a
4,sec A 8, csc? % 40,cos B+ cosC —cos A —1
190, < 9,b+c—a 292, a/(a® — be)
11,1 —cos(B — C) | 11,1 — cos(B — C) | 244, (1 — cos(B — O))sin* £
b b2 2
1,1 99, 2 S
10, % 100, ﬁ 73, cos A(cos B + cos C)
3,cos A QI,W 56,1 —cos A

Among readily verifiable properties of beth-conjugates are these:

() p(X3) is collinear with every paif X, m(X)}.

(i) Since each lineC through X3 has two points fixed under reflection i,
the lineyp (L) has two points that are fixed by, namelyp(X3) andp(L£ N L£%).

af X ¢ £°°,thenh = 20/(ax 4+ by + c2); if X € L% andzyz # 0, thenh = 1/ + 1/y +
1/z; otherwise,h = 1. For X ¢ L, the nonhomogeneous representation Xols the ordered
triple (hz, hy, hz) gives the actual directed distandes, hy, hz from X to sidelinesBC,C A, AB,
respectively.
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(i) When P = X5, ¢ carries the Euler lind.(3, 4,20, 30) to L(1, 3,56, 36),
on which them-fixed points areX; and Xsg, andy carries the lind.(1, 3,40, 517)
to L(21,1,58,1078), on which them-fixed points areX; and X;¢7s.

(iv) If X lies on the circumcircle, then th&,; -beth conjugateX’, of X lies on
the circumcircle. Such pairsX, X’) include (X;, X;) for these(s, j): (99, 741),
(100,106), (101,105), (102,108), (103,934), (104,109), (110, 759).

(v) P = P-beth conjugate oX if and only if X = P - X4 (trilinear product).

Example 6. Continuing Example 5 witho—! in place ofy leads to theP-gimel
conjugate of X, defined via (4) by
mi(x,y, z) = 2abc (—COSA + cos B + COSC) S — 8oz,
p q

whereS = z(bq + cr) + y(cr + ap) + z(ap + bq).
It is easy to check that iP € £, thenm/(X;) = X;.

Table 3. Selected gimel conjugates

| center,X | P | P-gimel conjugate of( |
1,1 3,cos A 1,1
A
3,cos A 283, m 3,cos A
30,cos A — 2 cos B cosC 8,CSC2% 30,cos A — 2 cos BcosC
I

4,SGCA 21, s BtcosC 4,SGCA

219,008/100'6% 63, cot A 6,a

Example 7. For distinct pointsX’ = 2/ : ¢/ : 2’ andX = z : y : 2, neither lying
on a sideline oA ABC, the X’-Hirst inverse ofX is defined [4, Glossary] by

y/Z/IEQ _ x/2yz . Z/m/y2 _ y/2zx . x/y/ZQ _ z'Qxy.

We chooseX’ = U = U’ =1:1: 1. Keepingy as in Example 4, foX # P we
obtainm as in expression (4), with

y 2\’
mi(z,y,2) =p|=——~
q T
In this example,m(X) defines theP-daleth conjugate of X. The symbolw in
Table 5 represents the Brocard angle’ o BC.

Table 4. Selected daleth conjugates

| center, X | P | P-daleth conjugate ok |
518,02 + % —a(b +¢) 1,1 37,b+c¢

1.1 1.1 A0+ c—2a
511, cos(A + w) 3,cos A 216,sin 2A cos(B — C)
125, cos Asin?(B — C) 4,sec A 125, cos Asin?(B — C)

511, cos(A + w) 6,a 39, a(b* + ¢?)

672,a(b” + ¢ —a(b+c)) 6,a 42,a(b + c)

396, cos(B — C) 4 2cos(A — %) | 13,csc(A + %) | 30,cos A — 2cos B cos C
395, cos(B — C) +2cos(A+ %) | 14,csc(A — %) | 30,cos A — 2 cos B cos C
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Among properties of daleth conjugacy that can be straightforwardly demon-
strated is that for giver?, a pointX satisfies the equation

P = P-daleth conjugate ok
if and only if X lies on the trilinear polar oP.

Example 8. Continuing Example 7, we usg™! in place ofy and define the re-
sulting imagen (X) as theP-he conjugate of X.3 We havem as in (4) with

mi(z,y,z) = —ply+z)>+q(z+z)?+r(x+y)?

+ C%(9& +y)(x+2) — %(y—i— 2)(y +x) — %(z +2)(z +y).

Table 5. Selected he conjugates

| center, X | P | P-he conjugate ok |
239, be(a® — be) 2, é 9b+c—a
36,1 —2cos A 6,a 43,csc B 4+ cscC' — csc A
514, % 7,sec? % 57, tan %
661, cot B — cot C' | 21, m 3,cos A
101, 7% 100, 7 101, 7%

Example 9. The X;-Ceva conjugate oK not lying on a sideline of iRNABC' is
the point
—z(—x+y+z2)ylr—y+z):z(z+y—=2).
Taking this forF" and keepingp as in Example 4 leads to
mi (2,9, 2) = p(@®¢*r® + 2p*(ry — ¢2)* — pgr’ey — pg°raz),
which viam as in (4) defines thé&-waw conjugate of X.

Table 6. Selected waw conjugates

| center, X | P | P-waw conjugate of |
37,b+c¢ 1,1 354, (b —c)? —ab — ac
5,cos(B — C) 2,1 141, be(b? + %)
10, bt 24 | 142p4c- 0=
53,tan Acos(B — C) | 4,sec A | 427, (b + ¢*)sec A
51,a” cos(B — C) 6,a 39,a(b® + %)

Example 10. Continuing Example 9 witp~—! in place ofy gives

mi(z,y,2) =ply +2)° —ry> —q2® + (p—r)zy + (p — @)z,

which viam as in (4) defines thé-zayin conjugate of X. When P = incenter,
this conjugacy is isogonal conjugacy. Other cases are given in Table 7.

3The fifth letter of the Hebrew alphabethis, homophonous withay.
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Table 7. Selected zayin conjugates

center,.X | P | P-zayinconjugate o |
9b+c—a 2,% 9b+c—a
101, 3% 2,2 661, cot B — cot C
108, % 3,cos A 656, tan B — tan C'
109, 4 4,sec A 656, tan B — tan C
43,ab + ac — be 6,a 43,ab + ac — be
57, tan % 7,sec? % 57, tan %
40,cos B+ cosC —cos A — 1 8,cs02§ 40,cos B+ cosC —cos A — 1

Example 11. The complement of a point’ not on £ is the pointX’ satisfying
the vector equation

JEEEN 1
X'Xy = EXQX.
If X =x:y:2then
by+cz cz4+ar ar+b
Y : : Y (6)
a b c
If X € £, then (6) defines the complement&f The mappingy(X) = X' is a
collineation. LetP = p : ¢ : r be a point not on a sideline @ ABC, and let
1 1 1
FX)=—:—:—,
br qy Tz
the P-isoconjugate ofX. Thenm as in (4) is given by

X' =

1 b2 c?
ma(,y,2) = a <q(am — by + c2) + r(ax + by — cz))
and defines thé’-complementary conjugate of X. The X;-complementary con-
jugate of X5, for example, is the symmedian point of the medial triandig,;,
and X is its own X;-complementary conjugate. Moreovéef;-complementary
conjugacy carriex> onto the nine-point circle. Further examples follow:

Table 8. Selected complementary conjugates

| centerX | P | P-complementary conjugate of |

10, 2< 2,2 141, be(b? + ¢?)

10, % 3,co8 A 3,cos A
10, % 4,sec A 5,cos(B — C)

10, 2t< 6,a 2,1
141, be(b? + ?) 7,sec? é 142,b + ¢ — @

9,04+c—a 9,b4+c—a 141, be(b? + %)
2, % 19, tan A 5,cos(B — C)

125, cos Asin?(B—C) | 10, %< 513,b — c
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Example 12. The anticomplement of a poid is the pointX” given by

X7 —ar+by+cz ar—by+cz axr+by—cz

= - : : : ; .
Keeping F' and ¢ as in Example 11, we have ' (X) = X” and definem by
m = p 1o F oy, Thus,m(X) is determined as in (4) from

( )—1 b + c
ML, y, ~a\qlax+cz)  rlax+by) plby+cz)/)’

Here,m(X) defines theP-anticomplementary conjugate of X. For example, the
centroid is theX;-anticomplementary conjugate &fy (the symmedian point of
the anticomplementary triangle), and the Nagel poiy, is its own self X;-
anticomplementary conjugate. Moreovéf,-anticomplementary conjugacy car-
ries the nine-point circle ontd>. Further examples follow:

Table 9. Selected anticomplementary conjugates

| center, X | P | P-anticomplementary conj. of |

3,co8 A 1,1 4,sec A

5,cos(B — C) 1,1 20, cos A — cos B cos C
10, o< 2,1 69, be(b? + % — a?)
10, % 3,co8 A 20, cos A — cos B cos C
10, % 4,sec A 4,sec A
10, & 6,a 2,1

5,cos(B — C) 19,tan A 2, é

125, cos Asin*(B — C) | 10, 2t< 513,b — c

3. The Darboux cubic, D

This section formulates a mapping on the plane ofA ABC this mapping
preserves two pivotal properties of the Darboux cubicIn Section 4,¥(D) is
recognized as the Lucas cubic. In Section 5, collineations will be applidd, to
carrying it to cubics having two pivotal configurations with properties analogous
to those ofD.

The Darboux cubic is the locus of a poikitsuch that the pedal triangle &f is a
cevian triangle. The pedal triangle &f has for itsA-vertex the point in which the
line through X perpendicular to lined3C meets lineBC, and likewise for theB-
andC- vertices. We denote these three verticesXby X, X, respectively. To
say that their triangle is a cevian triangle means that the lihEs, B Xz, C X
concur. Let¥(P) denote the point of concurrence. In order to obtain a formula for
¥ we begin with the pedal triangle dt:

X 0 B+acy v+ ab;
X | = a+Ba 0 v+ Bar |,
Xc a+vb1 B+ yaq 0
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wherea; = cos A, by = cos B, ¢; = cos C. Then
BXpNCXe =(a+ Ber)(a+vb1) 1 (B+yar)(a+ Ber) : (v + Bar)(a + vb1),
CXcNAXg =(a+701)(B + ac1) : (B+7va1)(B + act) : (v + ab)(B +ya1),
AXANBXp =(a+ per)(y+abi) : (B+ ac1)(y + Bar) : (v + abi)(y + Bar).

Each of these three pointsig X'). Multiplying and taking the cube root gives
the following result:

‘IJ(X) = ¢(a7ﬂ7v7a7b76) : ¢(ﬁ777a7b7c7a) : ¢(’7)a)ﬁ7c7a’b)7
where
Wl 5,7, a,b,¢) = [(a+ fer)* (@ +7b1)* (B + ac) (v + aby)]'/.

The Darboux cubic is one of a family of cubi¢§U) given by the form (e.g.,

[3, p.240])
ua(f? = %) +vp(y* - a?) + wy(a® - %) =0, 7

where the point/ = « : v : w is called the pivot ofZ(U), in accord with
the collinearity ofU, X, and the isogonal conjugaté&~!, of X, for every point
X =a:p:v0onZ(U). The Darboux cubic i (Xy); that is,
(a1 = bicn)a(B% = 7%) + (b1 — c1a1)B(7* = @®) + (e1 — arby)y(a® — %) = 0.

This curve has a secondary pivot, the circumcemter,n the sense that iX lies
on D, then so does the reflection &f in X3. SinceXj itself lies onD, we have
here a second system of collinear triplesion

The two types of pivoting lead to chains of centersion

refl isog refl

X1 — Xy — Xgg — -+ (8)

iso, refl iso; refl
X3 2% X4 ™5 Xog 28 Xy 7 - 9)

Each of the centers in (8) and (9) has a trilinear representation in polynomials with
all coefficients integers. One wonders if all such center®aran be generated by
a finite collection of chains using reflection and isogonal conjugation as in (8) and

9).
4. The Lucas cubic, L

Transposing the roles of pedal and cevian triangles in the descriptibriedds
to the Lucas cubicL, i.e., the locus of a poink = « : 3 : v whose cevian triangle
is a pedal triangle. Mimicking the steps in Section 3 leads to

\II_I(X) = )\(a,ﬂ,'y,a,b, C) : )‘(/6777047[77 ¢, CL) : )\(’)/,Oé,ﬁ, Caaab)v
where\(«, 8,7, a,b,c) =
{[o® = (aar = yer)(aar — Bb1)]([(aB +v(aar — Bb1)][(ay + Blaar —yer)]}/2.

It is well known [1, p.155] that “the feet of the perpendiculars from two isogo-
nally conjugate points lie on a circle; that is, isogonal conjugates have a common
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pedal circle...” Consequently[ is self-cyclocevian conjugate [3, p. 226]. Since
L is also self-isotomic conjugate, certain centerd.care generated in chains:

isot cycl isot cycl
X7 =% Xg 5 Xig9 =5 Xagg o - (10)
cycl isot cycl isot cycl
XQL)X41—)X69L>X2531_>X20L)"" (11)

The mapping¥, of course, carried to L, isogonal conjugate pairs ab to
cyclocevian conjugate pairs dn reflection-in-circumcenter pairs dnto isotomic
conjugate pairs oif, and chains (8) and (9) to chains (10) and (11).

5. Cubicsof theform ¢(Z(U))

Every line passing through the pivot of the Darboux cubiecneetsD in a pair
of isogonal conjugates, and every line through the secondary Fivot D meets
D in areflection-pair. We wish to obtain generalizations of these pivotal properties
by applying collineations td>. As a heuristic venture, we apply t0 trilinear
division by a pointP = p : ¢ : r for which pgr # 0: the setD /P of points X /P
as X traversesD is easily seen to be the cubic

(a1 = bren)pa(q®y® —r®2%) + (b — cran)qy(r?2? — p?a?)
+(c1 — albl)rz(psz — q2y2) =0.
This is the selfP-isoconjugate cubic with pivaky, /P and secondary pivots /P.
The cubicD/P, for some choices aP, passes through many “known points,” of
course, and this is true if fab we substitute any cubic that passes through many
“known points”.

The above preliminary venture suggests applying a variety of collineations to
various cubicsZ(U). To this end, we shall call a regular collineatipratricentral
collineation if there exists a mappingy such that

ola:B:y)=mi(a:B:y):m(B:y:a):m(y:a:p) (12)
forall o : 3 : 7. In this casey ™! has the form given by
nifa:B:y)in(B:y:a) in(y:a:f),
hence is tricentral.

The tricentral collineation (12) carrigg(U) in (7) to the cubicp(Z(U)) having
equation

A~

ud(f? = 4%) +vB(* - &) + wy(a® - 5%) =0, (13)
where
G:B:y=ni(a:B:79):n(B:7v:a):ni(y:a:p).
Example 13. Let
pla:B:y)=pB+7) q(y+a):r(a+p),
so that
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In accord with (13), the cubig(Z(U)) has equation
%<_2+é+1> <§_1>+%(9_§+1> (1_2>
p p q r q r q \P q T rop

N m(&&z) (9_§>:0,
r p q r p q

Isogonic conjugate pairs ad(U) are carried as in Example 3 #8-Ceva con-
jugate pairs onp(Z(U)). Indeed, each collinear tripl&, U, X~! is carried to a
collinear triple, so thap(U) is a pivot forp(Z(U)).

If U = Xy, so thatZ(U) is the Darboux cubic, then collinear triplgg X3, X,
whereX denotes the reflection of in X3, are carried to collinear tripleg(X),
©(X3), p(X), wherep(X) is the P-beth conjugate ok, as in Example 5.

Example 14. Continuing Example 13 witly~! in place ofp, the cubicy~ (Z(U))
is given by

5(uuv7w7p7Q7T7a7/87fy)+5(v7w7u7 Q7T7p7/8777a)+5(w7uav7rup7Q7’Y7O[u/B) = 07
where

s(u, v, w,p, ¢, @, 8,7) = up(B+7)(¢* (v + @)* = r*(a + B)%).
Collinear triplesX, U, X! on Z(U) yield collinear triples onp~! (Z(U)), so that
o~ Y(U) is a pivot fore=1(Z(U)). The pointy~! (X 1) is the P-aleph conjugate
of X, as in Example 4.

On the Darboux cubic, collinear triplé$, X3, X, yield collinear triplesp— (X)),
¢ 1(X3), ¢~ 1(X), this last point being thé-gimel conjugate ofX, as in Exam-
ple 6.
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