An Elementary Proof of the Isoperimetric Inequality

Nikolaos Dergiades

Abstract

We give an elementary proof of the isoperimetric inequality for polygons, simplifying the proof given by T. Bonnesen.

We present an elementary proof of the known inequality $\mathcal{L}^{2} \geq 4 \pi \mathcal{A}$, where \mathcal{L} and \mathcal{A} are the perimeter and the area of a polygon. It simplifies the proof given by T. Bonnesen [1, 2].

Theorem. In every polygon with perimeter \mathcal{L} and area \mathcal{A} we have $\mathcal{L}^{2} \geq 4 \pi \mathcal{A}$.
Proof. It is sufficient to prove the inequality for a convex polygon $A B M \cdots Z$. From the vertex A of the polygon we can draw the segment $A Q$ dividing the polygon in two polygons such that
(1) $A B+B M+\cdots+P Q=\frac{\mathcal{L}}{2}$, and
(2) the area \mathcal{A}_{1} of the polygon $A B M \cdots P Q A$ satisfies $\mathcal{A}_{1} \geq \frac{\mathcal{A}}{2}$.

Figure 1
Let O be the mid-point of $A Q$, and let M be the vertex of $A B M \cdots P Q A$ farthest from O, with $O M=\mathcal{R}$. Draw the circle (O, \mathcal{R}), and from the points A and Q draw perpendiculars to $O M$ to meet the circle at A^{\prime}, Q^{\prime} respectively. Because of symmetry, the part of the circle $A A^{\prime} M Q^{\prime} Q A$ has area \mathcal{S} equal to half of the area of the circle, i.e., $\mathcal{S}=\frac{1}{2} \pi \mathcal{R}^{2}$. Outside the polygon $A B M \cdots P Q$ construct parallelograms touching the circle, with bases the sides such as $M N=a_{i}$ and

Publication Date: October 28, 2002. Communicating Editor: Michael Lambrou.
other sides parallel to $A A^{\prime}$. If h_{i} is the altitude of triangle $O M N$ and d_{i} is the height of the parallelogram $M M^{\prime} N^{\prime} N$, then $h_{i}+d_{i}=\mathcal{R}$. Note that \mathcal{A}_{1} is the sum of the areas of triangles $O A B, \ldots, O M N, \ldots, O P Q$, i.e.,

$$
\mathcal{A}_{1}=\frac{1}{2} \sum_{i} a_{i} h_{i}
$$

If we denote by \mathcal{A}_{2} the sum of the areas of the parallelograms, we have

$$
\mathcal{A}_{2}=\sum_{i} a_{i} d_{i}=\sum_{i} a_{i}\left(\mathcal{R}-h_{i}\right)=\mathcal{R} \cdot \frac{\mathcal{L}}{2}-2 \mathcal{A}_{1} .
$$

Since $\mathcal{A}_{1}+\mathcal{A}_{2} \geq \mathcal{S}$, we have $\mathcal{R} \cdot \frac{\mathcal{L}}{2}-\mathcal{A}_{1} \geq \frac{1}{2} \pi \mathcal{R}^{2}$, and so $\pi \mathcal{R}^{2}-\mathcal{L} \mathcal{R}+2 \mathcal{A}_{1} \leq 0$. Rewriting this as

$$
\pi\left(\mathcal{R}-\frac{\mathcal{L}}{2 \pi}\right)^{2}-\left(\frac{\mathcal{L}^{2}}{4 \pi}-2 \mathcal{A}_{1}\right) \leq 0
$$

we conclude that $\mathcal{L}^{2} \geq 4 \pi \cdot 2 \mathcal{A}_{1} \geq 4 \pi \mathcal{A}$.
The above inequality, by means of limits can be extended to a closed curve. Since for the circle the inequality becomes equality, we conclude that of all closed curves with constant perimeter \mathcal{L}, the curve that contains the maximum area is the circle.

References

[1] T. Bonnesen, Les Problèmes des Isopérimètres et des Isépiphanes, Paris, Gauthier-Villars 1929; pp. 59-61.
[2] T. Bonnesen and W. Fenchel, Theorie der Convexen Körper, Chelsea Publishing, New York, 1948; S.111-112.

Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greece
E-mail address: ndergiades@yahoo.gr

