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An Elementary Proof of the Isoperimetric Inequality

Nikolaos Dergiades

Abstract. We give an elementary proof of the isoperimetric inequality for poly-
gons, simplifying the proof given by T. Bonnesen.

We present an elementary proof of the known inequalityL2 ≥ 4πA, whereL
andA are the perimeter and the area of a polygon. It simplifies the proof given by
T. Bonnesen [1, 2].

Theorem. In every polygon with perimeter L and area A we have L2 ≥ 4πA.

Proof. It is sufficient to prove the inequality for a convex polygonABM · · ·Z.
From the vertexA of the polygon we can draw the segmentAQ dividing the poly-
gon in two polygons such that

(1) AB + BM + · · · + PQ = L
2 , and

(2) the areaA1 of the polygonABM · · ·PQA satisfiesA1 ≥ A
2 .
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Figure 1

Let O be the mid-point ofAQ, and letM be the vertex ofABM · · ·PQA
farthest fromO, with OM = R. Draw the circle(O,R), and from the pointsA and
Q draw perpendiculars toOM to meet the circle atA′, Q′ respectively. Because
of symmetry, the part of the circleAA′MQ′QA has areaS equal to half of the
area of the circle,i.e., S = 1

2πR2. Outside the polygonABM · · ·PQ construct
parallelograms touching the circle, with bases the sides such asMN = ai and
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other sides parallel toAA′. If hi is the altitude of triangleOMN anddi is the
height of the parallelogramMM′N ′N , thenhi + di = R. Note thatA1 is the sum
of the areas of trianglesOAB, . . . ,OMN , . . . ,OPQ, i.e.,

A1 =
1
2

∑
i

aihi.

If we denote byA2 the sum of the areas of the parallelograms, we have

A2 =
∑

i

aidi =
∑

i

ai(R− hi) = R · L
2
− 2A1.

SinceA1 +A2 ≥ S, we haveR· L2 −A1 ≥ 1
2πR2, and soπR2−LR+2A1 ≤ 0.

Rewriting this as

π

(
R− L

2π

)2

−
(L2

4π
− 2A1

)
≤ 0,

we conclude thatL2 ≥ 4π · 2A1 ≥ 4πA. �
The above inequality, by means of limits can be extended to a closed curve.

Since for the circle the inequality becomes equality, we conclude that of all closed
curves with constant perimeterL, the curve that contains the maximum area is the
circle.
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[1] T. Bonnesen,Les Problèmes des Isopérimètres et des Isépiphanes, Paris, Gauthier-Villars 1929;
pp. 59-61.

[2] T. Bonnesen and W. Fenchel,Theorie der Convexen Körper, Chelsea Publishing, New York,
1948; S.111-112.

Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greece
E-mail address: ndergiades@yahoo.gr


