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An Elementary Proof of the I soperimetric I nequality
Nikolaos Dergiades

Abstract. We give an elementary proof of the isoperimetric inequality for poly-
gons, simplifying the proof given by T. Bonnesen.

We present an elementary proof of the known inequalfty> 47.A, wherel

and.A are the perimeter and the area of a polygon. It simplifies the proof given by
T. Bonnesen [1, 2].

Theorem. In every polygon with perimeter £ and area A we have 2 > 41 A.

Proof. It is sufficient to prove the inequality for a convex polygdBM --- Z.
From the vertex4 of the polygon we can draw the segmet® dividing the poly-
gon in two polygons such that

(1) AB+BM +---+ PQ =%, and

(2) the aread; of the polygonABM - -- PQ) A satisfies4; > é.

Figure 1

Let O be the mid-point ofAQ, and letM be the vertex ofABM --- PQA
farthest fromO, with OM = R. Draw the circlg O, R), and from the pointsl and
Q draw perpendiculars t® M to meet the circle atf, Q' respectively. Because
of symmetry, the part of the circld A MQ'QA has areaS equal to half of the
area of the circlei.e,, S = %WRQ. Outside the polygomABM - - - PQ construct
parallelograms touching the circle, with bases the sides sucif ds= ¢ and
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other sides parallel tal A'. If h; is the altitude of triangl@d M N andd; is the
height of the parallelogram/ M’ N’ N, thenh; + d; = R. Note that4, is the sum
of the areas of triangle®AB, ...,OMN, ...,0PQ,i.e,

./41 = % Zazhz

If we denote byA, the sum of the areas of the parallelograms, we have
L
.AQ == Zazdz = Zai(R— hz) =R 5 — 2A1.

SinceA; +A; > S, we haveR - £ — A; > 17R2, and sorR? — LR +24; < 0.

Rewriting this as
£\? /2
- =) (= - <
T (R 27T> <47T 2A1> =0,
we conclude that’? > 47 - 2.4; > 41 A. O

The above inequality, by means of limits can be extended to a closed curve.
Since for the circle the inequality becomes equality, we conclude that of all closed
curves with constant perimetgr, the curve that contains the maximum area is the
circle.
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