

An Application of Thébault's Theorem

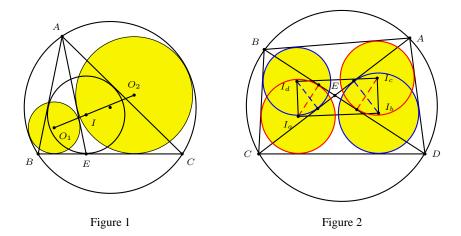
Wilfred Reyes

Abstract. We prove the "Japanese theorem" as a very simple corollary of Thébault's theorem.

Theorem 1 below is due to the French geometer Victor Thébault [8]. See Figure 1. It had been a long standing problem, but a number of proofs have appeared since the early 1980's. See, for example, [7, 6, 1], and also [5] for a list of proofs in Dutch published in the 1970's. A very natural and understandable proof based on Ptolemy's theorem can be found in [3].

Theorem 1 (Thébault). Let *E* be a point on the side of triangle ABC such that $\angle AEB = \theta$. Let $O_1(r_1)$ be a circle tangent to the circumcircle and to the segments *EA*, *EB*. Let $O_2(r_2)$ be also tangent to the circumcircle and to *EA*, *EC*. If $I(\rho)$ is the incircle of ABC, then

(1.1) I lies on the segment $O_1 O_2$ and $\frac{O_1 I}{IO_2} = \tan^2 \frac{\theta}{2}$, (1.2) $\rho = r_1 \cos^2 \frac{\theta}{2} + r_2 \sin^2 \frac{\theta}{2}$.



Theorem 2 below is called the "Japanese Theorem" in [4, p.193]. See Figure 2. A very long proof can be found in [2, pp.125–128]. In this note we deduce the Japanese Theorem as a very simple corollary of Thébault's Theorem.

Publication Date: December 30, 2002. Communicating Editor: Paul Yiu.

Theorem 2. Let ABCD be a convex quadrilateral inscribed in a circle. Denote by $I_a(\rho_a)$, $I_b(\rho_b)$, $I_c(\rho_c)$, $I_d(\rho_d)$ the incircles of the triangles BCD, CDA, DAB, and ABC.

- (2.1) The incenters form a rectangle.
- (2.2) $\rho_a + \rho_c = \rho_b + \rho_d$.

Proof. In *ABCD* we have the following circles: $O_{cd}(r_{cd})$, $O_{da}(r_{da})$, $O_{ab}(r_{ab})$, and $O_{bc}(r_{bc})$ inscribed respectively in angles *AEB*, *BEC*, *CED*, and *DEA*, each tangent internally to the circumcircle. Let $\angle AEB = \angle CED = \theta$ and $\angle BEC = \angle DEA = \pi - \theta$.

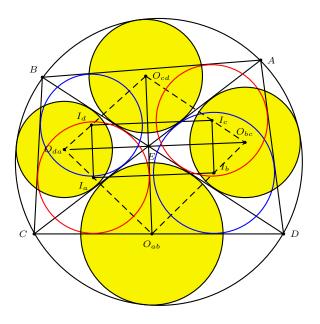


Figure 3

Now, by Theorem 1, the centers I_a , I_b , I_c , I_d lie on the lines $O_{da}O_{ab}$, $O_{ab}O_{bc}$, $O_{bc}O_{cd}$, $O_{cd}O_{da}$ respectively. Furthermore,

$$\frac{O_{da}I_a}{I_aO_{ab}} = \frac{O_{bc}I_c}{I_cO_{cd}} = \tan^2\left(\frac{\pi-\theta}{2}\right) = \cot^2\frac{\theta}{2},$$
$$\frac{O_{ab}I_b}{I_bO_{bc}} = \frac{O_{cd}I_d}{I_dO_{da}} = \tan^2\frac{\theta}{2}.$$

From these, we have

$$\frac{O_{da}I_a}{I_aO_{ab}} = \frac{O_{bc}I_b}{I_bO_{ab}}, \qquad \frac{O_{ab}I_b}{I_bO_{bc}} = \frac{O_{cd}I_c}{I_cO_{bc}},$$
$$\frac{O_{bc}I_c}{I_cO_{cd}} = \frac{O_{da}I_d}{I_dO_{cd}}, \qquad \frac{O_{cd}I_d}{I_dO_{da}} = \frac{O_{ab}I_a}{I_aO_{da}},$$

184

These proportions imply the following parallelism:

$$I_a I_b / / O_{da} O_{bc}, \quad I_b I_c / / O_{ab} O_{cd}, \quad I_c I_d / / O_{bc} O_{da}, \quad I_d I_a / / O_{cd} O_{ab}.$$

As the segments $O_{cd}O_{ab}$ and $O_{da}O_{bc}$ are perpendicular because they are along the bisectors of the angles at E, $I_aI_bI_cI_d$ is an inscribed rectangle in $O_{ab}O_{bc}O_{cd}O_{da}$, and this proves (2.1).

Also, the following relation results from (1.2):

$$\rho_a + \rho_c = (r_{ab} + r_{cd})\cos^2\frac{\theta}{2} + (r_{da} + r_{bc})\sin^2\frac{\theta}{2}.$$

This same expression is readily seen to be equal to $\rho_b + \rho_d$ as well. This proves (2.2).

References

- [1] S. Dutta, Thébault's problem via euclidean geometry, Samayā, 7 (2001) number 2, 2–7.
- [2] H. Fukagawa and D. Pedoe, *Japanese Temple Geometry*, Charles Babbage Research Centre, Manitoba, Canada, 1989.
- [3] S. Gueron, Two applications of the generalized Ptolemy theorem, Amer. Math. Monthly, 109 (2002) 362–370.
- [4] R. A. Johnson, Advanced Euclidean Geometry, 1925, Dover reprint.
- [5] F. M. van Lamoen, Hyacinthos message 5753, July 2, 2002.
- [6] R. Shail, A proof of Thébault's theorem, Amer. Math. Monthly, 108 (2001) 319-325.
- [7] K. B. Taylor, Solution of Problem 3887, Amer. Math. Monthly, 90 (1983) 486–187.
- [8] V. Thébault, Problem 3887, Amer. Math. Monthly, 45 (1948) 482-483.

Wilfred Reyes: Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile *E-mail address*: wreyes@ubiobio.cl