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Orthocorrespondence and Orthopivotal Cubics

Bernard Gibert

Abstract. We define and study a transformation in the triangle plane called the
orthocorrespondence. This transformation leads to the consideration of a fam-
ily of circular circumcubics containing the Neuberg cubic and several hitherto
unknown ones.

1. The orthocorrespondence

Let P be a point in the plane of triangld BC' with barycentric coordinates
(u:v:w). The perpendicular lines & to AP, BP, CP intersectBC, CA, AB
respectively atP,, P,, P., which we call theorthotraces of P. These orthotraces
lie on a line£p, which we call theorthotransversal of P.1 We denote the trilinear
pole of £p by P+, and call it theorthocorrespondent of P.

Figure 1. The orthotransversal and orthocorrespondent

In barycentric coordinates,

Pl:(U(—USA+USB+wSC)+a2Uw;...;...), (1)
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The homography on the pencil of lines throuBtwhich swaps a line and its perpendicularat
is an involution. According to a Desargues theorem, the points are collinear.

2All coordinates in this paper are homogeneous barycentric coordinates. Often for triangle cen-
ters, we list only the first coordinate. The remaining two can be easily obtained by cyclically permut-
ing a, b, ¢, and corresponding quantities. Thus, for example, in (1), the second and third coordinates
arev(—vSp + wSc + uSa) + b*wu andw(—wSc + uSa + vSp) + uv respectively.
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where,a, b, ¢ are respectively the lengths of the sidB§’, C A, AB of triangle
ABC, and, in J.H. Conway'’s notations,

1 1 1
Sa= 5(172 +c—d?), Sp = 5(02 +a* - b%), Sc = §(a2 +0° - ). ()

The mapping® : P — P! is called theorthocorrespondence (with respect to
triangle ABC).

Here are some examples. We adopt the notations of [5] for triangle centers, ex-
cept for a few commonest ones. Triangle centers without an explicit identification
as X, are not in the current edition of [5].

(1) I+ = X57, the isogonal conjugate of the Mittenpunks.

(2) G+ = (b® +c* —5a%:---:---)is the reflection of7 aboutK, and the
orthotransversal is perpendicular@i .
) H+ =G.

(4) O+ = (cos2A : cos 2B : cos 2C) on the lineG K.
(5) More generally, the orthocorrespondent of the Euler line is thedihg
The orthotransversal envelopes the Kiepert parabola.

(6) K+ = (a?(b* + ¢* — a* — 4b?c?) : --- : .-+ ) on the Euler line.

(7) X1l5 = Xgo anXmiﬁ = Xg1.

(8) Xii, = Xiis = X110-
See§2.3 for points on the circumcircle and the nine-point circle with orthocorre-
spondents having simple barycentric coordinates.

Remarks. (1) While the geometric definition above &f- is not valid whenP is
a vertex of triangleABC, by (1) we extend the orthocorresponderiz¢o cover
these points. Thusd*+ = 4, B+ = B, andC* = C.

(2) The orthocorrespondent éf is not defined if and only if the three coordi-
nates ofP* given in (1) are simultaneously zero. This is the case wRdrelongs
to the three circles with diameteBC, C A, AB.® There are only two such points,
namely, the circular points at infinity.

(3) We denote byP* the isogonal conjugate d? and by H/ P the cevian quo-
tient of # and P. # It is known that

H/P = (u(—uSa+vSp+wSc) :---:--+).
This shows thaP lies on the line througtP* and H/P. In fact,
(H/P)P* : (H/P)P* = a*>vw + b*wu + Puv : Spu® + Spv? + Scw?.

In [6], Jim Parish claimed that this line also contains the isogonal conjugate of
with respect to its anticevian triangle. We add that this point is in fact the harmonic
conjugate ofP+ with respect toP* and H/P. Note also that the line through
andH/P is perpendicular to the orthotransvergal.

(4) The orthocorrespondent of any (real) point on the line at infifitys G.

3see Proposition 2 below.
4H/P is the perspector of the cevian triangleff(orthic triangle) and the anticevian triangle of
P.
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(5) A straightforward computation shows that the orthocorrespondénicas
exactly five fixed points. These are the vertices3, C, and the two Fermat points
X13, X14. Jim Parish [7] and Aad Goddijn [2] have given nice synthetic proofs
of this in answering a question of Floor van Lamoen [3]. In other wokijs.and
X14 are the only points whose orthotransversal and trilinear polar coincide.

Theorem 1. The orthocorrespondent P+ is a point at infinity if and only if P lies
on the Monge (orthoptic) circle of the inscribed Steiner ellipse.

Proof. From (1), P+ is a point at infinity if and only if
Z Saz? — 2ayz = 0. 3)

cyclic
This is a circle in the pencil generated by the circumcircle and the nine-point circle,
and is readily identified as the Monge circle of the inscribed Steiner eflips&l

It is obvious thatP~ is at infinity if and only if £p is tangent to the inscribed
Steiner ellipse®

Proposition 2. The orthocorrespondent P+ lies on the sideline BC' if and only
if P lies on the circle 'z with diameter BC. The perpendicular at P to AP
intersects BC at the harmonic conjugate of P~ with respect to B and C'.

Proof. P+ lies onBC if and only if its first barycentric coordinate is 0g., if and
only if u(—uSa + vSp + wSc) + a*>vw = 0 which shows that” must lie on
Ipe. O

2. Orthoassociates and the critical conic
2.1 Orthoassociates and antiorthocorrespondents.

Theorem 3. Let (Q be a finite point. There are exactly two points /A and P, (not
necessarily real nor distinct) such that Q = P~ = Pj-.

Proof. Let @ be a finite point. The trilinear polak, of ) intersects the sidelines
of triangle ABC atQ,, Qp, Q.. The circlesl’,, I'y, I'. with diametersAQ,, BQy,
CQ. are in the same pencil of circles since their centrsO,, O, are collinear
(on the Newton line of the quadrilateral formed by the sidelined BIC' and{),
and since they are all orthogonal to the polar circle. Thus, they have two gints
and P, in common. These points, if real, satis®F = Q = P5-. 7 O

We call P; and P, the antiorthocorrespondents of @ and writeQ" = {Py, P»}.
We also say thaP; and P, areorthoassociates, since they share the same ortho-
correspondent and the same orthotransversal. Notdttaatd P, are homologous

SThe Monge (orthoptic) circle of a conic is the locus of points whose two tangents to the conic
are perpendicular to each other. It has the same center of the conic. For the inscribed Steiner ellipse,
the radius of the Monge circle %E a? + b + 2.

6The trilinear polar of a point at infinity is tangent to the in-Steiner ellipse since it is the in-conic
with perspector.

7P, and P, are not always real wheA BC' is obtuse angled, s&2.2 below.
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polar circle

Figure 2. Antiorthocorrespondents

under the inversiony with pole H which swaps the circumcircle and the nine-
point circle.

Proposition 4. The orthoassociate P of P(u : v : w) has coordinates

<SBU2+SCU12 —Sau(v+w) Scw? + Sau? — Spv(w + u) i Sau? + Spv? — Scw(u + v)
Sa ’ SB ’ Sc '
(4)

Let S denotetwice of the area of triangled BC. In terms 0fSy, S, S¢ in (2),
we have

S? = SaSp+ SpSc + ScSa.
Proposition 5. Let

K(u,v,w) = S*(u+ v + w)? — 4(a*S 0w + > Spwu + Scuv).
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The antiorthocorrespondents of Q = (u : v : w) are the points with barycentric
coordinates

VK (u,v,w)
S

These arereal pointsif and only if K (u,v,w) > 0.

(u—w)(u+v—w)Sp+ (u—v)(u—v+w)Sc+ (u—w)Sp+(u—v)Sg):+--:---). (5)

2.2 Thecritical conic C. Consider theeritical conic C with equation

SHa+y+2)? -4 a’Sayz=0, (6)
cyclic
which is degenerate, real, imaginary according as triaddgh is right-, obtuse-,
or acute-angled. It has center the Lemoine péihtand the same infinite points as
the circumconic
a’Sayz + b2Spzr + 2Scxy = 0,
which is the isogonal conjugate of the orthic asige + Spy + Scz = 0, and has
the same centek’. This critical conic is a hyperbola when it is real. ClearlyQif
lies on the critical conic, its two real antiorthocorrespondents coincide.

Figure 3. The critical conic
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Proposition 6. The antiorthocorrespondents of () arereal if and only if one of the
following conditions holds.

(1) Triangle ABC' is acute-angled.

(2) Triangle ABC' is obtuse-angled and @ lies in the component of the critical
hyperbola not containing the center K.

Proposition 7. The critical conic is the orthocorrespondent of the polar circle.
When it isreal, it intersects each sideline of ABC' at two points symmetric about
the corresponding midpoint. These points are the orthocorrespondents of the in-
tersections of the polar circle and thecirclesT'pc, I'ca, I'ap With diameters BC,
CA, AB.

2.3 Orthocorrespondent of the circumcircle. Let P be a point on the circumcircle.
Its orthotransversal passes throughand P lies on the circumconic centered at
K. 8 The orthoassociat® lies on the nine-point circle. The table below shows
several examples of such poirtts.

P P* ? PJ_

X74 | X30 | Xu33 a?Sa/((b? — )? + a%(254 — a?))
Xos | X511 | Xis2 Xog7

ng X512 (b2 —62)2(SA —CLQ)/SA SA/(b2 —62)

Xioo | X513 aSa/(b—c)

X101 | X514 a’Sa/(b—c)

X105 | X518 aSa/(b* +c* —ab— ac)

X106 | X519 a®Sa/(b+c—2a)

X107 | X520 | X125 Xeas = Xur

X108 | X521 | X11 Xo51 = Xiso

X109 | X522 a’Sa/((b—c)(b+c—a))

X110 | X523 | X136 a’Sa/(b* — 2)

X1 | X504 a?S4/(b + 2 — 2a%) = Xjgq
X112 | Xso5 | X5 X110 = X303

Xe7s | Xera Sa/(b? + 3 —a(t? + ?))

Xes9 | Xess Sa/(a®(b* — )

Xeo1 | Xe90 a?Sa/((b” = &) (b + ¢ — 2a?))
PP X X330

Remark. The coordinates of; can be obtained from those &3 by making use
of the fact thatX3s, is the barycentric product df andXg9. Thus,

a2
P = <SA((b2—C2)2—a2(b2+c2_2a2)) Co >

8t p = (u : v : w) lies on the circumcircle, theR+ = (uS4 : vSp : wSc) is the barycentric
product of P and Xs9. See [9]. The orthotransversal is the IiﬂgX + ﬁ + ﬁ = 0 which
containsO.

%The isogonal conjugates are trivially infinite points.
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2.4. The orthocorrespondent of a line. The orthocorrespondent of a sideline, say
BC, is the circumconic throughy and its projection on the corresponding altitude.
The orthoassociate is the circle with the segméht as diameter.

Consider a lind intersectingBC, C A, AB at X, Y, Z respectively. The ortho-
correspondent! of ¢ is a conic containing the centro@ (the orthocorrespondent
of the infinite point of¢) and the pointsX*, Y+, Z1. 19 A fifth point can be
constructed a®', whereP is the pedal of5 on ¢. 1! These five points entirely
determine the conic. According to Proposition/2,meetsBC at the orthocorre-
spondents of the points wheféntersects the circl€zc. 1 It is also the orthocor-
respondent of the circle througt which is the orthoassociate 6f

If the line ¢ containsH, the conic/- degenerates into a double line containing
G. If £ also containg” = (u : v : w) other thanH, then this line has equation

(Spv — Scw)x + (Scw — Sau)y + (Sau — Spv)z = 0.

This double line passes through the second intersectidnnath the Kiepert hy-
perbola.13 It also contains the pointS4 : vSp : wS¢). The two lines intersect
at the point

Sp—Sc  Sc—Sa  Sa—Sp
(SBU —Scw ~ Scw — Sau  Sau — SBU> '
The orthotransversals of points éenvelope the inscribed parabola with direc-
trix £ and focus the antipode (on the circumcircle) of the isogonal conjugate of the
infinite point of/.

2.5, The antiorthocorrespondent of a line. Let £ be the line with equationx +
my + nz = 0.
When ABC is acute angled, the antiorthocorrespondénof / is the circle cen-
tered aty = (m 4+ n : n + 1 : | + m)*and orthogonal to the polar circle. It has
square radius
Sa(m+n)2+Sp(n+1)2%+ Sc(l+m)?
4(l +m+n)?

and equation

(x+y+2) ZSAZCC —(+m+n) Zazyz = 0.

cyclic cyclic

When ABC is obtuse angled" is only a part of this circle according to its
position with respect to the critical hyperbafa This circle clearly degenerates

10These points can be easily constructed. For exanipfeis the trilinear pole of the perpendic-
ular atX to BC.

Uplisthe antipode of> on the conic.

12These points can be real or imaginary, distinct or equal.

Bin particular, the orthocorrespondent of the tangerff @ the Kiepert hyperbola,e., the line
HK, is the Euler line.

140, is the complement of the isotomic conjugate of the trilinear polé of
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into the union of£>*and a line through? when G lies on/. This line is the
directrix of the inscribed conic which is now a parabola.

Conversely, any circle centered Qt(proper or degenerate) orthogonal to the
polar circle is the orthoptic circle of the inscribed conic whose perspédtisrthe
isotomic conjugate of the anticomplement of the center of the circle. The ortho-
correspondent of this circle is the trilinear pofarof P. The table below shows a
selection of usual lines and inscribed contes.

P Q l inscribed conic
X, | X37 | antiorthic axis ellipse, centerl
X5 X5 L Steiner in-ellipse
X X6 orthic axis ellipse, centetX
Xg | X39 | Lemoine axis Brocard ellipse
X7 X1 Gergonne axis incircle

Xs | Xy Mandart ellipse
Xi13 | X306 Simmons conic
X76 | X141 | de Longchamps axis

X110 | Xga7 | Brocard axis

Xros | X597 Lemoine ellipse

2.6. Orthocorrespondent and antiorthocorrespondent of a circle. In general, the
orthocorrespondent of a circle is a conic. More precisely, two orthoassociate cir-
cles share the same orthocorrespondent conic, or the part of it outside the critical
conicC whenABC is obtuse-angled. For example, the circumcircle and the nine-
point circle have the same orthocorrespondent which is the circumconic centered
at K. The orthocorrespondent of each circle (and its orthoassociate) of the pencil
generated by circumcircle and the nine-point circle is another conic also centered
at K and homothetic of the previous one. The axis of these conics are the parallels
at K to the asymptotes of the Kiepert hyperbola. The critical conic is one of them
since the polar circle belongs to the pencil.

This conic degenerates into a double line (or part of it) if and only if the circle is
orthogonal to the polar circle. If the radical axis of the circumcircle and this circle
is Lz + my + nz = 0, this double line has equatiof = + ¥~y + Z-2 = 0. This
is the trilinear polar of the barycentric produkty and the trilinear pole of the
radical axis.

The antiorthocorrespondent of a circle is in general a bicircular quartic.

15The conics in this table are entirely defined either by their center or their perspector in the table.
See [1]. In fact, there are two Simmons conics (and not ellipses as Brocard and Lemoyne wrote) with
perspectors (and fociX13 and X14.
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3. Orthopivotal cubics

For a given a poinP with barycentric coordinate@: : v : w), the locus of point
M such thatP, M, M+ are collinear is the cubic cun@(P):

Z z ((Pu—2Spw)y* — (b*u — 2Scv)2?) = 0. (7)
cyclic

Equivalently,O(P) is the locus of the intersections of a line throuBhwith the
circle which is its antiorthocorrespondent. S@e5. We shall say tha®(P) is an
orthopivotal cubic, and callP its orthopivot.

Equation (7) can be rewritten as

Z u (z(c*y® — b*2%) + 2yz(Spy — Scz)) = 0. (8)
cyclic

Accordingly, we consider the cubic curves

PO z(c?y? — b?22) 4+ 2y2(Spy — Scz) =0,
Xy y(a?2? — 22?) + 222(Scz — Saw) = 0, 9)
Ye: 2(b?z? — a®y?) + 22y(Saz — Spy) = 0,
and very loosely write (8) in the form
UXg + vXp + wd, = 0. (20)

We study the cubicgl,, X, X, in §6.5 below, where we shall see that they are
strophoids. We list some basic properties of th@’).

Proposition 8. (1) The orthopivotal cubic O(P) isacircular circumcubicl® pass-
ing through the Fermat points, P, the infinite point of the line G P, and

P/:(b2—c2:02—a2:a2—b2>’ (11)

VvV —w w—u u—"v

which is the second intersection of the line GP and the Kiepert hyperbola.®’
(2) The“ third” intersection of O(P) and the Fermat line X;3X74 ison theline
(3) The tangent to O(P) at P istheline PP*.
(4) O(P) intersects the sidelines BC, CA, AB at U, V, W respectively given
by
U =(0:2Scu — a’v : 2Spu — a*w),
V =(2Scv — b*u: 0 : 2540 — b*w),
W =(2Spw — ®u : 254w — v : 0).

(5) O(P) also contains the (not always real) antiorthocorrespondents R and
Py of P.

16This means that the cubic passes through the two circular points at infinity common to all
circles, and the three vertices of the reference triangle.

1™ is is therefore the sixth intersection @f P) with the Kiepert hyperbola.
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Here is a simple construction of the intersectidin (4) above. If the parallel at
G to BC intersects the altitudd H at H,,, thenU is the intersection o H, and
BC.18

4. Construction of O(P) and other points

Let the trilinear polar ofP intersect the sideline8C, CA, ABat X, Y, Z
respectively. Denote by, Ty, T'. the circles with diameterd X, BY, CZ and
centersO,, Oy, O.. They are in the same pendilwhose radical axis is the per-
pendicular atd to the line£ passing througld),, O,, O., and the points? and
P, seen abovet?

For an arbitrary poinf\/ on L, letT" be the circle off' passing througid/. The
line PM* intersectd” at two pointsN; and N, on O(P). From these we note the
following.

(1) O(P) contains the second intersectioAs Bs, C; of the linesAP, BP,
C P with the circlesl, Iy, T'...

(2) The pointP’ in (11) lies on the radical axis d.

(3) The circle ofF passing throughP meets the line? P+ atP, tangential of
P.

(4) The perpendicular bisector &f N, envelopes the parabola with fochs
(sees5 below) and directrix the lin&/ P. This parabola is tangent thand
to the two axes of the inscribed Steiner ellipse.

This yields another construction 6f(P): a tangent to the parabola meétst
w. The perpendicular &P to this tangent intersects the circleldbtentered at at
two points onO(P).

5. Singular focus and an involutive transformation

The singular focus of a circular cubic is the intersection of the two tangents to
the curve at the circular points at infinity. When this singular focus lies on the
curve, the cubic is said to be a focal cubic. The singular foc¥3(d?) is the point

Fp = (a®(v? + v —u? —vw) + b*u(u+v — 2w) + u(u+w —20) 1+ -0 ).

If we denote byF; and F» the foci of the inscribed Steiner ellipse, théh is
the inverse of the reflection d@? in the line F F5> with respect to the circle with
diameterl Is.

Consider the mapping : P — Fp in the affine plane (without the centrode)
which transforms a poinP into the singular focugp of O(P). This is clearly an
involution: Fp is the singular focus of(P) if and only if P is the singular focus
of O(Fp). It has exactly two fixed points.e., F; and F. 2°

1817, is the “third” intersection ofAH with the Napoleon cubic, the isogonal cubic with pivot
Xs.
L9This line £ is the trilinear polar of the isotomic conjugate of the anticomplemeit.of
20The two cubicsO(F1) and O(F») are central focals with centers & and F- respectively,
with inflexional tangents through’, sharing the same real asymptdters.
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The table below shows a selection of homologous points uiidarost of which
we shall meet in the sequel. Whéhis at infinity, Fp = G, i.e, all O(P) with

O(F»)

Figure 4. O(F1) andO(Fz)

orthopivot at infinity haves as singular focus.

Steiner
ellipse

P X1 Xz | X4 | X¢ | X1z | X5 | Xog | Xeo
Fp || X1054 | X110 | X125 | X111 | X1a | X6 | Xis2 | Xoi6
P || Xioo | Xiga | Xig7 | X352 | Xe16 | X617 | Xe21 | Xe22

Fp || X1083 | X186 | X353 | X574 | X619 | X618 | X624 | X623

The involutive transformatio@ swaps

(1) the Euler line and the line throughiX; o, 2*
(2) more generally, any lin& P and its reflection infj £,

(3) the Brocard axi®) K and the Parry circle.

11

(4) more generally, any lin® P (which is not the Euler line) and the circle
throughG, Xi19, andFp,

(5) the circumcircle and the Brocard circle,
(6) more generally, any circle not throughand another circle not througdH.

2l7he nine-point center is swapped into the anticomplemeri;ef.
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The involutive transformatio® leaves the second Brocard culfic®®

Z (b? — Az (Fy? +b22%) =0

cyclic

globally invariant. Se&6.4 below. More generallyy leaves invariant the pencil of
circular circumcubics through the vertices of the second Brocard triangle (they all
pass throught?). 23 There is another cubic from this pencil which is also globally
invariant, namely,

(a*b*c* — 8S4SBSc)xyz + Z (b? + ¢ — 2a®)z(c2Scy? + b*Sp2?) = 0.

cyclic

We call this cubidss. It passes througiXs, X119, and Xss5.
If O(P) is nondegenerate, then its real asymptote is the homothetic image of the
line G P under the homothethi(Fp, 2).

6. Special orthopivotal cubics

6.1 Degenerate orthopivotal cubics. There are only two situations where we find
a degenerat@(P). A cubic can only degenerate into the union of a line and a
conic. If the line is£>, we find only one such cubic. It ©(G), the union of£>

and the Kiepert hyperbola. If the line is n6®°, there are ten different possibilities
depending of the number of vertices of triangld3C' lying on the conic above
which now must be a circle.

(1) O(X110) is the union of the circumcircle and the Fermat I#fe.

(2) O(P) is the union of one sideline of triangléBC and the circle through
the remaining vertex and the two Fermat points wieis the “third” in-
tersection of an altitude o BC with the Napoleon cubié?

(3) O(P) is the union of a circle through two vertices 4BC and one Fermat
point and a line through the remaining vertex and Fermat point when
a vertex of one of the two Napoleon triangles. Seg{31].

6.2 Isocubics O(P). We denote by apivotal isocubic and by:XC anon-pivotal
isocubic. Consider an orthopivotal circumculddP) intersecting the sidelines of
triangle ABC atU, V, W respectively. The cubi©®(P) is an isocubic in the two
following cases.

22The second Brocard cubi8; is the locus of foci of inscribed conics centered on the GHs.
Itis also the locus off for which the lineM M~ contains the Lemoine poirit .

23The inversive image of a circular cubic with respect to one of its points is another circular cubic
through the same point. Her&, swapsABC' and the second Brocard triangle BoC>. Hence,
each circular cubic througil, B, C, Az, Be, C> andG has an inversive image through the same
points.

24X, 10 is the focus of the Kiepert parabola.

25The Napoleon cubic is the isogonal cubic with pi$. These third intersections are the
intersections of the altitudes with the parallel throdglo the corresponding sidelines.



Orthocorrespondence and orthopivotal cubics 13

6.2.1 Pivotal O(P).

Proposition 9. An orthopivotal cubic O(P) is a pivotal circumcubic p/k if and
only if the triangles ABC and UV W are perspective, i.e., if and only if P lieson
the Napoleon cubic (isogonal p/C with pivot X5). In this case,
(1) the pivot Q of O(P) lies on the cubic K,: 2° it is the perspector of ABC
and the (—2)-pedal triangle of P, 2" and lies on the line PXj;
(2) the pole2 of the isoconjugation lies on the cubic

Co : Z (483 — 222 (VP2 — *y) = 0.
cyclic
TheQ-isoconjugate)* of () lies on the Neuberg cubic and is the inverse in the
circumcircle of the isogonal conjugate @f The(2-isoconjugateP* of P lies on
K., and is the third intersection with the ligXs.
Here are several examples of such cubics.
(1) O(0O) = O(X3) is the Neuberg cubic.

(2) O(X5)isK,,.
(3) O(I) = O(X1) has pivotho = ((2SC—ab)(2SB —ac):---:---), pole
(a(2S8¢c — ab)(2Sp — ac) : --+), and singular focus

(a(QSA—l-ab—l—ac—Sbc):~':~').

(4) O(H) = O(X4) has pivotH, pole M, the intersection off K and the
orthic axis, with coordinates
a?(b? + 2 — 2a?) + (b? — 2)? ‘ ‘
o ),

and singular focus(; o5, center of the Jerabek hyperbola.
O(H) is a very remarkable cubic since every point on it has orthocorrespondent
on the Kiepert hyperbola. It is invariant under the inversion with respect to the
conjugated polar circle and is also invariant under the isogonal transformation with
respect to the orthic triangle. It is an isogopél with pivot X3y with respect to
this triangle.

6.2.2 Non-pivotal O(P).

Proposition 10. An orthopivotal cubic O(P) is a non-pivotal circumcubic nk if
and only if its “ third” intersections with the sidelines?® are collinear, i.e., if and
only if P lies on the isogonal n/C with root Xs: 2°

Z (b = ) + a®(b* + ¢® — 2a°)) 2(Py* +b°2*) +2(8S4SpSc — a*b*c®)zyz = 0.
cyclic

We give two examples of such cubics.

261C,, is the 2-cevian cubic associated with the Neuberg and the Napoleon cubics. See [8].

27ror any non-zero real numbgrthet-pedal triangle of? is the image of its pedal triangle under
the homothet(P, t).

28These are the pointg, V, W in Proposition 8(4).

29This passes through, K, X110, and Xs23.
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Lester circle

Euler line

asymptote

Figure 5. IC,,

(1) O(K) = O(Xs) is the second Brocard cubfs.
(2) O(X523) is ank with pole and root both at the isogonal conjugateXef;,
and singular focus: 3°

Z (484 — > (y +2) =0

cyclic

6.3. Isogonal O(P). There are only twgO(P) which are isogonal cubics, one

pivotal and one non-pivotal:

(i) O(X3) is the Neuberg cubic (pivotal),
(i) O(Xg) is By (nonpivotal).

300 (X523) meets the circumcircle at the Tixier poitze.
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Kiepert
hyperbola

Figure 6. O(X4)

6.4. Orthopivotal focals. Recall that a focal is a circular cubic containing its own
singular focus®

Proposition 11. An orthopivotal cubic O(P) isafocal if and only if P lieson 5.

This is the case df; itself, which is an isogonal focal cubic passing through the
following points: A, B, C, G, K, Xi3, X14, X15, X16, X111 (the singular focus),
X368, X524, the vertices of the second Brocard triangle and their isogonal conju-
gates. All those points are orthopivots of orthopivotal focals. When the orthopivot
is a fixed point of the orthocorrespondence, we shall s&é.m below thatO(P)
is a strophoid.

We have seen iff5 thatF} and F5 are invariant undew. These two points lie
on B, (and also on the Thomson cubic). The singular focus of an orthopivotal focal
O(P) always lies om3,; it is the “third” point of 5, and the lineK P.

$Typically, a focal is the locus of foci of conics inscribed in a quadrilateral. The only focals
having double points (nodes) are the strophoids.
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Kiepert
hyperbola

Figure 7. O(X3) andO(Xs)

One remarkable cubic i©(X524): it is another central cubic with center and
singular focus a& and the lineGK as real asymptote. This cubic passes through
Xg7 and obviously the symmetrics of, B, C, Xi3, X14, X¢7 aboutG. Its equa-
tion is
Z x ((b2 +ct —a — P (a® +20° - 262)) v’ — (64 +c* —a' = b’ (a® - 20° + 262)) 22) =0.
cyclic

Another interesting cubic i©(X;;;1) with K as singular focus. Its equation is

Z (b2 +c*—2a2)a? (c2(a4 —b2c? + 3% — ¢t — 2a%0?)y — b2 (a* — b2 + 3¢ — bt — 2a202)z) =0.

cyclic

The sixth intersection with the Kiepert hyperbolaXg;, a point on the Steiner
circumellipse and on the line througtyy and X11.

6.5. Orthopivotal strophoids. Itis easy to see tha?(P) is a strophoid if and only

if P is one of the five real fixed points of the orthocorrespondence, nagly,

C, X13, X14, the fixed point being the double point of the curve. This means that
the mesh of orthopivotal cubics contains five strophoids denoted(by), O(B),
0(C), O(X13), O(X14).
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Figure 8. O(Xs24)

6.5.1 The strophoids O(A), O(B), O(C). These are the cubics,, ¥, X, with
equations given in (9). Itis enough to considefA) = 33,. The bisectors of angle
A are the tangents at the double paiht The singular focus is the corresponding
vertex of the second Brocard triangle, namely, the pdint= (254 : b2 : ¢?). 32
The real asymptote is parallel to the media&’, being the homothetic image of
AG underh(Ay,2).

Here are some interesting propertiesStf4) = %,.

(1) X, is the isogonal conjugate of the Apolloniaticircle
Ca: a?(b%2% — 2y?) + 22(b*Spz — 2Scy) = 0, (12)

which passes through and the two isodynamic poinfs; 5 and X1¢.

(2) The isogonal conjugate of; is the point4; = (a® : 254 : 254) on the
Apollonian circleC4, which is the projection off on AG. The isogonal
conjugate of the antipode ¢f, onC4 is the intersection of, with its real
asymptote3?

(3) O(A) = %, is the pedal curve with respect tbof the parabola with focus
at the second intersection @f and the circumcircle and with directrix the
medianAG.

32This is the projection o on the symmediad K, the tangent atl, being the reflection about
OA; of the parallel atd; to AG.
33This isogonal conjugate is on the perpendiculadab AK, and on the tangent at; to 33,,.
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asymptote Apollonian circle

Figure 9. The strophoid(A)

6.5.2 The strophoids O(X;3) and O(X14). The strophoidD(X;3) has singular
focus X4, real asymptote the parallel &%, to the lineG X3, 3 The circle cen-
tered atXy4 passing througtXis intersects the parallel &4 to GX13 at D; and
D5 which lie on the nodal tangents. The perpendiculakgtto the Fermat line
meets the bisectors of the nodal tangent&;aand F, which are the points where
the tangents are parallel to the asymptote and therefore the centers of anallagmaty
of the curve®
O(X13) is the pedal curve with respect 1 ; of the parabola with directrix the
line GX;3 and focusX/,, the symmetric ofX;3 aboutX,.

34The “third intersection” of this asymptote with the cubic lies on the perpendiculsyato the
Fermat line. The intersection of the perpendiculaKai to G X153 and the parallel a4 to G X3
is another point on the curve.

35This means thak;, and E» are the centers of two circles through s and the two inversions
with respect to those circles leaé® X13) unchanged.
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Figure 10. O(X13) andO(X14)

The construction of)(X;3) is easy to realize. Draw the parallélat X;, to
G X3 and take a variable poid/ on it. The perpendicular &t/ to M X, and the
parallel atX;3 to M X, intersect at a point on the strophoid.

We can easily adapt all these@( X14).

6.6. Other remarkable O(P). The following table gives a list triangle centefs

with O(P) passing through the Fermat pointgs, X4, and at least four more
triangle centers of [5]. Some of them are already known and some others will be
detailed in the next section. The very frequent appearandg;ofX¢ is explained

in §7.3 below.
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P centers P centers

X1 | X10,80,484,519,759 X182 | X15,16,98,542

X3 | Neuberg cubic X187 | X15,16,598,843

X5 | X4,30,79,80,265,621,622 || X354 | X1,105,484,518

X6 | X2,15,16,111,368,524 X386 | X10,15,16,519

X32 | X15,16,83,729,754 X511 | X15,16,262,842
X39 | X15,16,76,538,755 X569 | X15,16,96,539

X51 | X61,62,250,262,511 X574 | X15,16,543,671
Xs4 | X396,265,539 X579 | X15,16,226,527
X57 | X1,226,484,527 Xe27 | X17,532,617,618,622
Xs58 | X15,16,106,540 Xo28 | X18,533,616,619,621
X1 | X15,16,18,533,618 X633 | X18,533,617,623
Xe2 | X15,16,17,532,619 X634 | X17,532,616,624

7. Pencilsof O(P)

7.1 Generalities. The orthopivotal cubics with orthopivots on a given lifeorm

a pencillF, generated by any two of them. Apart from the vertices, the Fermat
points, and two circular points at infinity, all the cubics in the pencil pass through
two fixed points depending on the liie Consequently, all the orthopivotal cubics
passing through a given poi@thave their orthopivots on the tangentato O(Q),
namely, the lineQQ~*. They all pass through another poigton this line which

is its second intersection with the circle which is its antiorthocorrespondent. For
example O(Q) passes througty, O, or H if and only if Q lies onGK, O X54, or

the Euler line respectively.

7.2 Pencilswith orthopivot on a line passing through G. If ¢ contains the centroid
G, every orthopivotal cubic in the pendl passes through its infinite point and
second intersection with the Kiepert hyperbola. Rdraversest, the singular
focus of O(P) traverses its reflection abofi 5 (see§b).

The most remarkable pencil is the one witlthe Euler line. In this case, the
two fixed points are the infinite poidts, and the orthocentel. In other words,
all the cubics in this pencil have their asymptote parallel to the Euler line. In this
pencil, we find the Neuberg cubic aig,. The singular focus traverses the line
G Xgg, Xog being the Tarry point.

Another worth noticing pencil is obtained whénis the line GXy5. In this
case, the two fixed points are the infinite paii;2 and Xog. The singular focus
traverses the Euler line. This pencil contains the two degenerate cbi€sand
O(XH()) seen |n§61

When/ is the lineGK, the two fixed points are the infinite poiti,4 and the
centroidG. The singular focus lies on the li&Xy9, Xog9 being the Steiner point.
This pencil containg3, and the central cubic seen{f.4.
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O(X30)

O(X4)

Neuberg cubic

’ ‘ ryperbla
// w\

Figure 11. The Euler pencil

7.3. Pencils with orthopivots on a line not passing through G. If £ is a line not
through@, the orthopivotal cubics in the pendi} pass through the two (not nec-
essarily real nor distinct) intersections ©ofvith the circle which is its antiortho-
correspondent of. SéR.5 and§3. The singular focus lies on a circle through
and the real asymptote envelopes a deltoid tangent to thé4liteand tritangent
to the reflection of this circle about.

According t0§6.2.1,§6.2.2,§6.4, this pencil contains at least one, at most three
pIC, nkC, focal(s) depending of the number of intersectiong with the cubics met
in those paragraphs respectively.

Consider, for example, the Brocard axid<. We have seen if6.3 that there
are two and only two isogond@(P), the Neuberg cubic and the second Brocard
cubic B, obtained when the orthopivots afeand K respectively. The two fixed
points of the pencil are the isodynamic poirfs.

The singular focus lies on the Parry circle (§8¢ and the asymptote envelopes
a deltoid tritangent to the reflection of the Parry circle ali@ut

The pencilFp g is invariant under isogonal conjugation, the isogonal conjugate
of O(P) beingO(Q), where( is the harmonic conjugate d? with respect to

36The antiorthocorrespondent of the Brocard axis is a circle center&ghat the isogonal con-
jugate of the trilinear pole of the Euler line.



22 B. Gibert

O and K. It is obvious that the Neuberg cubic ail are the only cubic which
are “self-isogonal” and all the others correspond two by two. Sinéeintersects
the Napoleon cubic ab, Xz and X9, there are only thregkC in this pencil, the
Neuberg cubic an®(Xg; ), O(Xe2). *’

O(Xe1) passes thouglis, X533, X615, and the isogonal conjugates &fs3,
andXg1g.

O(Xe2) passes thougli7, Xs32, X619, and the isogonal conjugates &fs33
and Xg15. There are only three focals in the peri€ilx, namely,B, andO(X;5),
O(X16) (with singular fociXi, X5 respectively).

Neuberg cubic

Figure 12. The Brocard pencil

An interesting situation is found wheR = Xigo, the midpoint ofOK. Its
harmonic conjugate with respect €k is the infinite pointQ = X511. O(X511)
passes througlXs¢e Which is its intersection with its real asymptote paralleGat

37(’)(X61) and O(Xe2) are isogonal conjugates of each other. Their pivotsX¥re and X3
respectively and their poles are quite complicated and unknown in [5].
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to OK. Its singular focus i€+. The third intersection with the Fermat linelison
X23X110 and the last intersection with the circumcircleXs;, = X3 ,,. %

O(X1s2) is the isogonal conjugate @(X511) and passes througkips, Xgo.
Its singular focus isXs3, inverse ofGG in the circumcircle. Its real asymptote is
parallel to the Fermat line af3,3 and the intersection is the isogonal conjugate of
Us.

The following table gives several pairs of harmonic conjugdbeand Q on
OK. Each column gives two cubi@(P) andO(Q), each one being the isogonal
conjugate of the other.

Pl X3 | X50 | X5 | X5g | Xigr | Xo1e | Xoga | Xa71 | X3s9 | X500
Q|| X39 | X566 | X560 | X386 | X574 | X577 | X579 | X372 | X578 | Xss2

8. A quinticand a quartic

We present a pair of interesting higher degree curves associated with the ortho-
correspondence.

Theorem 12. Thelocus of point P whose orthotransversal £p and trilinear polar
¢p are parallel isthe circular quintic

Q1 : Z a?y*2*(Spy — Scz) = 0.
cyclic
Equivalently, Q; isthe locus of point P for which

(1) thelines PP* and ¢p (or Lp ) are perpendicular,
(2) P liesonthe Euler line of the pedal triangle of P*,
(3) P, P*, H/P (and P) are collinear,

(4) P lieson O(FP).

Note thatl p and/p coincide whenP is one of the Fermat poinl%g.

Theorem 13. Theisogonal transform of the quintic @, isthe circular quartic
Qs : Z atSayz(ty? — b?2%) =0,
cyclic

which is also the locus of point P such that

(1) thelines PP* and ¢p~ (or Lp~ ) are perpendicular,

(2) P liesontheEuler line of its pedal triangle,

(3) P, P*, H/P* arecollinear,

(4) P*lieson O(P).

These two curve®); andQs contain a large number of interesting points, which

we enumerate below.

Proposition 14. The quintic Q; contains the 58 following points:

38This is 0NX23 X110 t00. Itis the reflection of the Tarry poidtoes about the Euler line and the
reflection of X7, about the Brocard line.
393ee51, Remark (5).
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/" Euler line

Figure 13. The quinti©@;

(1) the vertices A, B, C, which are singular points with the bisectors as tan-
gents,

(2) thecircular points at infinity and the singular focus G,*°

(3) the three infinite points of the Thomson cubic,*

(4) the infexcenters I, I,, I, I., with tangents passing through O, and the
isogonal conjugates of the intersections of these tangents with the trilinear
polars of the corrresponding in/excenters,

(5) H, with tangent the Euler line,

40The tangent at? passes through the isotomic conjugate@®f, the point with coordinates

(5 +cl_5a Ceeereen).
“Un other wordsQ; has three real asymptotes parallel to those of the Thomson cubic.
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(6) the six points where a circle with diameter a side of ABC' intersects the
corresponding median, 42
(7) the feet of the altitudes, the tangents being the altitudes,
(8) the Fermat points X3 and X4,
(9) the points X7113 and X7114 Where the Euler line meets the circumcircle,
(10) the perspectors of the 27 Morley triangles and ABC .43

Proposition 15. The quartic O, contains the 61 following points:

(1) thevertices 4, B, C, %

(2) thecircular points at infinity, *°

(3) the three points where the Thomson cubic meets the circumcircle again,

(4) thein/excenters I, 1,, I, I.., with tangents all passing through O, and the
intersections of these tangents O, with the trilinear polars of the corre-
sponding in/excenters,

(5) O and K, 4®

(6) the six points where a symmedian intersects a circle centered at the corre-
sponding vertex of the tangential triangle passing through the remaining
two vertices of ABC, 4’

(7) the six feet of bisectors,

(8) theisodynamic points X;5 and X4, with tangents passing through Xs3,

(9) the two infinite points of the Jerabek hyperbola, 4

(10) the isogonal conjugates of the perspectors of the 27 Morley triangles and

ABC. %
We give a proof of (10). Leky, ko, k3 = 0, +1, and consider
A+ 2k B + 2kom C + 2ksm
@1:Ta 902:T7 WBZT'

Denote byM one of the 27 points with barycentric coordinates

acos wy : bcos g : ccos p3).
¥ ¥ ¥

42The two points on the mediaaG have coordinates
(2a: —a+ /202 4+ 2¢? — a? : —a £ /2% + 2¢2 — a?).

43The existence of the these points was brought to my attention by Edward Brisse. In particular,
X357, the perspector ol BC' and first Morley triangle.

4These are inflection points, with tangents passing thrangh

*The singular focus is the inversé; of G in the circumcircle. This point is not on the curve
Qo.
46 Both tangents aD and K pass through the poirt = (a®Sa(b? + > — 2a%) : -+ : -+ ),
the intersection of the trilinear polar 6f with the orthotransversal of110. The tangent ab is also
tangent to the Jerabek hyperbola and the orthocubic.

4"The two points on the symmediahK have coordinateé—a? + ay/2b2 + 2¢2 — a2 : 2b° :
2¢?).

48The two real asymptotes @, are parallel to those of the Jerabek hyperbola and meétat
footnote 46 above.

49 particular, the Morley-Yff centeXsss.
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Thomson
cubic

Brocard axis

Ia

Figure 14. The quarti©s

The isogonal conjugate @i/ is the perspector afi BC' and one of the 27 Morley
triangles.>® We show that\/ lies on the quartic,. ! Sincecos A = cos 3¢, =

4 cos® p1 —3 cos o1, we haveros® p; = I (cos A + 3 cos ¢1) and similar identities
for cos® (, andcos? ¢3. From this and the equation @k, we obtain

Z atS 4bcos py ccos p3 (b2 cos? py — b2c? cos? p3)

cyclic

SOFor example, withk; = ko = k3 = 0, M* = X357 andM = X3ss.
51ConsequentIyM* lies on the quintiaQ;. See Proposition 14(10).
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= Z a4b3c3SA(cos @3 OS> Py — COS Py COS® ©3)

cyclic
1
= Z 1 a*b3¢3S 4 (cos @3 cos B — cos g cos C)
cyclic
1 S S
= Z ~ a*b3e3Sy 28 cos p3 — 29 cos V2
< 4 ac ab
cyclic
L 3,33 COSp3  COS Y3
= —a’b’c’S4SBS —
g ¢V CAE CZ(CSC bSp
cyclic
= 0.

This completes the proof of (10).

Remark. Q; and Q, arestrong curves in the sense that they are invariant under
extraversions: any point lying on one of them has its three extraversions also on
the curve>?
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