A Note on the Schiffler Point

Lev Emelyanov and Tatiana Emelyanova

Abstract

We prove two interesting properties of the Schiffler point.

1. Main results

The Schiffler point is the intersection of four Euler lines. Let I be the incenter of triangle $A B C$. The Schiffler point S is the point common to the Euler lines of triangles $I B C, I C A, I A B$, and $A B C$. See [1, p.70]. Not much is known about S. In this note, we prove two interesting properties of this point.

Theorem 1. Let A and I_{1} be the circumcenter and A-excenter of triangle $A B C$, and A_{1} the intersection of $O I_{1}$ and $B C$. Similarly define B_{1} and C_{1}. The lines $A A_{1}, B B_{1}$ and $C C_{1}$ concur at the Schiffler point S.

Figure 1

Theorem 2. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the touch points of the A-excircle and $B C, C A$, $A B$ respectively, and $A^{\prime \prime}$ the reflection of A^{\prime} in $B^{\prime} C^{\prime}$. Similarly define $B^{\prime \prime}$ and $C^{\prime \prime}$. The lines $A A^{\prime \prime}, B B^{\prime \prime}$ and $C C^{\prime \prime}$ concur at the Schiffler point S.

Publication Date: May 16, 2003. Communicating Editor: Paul Yiu.

We make use of trilinear coordinates with respect to triangle $A B C$. According to [1, p.70], the Schiffler point has coordinates

$$
\left(\frac{1}{\cos B+\cos C}: \frac{1}{\cos C+\cos A}: \frac{1}{\cos A+\cos B}\right)
$$

2. Proof of Theorem 1

We show that $A A_{1}$ passes through the Schiffler point S. Because

$$
O=(\cos A: \cos B: \cos C) \quad \text { and } \quad I_{1}=(-1: 1: 1)
$$

the line $O I_{1}$ is given by

$$
(\cos B-\cos C) \alpha-(\cos C+\cos A) \beta+(\cos A+\cos B) \gamma=0
$$

The line $B C$ is given by $\alpha=0$. Hence the intersection of $O I_{1}$ and $B C$ is

$$
A_{1}=(0: \cos A+\cos B: \cos A+\cos C)
$$

The collinearity of A_{1}, S and A follows from

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos A+\cos B & \cos A+\cos C \\
\frac{1}{\cos B+\cos C} & \frac{1}{\cos C+\cos A} & \frac{1}{\cos A+\cos B}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\cos A+\cos B & \cos A+\cos C \\
\frac{1}{\cos C+\cos A} & \frac{1}{\cos A+\cos B}
\end{array}\right| \\
& =0 .
\end{aligned}
$$

This completes the proof of Theorem 1.
Remark. It is clear from the proof above that more generally, if P is a point with trilinear coordinates $(p: q: r)$, and A_{1}, B_{1}, C_{1} the intersections of $P I_{a}$ with $B C, P I_{2}$ with $C A, P I_{3}$ with $A B$, then the lines $A A_{1}, B B_{1}, C C_{1}$ intersect at a point with trilinear coordinates $\left(\frac{1}{q+r}: \frac{1}{r+p}: \frac{1}{p+q}\right)$. If P is the symmedian point, for example, this intersection is the point $X_{81}=\left(\frac{1}{b+c}: \frac{1}{c+a}: \frac{1}{a+b}\right)$.

3. Proof of Theorem 2

We deduce Theorem 2 as a consequence of the following two lemmas.
Lemma 3. The line $O I_{1}$ is the Euler line of triangle $A^{\prime} B^{\prime} C^{\prime}$.
Proof. Triangle $A B C$ is the tangential triangle of $A^{\prime} B^{\prime} C^{\prime}$. It is known that the circumcenter of the tangential triangle lies on the Euler line. See, for example, [1, p.71]. It follows that $O I_{1}$ is the Euler line of triangle $A^{\prime} B^{\prime} C^{\prime}$.

Lemma 4. Let A^{*} be the reflection of vertex A of triangle $A B C$ with respect to $B C, A_{1} B_{1} C_{1}$ be the tangential triangle of $A B C$. Then the Euler line of $A B C$ and line $A_{1} A^{*}$ intersect line $B_{1} C_{1}$ in the same point.

Proof. As is well known, the vertices of the tangential triangle are given by

$$
A_{1}=(-a: b: c), \quad B_{1}=(a:-b: c), \quad C_{1}=(a: b:-c)
$$

The line $B_{1} C_{1}$ is given by $c \beta+b \gamma=0$. According to [1, p.42], the Euler line of triangle $A B C$ is given by

$$
a\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right) \alpha+b\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right) \beta+c\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right) \gamma=0
$$

Now, it is not difficult to see that

$$
\begin{aligned}
A^{*} & =(-1: 2 \cos C: 2 \cos B) \\
& =\left(-a b c: c\left(a^{2}+b^{2}-c^{2}\right): b\left(c^{2}+a^{2}-b^{2}\right)\right)
\end{aligned}
$$

The equation of the line $A^{*} A_{1}$ is then

$$
\left|\begin{array}{ccc}
-a b c & 2 c\left(a^{2}+b^{2}-c^{2}\right) & 2 b\left(c^{2}+a^{2}-b^{2}\right) \\
-a & b & c \\
\alpha & \beta & \gamma
\end{array}\right|=0
$$

After simplification, this is

$$
-\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right) \alpha+a b\left(a^{2}-b^{2}\right) \beta-a c\left(a^{2}-c^{2}\right) \gamma=0
$$

Now, the lines $B_{1} C_{1}, A^{*} A_{1}$, and the Euler line are concurrent if the determinant

$$
\left|\begin{array}{ccc}
0 & c & b \\
-\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right) & a b\left(a^{2}-b^{2}\right) & -a c\left(a^{2}-c^{2}\right) \\
a\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right) & b\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right) & c\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)
\end{array}\right|
$$

is zero. Factoring out $\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)$, we have

$$
\left.\begin{array}{rl}
& \left\lvert\, \begin{array}{cc}
0 & c \\
-1 & a b\left(a^{2}-b^{2}\right)
\end{array}\right. \\
\left|\begin{array}{cc}
-a c\left(a^{2}-c^{2}\right) \\
a & b\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right) \\
= & c\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)
\end{array}\right| \\
= & c^{2}\left(\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)-a^{2}\left(a^{2}-c^{2}\right)\right) \\
a & c\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)
\end{array}|+b| \begin{array}{cc}
-1 & a b\left(a^{2}-b^{2}\right) \\
a & b\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)
\end{array} \right\rvert\,, ~\left(b^{2}\left(\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)+a^{2}\left(a^{2}-b^{2}\right)\right) .\right.
$$

This confirms that the three lines are concurrent.
To prove Theorem 2, it is enough to show that the line $A A^{\prime \prime}$ in Figure 1 contains S. Now, triangle $A^{\prime} B^{\prime} C^{\prime}$ has tangential triangle $A B C$ and Euler line $O I_{1}$ by Lemma 3. By Lemma 4, the lines $O I_{1}, A A^{\prime \prime}$ and $B C$ are concurrent. This means that the line $A A^{\prime \prime}$ contains A_{1}. By Theorem 1, this line contains S.

Reference

[1] C. Kimberling, Triangle centers and central triangles, Congressus Numerantium, 129 (1998) 1 285.

Lev Emelyanov: 18-31 Proyezjaia Street, Kaluga, Russia 248009
E-mail address: emelyanov@kaluga.ru
Tatiana Emelyanova: 18-31 Proyezjaia Street, Kaluga, Russia 248009
E-mail address: emelyanov@kaluga.ru

