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The Vertex-Midpoint-Centroid Triangles

ZvonkoCerin

Abstract. This paper explores six triangles that have a vertex, a midpoint of a
side, and the centroid of the base trianglBC' as vertices. They have many in-
teresting properties and here we study how they monitor the shap86f. Our
results show that certain geometric properties of these six triangles are equivalent
to ABC being either equilateral or isosceles.

Let A, B/, C' be midpoints of the sideBC, C' A, AB of the triangleABC and
let G be its centroidi(e,, the intersection of mediand4, BB’, CC"). LetG,,
Gt G, G;F, G, G} be trianglesBGA', CGA', CGB', AGB', AGC', BGC'
(see Figure 1).

A B

Figure 1. Six vertex—midpoint—centroid trianglesABC.

This set of six triangles associated to the triandlBC is a special case of the
cevasix configuration (see [5] and [7]) when the chosen point is the certtroid
has the following peculiar property (see [1]).

Theorem 1. Thetriangle ABC' isequilateral if and only if any three of the trian-
gesfromtheset o = {G,,GS, G, , Gy, G2, G} } have the same either perime-
ter or inradius.

In this paper we wish to show several similar results. The idea is to replace
perimeter and inradius with other geometric notions (likperimeter and Brocard
angle) and to use various central points (like the circumcenter and the orthocenter
— see [4]) of these six triangles.
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Leta, b, ¢ be lengths of sides of the base triangl&C'. For a real numbek,
the sumpy, = pp(ABC) = a* + b* 4 ¥ is called thek-perimeter of ABC. Of
course, the-perimeterp; (ABC)) is just the perimetep(ABC'). The above theo-
rem suggests the following problem.

Problem. Find the set Q2 of all real numbers & such that the following istrue: The
triangle ABC is equilateral if and only if any three of the triangles from a; have
the same k-perimeter.

Our first goal is to show that the s@t contains some values @fbesides the
valuek = 1. We start witht = 2 andk = 4.

Theorem 2. Thetriangle ABC' is equilateral if and only if any three of the trian-
glesin og have the same either 2-perimeter or 4-perimeter.

Proof for £ = 2. We shall position the triangld BC' in the following fashion with
respect to the rectangular coordinate system in order to simplify our calculations.
The vertex4 is the origin with coordinatef), 0), the vertexB is on thez-axis and

has coordinate§-(f + g),0), and the vertex’ has coordinateé%ﬁl), ?;"f%) :
The three parameters f, andg are the inradius and the cotangents of half of
angles at verticedl and B. Without loss of generality, we can assume that hoth
andg are larger than (i.e, that anglesd and B are acute).

Nice features of this placement are that many important points of the triangle
have rational functions iif, g, andr as coordinates and that we can easily switch

from f, g, andr to side lengths;, b, andc and back with substitutions

_ rf(g*+1) _ rg(f241) _

S e I B A
o c)*—a _ (a+c)*— 2

f - 4A 9= 4A  T= a+b+c?

where the ared\ is 3\/(a +b+c)(b+c—a)(a—b+c)(a+b—c).

There are20 ways in which we can choosgtriangles from the set;. The
following three cases are important because all other cases are similar to one of
these.

Case 1:(G,,G{,G, ). When we compute the-perimetersn (G, ), p2(GY),
andp2 (G, ) and convert to lengths of sides we get

p2(Gy) — pa(GY) zw,
_ _ a? v A2
p2(G,) — p2(Gy) ) + 3

Both of these differences are by assumption zero. From the first vie-getand
when we substitute this into the second the conclusidffal®*<) — 0. Hence,
b= c = asothatABC is equilateral.

Case 2:(G,, G, G;). Now we have
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p2(Gy) — p2(GY) :%?M’
p2(Gy) — p2(Gf) :W,

which makes the conclusion easy.
Case 3:(G, ,G, ,G_). This time we have

_ _ a? b 2
P(Gy) ~ma(Gy) =% — 5+ 5
_ _ a? b P
p2(Gy) — p2(GY) > 3§

The only solution of this linear system i andb? is a? = ¢? andb® = 2. Thus
the triangleABC' is equilateral because the lengths of sides are positive. [J

Recall that the Brocard angleof the triangleA BC' satisfies the relation
_ p2(ABC)
4A

Since all triangles i have the same area, from Theorem 2 we get the following
corollary.

cot w

Corollary 3. Thetriangle ABC isequilateral if and only if any three of the trian-
glesin o have the same Brocard angle.

On the other hand, when we put= —2then fora =/ —5 + 3v3andb=c=1
we find that the triangles:,, G, andG, have the same—2)-perimeter while
ABC is not equilateral. In other words the valu is not in<.

The following result answers the final question in [1]. It shows that some pairs
of triangles from the sets could be used to detect A BC is isosceles. Let de-
note the set whose elements are péi¥s, GJ) (G, G{), (G5, GY), (G, Gy ),
(GF.G2), Gy, Gy), Gy, GE), (Gy, G2, (G2, GY).

Theorem 4. The triangle ABC is isosceles if and only if triangles from some
element of 7 have the same perimeter.

Proof. This time there are only two representative cases.

Case 1(G, ,G/). By assumption,

B V2a2 — 02 +2¢2 /242 + 22 — 2
p(G2) —p(G) = R =0,

When we move the second term to the right then take the square of both sides and
move everything back to the left we obtéf—ﬁw = 0. Hencep = candABC
is isosceles.

Case 2(G, ,G;"). This time our assumption is

a—b V2a2—02+22 V22 + 202 — a2
y * 6 a 6

p(GZ) —p(Gy) = =0.
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When we move the third term to the right then take the square of both sides and
move the right hand side back to the left and bring the only term with the square
root to the right we obtain

2a% —3ab+ b  (b—a)V2a® — b + 2¢2
6 N 6 ’
In order to eliminate the square root, we take the square of both sides and move the

right hand side to the left to gé‘f*b)Z(a*?gc)(a*b“) = 0. Hence,a = b and the
triangle ABC' is again isosceles. O

Remark. The above theorem is true also when the perimeter is replaced with the
2-perimeter and theé-perimeter. It is not true fok = —2 but it holds for anyk # 0
when only pair{G; , GY), (G ,Gy), (G; , GT) are considered.

We continue with results that use various central points (see [4], [5, 6]) (like the
centroid, the circumcenter, the orthocenter, the center of the nine-point circle, the
symmedian or the Grebe-Lemoine point, and the Longchamps point) of the trian-
gles from the set; and try to detect wheA BC' is either equilateral or isosceles.

Recall that trianglesABC' and XY Z arehomologic provided linesAX, BY,
andCZ are concurrent. The point in which they concur is their homologyer
and the line containing intersections of pairs of liféx”, Y Z), (CA, ZX), and
(AB, XY) is their homologyaxis. Instead of homologic, homology center, and
homology axis many authors use the tenpesspective, perspector, and perspec-
trix.

The trianglesABC and XY Z are orthologic when the perpendiculars at ver-
tices of ABC' onto the corresponding sides &Y Z are concurrent. The point of
concurrence i$ABC, XY Z]. Itis well-known that the relation of orthology for
triangles is reflexive and symmetric. Hence, the perpendiculars at vertices gf
onto corresponding sides dfBC' are concurrent at a poifX'Y Z, ABC].

By replacing in the above definition perpendiculars with parallels we get the
analogous notion gdaralogic triangles and two centers of paralogyBC, XY Z)
and(XY Z, ABC).

The triangleA BC'is paralogic to its first Brocard trianglé, B, C;, which has the
orthogonal projections of the symmedian paifitonto the perpendicular bisectors
of sides as vertices (see [2] and [3]).

Theorem 5. The centroids G, Gy, Gy Gy Gy Gy of the triangles
from o¢ lie on the image of the Steiner ellipse of ABC under the homothety
h(G, %). This ellipseisa circleif and only if ABC' is equilateral. The triangles
GG; GGb_ GG; and GG$ GG;* GG: are both homologic and paralogic to triangles
ApByCy, BLCp Ay and Cy, Ay By, and they sharewith ABC the centroid and the Bro-
card angle and both have % of thearea of ABC'. They aredirectly similar to each
other or to ABC if and only if ABC'is an equilateral triangle. They are ortho-
logic to either A, B,Cy, ByCp Ay or Cp Ay By if and only if ABC' is an equilateral
triangle.



The vertex-midpoint-centroid triangles 101

A c’ B

Figure 2. The ellipse containing vertices(ég; GG; GG: andGG: GG; ch-

Proof. We look for the conic through five of the centroids and check that the the
sixth centroid lies on it. The trilinear coordinates Gf,- are 2 : 41 : 2 while
those of other centroids are similar. It follows that they all lie on the ellipse with
the equation

a1z + 2a192y + agey? + 2a13% + 2a93y + azz = 0,

where

ajy = 432A%  ajp = 108A(a — b)(a + b),
azy = 27(a* + b* + 3c*—2a2p?),
a3 — —216A20, ao3 — —54AC(CL2 - b2 + 62), aszs — 116A202.

ail a2
a12 a2
aip a2 i3
as, and Ag = |a12 azx aos| it follows that this is an ellipse whose center is
a13 a3 ass
G. It will be a circle provided eithellg = 4Dy or a;; = a9 andais = 0. This
happens if and only iR BC' is equilateral.
The precise identification of this ellipse is now easy. We take a ppjgh which
is on the Steiner ellipse ol BC' (with the equatiorf + % + 2 =0 in trilinear
coordinates) and denote its image unhié@,%) by (z,y). By eliminatingp and

g we check that this image satisfies the above equation (of the common Steiner
ellipse ofG, GG andGe: Gt G ).

4 A —7ct i
— 1:;22 >O,andI—§ = W < 0 with Ip =an +

SinceDy =
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Since the trilinear coordinates of, areabc : ¢3 : b3, the IineAbGG; has the
equation

a(116? — 5¢3)x + b(5a% — 26%)y + c(11a® — 2¢?)z = 0.

The lines B,G,- and GyG - have similar equations. The determinant of the

coefficients of these three lines is equal to zero so that we conclude that the triangles
Go- GGb_ G- and A4, B,C), are homologic. The other claims about homologies

and paralogies are proved in a similar way. We note <t@gtg GGb_ GG; , Ap By Cy)

is on the (above) Steiner ellipse@f, - G, - G- while (4, ByCy, G, G- Gy )

is on the Steiner ellipse of, B,C,. The other centers behave accordingly.
When we substitute the coordinates of the six centroids into the conditions

z1(v2 —v3) + z2(vs —v1) + z3(v1 — v2) —ui(y2 — y3) — u2(ys — y1) — us(y1 — y2) =0,
z1(u2 —ug) + z2(us —u1) + x3(ur — u2) — y1(v2 — v3) — y2(vs — v1) — ys(v1 —v2) =0,
for triangles with vertices at the points1, y1), (z2,y2), (z3,y3) and (u1,v1),
(ug,v2), (us,vs3) to be directly similar and convert to the side lengths, we get
4A(a —b)(a+b+c) h(1,1,2,1,1,2)
92 =0 and SR R

=0,

where

h(u,v,w,z,y,z) = ub’c® + vcta® + wa®b? — zat — yb* — 2zt

The first relation implies, = b, which givesh(1,1,2,1,1,2) = 2¢Z(c — b)(c +b).
Thereforep = ¢ so thatABC is an equilateral triangle.
Substituting the coordinates GfG;, GGb_, GGC_, Ay, By, Oy into the left hand

side of the condition

w1 (ug—ug)+w2(uz—ur)+r3(ur —u2)+y1 (v2—v3)+y2(v3—v1)+ys(vi—v2) = 0,
for triangles with vertices at the pointsy, y1), (z2,v2), (x3,y3) and (uq,v1),
(ug,v2), (us,vs3) to be orthologic, we obtain

—h(1,1,1,1,1,1)  (® — *)? + (® — a®)* + (a? — b?)?

3p2(ABC) 6p2(ABC)
so that the triangle@G; GG; GG; and A, B,C), are orthologic if and only ifA BC'
is equilateral.
The remaining statements are proved similarly or by substitution of coordinates
into well-known formulas for the area, the centroid, and the Brocard anglel]

Let m,, my, m. be lengths of medians of the triangeBC'. The following
result is for the most part already proved in [7]. The center of the circle is given in
[6] as X (1153).

Theorem 6. The circumcenters OG;, OG:{, OGb_, OG;, OGC_, OG:r of the trian-
gles from o¢ lie on the circle whose center Og is a central point with the first
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Figure 3. The vertices @ - O,- O,- andO_+ O+ O+ are on acircle.
a Gy TG a Gy TGE

trilinear coordinate
10a* — 13a%(b? + ¢) + 4b* + 4 — 10622
a

and whoseradiusis
mampmer/2(a* + b4 + ct) — 5(b2¢2 + c2a2 + a2b?)
T2A ’
mambmc\/(bQ—c2)2+(02—a2)2+(a2—b2)2
72v/2A ’

Proof. The proof is conceptually simple but technically involved so that we shall
only outline how it could be done on a computer. In order to find pcﬂggls, Oc;p
Og;+Og+ Og» Ogy we use the circumcenter function and evaluate itin vertices
of the triangles fromv. Applying it again in point@G;, ch’ OGb_ we obtain

the pointOg. The remaining point@Gr, OG;’ OG: are at the same distance

from it as the vertex),- is. The remaining tasks are standard (they involve only
the distance function and the conversion to the side lengths). O

Also, |0¢G| =

The last sentence in Theorem 6 implies the following corollary.

Corollary 7. Thetriangle ABC is equilateral if and only if the circumcenters of
any three of the triangles in o have the same distance from the centroid G.

Let P, @ and R denote vertices of similar isosceles triangle€' P, C' AQ) and
ABR.

Theorem 8. (1) The triangles Oy, O~ O~ and Ot O+ O are congruent.
They are orthologic to BC'A and C'AB, respectively.
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(2) Thetriangles O~ OO, and O+ O+ O are orthologic to QR P and
RPQ if and only if ABC’ is an equilateral trlangle

(3) Thetriangles O o= Oc c; -O¢- and Og+Og+ OG? are orthologic if and only
if the lengths of sides of ABC satisfy h(7,7,7,4,4,4) = 0.

(4) Thelinejoining the centroids of triangles O, - O~ O and O+ O 1 O+
will go through the centroid, the circumcenter, the orthocenter, the center of the
nine-point circle, the Longchamps point, or the Bevan point of ABC' (i.e., X (2),
X(3), X(4), X(5), X(20), or X(40) in [6]) if and only if it is an equilateral
triangle.

(5) Theline joining the symmedian points of OG; OGb_ OG; and OG:r ch OG;
goes through the centroid of ABC'. It will go through the centroid of its orthic
triangle (i.e, X (51) in [6]) if and only if ABC' isan equilateral triangle.

(6) The centroids of triangles O, O~ O~ and O+ Ot Ot have the same
distance from X (2), X (3), X(4), X(5), X(6), X(20), X(39), X(40), or X (98)
if and only if ABC'is an isosceles triangle.

Proof. (1) The pointsOGg andOG; have trilinear coordinates

2h(3,3,5,2,2,1) h(6,1,3,1,2,4)

a(5c® —a® —b?) :

b ’ c ’
h 1,1,4,2) 2h 2,1,2
a(5b2—a2—02): (67371)7 ) ): (375737 y 4y ),
C

while the trilinears of the pointé)G;, Og-» OG;, Og+ are their cyclic permuta-
tions. We can show easily th{a(DG; Og-1? = 104+0¢+1? = 0,104-Og-|* —
‘OG;OG;P =0, and|O,- OGb_ |2 — ’OG;'OG;*"Q =0, so thatO, - OG; O and
Oy Ogt Ogy are indeed congruent.

Substituting the coordinates %;1 OG;, ch’ B, C, Ainto the left hand side

of the above condition for triangles to be orthologic we conclude that it holds. The
same is true for the triangleg;+ O O+ andCAB.

(2) The pointP has the trilinear coordinates

Ck(a®+ 0 =) +2A  k(a® - b2+ ) +2A

' b ' c

for some real numbét # 0. The coordinates af) and R are analogous. It follows
that the triangle@Gc_ OG; OGb_ and@RP are orthologic provided

2ka

h(1,1,1,1,1,1)k

8A

i.e, if and only if ABC' is equilateral.
(3) The trianglesOg, O Og- and O+ O+ O are orthologic provided

nABORTLTA44) — . The triangle with lengths of sideis 4, 3v/2 + /10 satis-

fies this condition.

=0,
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(4) for X(40). The first trilinear coordinates of the centroids of the triangles
O, Oc; Og; andOg: Oy Oy are

3at — (2b% + 7c¢?)a® + bt — 3b%c + 24
a

and
3a* — (Tb? + 2¢%)a® + 2b* — 3b%c? + 4

a

The line joining these centroids will go through(40) with the first trilinear coor-
dinatea® + (b + ¢)a? — (b + ¢)%a — (b + ¢)(b — ¢)? provided

(@ +b% + c® — be — ca — ab)(3be + 3ca + 3ab + a® + b? + ¢?)

96A
Sincea® +b? + 2 —bc — ca — ab = 3 ((b— ¢)* + (¢ — a)? + (a — b)?) it follows
that this will happen if and only id BC' is equilateral.
(5) The first trilinear coordinates of the symmedian pointé)(gg OGb_ OG; and

OgtOgt Oy are
2a5 — (b2 + 3c)at + (3b* — 126%c? — Tct)a? + 2¢2(b? — 2) (b% — 2¢%)
a

=0.

and
2a5 — (3b% + c?)a* — (Tb* + 12b%c? — 3ct)a? + 2b%(b? — 2) (20 — ¢?)
- .
The line joining these symmedian points will go througii51) with the first tri-
linear coordinate: ((b? + ¢?)a® — (b? — ¢*)?) provided
2AK(1,1,1,0,0,0)h(1,1,1,1,1,1)
9a2b%c?(a? 4 b2 4 ¢?)
Sinceh(1,1,1,1,1,1) =  ((b* — *)? 4 (¢? — a?)? + (a® — b%)?) we see that this
will happen if and only ifABC is equilateral. The trilinear coordinatés 3 : 1
of the centroid satisfy the equation of this line.

(6) for X (40). Using the information from the proof of (4), we see that the
difference of squares of distances frak(40) to the centroids of the triangles

Og; Og; O, andOg; Oy Oy is L=Ul =t where

=0.

M =2(a® + b® + ¢3) 4 5(a®b + a®c + b*c + b%a + 2a + ¢*b) + 18abc

is clearly positive. Hence, these distances are equal if and oAIB{ is isosceles.
O

. With points O, O, Og-, Ogity O, Ot we can also detect ilBC is
isosceles as follows.

Theorem 9. (1) The relation b = ¢ holds in ABC' if and only if Oq- ison BG
and/or Og+ ison CG.

(2) Therelation ¢ = a holdsin ABC'if and only if O ; ison C'GG and/or OG;
ison AG.
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(3) Thereation a = b holdsin ABC if and only if Og- ison AG and/or O+
ison BG.

Proof. (1) for O-. Since the trilinear coordinates 6f,-, G andB are

a(5c2 — a? — b?) : 2h(3,3,5,2,2,1) : h(6,1,3, 1,2,4)7
b c

1. 1:1and(0:1:0), it follows that these points are collinear if and only if
m2(b—c)(b+c

i 72&( to _q. O

For the following result I am grateful to an anonymous referee. It refers to
the pointT on the Euler line which divides the segment joining the circumcen-
ter with the centroid in ratide for some real numbek # —1. Notice that for
k=0, —%, —%, —3 the pointT will be the circumcenter, the Longchamps point,
the orthocenter, and the center of the nine-point circle, respectively.

Theorem 10. Thetriangles 7(; T, T(; - and T,y T+ iy aredirectly similar to
each other or to ABC'if and only if ABC' isequilateral.
Proof. For Tt TGb_ T andTG:{ TG;' T

The pointT,,- has®L : B2 . P2 as trilinear coordinates, where
a

p1 =3a%(a® + b — 5¢%) — 32A%k,

po =12a* — 6(5b% + 3c*)a® + 6(b* — ?)(2b? — ¢*) — 1T6A%k,

p3 =12a* — 6(3b% + 5c2)a® + 6(b* — ) (b — 2¢%) — 1T6A%k.
Applying the method of the proof of Theorem 4 we see t@;tTG;T - and
TG;TG;TGj are directly similar if and only if

2 12
(@M h(1,1,2,1,1,2)M70’

288Ac2(k +1)2 115252¢2(k +1)2
whereM = 128A%k? 4 240A%k + h(15,15, 15,6, 6, 6). The discriminant
—48A%h(10,10,10, —11, —11, —11)
of the trinomial M is negative so that/ is always positive. Hence, from the first
condition it follows thata = b. Then the factorh(1,1,2,1,1,2) in the second
condition is2¢(c — b)(c + b) so thath = c and ABC is equilateral. The converse
is easy because far= b = c the left hand sides of both conditions are equal to

zero.
ForTy, Tg - Tg, andABC. The two conditions are

32A%(a® — b*)k — a® + (4b* + 3¢?)at
— (50 + 20%¢% + M)a?® — 31?4 207t + 208 4+ B =0
and
h(2,2,4,2,2,4)k + h(1,2,3,1,2,3) = 0.



The vertex-midpoint-centroid triangles 107

Whena # b, we can solve the first equation fbrand substitute it into the second
a2 HA)h(1,1,1,1,1,1) ‘o :
to obtain = 0. This implies thalTG;TG;T - and ABC

8AZ(aZ—b?)
are directly similar if and only ifABC' is equilateral because the first condition is
?(b—c)(b+c) (2 +2v*) =0fora=0b. O

Theorem 11. (1) 7, TG;T - and TG:{TG;TG;r are orthologic to ABC' if and
onlyif k = —3.

(2 TG;TG;TGg and TG;TG;TGj are orthologic to A,B,C} if and only if
either ABC isequilateral or k = —3.

(©)] TG; TGb_T - and Tc;ﬁ TG; TGC+ are paralogic to either A, B,Cy, B,Cp Ay OF
CpApBy if and only if ABC' isequilateral.

4 Ty TG;T - isorthologic to B,Cy A, if and only if either ABC'is equilat-
eral or k = —% and to Cy A, By, if and only if ABC'is equilateral.

(5) Tip+ TG,T T+ isorthologic to B,Cy Ay if and only if ABC' isequilateral and
to Cy Ay By if and only if either ABC isequilateral or k = —%.

Proof. All parts have similar proofs. For example, in the first, we find that the trian-

glesTy, T, Ty, and ABC are orthologic if and only i.L(“QH’f;(FIj?l()%*?’) — 0.

The orthocentersl -, H+, HG;, HG;, Hg-, Hgq of the triangles fromvg
also monitor the shape of the triangle3C'.

Theorem 12. The triangles Hy,-H, - H,- and Hey H i H gy are orthologic if
and only if ABC isan equilateral triangle.

Proof. Substituting the coordinates @, H, Hq_, Hgy, Het, Hey into
the condition for triangles to be orthologic (see the proof of Theorem 6), we obtain
(a® + 0%+ A)[(0? — 2)? + (2 — a?)? + (a® — b?)?]
192A2
Hencea = b = ¢ and the triangled BC' is equilateral. 0

=0.

Remark. Note that the triangIeHG;HG;H - andHGjHGjHGj have the same
Brocard angle and both have the area equal to one fourth of the areB©Of

.The centers,, Fir, F-s G F-, Fg+ of the nine point circles of the
triangles fromo allow the following analogous result.
Theorem 13. The tnangl@ Fo  Far FG? and. FG;FG}TFG? hav.e thésame ?ro—
card angle and area. Thetriangle ABC isequilateral if and only if thisarea |s%
of the area of ABC.
Proof. Recall the formulad |z (y2 — y3) + z2(y3 — y1) + 23(y1 — y2)| for the area
of the triangle with vertice$z:, 1), (x2,v2), (z3,y3). Since
(b2 o 62)2 4 (62 o a2)2 4 (a2 o b2)2

1536A ’

3
E’ABC‘ - ‘FG;FG;FG;‘ =
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the second claim is true. The proof of the first are also substitutions of coordinates
into well-known formulas. O

The symmedlar? pothG;, Kg+, KGb_, G K- Kgr of the triangles
from o play the similar role.

Theorem 14. The triangles K K- K- and Kq: K1 K+ have the area
equal to é of thearea of ABC if and only if ABC'isan equilateral triangle.
Proof. The difference K, KG;KG;] s1/ABC|is equal to

3AT
64(5b2 + 8¢2 — a?)(5c? + 8a? — b2)(5a2 + 8b% — ¢2)’

where
T = 40(a®405+c%)+231 (b A +-cla®+a'b?) - 147 (B2 M+ Pat +-a?b1) - 3720202 2.
We shall argue thdf is equal to zero if and only i = b = ¢. We can assume that

a<b<e¢ a=+d b=+/(1+h)d, c=+/(1+h+ k)d for some positive real

numbersd, h andk. In new variablesd% is
164h° + (204 4 57k)h* + 3k(68 — 9k)h + 4k*(51 + 10k).

The quadratic part has the discriminandi? (41616 + 30056k + 2797k?). Thus
T is always positive except whén= k£ = 0 which proves our claim. O

Theorem 15. The triangles K- K- K- and K1 K+ Ky have the same
areaif and only if the triangle ABC' isisosceles.

Proof. The difference K- KG;KG;] - ’KG;KG;KGﬂ is equal to
81A(b —c¢)(b+¢)(c —a)(c+a)(a—b)(a+b)T
2t(—1,8,5)t(—1,5,8)t(8, —1,5)t(5, —1,8)t(8,5, —1)t(5,8, —1)’
wheret(u, v, w) = ua? + vb? + wc? and
T = 10(a® +b°4+%) —105(b* 2 + *a? + a*b? + b2 + Pa + a®bt) — 15662 b 2.
We shall now argue thdf is always negative. Without loss of generality we can
assume that < b < c and that

a=vd, b=A1hd c=I+hiRd

for some positive real numbetis h andk. Sincea + b > c it follows that
k<l+2Vh+1<h+3

because/h+1=/1-(h+1) < % In new variables,

T
-5 = 19002 + (285k 4+ 936)h? + (1512 + 936k + 75k?)h — 10> + 180k* 4 756k + 756.

Fork < hitis obvious that the above polynomial is positive sin6e/* — 103 >
0. On the other hand, whéne (h, h + 3), thenk can be represented @is—w)h+
w(h + 3) for somew € (0, 1). The above polynomial for this is

5403 +(20524-1215w) h? + (3888w -+405w? +2268) h— 270w 4+-1620w> + 2268w+ 756.
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But, the free coefficient of this polynomial far betweerd and1 is positive. Thus
T is always negative which proves our claim. O

The Longchamps points.€, the reflections of the orthocenters in the circum-
centers)Lq,, Lgs Loy Lats Lg.» Ly of the triangles fromve offer the
following result.

Theorem 16. Thetriangles L, LGb_ Lg-and L+ LG; L+ have the same areas
and Brocard angles. Thisareaisequal to% of thearea of ABC' and/or thisBrocard
angle is equal to the Brocard angle of ABC' if and only if ABC' is an equilateral
triangle.

Proof. The common area 81%181%LLY \yhile the tangent of the common Bro-
card angle is; 7 It follows that the difference

7(10,10,10,1,1,1)
Ap2(ABOYA(2,2,2,—7,—7,—7

h(l, 1,1,1,1, 1)
24A

while the difference of tangents of the Brocard angles of the triarigled. ;- L, -

3
“IABC| = |Lg; Ly Loy | =

: 32Ah(1,1,1,1,1,1) .
andABC'is P (ABC)h(2.2.5—7. =7 =7) From here the conclusions are easy because

h(1,1,1,1,1,1) = 1 (12 — )2 + (2 — a?)? + (a® — b?)?). 0
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