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The Vertex-Midpoint-Centroid Triangles

ZvonkoČerin

Abstract. This paper explores six triangles that have a vertex, a midpoint of a
side, and the centroid of the base triangleABC as vertices. They have many in-
teresting properties and here we study how they monitor the shape ofABC. Our
results show that certain geometric properties of these six triangles are equivalent
to ABC being either equilateral or isosceles.

LetA′,B′,C ′ be midpoints of the sidesBC,CA,AB of the triangleABC and
let G be its centroid (i.e., the intersection of mediansAA′, BB′, CC ′). Let G−

a ,
G+

a , G−
b , G+

b , G−
c , G+

c be trianglesBGA′, CGA′, CGB′, AGB′, AGC ′, BGC ′
(see Figure 1).
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Figure 1. Six vertex–midpoint–centroid triangles ofABC.

This set of six triangles associated to the triangleABC is a special case of the
cevasix configuration (see [5] and [7]) when the chosen point is the centroidG. It
has the following peculiar property (see [1]).

Theorem 1. The triangle ABC is equilateral if and only if any three of the trian-
gles from the set σG = {G−

a , G
+
a , G

−
b , G

+
b , G

−
c , G

+
c } have the same either perime-

ter or inradius.

In this paper we wish to show several similar results. The idea is to replace
perimeter and inradius with other geometric notions (likek-perimeter and Brocard
angle) and to use various central points (like the circumcenter and the orthocenter
– see [4]) of these six triangles.
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Let a, b, c be lengths of sides of the base triangleABC. For a real numberk,
the sumpk = pk(ABC) = ak + bk + ck is called thek-perimeter of ABC. Of
course, the1-perimeterp1(ABC) is just the perimeterp(ABC). The above theo-
rem suggests the following problem.

Problem. Find the set Ω of all real numbers k such that the following is true: The
triangle ABC is equilateral if and only if any three of the triangles from σG have
the same k-perimeter.

Our first goal is to show that the setΩ contains some values ofk besides the
valuek = 1. We start withk = 2 andk = 4.

Theorem 2. The triangle ABC is equilateral if and only if any three of the trian-
gles in σG have the same either 2-perimeter or 4-perimeter.

Proof for k = 2. We shall position the triangleABC in the following fashion with
respect to the rectangular coordinate system in order to simplify our calculations.
The vertexA is the origin with coordinates(0, 0), the vertexB is on thex-axis and

has coordinates(r(f + g), 0), and the vertexC has coordinates
(

rg(f2−1)
fg−1 , 2rfg

fg−1

)
.

The three parametersr, f , andg are the inradius and the cotangents of half of
angles at verticesA andB. Without loss of generality, we can assume that bothf
andg are larger than1 (i.e., that anglesA andB are acute).

Nice features of this placement are that many important points of the triangle
have rational functions inf , g, andr as coordinates and that we can easily switch
from f , g, andr to side lengthsa, b, andc and back with substitutions

a =
rf(g2+1)

fg−1 , b =
rg(f2+1)

fg−1 , c = r (f + g) ,

f = (b+c)2−a2

4∆ , g = (a+c)2−b2

4∆ , r = 2∆
a+b+c ,

where the area∆ is 1
4

√
(a + b+ c)(b + c− a)(a− b + c)(a + b− c).

There are20 ways in which we can choose3 triangles from the setσG. The
following three cases are important because all other cases are similar to one of
these.

Case 1:(G−
a , G

+
a , G

−
b ). When we compute the2-perimetersp2(G−

a ), p2(G+
a ),

andp2(G−
b ) and convert to lengths of sides we get

p2(G−
a ) − p2(G+

a ) =
(c− b)(c+ b)

3
,

p2(G−
a ) − p2(G−

b ) =
a2

6
− b2

2
+
c2

3
.

Both of these differences are by assumption zero. From the first we getb = c and
when we substitute this into the second the conclusion is(a−c)(a+c)

6 = 0. Hence,
b = c = a so thatABC is equilateral.

Case 2:(G−
a , G

+
a , G

+
b ). Now we have
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p2(G−
a ) − p2(G+

a ) =
(c− b)(c+ b)

3
,

p2(G−
a ) − p2(G+

b ) =
(a− b)(a + b)

2
,

which makes the conclusion easy.
Case 3:(G−

a , G
−
b , G

−
c ). This time we have

p2(G−
a ) − p2(G−

b ) =
a2

6
− b2

2
+
c2

3
,

p2(G−
a ) − p2(G−

c ) =
a2

2
− b2

3
− c2

6
.

The only solution of this linear system ina2 andb2 is a2 = c2 andb2 = c2. Thus
the triangleABC is equilateral because the lengths of sides are positive. �

Recall that the Brocard angleω of the triangleABC satisfies the relation

cotω =
p2(ABC)

4∆
.

Since all triangles inσG have the same area, from Theorem 2 we get the following
corollary.

Corollary 3. The triangle ABC is equilateral if and only if any three of the trian-
gles in σG have the same Brocard angle.

On the other hand, when we putk = −2 then fora =
√

−5 + 3
√

3 andb = c = 1
we find that the trianglesG−

a , G+
a , andG−

b have the same(−2)-perimeter while
ABC is not equilateral. In other words the value−2 is not inΩ.

The following result answers the final question in [1]. It shows that some pairs
of triangles from the setσG could be used to detect ifABC is isosceles. Letτ de-
note the set whose elements are pairs(G−

a , G
+
a ) (G−

a , G
+
b ), (G−

a , G
+
c ), (G+

a , G
−
b ),

(G+
a , G

−
c ), (G−

b , G
+
b ), (G−

b , G
+
c ), (G+

b , G
−
c ), (G−

c , G
+
c ).

Theorem 4. The triangle ABC is isosceles if and only if triangles from some
element of τ have the same perimeter.

Proof. This time there are only two representative cases.
Case 1:(G−

a , G
+
a ). By assumption,

p(G−
a ) − p(G+

a ) =
√

2a2 − b2 + 2c2

3
−

√
2a2 + 2b2 − c2

3
= 0.

When we move the second term to the right then take the square of both sides and
move everything back to the left we obtain(c−b)(c+b)

3 = 0. Hence,b = c andABC
is isosceles.

Case 2:(G−
a , G

+
b ). This time our assumption is

p(G−
a ) − p(G+

b ) =
a− b

2
+

√
2a2 − b2 + 2c2

6
−

√
2c2 + 2b2 − a2

6
= 0.
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When we move the third term to the right then take the square of both sides and
move the right hand side back to the left and bring the only term with the square
root to the right we obtain

2a2 − 3ab+ b2

6
=

(b− a)
√

2a2 − b2 + 2c2

6
.

In order to eliminate the square root, we take the square of both sides and move the

right hand side to the left to get(a−b)2(a−b−c)(a−b+c)
18 = 0. Hence,a = b and the

triangleABC is again isosceles. �

Remark. The above theorem is true also when the perimeter is replaced with the
2-perimeter and the4-perimeter. It is not true fork = −2 but it holds for anyk �= 0
when only pairs(G−

a , G
+
a ), (G−

b , G
+
b ), (G−

c , G
+
c ) are considered.

We continue with results that use various central points (see [4], [5, 6]) (like the
centroid, the circumcenter, the orthocenter, the center of the nine-point circle, the
symmedian or the Grebe-Lemoine point, and the Longchamps point) of the trian-
gles from the setσG and try to detect whenABC is either equilateral or isosceles.

Recall that trianglesABC andXY Z arehomologic provided linesAX, BY ,
andCZ are concurrent. The point in which they concur is their homologycenter
and the line containing intersections of pairs of lines(BC,Y Z), (CA,ZX), and
(AB,XY ) is their homologyaxis. Instead of homologic, homology center, and
homology axis many authors use the termsperspective, perspector, andperspec-
trix.

The trianglesABC andXY Z areorthologic when the perpendiculars at ver-
tices ofABC onto the corresponding sides ofXY Z are concurrent. The point of
concurrence is[ABC,XY Z]. It is well-known that the relation of orthology for
triangles is reflexive and symmetric. Hence, the perpendiculars at vertices ofXY Z
onto corresponding sides ofABC are concurrent at a point[XY Z,ABC].

By replacing in the above definition perpendiculars with parallels we get the
analogous notion ofparalogic triangles and two centers of paralogy〈ABC,XY Z〉
and〈XY Z,ABC〉.

The triangleABC is paralogic to its first Brocard triangleAbBbCb which has the
orthogonal projections of the symmedian pointK onto the perpendicular bisectors
of sides as vertices (see [2] and [3]).

Theorem 5. The centroids GG−
a

, GG+
a

, GG−
b

, GG+
b

, GG−
c

, GG+
c

of the triangles
from σG lie on the image of the Steiner ellipse of ABC under the homothety
h(G,

√
7

6 ). This ellipse is a circle if and only if ABC is equilateral. The triangles
GG−

a
GG−

b
GG−

c
and GG+

a
GG+

b
GG+

c
are both homologic and paralogic to triangles

AbBbCb, BbCbAb and CbAbBb and they share with ABC the centroid and the Bro-
card angle and both have 7

36 of the area of ABC . They are directly similar to each
other or to ABC if and only if ABC is an equilateral triangle. They are ortho-
logic to either AbBbCb, BbCbAb or CbAbBb if and only if ABC is an equilateral
triangle.
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Figure 2. The ellipse containing vertices ofG
G−

a
G

G−
b

G
G−

c
andG

G+
a

G
G+

b
G

G+
c

.

Proof. We look for the conic through five of the centroids and check that the the
sixth centroid lies on it. The trilinear coordinates ofGG−

a
are 2

a : 11
b : 5

c while
those of other centroids are similar. It follows that they all lie on the ellipse with
the equation

a11x
2 + 2a12xy + a22y

2 + 2a13x + 2a23y + a33 = 0,

where

a11 = 432∆2, a12 = 108∆(a − b)(a + b),
a22 = 27(a4 + b4 + 3c4−2a2b2),
a13 = −216∆2c, a23 = −54∆c(a2 − b2 + c2), a33 = 116∆2c2.

SinceD0 =
∣∣∣∣
a11 a12

a12 a22

∣∣∣∣ = 3c4

16∆2 > 0, andA0
I0

= −7c4

72(a2+b2+c2) < 0 with I0 = a11 +

a22, andA0 =

∣∣∣∣∣∣
a11 a12 a13

a12 a22 a23

a13 a23 a33

∣∣∣∣∣∣
it follows that this is an ellipse whose center is

G. It will be a circle provided eitherI20 = 4D0 or a11 = a22 anda12 = 0. This
happens if and only ifABC is equilateral.

The precise identification of this ellipse is now easy. We take a point(p, q) which
is on the Steiner ellipse ofABC (with the equationαa + β

b + γ
c = 0 in trilinear

coordinates) and denote its image underh(G,
√

7
6 ) by (x, y). By eliminatingp and

q we check that this image satisfies the above equation (of the common Steiner
ellipse ofGG−

a
GG−

b
GG−

c
andGG+

a
GG+

b
GG+

c
).
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Since the trilinear coordinates ofAb areabc : c3 : b3, the lineAbGG−
a

has the
equation

a(11b2 − 5c2)x+ b(5a2 − 2b2)y + c(11a2 − 2c2)z = 0.

The linesBbGG−
b

andCbGG−
c

have similar equations. The determinant of the
coefficients of these three lines is equal to zero so that we conclude that the triangles
GG−

a
GG−

b
GG−

c
andAbBbCb are homologic. The other claims about homologies

and paralogies are proved in a similar way. We note that〈GG−
a
GG−

b
GG−

c
, AbBbCb〉

is on the (above) Steiner ellipse ofGG−
a
GG−

b
GG−

c
while 〈AbBbCb, GG−

a
GG−

b
GG−

c
〉

is on the Steiner ellipse ofAbBbCb. The other centers behave accordingly.
When we substitute the coordinates of the six centroids into the conditions

x1(v2 − v3) + x2(v3 − v1) + x3(v1 − v2) − u1(y2 − y3) − u2(y3 − y1) − u3(y1 − y2) = 0,

x1(u2 − u3) + x2(u3 − u1) + x3(u1 − u2) − y1(v2 − v3) − y2(v3 − v1) − y3(v1 − v2) = 0,

for triangles with vertices at the points(x1, y1), (x2, y2), (x3, y3) and (u1, v1),
(u2, v2), (u3, v3) to be directly similar and convert to the side lengths, we get

4∆(a− b)(a + b+ c)
9c2

= 0 and
h(1, 1, 2, 1, 1, 2)

9c2
= 0,

where

h(u, v,w, x, y, z) = ub2c2 + vc2a2 + wa2b2 − xa4 − yb4 − zc4.

The first relation impliesa = b, which givesh(1, 1, 2, 1, 1, 2) = 2c2(c− b)(c+ b).
Therefore,b = c so thatABC is an equilateral triangle.

Substituting the coordinates ofGG−
a

, GG−
b

, GG−
c

, Ab, Bb, Cb into the left hand
side of the condition

x1(u2−u3)+x2(u3−u1)+x3(u1−u2)+y1(v2−v3)+y2(v3−v1)+y3(v1−v2) = 0,

for triangles with vertices at the points(x1, y1), (x2, y2), (x3, y3) and (u1, v1),
(u2, v2), (u3, v3) to be orthologic, we obtain

−h(1, 1, 1, 1, 1, 1)
3p2(ABC)

=
(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2

6p2(ABC)

so that the trianglesGG−
a
GG−

b
GG−

c
andAbBbCb are orthologic if and only ifABC

is equilateral.
The remaining statements are proved similarly or by substitution of coordinates

into well-known formulas for the area, the centroid, and the Brocard angle.�

Let ma, mb, mc be lengths of medians of the triangleABC. The following
result is for the most part already proved in [7]. The center of the circle is given in
[6] asX(1153).

Theorem 6. The circumcenters OG−
a

, OG+
a

, OG−
b

, OG+
b

, OG−
c

, OG+
c

of the trian-
gles from σG lie on the circle whose center OG is a central point with the first
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Figure 3. The vertices ofO
G−

a
O

G−
b

O
G−

c
andO

G+
a

O
G+

b
O

G+
c

are on a circle.

trilinear coordinate

10a4 − 13a2(b2 + c2) + 4b4 + 4c4 − 10b2c2

a

and whose radius is

mambmc

√
2(a4 + b4 + c4) − 5(b2c2 + c2a2 + a2b2)

72∆
.

Also, |OGG| = mambmc

√
(b2−c2)2+(c2−a2)2+(a2−b2)2

72
√

2∆
.

Proof. The proof is conceptually simple but technically involved so that we shall
only outline how it could be done on a computer. In order to find pointsOG−

a
,OG+

a
,

OG−
b

,OG+
b

,OG−
c

,OG+
c

we use the circumcenter function and evaluate it in vertices
of the triangles fromσG. Applying it again in pointsOG−

a
, OG+

a
, OG−

b
we obtain

the pointOG. The remaining pointsOG+
b

, OG−
c

, OG+
c

are at the same distance
from it as the vertexOG−

a
is. The remaining tasks are standard (they involve only

the distance function and the conversion to the side lengths). �

The last sentence in Theorem 6 implies the following corollary.

Corollary 7. The triangle ABC is equilateral if and only if the circumcenters of
any three of the triangles in σG have the same distance from the centroid G.

Let P , Q andR denote vertices of similar isosceles trianglesBCP , CAQ and
ABR.

Theorem 8. (1) The triangles OG−
a
OG−

b
OG−

c
and OG+

b
OG+

c
OG+

a
are congruent.

They are orthologic to BCA and CAB, respectively.
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(2) The triangles OG−
a
OG−

b
OG−

c
and OG+

a
OG+

b
OG+

c
are orthologic to QRP and

RPQ if and only if ABC is an equilateral triangle.
(3) The triangles OG−

a
OG−

b
OG−

c
and OG+

c
OG+

a
OG+

b
are orthologic if and only

if the lengths of sides of ABC satisfy h(7, 7, 7, 4, 4, 4) = 0.
(4) The line joining the centroids of triangles OG−

a
OG−

b
OG−

c
and OG+

c
OG+

a
OG+

b

will go through the centroid, the circumcenter, the orthocenter, the center of the
nine-point circle, the Longchamps point, or the Bevan point of ABC (i.e., X(2),
X(3), X(4), X(5), X(20), or X(40) in [6]) if and only if it is an equilateral
triangle.

(5) The line joining the symmedian points of OG−
a
OG−

b
OG−

c
and OG+

c
OG+

a
OG+

b

goes through the centroid of ABC . It will go through the centroid of its orthic
triangle (i.e., X(51) in [6]) if and only if ABC is an equilateral triangle.

(6) The centroids of triangles OG−
a
OG−

b
OG−

c
and OG+

c
OG+

a
OG+

b
have the same

distance from X(2), X(3), X(4), X(5), X(6), X(20), X(39), X(40), or X(98)
if and only if ABC is an isosceles triangle.

Proof. (1) The pointsOG−
a

andOG+
a

have trilinear coordinates

a(5c2 − a2 − b2) :
2h(3, 3, 5, 2, 2, 1)

b
:
h(6, 1, 3, 1, 2, 4)

c
,

a(5b2 − a2 − c2) :
h(6, 3, 1, 1, 4, 2)

b
:

2h(3, 5, 3, 2, 1, 2)
c

,

while the trilinears of the pointsOG−
b

, OG−
c

, OG+
b

, OG+
c

are their cyclic permuta-

tions. We can show easily that|OG−
b
OG−

c
|2 − |OG+

c
OG+

a
|2 = 0, |OG−

c
OG−

a
|2 −

|OG+
a
OG+

b
|2 = 0, and|OG−

a
OG−

b
|2 − |OG+

b
OG+

c
|2 = 0, so thatOG−

a
OG−

b
OG−

c
and

OG+
b
OG+

c
OG+

a
are indeed congruent.

Substituting the coordinates ofOG−
a

,OG−
b

,OG−
c

,B,C,A into the left hand side
of the above condition for triangles to be orthologic we conclude that it holds. The
same is true for the trianglesOG+

a
OG+

b
OG+

c
andCAB.

(2) The pointP has the trilinear coordinates

2ka :
k(a2 + b2 − c2) + 2∆

b
:
k(a2 − b2 + c2) + 2∆

c

for some real numberk �= 0. The coordinates ofQ andR are analogous. It follows
that the trianglesOG−

c
OG−

a
OG−

b
andQRP are orthologic provided

h(1, 1, 1, 1, 1, 1)k
8∆

= 0,

i.e., if and only ifABC is equilateral.
(3) The trianglesOG−

a
OG−

b
OG−

c
and OG+

c
OG+

a
OG+

b
are orthologic provided

p2(ABC)h(7,7,7,4,4,4)
384∆2 = 0. The triangle with lengths of sides4, 4, 3

√
2 +

√
10 satis-

fies this condition.
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(4) for X(40). The first trilinear coordinates of the centroids of the triangles
OG−

a
OG−

b
OG−

c
andOG+

c
OG+

a
OG+

b
are

3a4 − (2b2 + 7c2)a2 + b4 − 3b2c2 + 2c4

a
and

3a4 − (7b2 + 2c2)a2 + 2b4 − 3b2c2 + c4

a
.

The line joining these centroids will go throughX(40) with the first trilinear coor-
dinatea3 + (b + c)a2 − (b+ c)2a− (b+ c)(b− c)2 provided

(a2 + b2 + c2 − bc− ca− ab)(3bc + 3ca + 3ab + a2 + b2 + c2)
96∆

= 0.

Sincea2 + b2 + c2 − bc− ca− ab = 1
2

(
(b− c)2 + (c− a)2 + (a− b)2

)
it follows

that this will happen if and only ifABC is equilateral.
(5) The first trilinear coordinates of the symmedian points ofOG−

a
OG−

b
OG−

c
and

OG+
c
OG+

a
OG+

b
are

2a6 − (b2 + 3c2)a4 + (3b4 − 12b2c2 − 7c4)a2 + 2c2(b2 − c2)(b2 − 2c2)
a

and
2a6 − (3b2 + c2)a4 − (7b4 + 12b2c2 − 3c4)a2 + 2b2(b2 − c2)(2b2 − c2)

a
.

The line joining these symmedian points will go throughX(51) with the first tri-
linear coordinatea

(
(b2 + c2)a2 − (b2 − c2)2

)
provided

2∆h(1, 1, 1, 0, 0, 0)h(1, 1, 1, 1, 1, 1)
9a2b2c2(a2 + b2 + c2)

= 0.

Sinceh(1, 1, 1, 1, 1, 1) = 1
2

(
(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2

)
we see that this

will happen if and only ifABC is equilateral. The trilinear coordinates1
a : 1

b : 1
c

of the centroidG satisfy the equation of this line.
(6) for X(40). Using the information from the proof of (4), we see that the

difference of squares of distances fromX(40) to the centroids of the triangles
OG−

a
OG−

b
OG−

c
andOG+

c
OG+

a
OG+

b
is (b−c)(c−a)(a−b)M

192∆2 , where

M = 2(a3 + b3 + c3) + 5(a2b+ a2c+ b2c+ b2a + c2a+ c2b) + 18abc

is clearly positive. Hence, these distances are equal if and only ifABC is isosceles.
�

With pointsOG−
a

, OG+
a

, OG−
b

, OG+
b

, OG−
c

, OG+
c

we can also detect ifABC is
isosceles as follows.

Theorem 9. (1) The relation b = c holds in ABC if and only if OG−
a

is on BG
and/or OG+

a
is on CG.

(2) The relation c = a holds in ABC if and only if OG−
b

is on CG and/or OG+
b

is on AG.
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(3) The relation a = b holds in ABC if and only if OG−
c

is on AG and/or OG+
a

is on BG.

Proof. (1) forOG−
a

. Since the trilinear coordinates ofOG−
a

, G andB are

a(5c2 − a2 − b2) :
2h(3, 3, 5, 2, 2, 1)

b
:
h(6, 1, 3, 1, 2, 4)

c
,

1
a : 1

b : 1
c and(0 : 1 : 0), it follows that these points are collinear if and only if

m2
b(b−c)(b+c)

72∆ = 0. �
For the following result I am grateful to an anonymous referee. It refers to

the pointT on the Euler line which divides the segment joining the circumcen-
ter with the centroid in ratiok for some real numberk �= −1. Notice that for
k = 0,−3

4 ,−3
2 ,−3 the pointT will be the circumcenter, the Longchamps point,

the orthocenter, and the center of the nine-point circle, respectively.

Theorem 10. The triangles TG−
a
TG−

b
TG−

c
and TG+

a
TG+

b
TG+

c
are directly similar to

each other or to ABC if and only if ABC is equilateral.

Proof. ForTG−
a
TG−

b
TG−

c
andTG+

a
TG+

b
TG+

c
.

The pointTG−
a

hasp1

a : p2

b : p3

c as trilinear coordinates, where

p1 =3a2(a2 + b2 − 5c2) − 32∆2k,

p2 =12a4 − 6(5b2 + 3c2)a2 + 6(b2 − c2)(2b2 − c2) − 176∆2k,

p3 =12a4 − 6(3b2 + 5c2)a2 + 6(b2 − c2)(b2 − 2c2) − 176∆2k.

Applying the method of the proof of Theorem 4 we see thatTG−
a
TG−

b
TG−

c
and

TG+
a
TG+

b
TG+

c
are directly similar if and only if

(a2 − b2)M
288∆c2(k + 1)2

= 0 and
h(1, 1, 2, 1, 1, 2)M
1152S2c2(k + 1)2

= 0,

whereM = 128∆2k2 + 240∆2k + h(15, 15, 15, 6, 6, 6). The discriminant

−48∆2h(10, 10, 10,−11,−11,−11)

of the trinomialM is negative so thatM is always positive. Hence, from the first
condition it follows thata = b. Then the factorh(1, 1, 2, 1, 1, 2) in the second
condition is2c2(c− b)(c+ b) so thatb = c andABC is equilateral. The converse
is easy because fora = b = c the left hand sides of both conditions are equal to
zero.

ForTG−
a
TG−

b
TG−

c
andABC. The two conditions are

32∆2(a2 − b2)k − a6 + (4b2 + 3c2)a4

− (5b4 + 2b2c2 + c4)a2 − 3b4c2 + 2b2c4 + 2b6 + c6 = 0

and
h(2, 2, 4, 2, 2, 4)k + h(1, 2, 3, 1, 2, 3) = 0.
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Whena �= b, we can solve the first equation fork and substitute it into the second

to obtain c4(a2+b2+c2)h(1,1,1,1,1,1)
8∆2(a2−b2)

= 0. This implies thatTG−
a
TG−

b
TG−

c
andABC

are directly similar if and only ifABC is equilateral because the first condition is
c2 (b− c) (b+ c)

(
c2 + 2b2

)
= 0 for a = b. �

Theorem 11. (1) TG−
a
TG−

b
TG−

c
and TG+

a
TG+

b
TG+

c
are orthologic to ABC if and

only if k = −3
2 .

(2) TG−
a
TG−

b
TG−

c
and TG+

a
TG+

b
TG+

c
are orthologic to AbBbCb if and only if

either ABC is equilateral or k = −3
4 .

(3) TG−
a
TG−

b
TG−

c
and TG+

a
TG+

b
TG+

c
are paralogic to either AbBbCb, BbCbAb or

CbAbBb if and only if ABC is equilateral.
(4) TG−

a
TG−

b
TG−

c
is orthologic to BbCbAb if and only if either ABC is equilat-

eral or k = −3
2 and to CbAbBb if and only if ABC is equilateral.

(5) TG+
a
TG+

b
TG+

c
is orthologic to BbCbAb if and only if ABC is equilateral and

to CbAbBb if and only if either ABC is equilateral or k = −3
2 .

Proof. All parts have similar proofs. For example, in the first, we find that the trian-

glesTG−
a
TG−

b
TG−

c
andABC are orthologic if and only if−(a2+b2+c2)(2k+3)

12(k+1) = 0.
�

The orthocentersHG−
a

, HG+
a

, HG−
b

, HG+
b

, HG−
c

, HG+
c

of the triangles fromσG

also monitor the shape of the triangleABC.

Theorem 12. The triangles HG−
a
HG−

b
HG−

c
and HG+

a
HG+

b
HG+

c
are orthologic if

and only if ABC is an equilateral triangle.

Proof. Substituting the coordinates ofHG−
a

, HG−
b

, HG−
c

, HG+
a

, HG+
b

, HG+
c

into
the condition for triangles to be orthologic (see the proof of Theorem 6), we obtain

(a2 + b2 + c2)[(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2]
192∆2

= 0.

Hence,a = b = c and the triangleABC is equilateral. �
Remark. Note that the trianglesHG−

a
HG−

b
HG−

c
andHG+

a
HG+

b
HG+

c
have the same

Brocard angle and both have the area equal to one fourth of the area ofABC.

The centersFG−
a

, FG+
a

, FG−
b

, FG+
b

, FG−
c

, FG+
c

of the nine point circles of the
triangles fromσG allow the following analogous result.

Theorem 13. The triangles FG−
a
FG−

b
FG−

c
and FG+

a
FG+

b
FG+

c
have the same Bro-

card angle and area. The triangle ABC is equilateral if and only if this area is 3
16

of the area of ABC .

Proof. Recall the formula12 |x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)| for the area
of the triangle with vertices(x1, y1), (x2, y2), (x3, y3). Since

3
16

|ABC| − |FG−
a
FG−

b
FG−

c
| =

(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2

1536∆
,
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the second claim is true. The proof of the first are also substitutions of coordinates
into well-known formulas. �

The symmedian pointsKG−
a

, KG+
a

, KG−
b

, KG+
b

, KG−
c

, KG+
c

of the triangles
from σG play the similar role.

Theorem 14. The triangles KG−
a
KG−

b
KG−

c
and KG+

a
KG+

b
KG+

c
have the area

equal to 7
64 of the area of ABC if and only if ABC is an equilateral triangle.

Proof. The difference|KG−
a
KG−

b
KG−

c
| − 7

64 |ABC| is equal to

3∆T

64(5b2 + 8c2 − a2)(5c2 + 8a2 − b2)(5a2 + 8b2 − c2)
,

where

T = 40(a6+b6+c6)+231(b4c2+c4a2+a4b2)−147(b2c4+c2a4+a2b4)−372a2b2c2.

We shall argue thatT is equal to zero if and only ifa = b = c. We can assume that
a ≤ b ≤ c, a =

√
d, b =

√
(1 + h)d, c =

√
(1 + h+ k)d for some positive real

numbersd, h andk. In new variablesTd3 is

164h3 + (204 + 57k)h2 + 3k(68 − 9k)h + 4k2(51 + 10k).

The quadratic part has the discriminant−3k2(41616 + 30056k + 2797k2). Thus
T is always positive except whenh = k = 0 which proves our claim. �
Theorem 15. The triangles KG−

a
KG−

b
KG−

c
and KG+

a
KG+

b
KG+

c
have the same

area if and only if the triangle ABC is isosceles.

Proof. The difference|KG−
a
KG−

b
KG−

c
| − |KG+

a
KG+

b
KG+

c
| is equal to

81∆(b− c)(b + c)(c − a)(c+ a)(a− b)(a + b)T
2t(−1, 8, 5)t(−1, 5, 8)t(8,−1, 5)t(5,−1, 8)t(8, 5,−1)t(5, 8,−1)

,

wheret(u, v,w) = ua2 + vb2 + wc2 and

T = 10(a6 +b6+c6)−105(b4c2 +c4a2+a4b2 +b2c4 +c2a4 +a2b4)−156a2b2c2.

We shall now argue thatT is always negative. Without loss of generality we can
assume thata ≤ b ≤ c and that

a =
√
d, b =

√
(1 + h)d, c =

√
(1 + h+ k)d,

for some positive real numbersd, h andk. Sincea + b > c it follows that

k < 1 + 2
√
h+ 1 ≤ h+ 3

because
√
h+ 1 =

√
1 · (h+ 1) ≤ 1+(h+1)

2 . In new variables,

− T

d3
= 190h3+(285k+936)h2+(1512+936k+75k2)h−10k3+180k2+756k+756.

Fork ≤ h it is obvious that the above polynomial is positive since190h3−10k3 >
0. On the other hand, whenk ∈ (h, h + 3), thenk can be represented as(1−w)h+
w(h+ 3) for somew ∈ (0, 1). The above polynomial for thisk is

540h3+(2052+1215w)h2+(3888w+405w2+2268)h−270w3+1620w2+2268w+756.
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But, the free coefficient of this polynomial forw between0 and1 is positive. Thus
T is always negative which proves our claim. �

The Longchamps points (i.e., the reflections of the orthocenters in the circum-
centers)LG−

a
, LG+

a
, LG−

b
, LG+

b
, LG−

c
, LG+

c
of the triangles fromσG offer the

following result.

Theorem 16. The triangles LG−
a
LG−

b
LG−

c
and LG+

a
LG+

b
LG+

c
have the same areas

and Brocard angles. This area is equal to 3
4 of the area ofABC and/or this Brocard

angle is equal to the Brocard angle of ABC if and only if ABC is an equilateral
triangle.

Proof. The common area ish(10,10,10,1,1,1)
112∆ while the tangent of the common Bro-

card angle is h(10,10,10,1,1,1)
4∆p2(ABC)h(2,2,2,−7,−7,−7) . It follows that the difference

3
4
|ABC| − |LG−

a
LG−

b
LG−

c
| =

h(1, 1, 1, 1, 1, 1)
24∆

while the difference of tangents of the Brocard angles of the trianglesLG−
a
LG−

b
LG−

c

andABC is 32∆h(1,1,1,1,1,1)
p2(ABC)h(2,2,2,−7,−7,−7) . From here the conclusions are easy because

h(1, 1, 1, 1, 1, 1) = 1
2

(
(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2

)
. �
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