On Two Remarkable Lines Related to a Quadrilateral

Alexei Myakishev

Abstract

We study the Euler line of an arbitrary quadrilateral and the Nagel line of a circumscriptible quadrilateral.

1. Introduction

Among the various lines related to a triangle the most popular are Euler and Nagel lines. Recall that the Euler line contains the orthocenter H, the centroid G, the circumcenter O and the nine-point center E, so that $H E: E G: G O=3: 1$: 2. On the other hand, the Nagel line contains the Nagel point N, the centroid M, the incenter I and Spieker point S (which is the centroid of the perimeter of the triangle) so that $N S: S G: G I=3: 1: 2$. The aim of this paper is to find some analogies of these lines for quadrilaterals.

It is well known that in a triangle, the following two notions of centroids coincide:
(i) the barycenter of the system of unit masses at the vertices,
(ii) the center of mass of the boundary and interior of the triangle.

Figure 1.
But for quadrilaterals these are not necessarily the same. We shall show in this note, that to get some fruitful analogies for quadrilateral it is useful to consider the centroid G of quadrilateral as a whole figure. For a quadrilateral $A B C D$, this centroid G can be determined as follows. Let $G_{a}, G_{b}, G_{c}, G_{d}$ be the centroids of triangles $B C D, A C D, A B D, A B C$ respectively. The centroid G is the intersection of the lines $G_{a} G_{c}$ and $G_{b} G_{d}$:

$$
G=G_{a} G_{c} \cap G_{b} G_{d} .
$$

See Figure 1.
Publication Date: November 20, 2006. Communicating Editor: Paul Yiu.

2. The Euler line of a quadrilateral

Given a quadrilateral $A B C D$, denote by O_{a} and H_{a} the circumcenter and the orthocenter respectively of triangle $B C D$, and similarly, O_{b}, H_{b} for triangle $A C D$, O_{c}, H_{c} for triangle $A B D$, and O_{d}, H_{d} for triangle $A B C$. Let

$$
\begin{aligned}
& O=O_{a} O_{c} \cap O_{b} O_{d}, \\
& H=H_{a} H_{c} \cap H_{b} H_{d} .
\end{aligned}
$$

Figure 2
We shall call O the quasicircumcenter and H the quasiorthocenter of the quadrilateral $A B C D$. Clearly, the quasicircumcenter O is the intersection of perpendicular bisectors of the diagonals of $A B C D$. Therefore, if the quadrilateral is cyclic, then O is the center of its circumcircle. Figure 2 shows the three associated quadrilaterals $G_{a} G_{b} G_{c} G_{d}, O_{a} O_{b} O_{c} O_{d}$, and $H_{a} H_{b} H_{c} H_{d}$.

The following theorem was discovered by Jaroslav Ganin, (see [2]), and the idea of the proof was due to François Rideau [3].

Theorem 1. In any arbitrary quadrilateral the quasiorthocenter H, the centroid G, and the quasicircumcenter O are collinear. Furthermore, $O H: H G=3:-2$.

Proof. Consider three affine maps f_{G}, f_{O} and f_{H} transforming the triangle $A B C$ onto triangle $G_{a} G_{b} G_{c}, O_{a} O_{b} O_{c}$, and $H_{a} H_{b} H_{c}$ respectively.

In the affine plane, write $D=x A+y B+z C$ with $x+y+z=1$.
(i) Note that

$$
\begin{aligned}
f_{G}(D) & =f_{G}(x A+y B+z C) \\
& =x G_{a}+y G_{b}+z G_{c} \\
& =\frac{1}{3}(x(B+C+D)+y(A+C+D)+z(A+B+D)) \\
& =\frac{1}{3}((y+z) A+(z+x) B+(x+y) C+(x+y+z) D) \\
& =\frac{1}{3}((y+z) A+(z+x) B+(x+y) C+(x A+y B+z C)) \\
& =\frac{1}{3}(x+y+z)(A+B+C) \\
& =G_{d} .
\end{aligned}
$$

(ii) It is obvious that triangles $A B C$ and $O_{a} O_{b} O_{c}$ are orthologic with centers D and O_{d}. See Figure 3. From Theorem 1 of [1], $f_{O}(D)=O_{d}$.

Figure 3
(iii) Since H_{a} divides $O_{a} G_{a}$ in the ratio $O_{a} H_{a}: H_{a} G_{a}=3:-2$, and similarly for H_{b} and H_{c}, for $Q=A, B, C$, the point $f_{H}(Q)$ divides the segment $f_{O}(Q) f_{G}(Q)$ into the ratio 3:-2. It follows that for every point Q in the plane
of $A B C$, $f_{H}(Q)$ divides $f_{O}(Q) f_{G}(Q)$ in the same ratio. In particular, $f_{H}(D)$ divides $f_{O}(D) f_{G}(D)$, namely, $O_{d} G_{d}$, in the ratio $3:-2$. This is clearly H_{d}. We have shown that $f_{H}(D)=H_{d}$.
(iv) Let $Q=A C \cap B D$. Applying the affine maps we have

$$
\begin{aligned}
f_{G}(Q) & =G_{a} G_{c} \cap G_{b} G_{d}=G, \\
f_{O}(Q) & =O_{a} O_{c} \cap O_{b} O_{d}=O, \\
f_{H}(Q) & =H_{a} H_{c} \cap H_{b} H_{d}=H .
\end{aligned}
$$

From this we conclude that H divides $O G$ in the ratio $3:-2$.
Theorem 1 enables one to define the Euler line of a quadrilateral $A B C D$ as the line containing the centroid, the quasicircumcenter, and the quasiorthocenter. This line contains also the quasininepoint center E defined as follows. Let E_{a}, E_{b}, E_{c}, E_{d} be the nine-point centers of the triangles $B C D, A C D, A B D, A B C$ respectively. We define the quasininepoint center to be the point $E=E_{a} E_{c} \cap$ $E_{b} E_{d}$. The following theorem can be proved in a way similar to Theorem 1 above.

Theorem 2. E is the midpoint of $O H$.

3. The Nagel line of a circumscriptible quadrilateral

A quadrilateral is circumscriptible if it has an incircle. Let $A B C D$ be a circumscriptible quadrilateral with incenter I. Let $T_{1}, T_{2}, T_{3}, T_{4}$ be the points of tangency of the incircle with the sides $A B, B C, C D$ and $D A$ respectively. Let N_{1} be the isotomic conjugate of T_{1} with respect to the segment $A B$. Similarly define N_{2}, N_{3}, N_{4} in the same way. We shall refer to the point $N:=N_{1} N_{3} \cap N_{2} N_{4}$ as the Nagel point of the circumscriptible quadrilateral. Note that both lines divide the perimeter of the quadrilateral into two equal parts.

Figure 4.

In Theorem 6 below we shall show that N lies on the line joining I and G. In what follows we shall write

$$
P=(x \cdot A, y \cdot B, z \cdot C, w \cdot D)
$$

to mean that P is the barycenter of a system of masses x at A, y at B, z at C, and w at D. Clearly, x, y, z, w can be replaced by $k x, k y, k z, k w$ for nonzero k without changing the point P. In Figure 4, assume that $A T_{1}=A T_{4}=p, B T_{2}=B T_{1}=q$, $C T_{3}=C T_{2}=r$, and $D T_{4}=D T_{3}=t$. Then by putting masses p at A, q at B, r at C, and t at D, we see that
(i) $N_{1}=(p \cdot A, q \cdot B, 0 \cdot C, 0 \cdot D)$,
(ii) $N_{3}=(0 \cdot A, 0 \cdot B, r \cdot C, t \cdot D)$, so that the barycenter $N=(p \cdot A, q \cdot B, r \cdot C, t \cdot D)$ is on the line $N_{1} N_{3}$. Similarly, it is also on the line $N_{2} N_{4}$ since
(iii) $N_{2}=(0 \cdot A, q \cdot B, r \cdot C, 0 \cdot D)$, and
(iv) $N_{4}=(p \cdot A, 0 \cdot B, 0 \cdot C, t \cdot D)$.

Therefore, we have established the first of the following three lemmas.
Lemma 3. $N=(p \cdot A, q \cdot B, r \cdot C, t \cdot D)$.
Lemma 4. $I=((q+t) A,(p+r) B,(q+t) C,(p+r) D)$.

Figure 5.

Proof. Suppose the circumscriptible quadrilateral $A B C D$ has a pair of non-parallel sides $A D$ and $B C$, which intersect at E. (If not, then $A B C D$ is a rhombus, $p=q=r=s$, and $I=G$; the result is trivial). Let $a=E B$ and $b=E A$.
(i) As the incenter of triangle $E D C, I=((t+r) E,(a+q+r) D,(b+p+t) C)$.
(ii) As an excenter of triangle $A B E, I=((p+q) E,-a \cdot A,-b \cdot B)$.

Note that $\frac{E C}{E B}=\frac{a+q+r}{a}$ and $\frac{E D}{E A}=\frac{b+p+t}{b}$, so that the system $(p+q+r+t) E$ is equivalent to the system $((a+q+r) B,-a \cdot C,(b+p+t) A,-b \cdot D)$. Therefore, $I=((-a+b+p+t) A,(-b+a+q+r) B,(-a+b+p+t) C,(-b+a+q+r) D)$.
Since $b+p=a+q$, the result follows.

Lemma 5. $G=((p+q+t) A,(p+q+r) B,(q+r+t) C,(p+r+t) D)$.

Figure 6.

Proof. Denote the point of intersection of the diagonals by P. Note that $\frac{A P}{C P}=\frac{p}{r}$ and $\frac{B P}{D P}=\frac{q}{t}$. Actually, according to one corollary of Brianchon's theorem, the lines $T_{1} T_{3}$ and $T_{2} T_{4}$ also pass through P. For another proof, see [4, pp.156-157]. Hence,

$$
P=\left(\frac{1}{p} \cdot A, \frac{1}{q} \cdot B, \frac{1}{r} \cdot C, \frac{1}{t} \cdot D\right) .
$$

Consequently, $P=\left(\frac{1}{q} \cdot B, \frac{1}{t} \cdot D\right)$ and also $P=\left(\frac{1}{p} \cdot A, \frac{1}{r} \cdot C\right)$.
The quadrilateral $G_{a} G_{b} G_{c} G_{d}$ is homothetic to $A B C D$, with homothetic center $M=(1 \cdot A, 1 \cdot B, 1 \cdot C, 1 \cdot D)$ and ratio $-\frac{1}{3}$. Thus, $\frac{G_{a} G}{G_{c} G}=\frac{A P}{C P}=\frac{p}{r}$ and $\frac{G_{b} G}{G_{d} G}=$ $\frac{B P}{D P}=\frac{q}{t}$. It follows that $G=\left(r \cdot G_{a}, p \cdot G_{c}\right)=(p \cdot A,(r+p) B, r \cdot C,(r+p) D)$ and $G=\left(t \cdot G_{b}, q \cdot G_{d}\right)=((q+t) A, q \cdot B,(q+t) C, t \cdot D)$. To conclude the proof, it is enough to add up the corresponding masses.

The following theorem follows easily from Lemmas 3, 4, 5 .
Theorem 6. For a circumscriptible quadrilateral, the Nagel point N, centroid G and incenter I are collinear. Furthermore, $N G: G I=2: 1$.

See Figure 7.

Theorem 6 enables us to define the Nagel line of a circumscriptible quadrilateral. This line also contains the Spieker point of the quadrilateral, by which we mean the center of mass S of the perimeter of the quadrilateral, without assuming an incircle.

Figure 7.
Theorem 7. For a circumscriptible quadrilateral, the Spieker point is the midpoint of the incenter and the Nagel point.

Proof. With reference to Figure 6, each side of the circumscriptible quadrilateral is equivalent to a mass equal to its length located at each of its two vertices. Thus,

$$
S=((2 p+q+t) A,(p+2 q+r) B,(q+2 r+t) C,(p+r+2 t) D) .
$$

Splitting into two systems of equal total masses, we have

$$
\begin{aligned}
N & =(2 p A, 2 q B, 2 r C, 2 t D), \\
I & =((q+t) A,(p+r) B,(q+t) C,((p+r) D) .
\end{aligned}
$$

From this the result is clear.

References

[1] E. Danneels and N. Dergiades, A theorem on orthology centers, Forum Geom., 4 (2004) 135141.
[2] A. Myakishev, Hyacinthos message 12400, March 16, 2006.
[3] F. Rideau, Hyacinthos message 12402, March 16, 2006.
[4] P. Yiu, Euclidean Geometry, Florida Atlantic University Lecture Notes, 1998.

Alexei Myakishev: Smolnaia 61-2, 138, Moscow, Russia, 125445
E-mail address: alex.geom@mtu-net.ru

