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On Two Remarkable Lines Related to a Quadrilateral

Alexei Myakishev

Abstract. We study the Euler line of an arbitrary quadrilateral and the Nagel
line of a circumscriptible quadrilateral.

1. Introduction

Among the various lines related to a triangle the most popular are Euler and
Nagel lines. Recall that the Euler line contains the orthocenterH, the centroidG,
the circumcenterO and the nine-point centerE, so thatHE : EG : GO = 3 : 1 :
2. On the other hand, the Nagel line contains the Nagel pointN , the centroidM ,
the incenterI and Spieker pointS (which is the centroid of the perimeter of the
triangle) so thatNS : SG : GI = 3 : 1 : 2. The aim of this paper is to find some
analogies of these lines for quadrilaterals.

It is well known that in a triangle, the following two notions of centroids coin-
cide:
(i) the barycenter of the system of unit masses at the vertices,
(ii) the center of mass of the boundary and interior of the triangle.
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Figure 1.

But for quadrilaterals these are not necessarily the same. We shall show in this
note, that to get some fruitful analogies for quadrilateral it is useful to consider
the centroidG of quadrilateral as a whole figure. For a quadrilateralABCD, this
centroidG can be determined as follows. LetGa, Gb, Gc, Gd be the centroids of
trianglesBCD, ACD, ABD, ABC respectively. The centroidG is the intersec-
tion of the linesGaGc andGbGd:

G = GaGc ∩ GbGd.

See Figure 1.
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2. The Euler line of a quadrilateral

Given a quadrilateralABCD, denote byOa andHa the circumcenter and the
orthocenter respectively of triangleBCD, and similarly,Ob, Hb for triangleACD,
Oc, Hc for triangleABD, andOd, Hd for triangleABC. Let

O =OaOc ∩ ObOd,

H =HaHc ∩ HbHd.
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Figure 2

We shall callO the quasicircumcenter andH the quasiorthocenter of the quadri-
lateralABCD. Clearly, the quasicircumcenterO is the intersection of perpendic-
ular bisectors of the diagonals ofABCD. Therefore, if the quadrilateral is cyclic,
thenO is the center of its circumcircle. Figure 2 shows the three associated quadri-
lateralsGaGbGcGd, OaObOcOd, andHaHbHcHd.
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The following theorem was discovered by Jaroslav Ganin, (see [2]), and the idea
of the proof was due to Franc¸ois Rideau [3].

Theorem 1. In any arbitrary quadrilateral the quasiorthocenter H , the centroid
G, and the quasicircumcenter O are collinear. Furthermore, OH : HG = 3 : −2.

Proof. Consider three affine mapsfG, fO andfH transforming the triangleABC
onto triangleGaGbGc, OaObOc, andHaHbHc respectively.

In the affine plane, writeD = xA + yB + zC with x + y + z = 1.
(i) Note that

fG(D) =fG(xA + yB + zC)
=xGa + yGb + zGc

=
1
3
(x(B + C + D) + y(A + C + D) + z(A + B + D))

=
1
3
((y + z)A + (z + x)B + (x + y)C + (x + y + z)D)

=
1
3
((y + z)A + (z + x)B + (x + y)C + (xA + yB + zC))

=
1
3
(x + y + z)(A + B + C)

=Gd.

(ii) It is obvious that trianglesABC andOaObOc are orthologic with centersD
andOd. See Figure 3. From Theorem 1 of [1],fO(D) = Od.
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(iii) Since Ha dividesOaGa in the ratioOaHa : HaGa = 3 : −2, and sim-
ilarly for Hb andHc, for Q = A, B, C, the pointfH(Q) divides the segment
fO(Q)fG(Q) into the ratio3 : −2. It follows that forevery point Q in the plane
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of ABC, fH(Q) dividesfO(Q)fG(Q) in the same ratio. In particular,fH(D) di-
videsfO(D)fG(D), namely,OdGd, in the ratio3 : −2. This is clearlyHd. We
have shown thatfH(D) = Hd.

(iv) Let Q = AC ∩ BD. Applying the affine maps we have

fG(Q) =GaGc ∩ GbGd = G,

fO(Q) =OaOc ∩ ObOd = O,

fH(Q) =HaHc ∩ HbHd = H.

From this we conclude thatH dividesOG in the ratio3 : −2. �

Theorem 1 enables one to define theEuler line of a quadrilateralABCD as
the line containing the centroid, the quasicircumcenter, and the quasiorthocenter.
This line contains also the quasininepoint centerE defined as follows. LetEa,
Eb, Ec, Ed be the nine-point centers of the trianglesBCD, ACD, ABD, ABC
respectively. We define the quasininepoint center to be the pointE = EaEc ∩
EbEd. The following theorem can be proved in a way similar to Theorem 1 above.

Theorem 2. E is the midpoint of OH .

3. The Nagel line of a circumscriptible quadrilateral

A quadrilateral is circumscriptible if it has an incircle. LetABCD be a circum-
scriptible quadrilateral with incenterI. LetT1, T2, T3, T4 be the points of tangency
of the incircle with the sidesAB, BC, CD andDA respectively. LetN1 be the
isotomic conjugate ofT1 with respect to the segmentAB. Similarly defineN2,
N3, N4 in the same way. We shall refer to the pointN := N1N3 ∩ N2N4 as the
Nagel point of the circumscriptible quadrilateral. Note that both lines divide the
perimeter of the quadrilateral into two equal parts.
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In Theorem 6 below we shall show thatN lies on the line joiningI andG. In
what follows we shall write

P = (x · A, y · B, z · C, w · D)

to mean thatP is the barycenter of a system of massesx atA, y atB, z atC, andw
atD. Clearly,x, y, z, w can be replaced bykx, ky, kz, kw for nonzerok without
changing the pointP . In Figure 4, assume thatAT1 = AT4 = p, BT2 = BT1 = q,
CT3 = CT2 = r, andDT4 = DT3 = t. Then by putting massesp at A, q atB, r
atC, andt atD, we see that
(i) N1 = (p · A, q · B, 0 · C, 0 · D),
(ii) N3 = (0·A, 0·B, r·C, t·D), so that the barycenterN = (p·A, q·B, r·C, t·D)
is on the lineN1N3. Similarly, it is also on the lineN2N4 since
(iii) N2 = (0 · A, q · B, r · C, 0 · D), and
(iv) N4 = (p · A, 0 · B, 0 · C, t · D).

Therefore, we have established the first of the following three lemmas.

Lemma 3. N = (p · A, q · B, r · C, t · D).

Lemma 4. I = ((q + t)A, (p + r)B, (q + t)C, (p + r)D).
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Figure 5.

Proof. Suppose the circumscriptible quadrilateralABCD has a pair of non-parallel
sidesAD and BC, which intersect atE. (If not, thenABCD is a rhombus,
p = q = r = s, andI = G; the result is trivial). Leta = EB andb = EA.
(i) As the incenter of triangleEDC, I = ((t + r)E, (a+ q + r)D, (b+ p + t)C).
(ii) As an excenter of triangleABE, I = ((p + q)E, −a · A, −b · B).

Note thatEC
EB = a+q+r

a andED
EA = b+p+t

b , so that the system(p+ q + r + t)E is
equivalent to the system((a+ q + r)B, −a ·C, (b+ p+ t)A, −b ·D). Therefore,

I = ((−a+b+p+t)A, (−b+a+q+r)B, (−a+b+p+t)C, (−b+a+q+r)D).

Sinceb + p = a + q, the result follows. �
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Lemma 5. G = ((p + q + t)A, (p + q + r)B, (q + r + t)C, (p + r + t)D).
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Figure 6.

Proof. Denote the point of intersection of the diagonals byP . Note thatAP
CP = p

r

and BP
DP = q

t . Actually, according to one corollary of Brianchon’s theorem, the
linesT1T3 andT2T4 also pass throughP . For another proof, see [4, pp.156–157].
Hence,

P =
(

1
p
· A,

1
q
· B,

1
r
· C,

1
t
· D

)
.

Consequently,P =
(

1
q · B, 1

t · D
)

and alsoP =
(

1
p · A, 1

r · C
)

.

The quadrilateralGaGbGcGd is homothetic toABCD, with homothetic center
M = (1 ·A, 1 ·B, 1 ·C, 1 ·D) and ratio−1

3 . Thus,GaG
GcG = AP

CP = p
r and GbG

GdG =
BP
DP = q

t . It follows thatG = (r ·Ga, p ·Gc) = (p ·A, (r + p)B, r ·C, (r + p)D)
andG = (t · Gb, q · Gd) = ((q + t)A, q · B, (q + t)C, t · D). To conclude the
proof, it is enough to add up the corresponding masses. �

The following theorem follows easily from Lemmas 3, 4, 5.

Theorem 6. For a circumscriptible quadrilateral, the Nagel point N , centroid G
and incenter I are collinear. Furthermore, NG : GI = 2 : 1.

See Figure 7.
Theorem 6 enables us to define the Nagel line of a circumscriptible quadrilateral.

This line also contains the Spieker point of the quadrilateral, by which we mean
the center of massS of the perimeter of the quadrilateral, without assuming an
incircle.
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Figure 7.

Theorem 7. For a circumscriptible quadrilateral, the Spieker point is the midpoint
of the incenter and the Nagel point.

Proof. With reference to Figure 6, each side of the circumscriptible quadrilateral
is equivalent to a mass equal to its length located at each of its two vertices. Thus,

S = ((2p + q + t)A, (p + 2q + r)B, (q + 2r + t)C, (p + r + 2t)D).

Splitting into two systems of equal total masses, we have

N =(2pA, 2qB, 2rC, 2tD),

I =((q + t)A, (p + r)B, (q + t)C, ((p + r)D).

From this the result is clear. �
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