Hansen's Right Triangle Theorem, Its Converse and a Generalization

Amy Bell

Abstract

We generalize D. W. Hansen's theorem relating the inradius and exradii of a right triangle and its sides to an arbitrary triangle. Specifically, given a triangle, we find two quadruples of segments with equal sums and equal sums of squares. A strong converse of Hansen's theorem is also established.

1. Hansen's right triangle theorem

In an interesting article in Mathematics Teacher, D. W. Hansen [2] has found some remarkable identities associated with a right triangle. Let $A B C$ be a triangle with a right angle at C, sidelengths a, b, c. It has an incircle of radius r, and three excircles of radii r_{a}, r_{b}, r_{c}.

Theorem 1 (Hansen). (1) The sum of the four radii is equal to the perimeter of the triangle:

$$
r_{a}+r_{b}+r_{c}+r=a+b+c .
$$

(2) The sum of the squares of the four radii is equal to the sum of the squares of the sides of the triangle:

$$
r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r^{2}=a^{2}+b^{2}+c^{2}
$$

We seek to generalize Hansen's theorem to an arbitrary triangle, by replacing a, b, c by appropriate quantities whose sum and sum of squares are respectively equal to those of r_{a}, r_{b}, r_{c} and r. Now, for a right triangle $A B C$ with right angle vertex C, this latter vertex is the orthocenter of the triangle, which we generically denote by H. Note that

$$
a=B H \quad \text { and } \quad b=A H .
$$

On the other hand, the hypotenuse being a diameter of the circumcircle, $c=2 R$. Note also that $C H=0$ since C and H coincide. This suggests that a possible generalization of Hansen's theorem is to replace the triple a, b, c by the quadruple $A H, B H, C H$ and $2 R$. Since $A H=2 R \cos A$ etc., one of the quantities $A H$, BH, CH is negative if the triangle contains an obtuse angle.

Publication Date: December 20, 2006. Communicating Editor: Floor van Lamoen.
The paper is a revision of part of the author's thesis for the degree of Master of Science in Teaching (Mathematics) at Florida Atlantic University, under the direction of Professor Paul Yiu. Thanks are also due to the referee for suggestions leading to improvements on the paper.

We shall establish the following theorem.
Theorem 2. Let $A B C$ be a triangle with orthocenter H and circumradius R.
(1) $r_{a}+r_{b}+r_{c}+r=A H+B H+C H+2 R$;
(2) $r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r^{2}=A H^{2}+B H^{2}+C H^{2}+(2 R)^{2}$.

Figure 1. Two quadruples with equal sums and equal sums of squares

2. A characterization of right triangles in terms of inradius and exradii

Proposition 3. The following statements for a triangle $A B C$ are equivalent.
(1) $r_{c}=s$.
(2) $r_{a}=s-b$.
(3) $r_{b}=s-a$.
(4) $r=s-c$.
(5) C is a right angle.

Proof. By the formulas for the exradii and the Heron formula, each of (1), (2), (3), (4) is equivalent to the condition

$$
\begin{equation*}
(s-a)(s-b)=s(s-c) \tag{1}
\end{equation*}
$$

Figure 2. Inradius and exradii of a right triangle
Assuming (1), we have $s^{2}-(a+b) s+a b=s^{2}-c s,(a+b-c) s=a b$, $(a+b-c)(a+b+c)=2 a b,(a+b)^{2}-c^{2}=2 a b, a^{2}+b^{2}=c^{2}$. This shows that each of (1), (2), (3), (4) implies (5). The converse is clear. See Figure 2.

3. A formula relating the radii of the various circles

As a preparation for the proof of Theorem 2, we study the excircles in relation to the circumcircle and the incircle. We establish a basic result, Proposition 6, below. Lemma 4 and the statement of Proposition 6 can be found in [3, pp.185193]. An outline proof of Proposition 5 can be found in [4, §2.4.1]. Propositions 5 and 6 can also be found in [5, $\S 4.6 .1] .{ }^{1}$ We present a unified detailed proof of these propositions here, simpler and more geometric than the trigonometric proofs outlined in [3].

Consider triangle $A B C$ with its circumcircle (O). Let the bisector of angle A intersect the circumcircle at M. Clearly, M is the midpoint of the arc $B M C$. The line $B M$ clearly contains the incenter I and the excenter I_{a}.

Lemma 4. $M B=M I=M I_{a}=M C$.

[^0]

Figure 3. $r_{a}+r_{b}+r_{c}=4 R+r$
Proof. It is enough to prove that $M B=M I$. See Figure 3. This follows by an easy calculation of angles.
(i) $\angle I B I_{a}=90^{\circ}$ since the two bisectors of angle B are perpendicular to each other.
(ii) The midpoint N of $I_{a} I$ is the circumcenter of triangle $I B I_{a}$, so $N B=N I=$ $N I_{a}$.
(iii) From the circle $\left(I B I_{a}\right)$ we see $\angle B N A=\angle B N I=2 \angle B C I=\angle B C A$, but this means that N lies on the circumcircle $(A B C)$ and thus coincides with M. It follows that $M I_{a}=M B=M I$, and M is the midpoint of $I I_{a}$.

The same reasoning shows that $M C=M I=M I_{a}$ as well.
Now, let I^{\prime} be the intersection of the line $I O$ and the perpendicular from I_{a} to $B C$. See Figure 4. Note that this latter line is parallel to $O M$. Since M is the midpoint of $I I_{a}, O$ is the midpoint of $I I^{\prime}$. It follows that I^{\prime} is the reflection of I in O. Also, $I^{\prime} I_{a}=2 \cdot O M=2 R$. Similarly, $I^{\prime} I_{b}=I^{\prime} I_{c}=2 R$. We summarize this in the following proposition.

Proposition 5. The circle through the three excenters has radius $2 R$ and center 1 , the reflection of I in O.

Remark. Proposition 5 also follows from the fact that the circumcircle is the nine point circle of triangle $I_{a} I_{b} I_{c}$, and I is the orthocenter of this triangle.

Figure 4. $\quad I^{\prime} I_{a}=2 R$
Proposition 6. $r_{a}+r_{b}+r_{c}=4 R+r$.
Proof. The line $I_{a} I^{\prime}$ intersects $B C$ at the point X^{\prime} of tangency with the excircle. Note that $I^{\prime} X^{\prime}=2 R-r_{a}$. Since O is the midpoint of $I I^{\prime}$, we have $I X+I^{\prime} X^{\prime}=$ $2 \cdot O D$. From this, we have

$$
\begin{equation*}
2 \cdot O D=r+\left(2 R-r_{a}\right) . \tag{2}
\end{equation*}
$$

Consider the excenters I_{b} and I_{c}. Since the angles $I_{b} B I_{c}$ and $I_{b} C I_{c}$ are both right angles, the four points I_{b}, I_{c}, B, C are on a circle, whose center is the midpoint N of $I_{b} I_{c}$. See Figure 5. The center N must lie on the perpendicular bisector of $B C$, which is the line $O M$. Therefore N is the antipodal point of M on the circumcircle, and we have $2 N D=r_{b}+r_{c}$. Thus, $2(R+O D)=r_{b}+r_{c}$. From (2), we have $r_{a}+r_{b}+r_{c}=4 R+r$.

4. Proof of Theorem 2

We are now ready to prove Theorem 2.
(1) Since $A H=2 \cdot O D$, by (2) we express this in terms of R, r and r_{a}; similarly for $B H$ and $C H$:

$$
A H=2 R+r-r_{a}, \quad B H=2 R+r-r_{b}, \quad C H=2 R+r-r_{c} .
$$

Figure 5. $r_{a}+r_{b}+r_{c}=4 R+r$

From these,

$$
\begin{aligned}
A H+B H+C H+2 R & =8 R+3 r-\left(r_{a}+r_{b}+r_{c}\right) \\
& =2(4 R+r)+r-\left(r_{a}+r_{b}+r_{c}\right) \\
& =2\left(r_{a}+r_{b}+r_{c}\right)+r-\left(r_{a}+r_{b}+r_{c}\right) \\
& =r_{a}+r_{b}+r_{c}+r
\end{aligned}
$$

(2) This follows from simple calculation making use of Proposition 6.

$$
\begin{aligned}
& A H^{2}+B H^{2}+C H^{2}+(2 R)^{2} \\
= & \left(2 R+r-r_{a}\right)^{2}+\left(2 R+r-r_{b}\right)^{2}+\left(2 R+r-r_{c}\right)^{2}+4 R^{2} \\
= & 3(2 R+r)^{2}-2(2 R+r)\left(r_{a}+r_{b}+r_{c}\right)+r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+4 R^{2} \\
= & 3(2 R+r)^{2}-2(2 R+r)(4 R+r)+4 R^{2}+r_{a}^{2}+r_{b}^{2}+r_{c}^{2} \\
= & r^{2}+r_{a}^{2}+r_{b}^{2}+r_{c}^{2} .
\end{aligned}
$$

This completes the proof of Theorem 2.

5. Converse of Hansen's theorem

We prove a strong converse of Hansen's theorem (Theorem 10 below).
Proposition 7. A triangle $A B C$ satisfies

$$
\begin{equation*}
r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r^{2}=a^{2}+b^{2}+c^{2} \tag{3}
\end{equation*}
$$

if and only if it contains a right angle.
Proof. Using $A H=2 R \cos A$ and $a=2 R \sin A$, and similar expressions for $B H$, $C H, b$, and c, we have

$$
\begin{aligned}
& A H^{2}+B H^{2}+C H^{2}+(2 R)^{2}-\left(a^{2}+b^{2}+c^{2}\right) \\
= & 4 R^{2}\left(\cos ^{2} A+\cos ^{2} B+\cos ^{2} C+1-\sin ^{2} A-\sin ^{2} B-\sin ^{2} C\right) \\
= & 4 R^{2}\left(2 \cos ^{2} A+\cos 2 B+\cos 2 C\right) \\
= & 8 R^{2}\left(\cos ^{2} A+\cos (B+C) \cos (B-C)\right) \\
= & -8 R^{2} \cos A(\cos (B+C)+\cos (B-C)) \\
= & -16 R^{2} \cos A \cos B \cos C .
\end{aligned}
$$

By Theorem 2(2), the condition (3) holds if and only if $\mathrm{AH}^{2}+\mathrm{BH}^{2}+\mathrm{CH}^{2}+$ $(2 R)^{2}=a^{2}+b^{2}+c^{2}$. One of $\cos A, \cos B, \cos C$ must be zero from above. This means that triangle $A B C$ contains a right angle.

In the following lemma we collect some useful and well known results. They can be found more or less directly in [3].

Lemma 8. (1) $r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}=s^{2}$.
(2) $r_{a}^{2}+r_{b}^{2}+r_{c}^{2}=(4 R+r)^{2}-2 s^{2}$.
(3) $a b+b c+c a=s^{2}+(4 R+r) r$.
(4) $a^{2}+b^{2}+c^{2}=2 s^{2}-2(4 R+r) r$.

Proof. (1) follows from the formulas for the exradii and the Heron formula.

$$
\begin{aligned}
r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a} & =\frac{\triangle^{2}}{(s-a)(s-b)}+\frac{\triangle^{2}}{(s-b)(s-c)}+\frac{\triangle^{2}}{(s-c)(s-a)} \\
& =s((s-c)+(s-a)+(s-b)) \\
& =s^{2} .
\end{aligned}
$$

From this (2) easily follows.

$$
\begin{aligned}
r_{a}^{2}+r_{b}^{2}+r_{c}^{2} & =\left(r_{a}+r_{b}+r_{c}\right)^{2}-2\left(r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}\right) \\
& =(4 R+r)^{2}-2 s^{2} .
\end{aligned}
$$

Again, by Proposition 6,

$$
\begin{aligned}
& 4 R+r \\
= & r_{a}+r_{b}+r_{c} \\
= & \frac{\triangle}{s-a}+\frac{\triangle}{s-b}+\frac{\triangle}{s-c} \\
= & \frac{\triangle}{(s-a)(s-b)(s-c)}((s-b)(s-c)+(s-c)(s-a)+(s-a)(s-b)) \\
= & \frac{1}{r}\left(3 s^{2}-2(a+b+c) s+(a b+b c+c a)\right) \\
= & \frac{1}{r}\left((a b+b c+c a)-s^{2}\right)
\end{aligned}
$$

An easy rearrangement gives (3).
(4) follows from (3) since $a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(a b+b c+c a)=$ $4 s^{2}-2\left(s^{2}+(4 R+r) r\right)=2 s^{2}-2(4 R+r) r$.
Proposition 9. $r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r^{2}=a^{2}+b^{2}+c^{2}$ if and only if $2 R+r=s$.
Proof. By Lemma 8(2) and (4), $r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r^{2}=a^{2}+b^{2}+c^{2}$ if and only if $(4 R+r)^{2}-2 s^{2}+r^{2}=2 s^{2}-2(4 R+r) r ; 4 s^{2}=(4 R+r)^{2}+2(4 R+r) r+r^{2}=$ $(4 R+2 r)^{2}=4(2 R+r)^{2} ; s=2 R+r$.

Theorem 10. The following statements for a triangle $A B C$ are equivalent.
(1) $r_{a}+r_{b}+r_{c}+r=a+b+c$.
(2) $r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r^{2}=a^{2}+b^{2}+c^{2}$.
(3) $R+2 r=s$.
(4) One of the angles is a right angle.

Proof. (1) \Longrightarrow (3): This follows easily from Proposition 6.
$(3) \Longleftrightarrow(2)$: Proposition 9 above.
$(2) \Longleftrightarrow(4)$: Proposition 7 above.
$(4) \Longrightarrow(1)$: Theorem 1 (1).

References

[1] J. Casey, A Sequel to the First Six Books of the Elements of Euclid, 6th edition, 1888.
[2] D. W. Hansen, On inscribed and escribed circles of right triangles, circumscribed triangles, and the four-square, three-square problem, Mathematics Teacher, 96 (2003) 358-364.
[3] R. A. Johnson, Advanced Euclidean Geometry, Dover reprint, 1960.
[4] P. Yiu, Euclidean Geometry, Florida Atlantic University Lecture Notes, 1998.
[5] P. Yiu, Introduction to the Geometry of Triangle, Florida Atlantic University Lecture Notes, 2001.

Amy Bell: Department of Mathematics, Broward Community College, North Campus, 1000 Cocunut Creek Boulevard, Coconut Creek, FL 33066, USA

E-mail address: abmath@earthlink.net

[^0]: ${ }^{1}$ The referee has pointed out that these results had been known earlier, and can be found, for example, in the nineteenth century work of John Casey [1].

