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Bicevian Tucker Circles

Bernard Gibert

Abstract. We prove that there are exactly ten bicevian Tucker circles and show
several curves containing the Tucker bicevian perspectors.

1. Bicevian Tucker circles

The literature is abundant concerning Tucker circles. We simply recall that a
Tucker circle is centered &t on the Brocard axi®) K and meets the sidelines of
ABC at six pointsAy, A., Be, Ba, C,, Cy such that
(i) the lines X, Y, are parallel to the sidelines efBC,

(i) the linesY, Z, are antiparallel to the sidelines efBC, i.e., parallel to the
sidelines of the orthic trianglél, H, H...

Figure 1. A Tucker circle

If T'is defined byOT = ¢ - OK, we have

2abc ] =
a? + b2 4 2
and the radius of the Tucker circle is

B,C, = CyAp = A.B. = R|t| tan w,

Rr = R\/(l —1)2 4+ 12 tan? w

whereR is the circumradius and is the Brocard angle. See Figure 1.
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One obvious and trivial example consists of the circumcircld BiC which we
do not consider in the sequel. From now on, we assume that the six points are not
all the vertices ofABC.

In this paper we characterize thigevian Tucker circles, namely those for which
a Tucker triangle formed by three of the six points (one on each sideline) is per-
spective toABC. It is known that if a Tucker triangle is perspective ABC,
its companion triangle formed by the remaining three points is also perspective to
ABC'. The two perspectors are then said to be cyclocevian conjugates.

There are basically two kinds of Tucker triangles:
(i) those having one sideline parallel to a sidelinedd®C': there are three pairs of
such triangles e.g4, B.C, and its companioid.B,C,,
(ii) those not having one sideline parallel to a sidelineABC: there is only
one such pair namely, B.C, and its companiom.B,C,. These are the proper
Tucker triangles of the literature.
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Figure 2. A Tucker circle through a vertex diBC

In the former case, there are six bicevian Tucker circles which are obtained
whenT is the intersection of the Brocard axis with an altitudeABC (which
gives a Tucker circle passing through one vertexd&fC', see Figure 2) or with a
perpendicular bisector of the medial triangle (which gives a Tucker circle passing
through two midpoints oA BC, see Figure 3).

The latter case is more interesting but more difficult. Let us consider the Tucker
triangle A, B.C, and denote byX, the intersection of the lineB B, and CCy;
defineX, and X, similarly. Thus,ABC and A, B.C, are perspective (&) if and
only if the three linesA A4,, BB, andCC, are concurrent or equivalently the three
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Figure 3. A Tucker circle through two midpoints dfBC

points X,, X; and X, coincide. Consequently, the triangldsBC and A.B,C}
are also perspective &t, the cyclocevian conjugate of.

Lemmal. When T traverses the Brocard axis, the locus of X, isa conic ~,.

Proof. This can be obtained through easy calculation. Here is a synthetic proof.
Consider the projections; from the line AC' onto the lineBC' in the direction of
H,H,, andm, from the lineBC onto the lineAB in the direction ofAC. Clearly,
ma(m1(B.)) = ma(A:) = Cy. Hence, the tranformation which associates the line
BB._tothe lineCC, is a homography between the pencils of lines passing through
B andC. It follows from the theorem of Chasles-Steiner that their interseckjpn
must lie on a conic. O

This conic~, is easy to draw since it contain3, C', the anticomplement,
of A, the intersection of the mediaAG and the symmedia@ K and since the
tangent aC is the lineC' A. Hence the perspectdf we are seeking must lie on
the three conics,, 74, 7. andY must lie on three other similar conie§, v;, ...
See Figure 4.

Lemma 2. v,, 7, and ~. have three common points X;, ¢ = 1, 2, 3, and one of
themis always real.

Proof. Indeed,y, and~, for example meet ad and three other points, one of them
being necessarily real. On the other hand, it is clear that any poiging on two
conics must lie on the third one. O

This yields the following
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Figure 4. 4, v» and~. with only one real common poinX’

Theorem 3. There are three (proper) bicevian Tucker circles and one of themis
alwaysreal.

2. Bicevian Tucker perspectors

The pointsX; are not ruler and compass constructible since we need intersect
two conics having only one known common point. For ea¢hhere is a corre-
spondingy; which is its cyclocevian conjugate and the Tucker circle passes through
the vertices of the cevian triangles of these two points. We call these six pgints
Y; the Tucker bicevian perspectors.

When X is known, it is easy to find the corresponding cerffenf the Tucker
circle on the lineOK : the perpendicular df; to the line H,H. meetsAK at a
point and the parallel through this point i H. meets the linesi B, AC' at two
points on the required circle. See Figure 5 where only &nis real and Figure 6
where all three point; are real.

We recall that the bicevian coni{ P, Q) is the conic passing through the ver-
tices of the cevian triangles d? and(). See [3] for general bicevian conics and
their properties.

Theorem 4. Thethreelines £; passing through X;, Y; are parallel and perpendic-
ular to the Brocard axis OK..

Proof. We know (see [3]) that, for any bicevian comi¢P, @), there is an inscribed
conic bitangent t@ (P, @) at two points lying on the liné’Q). On the other hand,

any Tucker circle is bitangent to the Brocard ellipse and the line through the con-
tacts is perpendicular to the Brocard axis. Hence, any bicevian Tucker circle must
be tangent to the Brocard ellipse at two points lying on the ¥, and this
completes the proof. O
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Figure 5. One real bicevian Tucker circle

Figure 6. Three real bicevian Tucker circles

Corollary 5. Thetwo triangles X; X2 X5 and Y;Y5Y3 are perspective at X515 and
the axis of perspective istheline GK.
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Conversely, any bicevian con@ P, Q) bitangent to the Brocard ellipse must
verify Q = K/P. Such conic has its center on the Brocard line if and onlg if
lies either
(i) on pK(X3051, K) in which case the conic has always its center at the Brocard
midpoint X3q, but the Tucker circle with centeXsg is not a bicevian conic, or
(II) on p/C(X669, K) = K367 in [4]

This gives the following

Theorem 6. The six Tucker bicevian perspectors X;, Y; lie on pK(Xgg9, X6), the
pivotal cubic with pivot the Lemoine point K which isinvariant in the isoconjuga-
tion swapping K and the infinite point X5,5 of the Lemoine axis.

See Figure 7. We give another proof and more details on this cubic below.

Figure 7. Bicevian Tucker circle and Brocard ellipse

3. Nets of conics associated with the Tucker bicevian per spectors

We now consider curves passing through the six Tucker bicevian perspectors
X, Y;. Recall that two of these points are always real and that all six points are
two by two cyclocevian conjugates on three linggperpendicular to the Brocard
axis. We already know two nets of conics containing these points:

(i) the net\ generated by, 74, . which contain the points;, i = 1,2, 3;
(ii) the net\” generated by, +;, . which contain the point¥;, i = 1,2, 3.
The equations of the conics are

Ya : a’y(z +z) — b*z(z +y) =0,
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Ay a’z(z +y) — Ca(x + 2) = 0;

the other equations are obtained through cyclic permutations.
Thus, for any poinf? = : v : w in the plane, a conic iV is

N(P) = UV + VY + W
similarly for N’(P). Clearly, N'(A) = ~,, etc.

Proposition 7. Each net of conics (A and \’) contains one and only one circle.
ThesecirclesT" and I contain X710, the focus of the Kiepert parabola.

These circles are
r: Z VA1 — ) (a® — b*)z? 4+ a2 (b? — A)(c + a®b? — 2P )yz =0

cyclic

and

r: Z VA1 — ) (? - a®)z? — a?(b? — A) (b + a® — 2a*b?)yz = 0.
cyclic

In fact,T' = NV(P") andI” = N’(P") where

TR_—2 2—0 -

These points lie on the trilinear polar &3, the line through the centers of
the Kiepert and Jerabek hyperbolas and on the circum-conic with perspégtor
which is the isotomic transform of the Lemoine axis. See Figure 8.

Proposition 8. Each net of conics contains a pencil of rectangular hyperbolas.
Each pencil contains one rectangular hyperbola passing through X ¢.

Note that these two rectangular hyperbolas have the same asymptotic directions
which are those of the rectangular circum-hyperbola passing thraugh See
Figure 9.

4. Cubicsassociated with the Tucker bicevian perspectors

WhenP has coordinates which are lineariny, z, the curvesV'(P) and\ (P)
are in general cubics bW (z : z : y) andN'(y : z : x) are degenerate. In other
words, for any point: : y : z of the plane, we (loosely) may write

2%+ 2%+ Y =0
and
YYa+ 2%+ =0.
We obtain two circum-cubic&(P) and' (P) when P takes the form

P=qgqz—ry:rx—pz:py—qx
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Figure 9. Rectangular hyperbolas through the Tucker bicevian perspectors

associated to the cevian lines of the pdiht p : ¢ : r and both cubics contaify.
Obviously,KC(P) contains the point¥; andK’(P) contains the point;.
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For example, with) = G, we obtain the two cubick(G) andK'(G) passing
throughG and the vertices of the antimedial triangleG,G.. See Figure 10.

Figure 10. The two cubick(G) andK'(G)

These two cubic&(P) and ' (P) are isotomic pivotal cubics with pivots the
bicentric companions (see [5, p.47] and [2]).%53 respectively

Xtz =0a>—b*: 0% —c*: c* —a?
and

Xla=c*—a?:a® =02 0? - &2
both on the line at infinity. The two other points at infinity of the cubics are those
of the Steiner ellipse.

4.1 An alternative proof of Theorem 6. We already know (Theorem 6) that the
six Tucker bicevian perspector§, Y; lie on the cubigp/C( X469, X6). Here is an
alternative proof. See Figure 11.

Proof. Let U, V, W be the traces of the perpendicularGto the Brocard axis.
We denote byl", the decomposed cubic which is the union of the lif& and
the conic~,. I', contains the vertices cd BC and the pointsX;. I', andTI’. are
defined similarly and contain the same points.

The cubicc? T', 4+ a? 'y + b I, is another cubic through the same points since it
belongs to the net of cubics. Itis easy to verify that this latter cubii€Xseo, X¢).

Now, if I}, I}, I', are defined likewise, the cubié I, + >’} + a*I", is
pK(Xe69, X¢) again and this shows that the six Tucker bicevian perspectors lie on
the curve. O
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Figure 11. pK(Xs69, X6) and the three lines;

4.2 More on the cubic pX(Xg69, X6). The cubicp/C(Xgg9, X¢) also containgy,
X110, X512, X3124 and meets the sidelines dfBC' at the feet of the symmedians.
Note that the poleXgg9 is the barycentric product d& and X5, the isopivot or
secondary pivot (see [1§1.4). This shows that, for any poidt/ on the cubic,

the pointK /M (cevian quotient or Ceva conjugate) lies on the cubic and the line
M K /M containsXs:, i.e. is perpendicular to the Brocard axis.

We can apply to the Tucker bicevian perspectors the usual group law on the
cubic. For any two point$’, @ on pX(Xse9, X¢) We defineP @ @ as the third
intersection of the line throughR and the third point on the lin€Q.

For a permuation, j, kof 1, 2, 3, we have

Furthermore X; ® Y; = K. These properties are obvious since the pivot of the
cubic isK and the secondary pivot i%;15.

The third point ofpC(Xeg9, X6) 0N the lineK Xi1g is X3104 = a?(b* — ¢?)? :
b(c? —a?)? : *(a® —b?)?, the cevian quotient ok and X5;5 and the third point
on the lineX710 X512 is the cevian quotient ok and X 1.

The infinite points 0b/XC(Xg69, X6) areXs12 and two imaginary points, those of
the bicevian ellips&”' (G, K) or, equivalently, those of the circum-ellip§& Xsg)
with perspectorX3g and centetXy4;.

The real asymptote is perpendicular to the Brocard axis and meets the curve at
X = K/X512, the third point on the lind{ X7,, seen aboveX also lies on the
Brocard ellipse, o' (G, K). See Figure 12.
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Figure 12. K367 = p/C(Xes9, Xo)

pK(Xes9, X¢) is the isogonal transform @ffC( Xg9, Xo9), @ member of the class
CLOOQ7 in [4]. These are the/C(W, W) cubics or parallel tripolars cubics.
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