Construction of Triangle from a Vertex and the Feet of Two Angle Bisectors

Harold Connelly, Nikolaos Dergiades, and Jean-Pierre Ehrmann

Abstract. We give two simple constructions of a triangle given one vertex and the feet of two angle bisectors.

1. Construction from \((A, T_a, T_b)\)

We present two simple solutions of the following construction problem (number 58) in the list compiled by W. Wernick [2]: Given three noncollinear points \(A, T_a\) and \(T_b\), to construct a triangle \(ABC\) with \(T_a, T_b\) on \(BC, CA\) respectively such that \(AT_a\) and \(BT_b\) are bisectors of the triangle. L. E. Meyers [1] has indicated the constructibility of such a triangle. Let \(\ell\) be the half line \(AT_b\). Both solutions we present here make use of the reflection \(\ell'\) of \(\ell\) in \(AT_a\). The vertex \(B\) necessarily lies on \(\ell'\). In what follows \(P'(Q)\) denotes the circle, center \(P\), passing through the point \(Q\).

Construction 1. Let \(Z\) be the pedal of \(T_b\) on \(\ell'\). Construct two circles, one \(T_b(Z)\), and the other with \(T_aT_b\) as diameter. Let \(X\) be an intersection, if any, of these two circles. If the line \(XT_a\) intersects the half lines \(\ell'\) at \(B\) and \(\ell\) at \(C\), then \(ABC\) is a desired triangle.

Construction 2. Let P be an intersection, if any, of the circle $T_b(T_a)$ with the half line ℓ'. Construct the perpendicular bisector of PT_a. If this intersects ℓ' at a point B, and if the half line BT_a intersects ℓ at C, then ABC is a desired triangle.

We study the number of solutions for various relative positions of A, T_a and T_b. Set up a polar coordinate system with A at the pole and T_b at $(1, 0)$. Suppose T_a has polar coordinates (ρ, θ) for $\rho > 0$ and $0 < \theta < \frac{\pi}{2}$. The half line ℓ' has polar angle 2θ. The circle $T_b(T_a)$ intersects ℓ' if the equation

$$\sigma^2 - 2\sigma \cos 2\theta = \rho^2 - 2\rho \cos \theta$$

has a positive root σ. This is the case when

(i) $\rho > 2\cos \theta$, or
(ii) $\rho \leq 2\cos \theta$, $\cos 2\theta > 0$ and $4\cos^2 2\theta + 4\rho(\rho - 2\cos \theta) \geq 0$. Equivalently, $\rho_+ \leq \rho \leq 2\cos \theta$, where

$$\rho_\pm = \cos \theta \pm \sqrt{\sin \theta \sin 3\theta}$$

are the roots of the equation $\rho^2 - 2\rho \cos \theta + \cos^2 2\theta = 0$ for $0 < \theta < \frac{\pi}{3}$.

Now, the perpendicular bisector of PT_a intersects the line ℓ' at the point B with polar coordinates $(\beta, 2\theta)$, where

$$\beta = \frac{\rho \cos \theta - \sigma \cos 2\theta}{\rho \cos \theta - \sigma}.$$

The requirement $\beta > 0$ is equivalent to $\sigma < \rho \cos \theta$. From (1), this is equivalent to $\rho < 4\cos \theta$.

For $0 < \theta < \frac{\pi}{3}$, let P_\pm be the points with polar coordinates (ρ_\pm, θ). These points bound a closed curve \mathcal{C} as shown in Figure 3. If T_a lies inside the curve \mathcal{C},
then the circle $T_b(T_a)$ does not intersect the half line ℓ'. We summarize the results with reference to Figure 3.

The construction problem of ABC from (A, T_a, T_b) has

(1) a unique solution if T_a lies in the region between the two semicircles $\rho = 2 \cos \theta$ and $\rho = 4 \cos \theta$,

(2) two solutions if T_a lies between the semicircle $\rho = 2 \cos \theta$ and the curve \mathcal{C} for $\theta < \frac{\pi}{4}$.

2. Construction from (A, T_b, T_c)

The construction of triangle ABC from (A, T_a, T_b) is Problem 60 in Wernick’s list [2]. Wernick has indicated constructibility. We present two simple solutions.

Construction 3. Given A, T_b, T_c, construct the circles with centers T_b and T_c, tangent to AT_c and AT_b respectively. The common tangent of these circles that lies opposite to A with respect to the line T_bT_c is the line BC of the required triangle ABC. The construction of the vertices B, C is obvious.
Construction 4. Given A, T_b, T_c, construct

(i) the circle through the three points
(ii) the bisector of angle T_bAT_c to intersect the circle at M,
(iii) the reflection M' of M in the line T_bT_c,
(iv) the circle $M'(T_b)$ to intersect the bisector at I (so that A and I are on opposite sides of T_bT_c),
(v) the half line T_bI to intersect the half line AT_c at B,
(vi) the half line T_cI to intersect the half line AT_b at C.

ABC is the required triangle with incenter I.

References

Harold Connelly: 102 Blowing Tree Drive, Georgetown, Kentucky 40324, USA
E-mail address: cherylandharold@roadrunner.com

Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greece
E-mail address: ndergiades@yahoo.gr

Jean-Pierre Ehrmann: 6, rue des Cailloux, 92110 - Clichy, France
E-mail address: Jean-Pierre.EHRMANN@wanadoo.fr