Constructive Solution of a Generalization of Steinhaus’ Problem on Partition of a Triangle

Jean-Pierre Ehrmann

Abstract. We present a constructive solution to a generalization of Hugo Steinhaus’ problem of partitioning a given triangle, by dropping perpendiculars from an interior point, into three quadrilaterals whose areas are in prescribed proportions.

1. Generalized Steinhaus problem

Given an acute angled triangle ABC, Steinhaus’ problem asks a point P in its interior with pedals P_a, P_b, P_c on BC, CA, AB such that the quadrilaterals $AP_bPP_c, BP_cPP_a,$ and CP_aPP_b have equal areas. See [3] and the bibliographic information therein. A. Tyszka [2] has also shown that Steinhaus’ problem is in general not soluble by ruler-and-compass. We present a simple constructive solution (using conics) of a generalization of Steinhaus’ problem. In this note, the area of a polygon P will be denoted by $\Delta(P)$. In particular, $\Delta = \Delta(ABC)$. Thus, given three positive real numbers u, v, w, we look for the point(s) P such that

(1) P is inside ABC and P_a, P_b, P_c lie respectively in the segments BC, CA, AB.

(2) $\Delta(AP_bPP_c) : \Delta(BP_cPP_a) : \Delta(CP_aPP_b) = u : v : w$.

We do not require the triangle to be acute-angled.

Lemma 1. Consider a point P inside the angular sector bounded by the half-lines AB and AC, with projections P_b and P_c on AC and AB respectively. For a positive real number k, $\Delta(AP_bPP_c) = k \cdot \Delta(ABC)$ if and only if P lies on the rectangular hyperbola with center A, focal axis the internal bisector AI, and semi-major axis \sqrt{kbc}.

Proof. We take A for pole and the bisector AI for polar axis, let (ρ, θ) be the polar coordinates of P. As $AP_b = \rho \cos \left(\frac{\pi}{2} - \theta\right)$ and $PP_b = \rho \sin \left(\frac{\pi}{2} - \theta\right)$, we have $\Delta(AP_bPP_c) = \frac{1}{2}\rho^2 \sin(A - 2\theta)$. Similarly, $\Delta(AP_cPP_a) = \frac{1}{2}\rho^2 \sin(A + 2\theta)$. Hence the quadrilateral AP_bPP_c has area $\frac{1}{2}\rho^2 \sin A \cos 2\theta$. Therefore,

$$\Delta(AP_bPP_c) = k \cdot \Delta(ABC) \iff \rho^2 \cos 2\theta = \frac{2k \cdot \Delta(ABC)}{\sin A} = kbc.$$
Theorem 2. Let \(U \) be the point with barycentric coordinates \((u : v : w)\) and \(M_1, M_2, M_3 \) be the antipodes on the circumcircle \(\Gamma \) of \(ABC \) of the points whose Simson lines pass through \(U \) and \(P \) the incenter of the triangle \(M_1M_2M_3 \). If \(P \) verifies (1), then \(P \) is the unique solution of our problem. Otherwise, the generalized Steinhaus problem has no solution.

Remarks. (a) Of course, if \(ABC \) is acute angled, and \(P \) inside \(ABC \), then (1) will be verified.

(b) As \(U \) lies inside the Steiner deltoid, there exist three real Simson lines through \(U \); so \(M_1, M_2, M_3 \) are real and distinct.

(c) Let \(h_A \) be the rectangular hyperbola with center \(A \), focal axis \(AI \), and semi-major axis \(\sqrt{\frac{u}{u + v + w}} \cdot bc \), and define rectangular hyperbolas \(h_B \) and \(h_C \) analogously.

If \(P \) verifies (1), it will verify (2) if and only if \(P \in h_A \cap h_B \). In this case, \(P \in h_C \), and the solutions of our problem are the common points of \(h_A, h_B, h_C \) verifying (1).

(d) The four common points \(P_1, P_2, P_3, P_4 \) (real or imaginary) of the rectangular hyperbolae \(h_A, h_B, h_C \) form an orthocentric system. As \(h_A, h_B, h_C \) are centered respectively at \(A, B, C \), any conic through \(P_1, P_2, P_3, P_4 \) is a rectangular hyperbola with center on \(\Gamma \). As the vertices of the diagonal triangle of this orthocentric system are the centers of the degenerate conics through \(P_1, P_2, P_3, P_4 \), they lie on \(\Gamma \).

(e) We will see later that \(P_1, P_2, P_3, P_4 \) are always real.

2. Proof of Theorem 2

If \(P \) has homogeneous barycentric coordinates \((x : y : z)\) with reference to triangle \(ABC \), then

\[
(x + y + z)^2 \Delta(APP_b) = y \left(z + \frac{b^2 + c^2 - a^2}{2b^2} y \right) \Delta,
\]

\[
(x + y + z)^2 \Delta(PP_c) = z \left(y + \frac{b^2 + c^2 - a^2}{2c^2} z \right) \Delta,
\]

where \(\Delta = \Delta(ABC) \). Hence the barycentric equation of \(h_A \) is

\[
h_A(x, y, z) := \frac{b^2 + c^2 - a^2}{2} \left(\frac{y^2}{b^2} + \frac{z^2}{c^2} \right) + 2 y z - \frac{u}{u + v + w} (x + y + z)^2 = 0.
\]

We get \(h_B \) and \(h_C \) by cyclically permuting \(a, b, c; u, v, w; x, y, z \).

If \(M = (x : y : z) \) is a vertex of the diagonal triangle of \(P_1P_2P_3P_4 \), it has the same polar line (the opposite side) with respect to the three conics \(h_A, h_B, h_C \). Hence,

\[
\frac{\partial h_B}{\partial y} \frac{\partial h_C}{\partial z} - \frac{\partial h_B}{\partial z} \frac{\partial h_C}{\partial y} = \frac{\partial h_C}{\partial x} \frac{\partial h_A}{\partial z} - \frac{\partial h_C}{\partial z} \frac{\partial h_A}{\partial x} = \frac{\partial h_A}{\partial y} \frac{\partial h_B}{\partial x} - \frac{\partial h_A}{\partial x} \frac{\partial h_B}{\partial y} = 0.
\]

Let \(N \) be the reflection of \(M \) in the circumcenter \(O \); \(N_a, N_b, N_c \) the pedal triangle of \(N \). Clearly, \(N_a, N_b, N_c \) are the reflections of the vertices of the pedal triangle
of M in the midpoints of the corresponding sides of ABC. Now, N_b and N_c have coordinates
\[(b^2 + c^2 - a^2)y + 2b^2z : 0 : (a^2 + b^2 - c^2)y + 2b^2x\]
and
\[(b^2 + c^2 - a^2)z + 2c^2y : (c^2 + a^2 - b^2)z + 2c^2x : 0\]
respectively. A straightforward computation shows that
\[
\det[N_b, N_c, U] = b^2c^2(u + v + w) \left(\frac{\partial h_B}{\partial y} \frac{\partial h_C}{\partial z} - \frac{\partial h_B}{\partial z} \frac{\partial h_C}{\partial y} \right) = 0.
\]
Similarly, $\det[N_c, N_a, U] = \det[N_a, N_b, U] = 0$. It follows that N lies on the circumcircle (we knew that already by Remark (d)), and the Simson line of N passes through U.

Hence, $M_1M_2M_3$ is the diagonal triangle of the orthocentric system $P_1P_2P_3P_4$, which means that $P_1P_2P_3P_4$ are real and are the incenter and the three excenters of $M_1M_2M_3$.

As the three excenters of a triangle lie outside his circumcircle, the incenter of $M_1M_2M_3$ is the only common point of h_A, h_B, h_C inside Γ. This completes the proof of Theorem 2.

3. Constructions

In [1], the author has given a construction of the points on the circumcircle whose Simson line pass through a given point. Let U^- and U^+ be the complement and the anticomplement of U, i.e., the images of U under the homotheties $h(G, -\frac{1}{2})$ and $h(G, -2)$ respectively. Since
\[
(\text{Reflection in } O) \circ (\text{Translation by } \overrightarrow{HU}) = \text{Reflection in } U^-,
\]
if h_0 is the reflection in U^- of the rectangular circumhyperbola through U, and M_4 the antipode of U^+ on h_0, then M_1, M_2, M_3, M_4 are the four common points of h_0 and the circumcircle.

In the case $u = v = w = 1$, h_0 is the reflection in the centroid G of the Kiepert hyperbola of ABC. It intersects the circumcircle Γ at M_1, M_2, M_3 and the Steiner point of ABC. See Figure 1.
Figure 1.

References

Jean-Pierre Ehrmann: 6, rue des Cailloux, 92110 - Clichy, France

E-mail address: Jean-Pierre.EHRMANN@wanadoo.fr