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Euler’s Triangle Determination Problem

Joseph Stern

Abstract. We give a simple proof of Euler’s remarkable theorem that for a non-
degenerate triangle, the set of points eligible to be the incenter is precisely the
orthocentroidal disc, punctured at the nine-point center. The problem is handled
algebraically with complex coordinates. In particular, we show how the vertices
of the triangle may be determined from the roots of a complex cubic whose co-
efficients are functions of the classical centers.

1. Introduction

Consider the determination of a triangle from its cenftéithat relations must
be satisfied by point®, H, I so that a unigue triangle will have these points as
circumcenter, orthocenter, and incenter? In Euler’s groundbreaking articleof3],
lutio facilis problematum quorundam geometricorum difficillimorum, this intrigu-
ing question is answered synthetically, but without any comment on the geometric
meaning of the solution.

Euler proved the existence of the required triangle by treating the lengths of the
sides as zeros of a real cubic, the coefficients being functiotd pO H, HI. He
gave the following algebraic restriction on the distances to ensure that the cubic
has three real zeros:

OI? <OH?-2.-HI? <2-0I%.

Though Euler did not remark on the geometric implications, his restriction was
later proven equivalent to the simpler inequality

GI* + IH? < GH?,
whereG is the point that divide®) H in the ratiol:2 (G is the centroid). This
result was presented in a beautiful 1984 paper [4] by A. P. Guinand. Its geometric
meaning is immediatel must lie inside the circle on diametétH. It also turns
out that/ cannot coincide with the midpoint @ H, which we denote by (the
nine-point center). The remarkable fact is thitand only points inside the circle
and different fromN are eligible to be the incenter. This region is often called
the orthocentroidal disc, and we follow this conventiocnGuinand considered the

Publication Date: January 8, 2007. Communicating Editor: Paul Yiu.
Dedicated to the tercentenary of Leonhard Euler.
The phrase “determination of a triangle” is borrowed from [7].

2Conway discusses several properties of the orthocentroidal disc in [1].



2 J. Stern

cosines of the angles as zeros of a real cubic. He showed that this cubic has three
real zeros with positive inverse cosines summing.t@ hus the angles are known,

and the scale may be determined subsequently fodih The problem received

fresh consideration in 2002, when B. Scimemi [7] showed how to solve it using
properties of the Kiepert focus, and again in 2005, when G. C. Smith [8] used
statics to derive the solution.

The approach presented here uses complex coordinates. We show that the ver-
tices of the required triangle may be computed from the roots of a certain complex
cubic whose coefficients depend only upon the classical centers. This leads to a
relatively simple proof.

2. Necessity of Guinand’s Locus

Given a nonequilateral triangle, we show first that the incenter must lie within
the orthocentroidal disc and must differ from the nine-point center. The equilateral
triangle is uninteresting, since all the centers coincide.

Let AABC be nonequilateral. As usual, we wri€® H,I,G, N, R, r for the
circumcenter, orthocenter, incenter, centroid, nine-point center, circumradius and
inradius. Two formulas will feature very prominently in our discussion:

OI’=R(R—2r) and NI=31(R-2r).
The first is due to Euler and the second to FeuerBadtey jointly imply
Ol >2-NI,
provided the triangle is nonequilateral. Now given a segni&@tand a number

A > 1, the Apollonius Circle Theorem states that

(1) the equationPX = X - QX describes a circle whose center lies B,
with P inside and?) outside;
(2) the inequalityP X > X - QX describes the interior of this circle (see [6]).

Thus the inequalityDI > 2 - NT placesI inside the circleOX = 2 - NX, the
center of which lies on the Euler lire N. SinceG and H lie on the Euler line and
satisfy the equation of the circlé; H is a diameter, and this circle turns out to be
the orthocentroidal circle. Finally, the formulas of Euler and Feuerbach show that
if I = N, thenO = I. This means that the incircle and the circumcircle cne
centric, forcing AABC to be equilateral. Thu# is ineligible to be the incenter.

3. Complex Coordinates

Our aim now is to express the classical centers"od BC' as functions of
A, B, C, regarded as complex numbéréle are free to pu® = 0, so that

Al = |B| = [C] = R.

3Proofs of both theorems appear in [2].
4See [5] for a more extensive discussion of this approach.
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The centroid is given b§G = A+ B+ C. The theory of the Euler line shows that
3G =20 + H, and sinc&) = 0, we have
H=A+B+C.

Finally, itis clear thaBN = O + H = H.

Figure 1.

To deal with the incenter, leX, Y, Z be the points at which the extended angle
bisectors meet the circumcircle (Figure 1). Itis not difficult to see th&t | Y 7,
BY 1 ZX andCZ 1 XY. For instance, one angle betwedX andY 7 is
the average of the minor arc frorh to Z and the minor arc fromX to Y. The
first arc measureé, and the second@ + B. Thus the angle betweeAX and
Y Z is /2. Evidently the angle bisectors df ABC coincide with the altitudes of
AXY Z,andlI is the orthocenter of\ XY Z. Since this triangle has circumcenter
0, its orthocenter is

I=X+Y+2Z

We now introduce complex square rootss, v so that
o = A, 8% =B, v =C.
There are two choices for each@fj3, v. Observe that
B7yl=R  and  arg(fy) = 5(arg B +arg C),

so that+3~ are the mid-arc points betwedhandC. It follows thatX = +3~,
depending on our choice of signs. For reasons to be clarified later, we would like
to arrange it so that

X = _ﬁFYv Y = —a, Z = —Ct/@.
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These hold ifo, 3, v are chosen so as to makex 3y acute, as we now show.

Let T denote the circléz| = v/R, on whicha, 3,y must lie. Temporarily let
a1, ag be the two square roots df, andg; a square root oB. Finally, lety; be the
square root of” on the side oty ay containings; (Figure 2). NowAqw; 5,y is
acute if and only if any two vertices are separated by the diameiethobugh the
remaining vertex. Otherwise one of its angles would be inscribed in a minor arc,
rendering it obtuse. It follows that of all eight trianglésy3;vi, only Ay 3o
andAas 317, are acute.

[e31
Y2
B1 4‘
V ﬁQ
71
Q2

Figure 2.

Now let (o, 8,v) be either(ay, 52,71) or (ag, 51,72), SO thatAaFy is acute.
Consider the stretch-rotation— (z. This carries the diameter bfwith endpoints
+a to the diameter ofz| = R with endpointsta/3, one of which isZ. Now
and~ are separated by the diameter with endpoihtg and thereforeB and g
are separated by the diameter with endpoibs. Thus to proveX = —(3v, we
must only show thak’ and B are on thesame side of the diameter with endpoints
+7. This will follow if the arc from Z to X passing througtB is minor (Figure
3); but of course its measure is

/Z0B + /BOX =2/ZCB+2/BAX =C + A < .

HenceX = —(3~. Similar arguments show that = —ya andZ = —a0.
To summarize, the incenter &f A BC' may be expressed as

I =—(By+ya+ap),

where a, 3,~ are complex square roots of, B, C for which AaSy is acute.
Note that this expression is indifferent to the choice betwgens,, 1) and
(a2, 1,72), since each of these triples is the negative of the other.
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Figure 3.

4. Sufficiency of Guinand’s Locus

PlaceO and H in the complex plane so tha&? lies at the origin. DefingV
and G as the points which divid® H internally in the ratiosl : 1 and1 : 2,
respectively. Suppose thétis a point different from N selected from within the
circle on diametetGH. SinceH — 21 = 2(N — I) is nonzero, we are free to scale
coordinates so tha! — 2] = 1. Letu = |I|. Guinand’s inequalityDl > 2- N1,
which we write in complex coordinates as

|I| > 2|N —I|
now acquires the very simple form> 1.
Consider the cubic equation
2 -2 Iz +d*I=0.

By the Fundamental Theorem of Algebra, this has three complex zernesy.
These turn out to be square roots of the required vertices. From the standard rela-
tions between zeros and coefficients, one has the important equations:

a+pB+v=1, By +ya+af =—1I, afy = —u?l.
Let us first show that the zeros lie on a circle centered at the origin. In fact,
lal = [8] = Iyl = u.
If 2 is a zero of the cubic, theft(z — 1) = I(z — u?). Taking moduli, we get
|22z — 1] = ulz — u?.
Squaring both sides and applying the rlalé = ww, we find that

21z = 1)(2 = 1) = u?(2 — u?)(z — u?),
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(12° = u®) = (21" = uh)(z + 2) + |2 (|z]* — u®) = 0.
Assume for contradiction that a certain zerthvas modulus# «. Then we may
divide the last equation by the nonzero numpér— u2, getting

|2+ W22+ ut = (2P +u®) (2 +2) + 2> =0,
or after a slight rearrangement,
(2 + u?)(|z]? = (z + 2)) + u* + |2)* = 0.
An elementary inequality of complex algebra says that
—1< 22— (2+32).
From this inequality and the above equation, we find that
(|22 + u?)(—1) + u* + |22 <0,
or after simplifying,
ut — u? <0.
As this result is inconsistent with the hypothesis- 1, we have proven that all the
zeros of the cubic equation have modulus
Now define A, B, C by
A=a? B =3 C =%
Clearly|A| = |B| = |C| = u?. Since three points of a circle cannot be collinear,
ANABC will be nondegenerate so long ds B, C' are distinct. Thus suppose for
contradiction thatd = B. It follows thata = +3. If a = —3, theny =
a+ B+~ = 1, yielding the falsehood = |y| = 1. The only remaining alternative
isa = [. In this case2a + v = 1 anda(2vy + ) = —1, so that
all2y+af =11,  or [2y+af=1
Since2a + = 1, one has2 — 3a| = |2y + «| = 1. Squaring this last result gives
4—6(a+a)+9al>=1, or 2a+a)=1+3u’
Since|a + a| = 2|Re(a)| < 2|al, we havel + 3u? < 4u. Therefore the value of
u is bounded between the zeros of the quadratic
3u? —4u+1= (3u—1)(u—1),
yielding the falsehoo@ < u < 1. By this kind of reasoning, one shows that any
two of A, B, C are distinct, and hence thatA BC' is nondegenerate.
As in §3, sinceA ABC' has circumcentel, its orthocenter is
A+B+C = o?+ 32 +4°

= (a+ B+ =28y +7ya+ap)

= 1421

= H.
Here we see the rationale for having chogea —(5v + ya + af).

Lastly we must show that the incenter 6fABC lies atl. It has already ap-
peared thal = —(5y + ya + af). As in §3, exactly two of the eight possible
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triangles formed from square roots 4f B, C are acute, and these are mutual im-
ages under the map+— —z. Moreover, the incenter ch ABC' is necessarily the
value of the expression (%23 + 2321 + 2122) WheneverA z; z5 23 is one of these
two acute triangles. Thus to identify the incenter withwe must only show that
Aafy is acute.
Angle & is acute if and only if
18— <la =B +|a -
On applying the ruléw[?> = ww, this becomes
2u? — (67 + B7) < 4u® — (af + aB + a7 + ay),

af +af + oy +ay + By + By < 2(u” + B3 + Bv).
Here the left-hand side may be simplified considerably as
(@+B+y@+8+7) —laf =B = h1? =1 - 3u”.
In a similar way, the right-hand side simplifies as
2u® +2(8 +7)(B+7) — 26]* - 21y/?
= 2(1-a)(1—a)—2u?
= 200+ —a—a—u?)
= 2-2a+a).
To complete the proof that is acute, it remains only to show that
2+ a) < 1+ 3u?.
However2(a + @) < 4|a| = 4u, and we have already seen that
du < 1+ 3u?,

since the opposite inequality yields the falsehéog u < 1. Similar arguments

establish thaﬁ and~ are acute.

To summarize, we have produced a nondegenerate trigdnglBC which has
classical centers at the given poiribs H, I. We now return to original notation
and writeR = u? for the circumradius oNABC.

5. Uniqueness

Suppose some other triangle DEF hasO, H, I as its classical centers. The
formulas of Euler and Feuerbach presenteglitnave a simple but important con-
sequence: If atriangle h&s, NV, I as circumcenter, nine-point center, and incenter,
then itscircumdiameter is OI?/NI. This means that ABC and ADEF share
not only the same circumcenter, but also the same circumradius. It follows that
ID| = |E| = |F| = R.

Since ADEF has circumcente®, its orthocenterH is equal toD + E + F.
Choose square rootse, ¢ of D, E, F' so that the incentef will satisfy

I = —(eC + (0 + de).



8 J. Stern

Then
(b+e4+0)? = 2+ 42+ 2(eC + o+ de)

= D+E+F-21]

= H-2I

= 1.
Since the map — —z leavesI invariant, but reverses the sign ®f+ € + ¢, we
may change the signs 6fe, ( if necessary to make it so that

0+e+(=1.
Observe next thabe(| = u® = |u?I|. Thus we may write
Se¢ = —0u*I,  where |0] =1.
The elementary symmetric functions ®k, ( are now
S+et+(=1, €€+ ¢5+ e = —1, deC = —Oul.
It follows thatJ, €, ¢ are the roots of the cubic equation
23— 22— Iz 4 0u*T = 0.
As in §4, we rearrange and take moduli of both sides to obtain
12)?|z — 1| = u|z — Qul.
Squaring both sides of this result, we get
2|1 (22 — 2 — 2+ 1) = u®(|2]* — u?20 — u?20 + u?).
Since all zeros of the cubic have moduluswe may replace every occurrence of
|22 by u2. This dramatically simplifies the equation, reducing it to
2+ 2z =20+ 0.
Substitutingd, €, ¢ here successively farand adding the results, one finds that
2=0+0,
since B -
d+e+(=0+e+(=1

It follows easily thatd = 1. Evidentlyd, ¢, { are determined from the same cubic

asa, 3,~. Therefore(D, E, F') is a permutation of A, B, C'), and the solution of
the determination problem is unique.
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On a Porism Associated with the Euler
and Droz-Farny Lines

Christopher J. Bradley, David Monk, and Geoff C. Smith

Abstract. The envelope of the Droz-Farny lines of a triangle is determined to
be the inconic with foci at the circumcenter and orthocenter by using purely
Euclidean means. The poristic triangles sharing this inconic and circumcircle
have a common circumcenter, centroid and orthocenter.

1. Introduction

The triangleA BC has orthocenteHl and circumcircleX. Suppose that a pair

of perpendicular lines througK are drawn, then they meet the sideg’, C A,

AB in pairs of points. The midpointX, Y, Z of these pairs of points are known

to be collinear on the Droz-Farny line [2]. The envelope of the Droz-Farny line
is the inconic with foci aD and H, known recently as the Macbeath inconic, but
once known as the Euler inconic [6]. We support the latter terminology because of
its strong connection with the Euler line [3]. According to Goormaghtigh writing
in [6] this envelope was first determined by Neuberg, and Goormaghtigh gives an
extensive list of early articles related to the Droz-Farny line problem. We will not
repeat the details since [6] is widely available through the archive service JSTOR.

We give a short determination of the Droz-Farny envelope using purely Eu-
clidean means. Taken in conjunction with Ayme’s recent proof [1] of the existence
of the Droz-Farny line, this yields a completely Euclidean derivation of the enve-
lope.

This envelope is the inconic of a porism consisting of triangles with a common
Euler line and circumcircle. The sides of triangles in this porism arise as Droz-
Farny lines of any one of the triangles in the porism. Conversely, if the orthocenter
is interior to>, all Droz-Farny lines will arise as triangle sides.

2. The Droz-Farny envelope

Theorem. Each Droz-Farny line of triangle ABC' isthe perpendicular bisector of
a line segment joining the orthocenter H to a point on the circumcircle.

Proof. Figure 1 may be useful. Let perpendicular linesnd! through H meet
BC,CA, AB atP and P/, Q and@’, R and R’ respectively and leX, Y, Z be
the midpoints ofP P, QQ’, RR'.

The collinearity ofX, Y, Z is the Droz-Farny theorem. L&t be the foot of
the perpendicular froni/ to XY Z and produced K to L with HK = K L. Now
the circleH PP’ has centeX and X H = XL soL lies on this circle. Lef\/, M’
be the feet of the perpendiculars frairto [, /. Note thatLM H M’ is a rectangle

Publication Date: January 16, 2007. Communicating Editor: Paul Yiu.
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Figure 1. The Droz-Farny envelope

so K is on M M’. Then the foot of the perpendicular fromto the line PP (i.e.
BCQC) lies onM M’ by the Wallace-Simson line property applied to the circumcircle
of PP'H. Equally well, both perpendiculars dropped frdnto AB andC A have
feet onM M’. HenceL lies on circleABC with M M’ as its Wallace-Simson line.
ThereforeX'Y 7 is a perpendicular bisector of a line segment joinfiigo a point

on the circumcircle. O

Note thatK lies on the nine-point circle oA BC. An expert in the theory of
conics will recognize that the nine-point circle is the auxiliary circle of the Euler
inconic of ABC' with foci at the circumcenter and orthocenter, and for such a
reader this article is substantially complete. The poikitsY, Z are collinear
and the lineXY Z is tangent to the conic inscribed in triangleBC and having
O, H as foci. The direction of the Droz-Farny line is a continuous function of
the direction of the mutual perpendiculars; the argument of the Droz-Farny line
against a reference axis increases monotonically as the perpendiculars rotate (say)
anticlockwise througl#, with the position of the Droz-Farny line repeating itself
asf increases by. By the intermediate value theorem, the envelope of the Droz-
Farny lines is the whole Euler inconic.

We present a detailed discussion of this situatiog3iffior the lay reader.
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Incidentally, the fact thaK'Y" is a variable tangent to a conic of whiéC', C' A
are fixed tangents mean that the correspondéfce Y is a projectivity between
the two lines. There is a neat way of setting up this map: let the perpendicular
bisectors ofAH, BH meetAB at S andT respectively. ThertY and7TX are
parallel. With a change of notation denote the li®s, CA, AB, XY Z by a,
b, ¢, d respectively; lek, f be the perpendicular bisectors 4f1, BH. All these
lines are tangents to the conic in question. Consider the Brianchon hexagon of
linesa, b, ¢, d, e, f. The intersectionge, fb are at infinity so their join is the line
at infinity. We haveee = S, bd =Y, cf =T, da = X. By Brianchon’s theorem
SY is parallel toXT'.

3. Theporism

Figure 2. A porism associated with the Euler line

In a triangle with side lengthg, b and¢, circumradiusRk and circumcente€),
the orthocenter/ always lies in the interior of a circle centér and radius3R
since, as Euler showe@®,H? = 9R? — (a? + b2 + c2).

We begin afresh. Suppose that we draw a cikclgith centerO and radiusk in
which is inscribed a non-right angled triangleg3C which has an orthocentéet,
SOOH < 3R andH is not onX.

This H will serve as the orthocenter of infinitely many other trianghé¥ 2
inscribed in the circle and a porism is obtained. We construct these triangles by
choosing a point/ on the circle. Next we draw the perpendicular bisectoHof,
and need this line to meét again aty” and Z with XY Z anticlockwise. We can
certainly arrange that the line antimeet by choosingX sufficiently close toA,
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B or C. When this happens it follows from elementary considerations that triangle
XY Z has orthocenteH, and is the only such triangle with circumcircle and
vertex X . In the event thaff is inside the circumcircle (which happens precisely
when triangleABC' is acute), then every poinX’ on the circumcircle arises as a
vertex of a triangleX'Y Z in the porism.

The construction may be repeated to create as many triangs, TUV,

PQR as we please, all inscribed in the circle and all having orthoceHteas
illustrated in Figure 2. Notice that the triangles in this porism have the same cir-
cumradius, circumcenter and orthocenter, so the sum of the squares of the side
lengths of each triangle in the porism is the same.

We will show that all these triangles circumscribe a conic, with one axis of
length R directed along the common Euler line, and with eccentr%gy. It fol-
lows that this inconic is an ellipse f is chosen inside the circle, but a hyperbola
if H is chosen outside.

Thus a porism arises which we call &nler line porism since each triangle in
the porism has the same circumcenter, centroid, nine-point center, orthocentroidal
center, orthocentestc. A triangle circumscribing a conic gives rise t@eanchon
point at the meet of the three Cevians which join each vertex to its opposite contact
point.

We will show that the Brianchon point of a triangle in this porism is the isotomic
conjugate0; of the common circumcentép.

In Figure 2 we pinpoin©; for the triangleX'Y Z. The computer graphics system
CABRI gives strong evidence for the conjecture that the locug pés one runs
through the triangles of the porism, is a a subset of a conic.

It is possible to choose a poilf at distance greater th&R from O so there
is no triangle inscribed in the circle which has orthocerffeand then there is no
point J on the circle such that the perpendicular bisectoHof cuts the circle.

The acute triangle case. See Figure 3. The construction is as follows. Drd,
BH andCH to meetE at D, E andF. Draw DO, EO and F'O to meet the sides
atL, M, N. Let AO meetX at D* andBC at L*. Also let DO meetX at A*. The
pointsM*, N*, E*, F*, B* andC™* are not shown but are similarly defined. Here
A’ is the midpoint ofBC and the line through! perpendicular taBC' is shown.

3.1 Proof of the porism. Consider the ellipse defined as the locus of poiRts
such thatd P + OP = R, whereR the circumradius oE. The triangleH LD is
isosceles, sé/ L + OL = LD + OL = R; thereforeL lies on the ellipse.

Now Z/OLB = Z/CLD = ZCLH, because the line segmdiitD is bisected by
the sideBC'. Therefore the ellipse is tangent BC' at L, and similarly atA/ and
N. Itfollows that AL, BM, C'N are concurrent at a point which will be identified
shortly.

This ellipse depends only an, H andR. It follows that if TUV is any triangle
inscribed inX with centerO, radiusR and orthocenteH , then the ellipse touches
the sides of' U V. The porism is established.
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Figure 3. The inconic of the Euler line porism

Identification of the Brianchon point. This is the point of concurrence @fL, BM,
CN. SinceO andH are isogonal conjugates, it follows th@t and A* are reflec-
tions of D and A in the line which is the perpendicular bisector®f’. The same
applies toB*, C*, E* and F™* with respect to other perpendicular bisectors. Thus
A*D and AD* are reflections of each other in the perpendicular bisector. Thus
is the reflection ofL and thusA'L = A’L*. Thus sinceAL*, BM*, CN* are
concurrent ap, the linesAL, BM andCN are concurrent aft), the isotomic
conjugate 0.

The abtuse triangle case. Refer to Figure 4. Using the same notation as before,
now consider the hyperbola defined as the locus of paihtsuch that HP —
OP| = R. We now haveHL — OL = LD — OL = R so thatL lies on the
hyperbola.

Also ZA*LB = Z/CLD = ZHLC, so the hyperbola touchdsC at L, and the
argument proceeds as before.

It is a routine matter to obtain the Cartesian equation of this inconic. Scaling so
that R = 1 we may assume th& is at(0,0) and H at(c,0) where0 < ¢ < 3 but

c# 1.
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Figure 4. The Euler inconic can be a hyperbola

The inconic then has equation
42+ (1 -2z —c)? = (1-22). (1)

Whene < 1, so H is internal toY, this represents an ellipse, but when> 1 it
represents a hyperbola. In all cases the center (i, 8}, which is the nine-point
center.

One of the axes of the ellipse is the Euler line itself, whose equatign=sD.
We see from Equation (1) that the eccentricity of the inconiec is OTH and of
course its foci are ab and H. Not every tangent line to the inconic arises as a side
of a triangle in the porism iff is outsideX..

Areal analysis. One can also perform the geometric analysis of the envelope us-
ing areal co-ordinates, and we briefly report relevant equations for the reader in-
terested in further areal work. TakéBC as triangle of reference and define

u = cot BeotC, v = cot Ccot A, w = cot Acot B so thatH (u,v,w) and

O(v + w,w + u,u + v). This means that the isotomic conjugdde of O has

co-ordinates
1 1 1
Ot < ) ) > .
Vvt+w w+u u+v

The altitudes ared H, BH, C H with equationswy = vz, uz = wz, vz = uy
respectively.
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The equation of the inconic is
(v 4+ w)?x? + (w + u)?y* + (u+v)%2% = 2(w + u)(u + v)yz

—2(u+v)(v+w)zx —2(v+w)(w+ u)ry = 0. 2
This curve can be parameterized by the formulas:
1 2 1 2
flf':( +q) Yy = 2= a ) (3)
v+ w w—+ U U+ v

whereq has any real value (including infinity). The perpendicular lihesd !
through H may be taken to pass through the points at infinity with co-ordinates
((1+1¢t),—t,—1)and((1 + s), —s, —1) and then the Droz-Farny line has equation

—(sw + tw — 2v)(2stw — sv — tv)x — (sw + tw + 2(u + w) ) (2stw — sv — tv)y

+(sw + tw — 2v)(2st(u 4+ v) + sv 4+ tv)z = 0. 4)
In Equation (4) for the midpointX, Y, Z to be collinear we must take
S:_U(tw—i—u—i-w) 5)

w(t(u+v)+v)

If we now substitute Equation (3) into Equation (4) and use Equation (5), a discrim-
inant test on the resulting quadratic equation with the help of DERIVE confirms
the tangency for all values of

Incidentally, nowhere in this areal analysis do we use the precise values of
u,v,w in terms of the anglest, B, C'. Therefore we have a bonus theorem: if
H is replaced by another poidt, then given a line througlk’, there is always a
second line throughk (but not generally at right angles to it) so th& 7 is a
straight line. As the liné rotates,/ also rotates (but not at the same rate). How-
ever the rotations of these lines is such that the variable paint¥’, Z remain
collinear and the liné&(Y Z also envelops a conic. This affine generalization of the
Droz-Farny theorem was discovered independently by Charles Thas [5] in a paper
published after the original submission of this article. We happily cede priority.
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The Edge-Tangent Sphere of a Circumscriptible
Tetrahedron

Yu-Dong Wu and Zhi-Hua Zhang

Abstract. A tetrahedron is circumscriptible if there is a sphere tangent to each
of its six edges. We prove that the radiisf the edge-tangent sphere is at least
/3 times the radius of its inscribed sphere. This settles affirmatively a problem
posed by Z. C. Lin and H. F. Zhu. We also briefly examine the generalization
into higher dimension, and pose an analogous problem fot-adimensional
simplex admitting a sphere tangent to each of its edges.

1. Introduction

Every tetrahedron has a circumscribed sphere passing through its four vertices
and an inscribed sphere tangent to each of its four faces. A tetrahedron is said
to be circumscriptible if there is a sphere tangent to each of its six edges (see [1,
£6786—794]). We call this the edge-tangent sphere of the tetrahedron.

Let & denote a tetrahedrok, P P, P3 with edge lengths’; P; = a;; for 0 <
i < j < 3. The following necessary and sufficient condition for a tetrahedron to
admit an edge-tangent sphere can be found ifJa87, 790, 792]. See also [4, 6].

Theorem 1. The following statement for a tetrahedrg# are equivalent.

(1) &2 has an edge-tangent sphere.

(2) ap1 + a3 = ap2 + a13 = agz + a12;

(3) There existr; > 0,7 =0, 1,2, 3, such thata;; = z; +x; for 0 <7 < j < 3.

Fori =0, 1,2, 3, z; is the length of a tangent froi} to the edge-tangent sphere
of #. Let/ denote the radius of this sphere.

Theorem 2. [1, §793] The radius of the edge-tangent sphere of a circumscriptible
tetrahedron of volum&” is given by

2$0$1$2$3

(= 1
Y (1)
Lin and Zhu [4] have given the formula (1) in the form
2 (2$0$1$2$3)2
¢ 5 (2)

2rorixars  »,  wwy; — (viadad + piadad + vdada? + xdaiad)
0<i<j<3

Publication Date: January 22, 2007. Communicating Editor: Paul Yiu.
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The fact that this latter denominator 8V )? follows from the formula for the
volume of a tetrahedron in terms of its edges:

0 1 1 1 1
L 0 (w0 +21)* (xo + x2)* (w0 + 23)
V2 =—11 (x() + 512‘1)2 0 (xl + 512‘2)2 ({L‘l + x3)2 .
288 2 2 2
1 (x() + 1’2) (1’1 + xQ) 0 ({L’Q + x3)
1 (x() + 512‘3)2 ({L‘l + x3)2 ($2 + 512‘3)2 0

Lin and Zhuop. cit. obtained several inequalities for the edge-tangent sphere
of &. They also posed the problem of proving or disprovihg> 3r2 for a
circumscriptible tetrahedron. See also [2]. The main purpose of this paper is to
settle this problem affirmatively.

Theorem 3. For a circumscriptible tetrahedron with inradiusand edge-tangent
sphere of radiug, ¢ > /3r.

2. Two inequalities

Lemmad4. If z; > 0for 0 < ¢ < 3, then
T+ X2+ To+x3+x T3+ x9+ To+x1+x
( 1 2 3+ 2 3 0+ 3 0 1+ 0 1 2>

17273 T2w3T0 T3T0T1 ToT1T2
4(%0%1%21‘3)2 >6 (3)
2uor1moxs Y, wiwj — (v3adad + xdadad 4+ vixda? + xdalad) T

0<i<j<3
Proof. From
w2ad(zg — x3)% 4 xdad (w1 — x3)? + 2323 (21 — 0)?
+atas(zo — w3)? + xiai(zo — 22)° + w523 (v — 21)* > 0,
we have

2
2,22 2,22 2,.2,.2 2,22
TI1T5T3 + Tyx3xh + T3XHX] + XHTI{T5 > gflﬁ‘oxl{l?gfl?g g TiTj,

0<i<j<3
and
2.2 2, 2292 2929 29229
2x0T1T2X3 g ziv; — (v{r3es + xsrsey + azage] + rHries)
0<i<j<3
4
§§$0$1$2$3 E TiTj,
0<i<j<3
or
4(1‘01‘1%2%3)2
2wozizoxs Y, wiw; — (wtadad + wdxdal 4 afada? + alaiad)
0<i<j<3
2 4)
> 4(.’E0.’E1$2{E3) 3.’E0.’E1.’E2{E3
=4 - o
JTOTIT2T3 . Tl Yo wiTy

0<i<j<3 0<i<5<3
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On the other hand, it is easy to see that

2 Z xixj
T+ x2 + x3+x2 + 23 + x0+x3 + 20 + x1+xo + 21+ 22 0<i<j<3
T1X2T3 T2X3T0 T3Tox1 ToT1X2 B 900901962963( )
5
Inequality (3) follows immediately from (4) and (5). O

Corollary 5. For a circumscriptible tetrahedro®? with an edge-tangent sphere
of radius/, and faces with inradity, r1, 72, 3,

1 1 1 1

(—2+—2+—2+—2>€226.
o T4 Ty T3

Equality holds if and only i” is a regular tetrahedron.

Proof. From the famous Heron formula, the inradius of a triandlBC of side-
lengthsa = y + z, b = z + z andc = = + y is given by

2 _ Yz
Cxty+z
Applying this to the four faces af”, we see that the first factor on the left hand
side of (3) is(% + % + é + %) Now the result follows from (2). O

Proposition 6. Let & be a circumscriptible tetrahedron of volumie If, for i =
0,1,2, 3, the opposite face of vertg} has area/\; and inradiusr;, then

9V2 /1 1 1 1
(AO+A1+A2+A3)2ZT(—2+—2+—2+—2>- (6)
T Ty T3

Equality holds if and only it” is a regular tetrahedron.

Figure 1.
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Proof. Let a be the angle between the plangd> P; and P, P, Ps. If the perpen-
diculars fromP, to the line P, P; and to the plané’ P, P; intersect these &P, and
H respectively, ther RyQH = «. See Figure 1. Similarly, we have the angles
08 between the plane® P; P, and P, P, P3, and~ betweenP) P, P, and P, P, Ps.
Note that
P()H = P()Ql -sina = POQ2 . Sil’lﬂ = P(]Qg . sin’y.
Hence,
POH . P2P3 :2A1 sino = 2\/(&1 + Al COS Oé)(Al - Al COS Oé), (7)
PyH - P3P, =2/\osin 3 = 2\/(A2 + Agcos B)(Ag — Ag cos 3), (8)
POH . P1P2 :2A3 Sil’l’)/ = 2\/(&3 + Ag COS ’y)(Ag - Ag COS ’y). (9)

From (7-9), together witt, H = 2 andf—oO = J(PLPy + PPy + P3Py), we
have

3V

To

=/ (A1 + A cosa)(DNy — A cosa)

+/(Dg 4 Ao cos B)(Lg — Ao cos B) (10)
+v/ (A3 4 Az cosy)(Ag — Az cosy).
Applying Cauchy’s inequality and noting that
Ny = Ajcosa+ Agcos 8+ Azcosy,

we have
<%>2 <(A1+ Ajcosa+ Ay + Agcos B+ Ag + Agcosy)
(A1 = ADjcosa+ Dg — Dgcos B+ Az — Azcosy)  (11)
=(D1 4+ Doy + Dz + Do) (A1 + Do+ N3 — D)
=(A1 + Do+ A3)2 — A2,
or

2
(A1 + Dy + A3)? — AL > <i> . (12)

o
It is easy to see that equality in (12) holds if and only if
Ay +Ajcosa Ag+ ANgcosB - Az + Agcosy
Al —Njcosa Ny — Ngcos B Ag— Azcosy
Equivalently,cos & = cos 3 = cos~y, of a = 8 = ~. Similarly, we have

372
ot at 0f - 072 (2] (13
2
). (14)

2
ﬂ) . (15)
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Summing (12) to (15), we obtain the inequality (6), with equality precisely when
all dihedral angles are equak., when <2 is a regular tetrahedron. O

Remark.Inequality (6) is obtained by X. Z. Yang in [5].

3. Proof of Theorem 3

Sincer = x——x—~x-7x; it follows from Proposition 6 and Corollary 5 that

6 27V

2> >
T (Do + A1+ Do+ As)

-1, 1 , 1 , 1
Rttt

2
5 = 3r.
This completes the proof of Theorem 3.

4. A generalization with an open problem

As a generalization of the tetrahedron, we say thatadimensional simplex
is circumscriptible if there is a sphere tangent to each of its edges. The following
basic properties of a circumscriptible simplex can be found in [3].

Theorem 7. Suppose the edge lengths of arsimplex?? = RP;,--- P, are
P,P; = a;5 for 0 < < j < n. Then-simplex has an edge-tangent sphere if and

only if there existr;, i = 0,1, ..., n, satisfyinga;; = x; +x; for 0 <i # j < n.
In this case, the radius of the edge-tangent sphere is given by
Dy
2= _ = 16
2Dy (16)
where
—Qx% 2r0r1 2T 0Tp—1
Dy = 2x0x1 —2$% ce 2-T1-?7‘171 ,
200Tn_1 2T1Tp_1 - —21’%_1
and
0 1 1
1
Dy =
. D1
1

We conclude this paper with an open problem: for a circumscriptibdamplex
with a circumscribed sphere of radidg an inscribed sphere of radiusand an
edge-tangent sphere of radi@ygprove or disprove that

L > nr.

n—1
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A Stronger Triangle Inequality for Neutral Geometry

Melissa Baker and Robert C. Powers

Abstract. Bailey and BannisterQollege Math. Journal, 28 (1997) 182-186]
proved that a stronger triangle inequality holds in the Euclidean plane for all
triangles having largest angle less thaantan(%) ~ T74°. We use hyperbolic
trigonometry to show that a stronger triangle inequality holds in the hyperbolic
plane for all triangles having largest angle less than or equél.&7°.

1. Introduction

One of the most fundamental results of neutral geometry is the triangle inequal-
ity. How can this cherished inequality be strengthened? Under certain restrictions,
the sum of the lengths of two sides of a triangle is greater than the length of the
remaining side plus the length of the altitude to this side.

Figure 1. Strong triangle inequality+b > ¢+ h

Let ABC be a triangle belonging to neutral geometry (see Figure 1).al &t
andc be the lengths of sideBC, AC and AB, respectively. Also, lety, 5 and
~ denote the angles at, B and C respectively. If we letF' be the foot of the
perpendicular fromC onto sideAB and if 4 is the length of the segmeiit F,
when is it true thats + b > ¢ + h? Sincea > h andb > h, this question is of
interest only ifc is the length of the longest side dfBC, or, equivalently, ify is
the the largest angle of BC'. With this notation, if the inequality + b > ¢+ h
holds wherey is the largest angle of the triangheBC', we say thatd BC satisfies
thestrong triangle inequality.

Publication Date: January 29, 2007. Communicating Editor: Paul Yiu.



26 M. Baker and R. C. Powers

The following result, due to Bailey and Bannister [1], explains what happens if
the triangleABC belongs to Euclidean geometry.

Theorem 1. If ABC'isaEuclidean triangle having largest angle vy < arctan(2—74) ~
74°, then ABC satisfies the strong triangle inequality.

An elegant trigonometric proof of Theorem 1 can by found in [3]. It should
be noted that the bound afctan(%) is the best possible since any isosceles Eu-
clidean triangle withy = arctan(%) violates the strong triangle inequality.

The goal of this note is to extend the Bailey and Bannister result to neutral
geometry. To get the appropriate bound for the extended result we need the function

flv) = —l—cos*y—i—sinfy—i—sin%sinfy. 1)

Observe thaf’(v) = siny+cosy+sin Z cosy+ 3 cos 3 siny > 0 on the interval
[0, Z]. Therefore f () is strictly monotone increasing on the intery@lZ ). Since
f(0) = -2, f(3) = 72 and f is continuous it follows thaf has a unique root

r in the interval(0, 3 ). In fact, r is approximatelyl.15 (radians) o165.87°. See
Figure 2.

[SIE]

Figure 2. Graph of (v)

Theorem 2. In neutral geometry a triangle ABC having largest angle ~ satisfies
the strong triangle inequality if v < r ~ 1.15 radians or 65.87.

The proof of Theorem 2 is based on the fact that a model of neutral geometry is
isomorphic to either the Euclidean plane or a hyperbolic plane. Given Theorem 1,
it is enough to establish our result for the case of hyperbolic geometry. Moreover,
since the strong triangle inequality holds if and onlkif + kb > kc + kh for
any positive constar#, it is enough to assume that the distance scale in hyperbolic
geometry is 1. An explanation about the distance sg¢aded how it is used in
hyperbolic geometry can be found in [4].
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2. Hyperbolic trigonometry

Recall that the hyperbolic sine and hyperbolic cosine functions are given by

T _ T T —x
sinhx = ce-° and coshz = ere”
2 2
The formulas needed to prove the main result are given below. First, there are the

standard identities

cosh? z — sinh®z = 1 2)
and
cosh(z + y) = cosh x cosh y + sinh z sinh y. (3)
If ABC is a hyperbolic triangle with a right angle @t i.e., v = 7, then
sinh @ = sinh ¢sin « 4)
and
cosh asin 8 = cos a. (5)

For any hyperbolic trianglet BC,

cosh ¢ = cosh a cosh b — sinh a sinh b cos 7, (6)
sina  sinf8  siny 7)
sinha  sinhb  sinhc’

cosh o S8 CO8 B+ cos~y (8)

sin o sin 3

See [2, Chapter 10] or [5, Chapter 8] for more details regarding (4 — 8).

3. Proof of Theorem 2

The strong triangle inequality + b > ¢ + h holds if and only ifcosh(a + b) >
cosh(c + h). Expanding both sides by the identity given in (3) we have
cosh a cosh b 4 sinh a sinh b > cosh ¢ cosh A + sinh c¢sinh A,
cosh ¢ + sinh a sinh b cos y + sinh asinh b > cosh ¢ cosh h + sinh ¢sinh h, by (6)
cosh ¢ (1 — cosh h) + sinhasinh b (cosy + 1) — sinhesinh A > 0.

Since AC'F is a right triangle with the length af' F' equal toh, it follows from
(4) thatsinh h = sinh bsin . Applying (7), we have

inh
cosh ¢ (1 — cosh h) + sinhasinhb (cosy + 1) — 51'n a
sin o

cosh ¢ (1 — cosh h) + sinhasinh b (cosy 4+ 1 —sinvy) > 0,

-sinysinhbsina > 0,

(

(
coshe (1 — cosh® h) + sinhasinh b(1 + cosh h) (cosy + 1 — siny) > 0,
coshe (— sinh? h) + sinhasinhb(1 + cosh h) (cosy + 1 —siny) > 0, by (2)

cosh ¢ (— sinh? bsin® ) + sinh asinh b(1 + cosh h)(cosy + 1 — siny) > 0.
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Dividing both sides of the inequality bynh b > 0, we have
— cosh esinh bsin? o + sinh a(1 4 cosh h)(cosy + 1 — siny) > 0.
By (7) and (8), we have

<COS acos 3 + cosy > sinh a sin 3

- - sin? a +sinh a(1 +cosh h)(cosy+ 1 —siny) > 0.
sin acsin 8

sin o

Simplifying and dividing bysinh a > 0, we have
— (cos awcos B + cosy) sinh a + sinh a(1 4 cosh h)(cosy + 1 — sin~y) > 0,
— (cos arcos B+ cosy) + (1 + cosh h)(cosy+ 1 —sinvy) > 0, 9)

We have manipulated the original inequality into one involving the original an-
gles,«a, 3, and~, and the length of the altitude ohB. In the right triangleAC'F,
let+’ be the angle a’. We may assum¢’ < 1 (otherwise we can work with the
right triangle BC'F). Applying (5) to triangleAC'F' givescosh h = % Now
continuing with the inequality (9) we get

COS v

—(cosacosﬁ—kcosy)—k(l—k, ;
sin y

Multiplying both sides by-sin+ < 0, we have

) (14 cosy—siny) >0

sin~y’ (cos acos 3 + cosy) — (sin’yl + cos a) (1 + cosy —sinvy) < 0,
Simplifying this and rearranging terms, we have

cosa (siny cos 3 — 1 — cosy +siny) +siny (siny — 1) < 0. (10)
If siny’ cos 3 —1— cosa + sina > 0, then
cos a (siny' cos 3 — 1 — cosy + siny) + siny’ (siny — 1)
<siny’ —1 — cosy + siny + siny/ (siny — 1)

— 1 — cos~y + sin~y + siny sin~y

< —1—cosvy+siny+ sin % sin 7.
Note that this last expression j$v) defined in (1). We have shown that
cos asiny cos 3 — 1 — cosy + sin ) + sin+/(siny — 1) < max{0, f(v)}.

For~ < r, we havef(v) < 0 and the strong triangle inequality holds.
This completes the proof of Theorem 2.

If r < v < %, thenf(y) > 0. In this case, we can find an anglesuch that

0<a<i—7and

CoS (v (sin%cosa— 1—cosa+sina> —|—sin%(sinfy— 1) > 0.

Sincev + 2a < it follows from [5, Theorem 6.7] that there exists a hyper-
bolic triangle ABC' with anglesa, «, and~. Our previous work shows that the
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triangle ABC satisfies the strong triangle inequality if and only if (10) holds. Con-
sequently,a + b > ¢ + h provided f(v) < 0. Therefore, the bound given in
Theorem 2 is the best possible.
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A Simple Construction of the Golden Ratio

Jingcheng Tong and Sidney Kung

Abstract. We construct the golden ratio by using an area bisector of atrapezoid.

Consider atrapezoid PQR.S with bases PQ) = b, RS = a, a < b. Assume, in

Figure 1, that the segment M N of length V# isparalel to PQ. Then MN
lies between the bases PQ and RS (see [1, p.57]). It is easy to show that M N
bisects the area of the trapezoid. It ismore interesting to note that M and N divide
SP and RQ in the golden ratio if b = 3a. To see this, construct a segment S
paralel to RQ andlet V = M N N SW. Itisclear that

2 2
SM MV S -a 51

SP PW b—a 2

if b = 3a.

\%
P b—a w a Q

Figurel

Based upon this result, we present the following simple division of a given seg-
ment AB in the golden ratio. Construct
(1) atrapezoid ABC D with AD//BC and BC = 3 - AD,
(2) aright triangle BC' D with aright angleat C and CE = AD,
(3) the midpoint F' of BE and apoint H on the perpendicular bisector of BE such
that FH = 1 BE,
(4) apoint I on BC suchthat BI = BH.

Complete a parallelogram BI.JG with J on DC and G on AB. See Figure 2.

Then G divides AB in the golden ratio, i.e., A8 — ¥5=1,
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Proof. The trapezoid ABC'D has AD = a, BC = bwith b = 3a. The segment
JG ispardlél to the bases and

2 2 2 2
JG =Bl =BH =12 ”“;b =4/ ;b.

Therefore, 45 — Y51, O
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The Method of Punctured Containers

Tom M. Apostol and Mamikon A. Mnatsakanian

Abstract. We introduce the method of punctured containers, which geometri-
cally relates volumes and centroids of complicated solids to those of simpler
punctured prismatic solids. This method goes to the heart of some of the ba-
sic properties of the sphere, and extends them in natural and significant ways
to solids assembled from cylindrical wedges (Archimedean domes) and to more
general solids, especially those with nonuniform densities.

1. Introduction

Archimedes (287-212 B.C.) is regarded as the greatest mathematician of ancient
times because of his masterful and innovative treatment of a remarkable range of
topics in both pure and applied mathematics. One landmark discovery is that the
volume of a solid sphere is two-thirds the volume of its circumscribing cylinder,
and that the surface area of the sphere is also two-thirds the total surface area of
the same cylinder. Archimedes was so proud of this revelation that he wanted the
sphere and circumscribing cylinder engraved on his tombstone. He discovered the
volume ratio by balancing slices of the sphere against sliceslafgar cylinder
and cone, using centroids and the law of the lever, which he had also discovered.

Today we know that the volume ratio for the sphere and cylinder can be derived
more simply by an elementary geometric method that Archimedes overlooked. It
is illustrated in Figure 1. By symmetry it suffices to consider a hemisphere, as
in Figure 1a, and its circumscribing cylindrical container. Figure 1b shows the
cylinder with a solid cone removed. The punctured cylindrical container has ex-
actly the same volume as the hemisphere, because every horizontal plane cuts the
hemisphere and the punctured cylinder in cross sections of equal area. The cone’s
volume is one-third that of the cylinder, hence the hemisphere’s volume is two-
thirds that of the cylinder, which gives the Archimedes volume ratio for the sphere
and its circumscribing cylinder.

This geometric method extends to more general solids we call Archimedean
domes. They and their punctured prismatic containers are described below in Sec-
tion 2. Any plane parallel to the equatorial base cuts such a dome and its punctured
container in cross sections of equal area. This implies that two planes parallel to the
base cut the dome and the punctured container in slices of equal volumes, equality
of volumes being a consequence of the following:

Slicing principle. Two solids have equal volumes if their horizontal cross sections
taken at any height have equal areas.

Publication Date: February 12, 2007. Communicating Editor: Xiao-Dong Zhang.
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Figure 1. (a) A hemisphere and (b) a punctured cylindrical container of equal volume.

This statement is often called Cavalieri’s principle in honor of Bonaventura Cav-
alieri (1598-1647), who attempted to prove it for general solids. Archimedes used
it sixteen centuries earlier for special solids, and he credits Eudoxus and Demaocri-
tus for using it even earlier in their discovery of the volume of a cone. Cavalieri
employed it to find volumes of many solids, and tried to establish the principle
for general solids by applying Archimedes’ method of exhaustion, but it was not
demonstrated rigorously until integral calculus was developed in the 17th century.
We prefer using the neutral and more descriptive tdioing principle.

To describe the slicing principle in the language of calculus, cut two solids by
horizontal planes that produce cross sections of equal Afea at an arbitrary
heightz above a fixed base. The integ[ﬁjf A(x) dz gives the volume of the
portion of each solid cut by all horizontal planes-asaries over some interval
[x1, z2]. Because the integramndi(x) is the same for both solids, the corresponding
volumes are also equal. We could just as well integrate any fungtionA(x)),
and the integral over the interval;, z5] would be the same for both solids. For
example,fff xA(z) dz is the first moment of the area function over the interval
[x1, z2], and this integral divided by the volume gives the altitude ofddreroid
of the slice between the plangs= x; andz = x,. Thus, not only are the volumes
of these slices equal, but also the altitudes of their centroids are equal. Moreover,
all momentsfff x* A(x) dx with respect to the plane of the base are equal for both
slices.

In [1; Theorem 6a] we showed that the lateral surface area of any slice of an
Archimedean dome between two parallel planes is equal to the lateral surface area
of the corresponding slice of the circumscribing (unpunctured) prism. This was
deduced from the fact that Archimedean domes circumscribe hemispheres. It im-
plies that the total surface area of a sphere is equal to the lateral surface area of its
circumscribing cylinder which, in turn, is two-thirds the total surface area of the
cylinder. The surface area ratio was discovered by Archimedes by a completely
different method.
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This paper extends our geometric method further, from Archimedean domes to
more general solids. First we dilate an Archimedean dome in a vertical direction to
produce a dome with elliptic profiles, then we replace its base by an arbitrary poly-
gon, not necessarily convex. This leads naturally to domes with arbitrary curved
bases. Such domes and their punctured prismatic containers have equal volumes
and equal moments relative to the plane of the base because of the slicing princi-
ple, but if these domes do not circumscribe hemispheres the corresponding lateral
surface areas will not be equal. This paper relaxes the requirement of equal surface
areas and concentrates on solids having the same volume and moments as their
punctured prismatic containers. We call such salasicible and describe them in
Section 3. Section 4 treats reducible domes and shells with polygonal bases, then
Section 5 extends the results to domes with curved bases, and formulates reducibil-
ity in terms of mappings that preserve volumes and moments.

The full power of our method, which we calhe method of punctured con-
tainers, is revealed by the treatment of nonuniform mass distributions in Section
6. Problems of calculating masses and centroids of nonuniform wedges, shells,
and their slices with elliptic profiles, including those with cavities, are reduced to
those ofsimpler punctured prismatic containers. Section 7 gives explicit formulas
for volumes and centroids, and Section 8 reveals the surprising fact that uniform
domes are reducible to their punctured containers if and only if they have elliptic
profiles.

2. Archimedean domes

Archimedean domes are solids of the type shown in Figure 2a, formed by assem-
bling portions of circular cylindrical wedges. Each dome circumscribes a hemi-
sphere, and its horizontal base is a polygon, not necessarily regular, circumscrib-
ing the equator of the hemisphere. Cross sections cut by planes parallel to the base
are similar polygons circumscribing the cross sections of the hemisphere. Figure
2b shows the dome’s punctured prismatic container, a circumscribing prism, from
which a pyramid with congruent polygonal base has been removed as indicated.
The shaded regions in Figure 2 illustrate the fundamental relation between any
Archimedean dome and its punctured prismatic container:

Each horizontal plane cuts both solids in cross sections of equal area.

Hence, by the slicing principle, any two horizontal planes cut both solids in
slices of equal volume. Because the removed pyramid has volume one-third that
of the unpunctured prism, we see that the volume of any Archimedean dome is
two-thirds that of its punctured prismatic container.

We used the name “Archimedean dome” because of a special case considered
by Archimedes. In his preface to The Method [3; Supplement, p. 12] Archimedes
announced (without proof) that the volume of intersection of two congruent orthog-
onal circular cylinders is two-thirds the volume of the circumscribing cube. In [3;
pp. 48-50], Zeuthen verifies this with the method of centroids and levers employed
by Archimedes in treating the sphere. However, if we observe that half the solid of
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intersection is an Archimedean dome with a square base, and compare its volume
with that of its punctured prismatic container, we immediately obtain the required
two-thirds volume ratio.

=T ]

RSN

~

(a) Archimedean dome (b) Punctured prismatic container

Figure 2. Each horizontal plane cuts the dome and its punctured prismatic con-
tainer in cross sections of equal area.

As a limiting case, when the polygonal cross sections of an Archimedean dome
become circles, and the punctured container becomes a circumscribing cylinder
punctured by a cone, we obtain a purely geometric derivation of the Archimedes
volume ratio for a sphere and cylinder.

When an Archimedean dome and its punctured containeurdferm solids,
made of material of the same constant density (mass per unit volume), the corre-
sponding horizontal slices also have equal masses, and the center of mass of each
slice lies at the same height above the base [1; Section 9].

3. Reducible solids

This paper extends the method of punctured containers by applying it first to
general dome-like structures far removed from Archimedean domes, and then to
domes withnonuniform mass distributions. The generality of the structures is
demonstrated by the following examples.

Cut any Archimedean dome and its punctured container into horizontal slices
and assign to each pair of slices the same constant density, which can differ from
pair to pair. Because the masses are equal slice by slice, the total mass of the dome
is equal to that of its punctured container, and the centers of mass are at the same
height. Or, cut the dome and its punctured container into wedges by vertical half
planes through the polar axis, and assign to each pair of wedges the same constant
density, which can differ from pair to pair. Again, the masses are equal wedge by
wedge, so the total mass of the dome is equal to that of its punctured container,
and the centers of mass are at the same height. Or, imagine an Archimedean dome
divided into thin concentric shell-like layers, like those of an onion, each assigned
its own constant density, which can differ from layer to layer. The punctured con-
tainer is correspondingly divided into coaxial prismatic layers, each assigned the
same constant density as the corresponding shell layer. In this case the masses are
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equal shell by shell, so the total mass of the dome is equal to that of its punctured
container, and again the centers of mass are at the same height. We are interested
in a class of solids, with pyramidically punctured prismatic containers, that share
the following property with Archimedean domes:

Definition. (Reducible solid) A solid is called reducible if an arbitrary horizontal
slice of the solid and its punctured container have equal volumes, equal masses,
and hence centers of mass at the same height above the base.

Every uniform Archimedean done is reducible, and in Section 5 we exhibit some
nonuniform Archimedean domes that are reducible as well.

The method of punctured containers enables us to reduce both volume and
mass calculations of domes to those of simpler prismatic solids, thus generaliz-
ing the profound volume relation between the sphere and cylinder discovered by
Archimedes. Another famous result of Archimedes [3; Method, Proposition 6]
states that the centroid of a uniform solid hemisphere divides its altitude in the
ratio 5:3. Using the method of punctured containers we show that the same ratio
holds for uniform Archimedean domes and other more general domes (Theorem
7), and we also extend this result to the center of mass of a more general class of
nonuniform reducible domes (Theorem 8).

4. Polygonal elliptic domes and shells

To easily construct a more general class of reducible solids, start with any
Archimedean dome, and dilate it and its punctured container in a vertical direc-
tion by the same scaling factor > 0. The circular cylindrical wedges in Figure
2a become elliptic cylindrical wedges, as typified by the example in Figure 3a. A
circular arc of radius: is dilated into an elliptic arc with horizontal semi axis
and vertical semi axis.a. Dilation changes the altitude of the prismatic wedge
from a to Aa (Figure 3b). The punctured container is again a prism punctured by a
pyramid.

X —A

(b)

Figure 3. (&) Vertical dilation of acylindrical wedge by afactor A. (b) Its punc-
tured prismatic container.
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Each horizontal plane at a given height above the base cuts both the elliptic
wedge and the corresponding punctured prismatic wedge in cross sections of equal
area. Consequently, any two horizontal planes cut both solids in dlices of equal
volume.

If the elliptic and prismatic wedges have the same constant density, then they
also have the same mass, and their centers of mass are at the same height above the
base. In other words, we have:

Theorem 1. Every uniformelliptic cylindrical wedge is reducible.

Now assemble a finite collection of nonoverlapping eliptic cylindrical wedges
with their horizontal semi axes, possibly of different lengths, in the same horizon-
tal plane, but having a common vertical semi axis, which meets the base at a point
O cdled the center. We assume the density of each component wedge is con-
stant, although this constant may differ from component to component. For each
wedge, the punctured circumscribing prismatic container with the same density is
called its prismatic counterpart. The punctured containers assembled in the same
manner produce the counterpart of the wedge assemblage. We call an assemblage
nonuniform if some of its components can have different constant densities. This
includes the specia case of a uniform assemblage where al components have the
same constant density. Because each wedge is reducible we obtain:

Corollary 1. Any nonuniform assemblage of eliptic cylindrical wedges is re-
ducible.

Polygonal elliptic domes. Because the base of afinite assemblage is a polygon (a
union of triangles with a common vertex O) we call the assemblage a polygonal
elliptic dome. The polygonal base need not circumscribe acircle and it need not be
convex. Corollary 1 gives us:

Corollary 2. The volume of any polygonal elliptic dome is equal to the volume of
its circumscribing punctured prismatic container, that is, two-thirds the volume of
the unpunctured prismatic container, which, in turn, is the area of the base times
the height.

In the special limiting case when the equatorial polygonal base of the dome
turns into an ellipse with center at O, the dome becomes half an ellipsoid, and the
circumscribing prism becomes an dliptic cylinder. In thislimiting case, Corollary
2 reduces to:

Corollary 3. The volume of any ellipsoid is two-thirds that of its circumscribing
éliptic cylinder.

In particular, we have Archimedes' result for “spheroids’ [3; Method, Proposi-
tion 3]:
Corollary 4. (Archimedes) The volume of an ellipsoid of revolution is two-thirds
that of its circumscribing circular cylinder.

Polygonal elliptic shells. A polygonal eliptic shell isthe solid between two con-
centric similar polygonal elliptic domes. From Theorem 1 we also obtain:
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Theorem 2. The following solids are reducible:
(a) Any uniform polygonal elliptic shell.
(b) Any wedge of a uniform polygonal elliptic shell.
(c) Any horizontal slice of a wedge of type (b).
(d) Any nonuniform assemblage of shells of type (a).
(e) Any nonuniform assemblage of wedges of type (b).
(f) Any nonuniform assemblage of slices of type (c).

By using as building blocks horizontal slices of wedges cut from a polygonal
dliptic shell, we can see intuitively how one might construct, from such building
blocks, very general polygonal elliptic domes that are reducible and have more or
less arbitrary mass distribution. By considering limiting cases of polygonal bases
with many edges, and building blocks with very small side lengths, we can imagine
éliptic shells and domes whose bases are more or less arbitrary plane regions, for
example, dliptic, parabolic or hyperbolic segments.

The next section describes an explicit construction of general reducible domes
with curvilinear bases.

5. General elliptic domes

Replace the polygonal base by any plane region bounded by a curve whose polar
coordinates (r, 0) relative to a “center” O satisfy an equation » = p(6), where p
is a given piecewise continuous function, and 0 varies over an interval of length
27, Above this base we build an elliptic dome as follows. First, the altitude of the
dome is a segment of fixed height ~ > 0 along the polar axis perpendicular to the
base at O. We assume that each vertical half plane through the polar axis at angle
6 cuts the surface of the dome along a quarter of an ellipse with horizontal semi
axis p(#) and the same vertical semi axis h, as in Figure 4a The ellipse will be
degenerate at points where p(6) = 0. Thus, an eliptic wedge is a special case of
an elliptic dome.

When p(#) > 0, the cylindrical coordinates (r, 6, z) of points on the surface of
the dome satisfy the equation of an ellipse:

(%)2 + (%)2 ~1. (1)

The dome is circumscribed by a cylindrical solid of atitude h whose base is con-
gruent to that of the dome (Figure 4b). Incidentally, we use the term “cylindrical
solid” with the understanding that the solid is a prism when the base is polygonal.
Eachpoint (1, #', 2’) onthelateral surface of the cylinder in Figure 4b isrelated
to the corresponding point (r, €, z) on the surface of the dome by the equations

=0, 2=z r" =p@®).

From this cylindrical solid we remove a conical solid whose surface points have
cylindrical coordinates (1, 6, z), where z/h = r"/p(6), or

r" = zp(0)/h.
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Figure 4. An dlliptic dome (@), and its circumscribing punctured prismatic con-
tainer (b).

When z = h,this becomes ' = p(0), so the base of the cone is congruent to
the base of the dliptic dome. When the base is polygonal, the conical solid is a
pyramid.

Morereducible domes. The polar axis of an elliptic dome depends on the location
of center O. For a given curvilinear base, we can move O to any point inside the
base, or even to the boundary. Moving O will change the function p(#) describing
the boundary of the base, with a corresponding change in the shape of the ellipse
determined by (1). Thus, this construction generates not one, but infinitely many
éliptic domes with a given base. For any such dome, we can generate another
family asfollows: Imagine the dome and its prismatic counterpart made up of very
thin horizontal layers, like two stacks of cards. Deform each solid by a horizon-
tal translation and rotation of each horizontal layer. The shapes of the solids will
change, but their cross-sectional areas will not change. In general, such a defor-
mation may alter the shape of each ellipse on the surface to some other curve, and
the deformed dome will no longer be elliptic. The same deformation applied to the
prismatic counterpart will change the punctured container to a nonprismatic punc-
tured counterpart. Nevertheless, al the results of this paper (with the exception of
Theorem 11) will hold for such deformed solids and their counterparts.

However, if the deformation is a linear shearing that leaves the base fixed but
tranglates each layer by a distance proportiona to its distance from the base, then
straight lines are mapped onto straight lines and the punctured prismatic solid is
deformed into another prism punctured by a pyramid with the same base. The
correspondingly sheared dome will be elliptic because each elliptic curve on the
surface of the dome is deformed into an elliptic curve. To visualize a physical
model of such ashearing, imagine ageneral elliptic dome and its counterpart sliced
horizontally to form stacks of cards. Pierce each stack by along pin along the polar
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axis, and let O be the point where the tip of the pin touches the base. Tilting the
pin away from the vertical polar axis, keeping O fixed, results in horizontal linear
shearing of the stacks and produces infinitely many dliptic domes, all with the
same polygonal base. The prismatic containers are correspondingly tilted, and the
domes are reducible.

Reducibility mapping. For agiven genera elliptic dome, we call the correspond-
ing circumscribing punctured cylindrical solid its punctured container. Our goal is
to show that every uniform general eliptic domeisreducible. Thiswill be deduced
from amore profound property, stated below in Theorem 3. It concerns a mapping
that relates elliptic domes and their punctured containers.

To determine this mapping, regard the dome as a collection of layers of similar
elliptic domes, like layers of an onion. Choose O asthe center of similarity, and for
each scaling factor 1 < 1, imagine a surface E(u) such that a vertical half plane
through the polar axis at angle 6 intersects E(u) along aquarter of an ellipse with
semiaxes pp(0) and ph. When p(6) > 0, the coordinates r and z of points on this

similar ellipse satisfy , ,
(up(9)> +<E> -t @

Regard the punctured container as a collection of coaxial layers of similar punc-
tured cylindrical surfaces C'(u).

Itiseasy torelate the cylindrical coordinates (+, ', 2’) of each point on C (1) to
the coordinates (r, 6, z) of the corresponding point on E(u). First, we have

=0, 2=z 1" =up@). (3)
From (2) wefind 72 + 22p (0)* /h? = u2p(0)? , hence (3) becomes
=0, 2=z, r’:\/r2 + Zzp(,g)?/h; (4)

The three equations in (4), which are independent of 1, describe a mapping from
each point (r, 6, z), not on the polar axis, of the solid elliptic dome to the corre-
sponding point (+/, ¢, 2’) on its punctured container. On the polar axis, » = 0 and
6 is undefined.

Using (2) in (4) we obtain (3), hence points on the ellipse described by (2) are
mapped onto the vertical segment of length i through the base point (1p(6), 0). It
is helpful to think of the solid elliptic dome as made up of elliptic fibers emanating
from the points on the base. Mapping (4) converts each elliptic fiber into a vertical
fiber through the corresponding point on the base of the punctured container.

Preservation of volumes. Now we show that mapping (4) preserves volumes. The
volume element in the (r, 6, z) system is given by r dr df dz, while that in the
(r', 0, 2") systemisr’dr’df’dz'. From (4) we have

(Tl)2 — ,',,2 + 22[)(9)2 /h2
which, for fixed z and 0, gives ’dr’ = rdr. From (4) we also have d¢’ = df

and dz’ = dz, so the volume elements are equa: r dr df dz = +'dr'd0’dz’. This
proves:



42 T. M. Apostol and M. A. Mnatsakanian

Theorem 3. Mapping (4), from a general elliptic dome to its punctured prismatic
container, preserves volumes. In particular, every general uniform elliptic domeis
reducible.

As an immediate consequence of Theorem 3 we obtain:

Corollary 5. The volume of a general elliptic dome is equal to the volume of its
circumscribing punctured cylindrical container, that is, two-thirds the volume of
the circumscribing unpunctured cylindrical container which, in turn, is simply the
area of the base times the height.

The same formulas show that for afixed altitude z, we have r dr df = +'dr'df’.
In other words, the mapping aso preserves areas of horizontal cross sections cut
from the elliptic dome and its punctured container. This also implies Corollary 5
because of the dicing principle.

Lambert’s classical mapping as a special case. Our mapping (4) generalizes
Lambert’s classical mapping [2], which is effected by wrapping a tangent cylinder
about the equator, and then projecting the surface of the sphere onto this cylinder by
rays through the axis which are parallel to the equatorial plane. Lambert’s mapping
takes points on the spherical surface (not at the north or south pole) and maps them
onto points on the lateral cylindrical surface in a way that preserves areas. For
a solid sphere, our mapping (4) takes each point not on the polar axis and maps
it onto a point of the punctured solid cylinder in a way that preserves volumes.
Moreover, analysis of athin shell (similar to that in [1; Section 6]) shows that (4)
also preserves areas when the surface of an Archimedean dome is mapped onto the
lateral surface of its prismatic container. Consequently, we have:

Theorem 4. Mapping (4), from the surface of an Archimedean dome onto the lat-
eral surface of its prismatic container, preserves areas.

In the limiting case when the Archimedean dome becomes a hemisphere we get:

Corollary 6. (Lambert) Mapping (4), from the surface of a sphere to the lateral
surface of its tangent cylinder, preserves areas.

If the hemisphere in this limiting case has radius q, it is easily verified that (4)
reduces to Lambert'smapping: ¢ =0, 2/ ==z, ' =a.

6. Nonuniform €liptic domes

Mapping (4) takes each point P of an elliptic dome and carries it onto a point
P’ of its punctured container. Imagine an arbitrary mass density assigned to P, and
assign the same mass density to itsimage P. If aset of points P fillsout a portion
of the dome of volume v and total mass m, say, then the image points P fill out a
solid, which we call the counterpart, having the same volume v and the same total
mass m. This can be stated as an extension of Theorem 3:

Theorem 5. Any portion of a general nonuniform elliptic dome is reducible.



The method of punctured containers 43

By analogy with Theorem 3, we can say that mapping (4) “with weights’ also
preserves masses.

Fiber-elliptic and shell-elliptic domes. Next we describe a special way of assign-
ing variable mass density to the points of a general elliptic dome and its punctured
container so that corresponding portions of the dome and its counterpart have the
same mass. The structure of the dome as a collection of similar domes plays an
essential role in this description.

First assign massdensity f(r, #) to each point (r, 8) on the base of the dome and
of itscylindrical container. Consider the elliptic fiber that emanates from any point
(up(0), 0) onthe base, and assign the same mass density f(up(6), 6) to each point
of thisfiber. In other words, the mass density along the elliptic fiber has a constant
value inherited from the point at which the fiber meets the base. Of course, the
constant may differ from point to point on the base. The elliptic fiber mapsinto a
vertical fiber in the punctured container (of length ph, where h is the altitude of
the dome), and we assign the same mass density f(up(6), 0) to each point on this
vertical fiber. In this way we produce a nonuniform elliptic dome and its punctured
container, each with variable mass density inherited from the base. We call such a
dome fiber-elliptic. The punctured container with density assigned in this manner
is called the counterpart of the dome. The volume element multiplied by mass
density isthe same for both the dome and its counterpart.

An important special case occurs when the assigned density is also constant
along the base curve r = p(6) and along each curve r = up(6) similar to the base
curve, where the constant density depends only on n. Then each elliptic surface
E(p) will have its own constant density. We call domes with this assignment of
mass density shell-elliptic. For fiber-elliptic and shell-elliptic domes, horizontal
dlices cut from any portion of the dome and its counterpart have equal masses, and
their centers of mass are at the same height above the base. Thus, as a consequence
of Theorem 3 we have:

Corollary 7. (a) Any portion of a fiber-elliptic dome is reducible.

(b) In particular, any portion of a shell-elliptic dome is reducible.

(c) In particular, a sphere with spherically symmetric mass distribution is re-
ducible.

The reducibility properties of an elliptic dome also hold for the more general
case in which we multiply the mass density f(up(6), 6) by any function of z.
Such change of density could be imposed, for example, by an externa field (such
as atmospheric density in a gravitational field that depends only on the height z).
Consequently, not only are the volume and mass of any portion of this type of
nonuniform elliptical dome equal to those of its counterpart, but the same is true
for all moments with respect to the horizontal base.

Elliptic shells and cavities. Consider a genera elliptic dome of altitude h, and
denote its elliptic surface by E(1). Scale E(1) by a factor u, where 0 < p <
1,to produce asimilar eliptic surface E(u). The region between the two surfaces
E(p)and E(1) is caled an eliptic shell. It can be regarded as an elliptic dome
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with a cavity, or, equivalently, as a shell-elliptic dome with density 0 assigned to
each point between F(u) and the center.

Figure 5a shows an elliptic shell element, and Figure 5b shows its counterpart.
Each base in the equatorial plane is bounded by portions of two curves with polar
equations r = p(A) and r = up(f),and two segments with § = 6, and 6§ = 6,.
The shell element hastwo vertical plane faces, each consisting of aregion between
two similar elipses. If piscloseto 1 and if 6 and 65 are nearly equal, the eliptic
shell element can be thought of as athin elliptic fiber, as was done earlier.

Consider ahorizontal slice between two horizontal planes that cut both the inner
and outer elliptic boundaries of the shell element. In other words, both planes are
pierced by the cavity. The prismatic counterpart of this dlice has horizontal cross
sections congruent to the base, so its centroid lies midway between the two cutting
planes. The same is true for the dlice of the shell and for the center of mass of a
dlice cut from an assemblage of uniform elliptic shell elements, each with its own
constant density.

(b)

Figure5. An élliptic shell element (a) and its counterpart (b).

In the same way, if we build a nonuniform shell-elliptic solid with afinite num-
ber of similar éliptic shells, each with its density inherited from the base, then any
horizontal slice pierced by the cavity has its center of mass midway between the
two horizontal cutting planes. Moreover, the following theorem holds for every
such shell-elliptic wedge.

Theorem 6. Any horizontal slice pierced by the cavity of a nonuniform shell-
elliptic wedge has volume and mass equal, respectively, to those of its prismatic
counterpart. Each volume and mass is independent of the height above the base
and each is proportional to the thickness of the slice. Consequently, the center of
mass of such a slice lies midway between the two cutting planes.

Corollary 8. (Sphere with cavity) Consider a spherically symmetric distribution
of mass inside a solid sphere with a concentric cavity. Any slice between parallel
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planes pierced by the cavity has volume and mass proportional to the thickness of
the dlice, and is independent of the location of the dlice.

Corollary 8 implies that the one-dimensional vertical projection of the density
is constant along the cavity. This simple result has profound consequences in to-
mography, which deals with the inverse problem of reconstructing spatial density
distributions from a knowledge of their lower dimensional projections. Details of
this application will appear elsewhere.

7. Formulasfor volume and centroid

This section uses reducibility to give specific formulas for volumes and centroids
of various building blocks of elliptic domes with an arbitrary curvilinear base.

Volume of a shell element. We begin with the simplest case. Cut a wedge from
an eliptic dome of atitude h by two vertical half planes 8 = 6 and 6 = 6,
through the polar axis, and then remove a similar wedge scaled by a factor p,
where 0 < p < 1, as shown in Figure 5a. Assume the unpunctured cylindrical
container in Figure 5b has volume V. By Corollary 5 the outer wedge has volume
2V/3, and the similar inner wedge has volume 2,2V/3, so the volume v of the
shell element and its prismatic counterpart is the difference

v = gV(l —13). (5)
Now V = Ah,where A is the area of the base of both the elliptic wedge and its
container. The base of the dliptic shell element and its unpunctured container have
aeaB = A— u?A, 0 A = B/(1 - p?),V = Bh/(1 — u?), and (5) can be
written as - 5
—p
v—SBhl_MQ. (6)
Formula (6) also holds for the total volume of any assemblage of elliptic shell ele-
ments with a given h and p, with B representing the total base area. The product
Bh is the volume of the corresponding unpunctured cylindrical container of alti-
tude h, so (6) gives us the formula

21—

(k) = e ™
where v, (h) is the volume of the assemblage of elliptic shell elements and of the
counterpart, and v, is the volume of its unpunctured cylindrical container. When
p = 01in(7), the assemblage of elliptic wedges has volume w(h)= 2vc; /3, sowe

can write (7) in the form
3

o) = ) =15, ®
where vy (h) isthe volume of the outer dome of the assemblage and its counterpart.
If 1« approaches 1 the shell becomes very thin, the quotient (1 —#)/ (1 — p*) ap-
proaches 3/2, and (7) showsthat v, (h) approaches v.,;. In other words, avery thin
eliptic shell element has volume very nearly equal to that of its very thin unpunc-
tured cylindrical container. An Archimedean shell has constant thickness equal
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to that of the prismatic container, so the lateral surface area of any assemblage of
Archimedean wedges is equal to the lateral surface area of its prismatic container,
aresult derived in [1]. Note that this argument cannot be used to find the surface
area of an nonspherical elliptic shell because it does not have constant thickness.

Next we derive aformula for the height of the centroid of any uniform elliptic
wedge above the plane of its base.

Theorem 7. Any uniform elliptic wedge or dome of altitude h has volume two-
thirds that of its unpunctured prismatic container. Its centroid is located at height
¢ above the plane of the base, where

c= gh. 9)

Proof. It sufficesto prove (9) for the prismatic counterpart. For any prism of alti-
tude h, the centroid is at adistance i /2 above the plane of the base. For a cone or
pyramid with the same base and dltitude it is known that the centroid is at a dis-
tance 3h/4 from the vertex. To determine the height ¢ of the centroid of apunctured
prismatic container above the plane of the base, assume the unpunctured prismatic
container has volume V' and equate moments to get

2 3h (1 h
¢ (§V> iy <§V) =3V

from which we find (9). By Theorem 5, the centroid of the inscribed elliptic wedge
isalso at height 3h/8 above the base. The result isalso true for any uniform elliptic
dome formed as an assemblage of wedges. O

Equation (9) isequivalent to saying, in the style of Archimedes, that the centroid
divides the altitude in the ratio 3:5.

Corollary 9. (a) The centroid of a uniform Archimedean dome divides its altitude
intheratio 3:5.

(b) (Archimedes) The centroid of a uniform hemisphere divides its altitude in
theratio 3:5.

Formula (9) is obviously true for the center of mass of any nonuniform assem-
blage of elliptic wedges of altitude h, each with its own constant density.

Centroid of a shell element. Now we can find, for any elliptic shell element, the
height ¢, (h) of its centroid above the plane of its base. The volume and centroid
results are summarized as follows:

Theorem 8. Any nonuniform assemblage of elliptic shell elements with common
altitude h and scaling factor . has volume v, (%) given by (8). The height ¢, (h) of
the centroid above the plane of its base is given by

3.1—pt
Cu(h) = ghl — ,u,3.
Proof. Consider first asingle uniform elliptic shell element. Again it sufficesto do
the calculation for the prismatic counterpart. The inner wedge has atitude ph, so

(10)
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by (9) its centroid is at height 3.2 /8. The centroid of the outer wedgeis at height
3h/8. If the outer wedge has volume V.., the inner wedge has volume 13V, ze,
and the shell element between them hasvolume (1—2)V,uz.. Equating moments
and canceling the common factor V., we find

3 3
(3u) o + cutma =) = 2,
from which we obtain (10). Formula (10) aso holds for any nonuniform assem-

blage of elliptic shell elements with the same i and p, each of constant density,
although the density can differ from element to element. O

When p = 0, (10) gives ¢y(h) = 3h/8.

When 1o — 1, the shell becomes very thin and the limiting value of ¢,(h) in
(10) is h/2. This aso follows from Theorem 6 when the shell is very thin and
the dice includes the entire dome. It is also consistent with Corollary 15 of [1],
which states that the centroid of the surface area of an Archimedean domeis at the
midpoint of its altitude.

Centroid of a dlice of a wedge. More generally, we can determine the centroid
of any dlice of atitude z of auniform elliptic wedge. By reducing this calculation
to that of the prismatic counterpart, shown in Figure 6, the analysis becomes very
simple. For clarity, the base in Figure 6 is shown as a triangle, but the same ar-
gument applies to a more general base like that in Figure 5. The slice in question
is obtained from a prism of atitude =z and volume V' (z) = AV, where V is the
volume of the unpunctured prismatic container of altitude h, and A = z/h. The
centroid of the dliceisat an altitude z /2 above the base. We remove from this slice
apyramidal portion of atitude » and volume v(z) = XV/3, whose centroid is at
an altitude 3z/4 above the base. The portion that remains has volume

V(z) —v(z) = ()\ — %A?’) 1% (11)

and centroid at altitude c(z) above the base. To determine ¢(z), equate moments to
obtain

%’%(z) +e(2)(V(2) —v(2) = 2V(2),
which gives 3
oy 270
Vi(z) —v(z)

Because V(z) = AV, and v(z) = A3V/3, we obtain the following theorem.

Theorem 9. Any dlice of altitude z cut from a uniform elliptic wedge of altitude h
has volume given by (11), where A = z/h and V is the volume of the unpunctured
prismatic container. The height ¢(z) of the centroid is given by

32— )2
c(2)

R 12
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Figure 6. Calculating the centroid of a slice of atitude z cut from a wedge of
altitude h.

When z = hthen \ = 1 and this reduces to (9). For small z the right member of
(12) is asymptotic to z/2. Thisis reasonable because for small = the walls of the
dome are nearly perpendicular to the plane of the equatorial base, so the domeis
amost cylindrical near the base.

Centroid of a dice of a wedge shell element. There is a common generalization
of (10) and (12). Cut a slice of atitude z from a shell element having atitude h
and scaling factor 1, and let ¢, (z) denote the height of its centroid above the base.
Again, we simplify the calculation of ¢,(z) by reducing it to that of its prismatic
counterpart. Thesdlicein question isobtained from an unpunctured prism of atitude
z,whose centroid has altitude z /2 above the base. Asin Theorem 9, let A = z/h.
If A < u,the dice lies within the cavity, and the prismatic counterpart is the same
unpunctured prism of altitude z, in which case we know from Theorem 6 that

But if A > u, the dlice cuts the outer elliptic dome as shown in Figure 7a. In this
case the counterpart slice has a dant face due to a piece removed by the puncturing
pyramid, asindicated in Figure 7b.

Let V' denote the volume of the unpunctured prismatic container of the outer
dome. Then AV is the volume of the unpunctured prism of altitude z. Remove
from this prism the puncturing pyramid of volume X}V /3, leaving a solid whose
volumeis

V() = AV - NV, (A2 ) (14)
and whose centroid is at atitude c¢(z) given by (12). This solid, in turn, is the
union of the counterpart slice in question, and an adjacent pyramid with vertex O,
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Figure 7. Determining the centroid of a slice of altitude z > wh cut from an
elliptic shell element.

atitude ph, volume

2
v = SHV, (15)

and centroid at altitude 3u://8. The counterpart slice in question has volume

1 2
V(2) —v, = ()\ - —u3> V. (16)

3 3

To find the dtitude ¢, (z) of its centroid we equate moments and obtain

3
(3w + V) — 1) = eV o)
from which we find
3
c(2)V(z) — (guh> vy

V(z) — vy

Now we use (12), (14), (15)and (16). After some simplification we find the
result

cu(z) =

3 A2 =) =t

CH(Z) - Z )\(3 — )\2) — 2#3 ()‘ > ,u) (17)
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When A = p, (17) reduces to (13); when A = 1 then z = h and (17) reduces to
(20); and when i = 0, (17) reduces to (12). The results are summarized by the
following theorem.

Theorem 10. Any horizontal dlice of altitude z > ph cut from a wedge shell
element of altitude h and scaling factor p has volume given by (16), where A =
z/h. The altitude of its centroid above the base is given by (17). In particular
these formulas hold for any slice of a shell of an Archimedean, elliptic, or spherical
dome.

Note: Theorem 6 coversthe case z < ph.

In deriving the formulas in this section we made no essential use of the fact that
the shell elements are elliptic. The important fact is that each shell element is the
region between two similar objects.

8. The necessity of elliptic profiles

We know that every horizontal plane cuts an dliptic dome and its punctured
cylindrical container in cross sections of equal area. This section reveals the sur-
prising fact that the elliptical shape of the dome is actually a consequence of this
property.

Consider a dome of altitude h, and its punctured prismatic counterpart having
a congruent base bounded by a curve satisfying a polar equation » = p(6). Each
vertical half plane through the polar axis at angle 6 cuts the dome along a curve
we call a profile, illustrated by the example in Figure 8a. This is like the elliptic
domein Figure 5a, except that we do not assume that the profiles are eliptic. Each
profile passes through a point (p(#), 6) on the outer edge of the base. At altitude
z above the base a point on the profile is at distance r from the polar axis, where
r isafunction of z that determines the shape of the profiles. We define a genera
profile dome to be one in which each horizontal cross section is similar to the base.
Figure 8a shows a portion of a dome in which p(8) > 0. This portion is a wedge
with two vertical plane faces that can be thought of as “walls’ forming part of the
boundary of the wedge.

Suppose that a horizontal plane at distance =z above the base cuts aregion of area
A(z) from the wedge and a region of area B(z) from the punctured prism. We
know that A(0) = B(0). Now we assume that A(z) = B(z) for some z > 0and
deduce that the point on the profile with polar coordinates (r, 0, z) satisfies the

eguation
r o\ 2 Z\2
(@) +(5) =1 (18)

if p(#) > 0. In other words, the point on the profile at a height where the areas are
equal lieson an ellipse with vertical semi axis of length 4, and horizontal semi axis
of length p(#). Consequently, if A(z) = B(z) for every z from 0 to h, the profile
will fill out a quarter of an ellipse and the dome will necessarily be elliptic. Note
that (18) impliesthatr — 0asz — h.



The method of punctured containers 51

Figure 8. Determining the elliptic shape of the profiles as a consequence of the
relation A(z) = B(z).

To deduce (18), note that the horizontal cross section of area A(z) in Figure 8a
is similar to the base with similarity ratio /p(6),wherep(6) denotes the radial
distance tothe point where the profile intersects the base, and r is the length of the
radial segment at height z. By similarity, A(z) = (r/p(6))*A(0). In Figure 8b,
area B(z) isequal to A(0) minusthe areaof asmaller similar region with similarity
ratio ¢/p(#), where c is the length of the parallel radial segment of the smaller
similar region at height z. By similarity, ¢/p(8) = z/h, hence B(z) = (1 —
(z/h)?)A(0). Equating thisto A(z)wefind (1 — (z/h)?)A(0) = (r/p(6))?A(0),
which gives (18). And, of course, we aready know that (18) implies A(z) =
B(z)for every z. Thus we have proved:

Theorem 11. Corresponding horizontal cross sections of a general profile uniform
dome and its punctured prismatic counterpart have equal areasif, and only if, each
profile is liptic.

As dready remarked in Section 5, an elliptic dome can be deformed in such a
way that areas of horizontal cross sections are preserved but the deformed dome no
longer has elliptic profiles. At first glance, this may seem to contradict Theorem
11. However, such a deformation will distort the vertical walls; the dome will not
satisfy the requirements of Theorem 11, and a so the punctured counterpart will no
longer be prismatic.

An immediate consequence of Theorem 11 is that any reducible general pro-
file dome necessarily has elliptic profiles, because if al horizonta slices of such
a dome and its counterpart have equal volumes then the cross sections must have
equal areas. We have also verified that Theorem 11 can be extended to nonuniform
general profile domes built from a finite number of general profile similar shells,
each with its own constant density, under the condition that corresponding horizon-
tal dices of the dome and its counterpart have equal masses, with no requirements
on volumes or reducibility.
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Concluding remarks. The original motivation for this research was to extend
to more general solids classical properties which seemed to be unique to spheres
and hemispheres. Initially an extension was given for Archimedean domes and a
further extension was made by simply dilating these domesin avertical direction.
These extensions could also have been analyzed by using properties of inscribed
spheroids.

A significant extension was made when we introduced polygonal elliptic domes
whose bases could be arbitrary polygons, not necessarily circumscribing the circle.
Inthis case there are no inscribed spheroids to aid in the analysis, but the method of
punctured containers was applicable. This led naturally to general €elliptic domes
with arbitrary base, and the method of punctured containers was formulated in
terms of mappings that preserve volumes.

But the real power of the method is revealed by the treatment of nonuniform
mass distributions. Problems of determining volumes and centroids of elliptic
wedges, shells, and their dlices, including those with cavities, were reduced to
those of simpler prismatic containers. Finaly, we showed that domes with elliptic
profiles are essentially the only ones that are reducible.
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Midcircles and the Arbelos

Eric Danneels and Floor van Lamoen

Abstract. We begin with a study of inversions mapping one given circle into
another. The results are applied to the famous configuration of an arbelos. In
particular, we show how to construct three infinite Pappus chains associated with
the arbelos.

1. Inversions swapping two circles

Given two circlesO;(r;), i = 1,2, in the plane, we seek the inversions which
transform one of them into the other. Set up a cartesian coordinate system such
that fori = 1, 2, O; is the point(a;, 0). The endpoints of the diameters of the
circles on thec-axis are(a; + r;, 0). Let(a, 0) and® be the center and the power
of inversion. This means, for an appropriate choice ef +1,

(a1 +e-rm—a)(ag+re—a)= (a1 —e-1m —a)(ag —rg —a) = ®.
Solving these equations we obtain
roa] + € 1109
“= ro+¢e-r
®:5'T1T2((T2+5’T1)2—(a1—(12)2). (2)
(ro+e-1r1)?
From (1) it is clear that the center of inversion is a center of similitude of the
two circles, internal or external accordingas= +1 or —1. The two circles of
inversion, real or imaginary, are given by — a* + % = ®, or more explicitly,

ro((x — a1)* +y° —ri) + e (@ —ag)* +y° —r3) = 0. (3)

They are members of the pencil of circles generated by the two given circles. Fol-
lowing Dixon [1, pp.86—88], we call these tin@dcircles M., e = +1, of the two

given circlesO;(r;), ¢ = 1,2. From (2) we conclude that

(i) the internal midcircle M, is real if and only ifr; + 7o > d, the distance be-
tween the two centers, and

(i) the external midcircle M_ is real if and only ifjr; — 9| < d.

In particular, if the two given circles intersect, then there are two real circles of
inversion through their common points, with centers at the centers of similitudes.
See Figure 1.

(1)

Lemma 1. The image of the circle with center B, radius r, under inversion at a
point A with power ® isthe circle of radius| >~ | r, and center dividing AB at

theratio AP : PB = ® : &2 — r2 — &, where d is the distance between A and B.

Publication Date: February 19, 2007. Communicating Editor: Paul Yiu.
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Figure 1.

2. A locus property of themidcircles

Proposition 2. The locus of the center of inversion mapping two given circles
O;(a;), i = 1,2, into two congruent circles is the union of their midcircles M,
and M_.

Proof. Let d(P, Q) denote the distance between two poiftsand Q. Suppose
inversion in P with power ® transforms the given circles into congruent circles.
By Lemma 1,
d(P 2 .2
dBO) —ri _ 1 @)
d(P,02)%? — 13 r9
for e = £1. If we set up a coordinate system so ti&t= (a;,0) fori = 1,2,
P = (z,y), then (4) reduces to (3), showing that the locug’a the union of the
midcirclesM_ andM_. O

Corollary 3. Given three circles, the common points of their midcircles taken by
pairs are the centers of inversion that map the three given circles into three con-
gruent circles.

Fori,j = 1,2,3, let M;; be a midcircle of the circle§; = O;(R;) andC; =
O;(R;). By Proposition 2 we havé;; = R; - C; + ;5 - R; - C; with g;; = *1.
If we chooseg;; to satisfye;s - €23 - €31 = —1, then the centers abMz, Mos
and M3, are collinear. Since the radical centerof the triadG, ¢ = 1,2, 3, has
the same power with respect to these circles, they form a pencil and their common
points X andY are the poles of inversion mapping the ciralgsC, andCs into
congruent circles.

The number of common points that are the poles of inversion mapping the circles
C1,C2 andCs into a triple of congruent circles depends on the configuration of these
circles.

(1) The maximal number i8 and occurs when each pair of circlésand
C; have two distinct intersections. Of the8epoints, two correspond to
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the three external midcircles while each pair of the remaining six points
correspond to a combination of one external and two internal midcircles.

(2) The minimal number i8. This occurs for instance when the circles belong
to a pencil of circles without common points.

Coroallary 4. Thelocus of the centers of the circlesthat intersect three given circles
at equal anglesare0, 1, 2, 3 or 4 linesthrough their radical center P perpendicular
to alinejoining three of their centers of similitude.

Proof. Let C; = A(R;), C2 = B(R2), andCs = C(R3) be the given circles.
Consider three midcircles with collinear centers. Xlfis an intersection of these
midcircles, reflection in the center line gives another common goin€Consider
an inversionr with pole X that maps circlé; to itself. CirclesC; andC, become
Ci = A'(R3) andCy = B'(R3). If P’ is the radical center of the circlgs, C}
andCj, then every circle® = P'(R) will intersect these 3 circles at equal angles.
When we apply the inversiononce again to the circle$, C}, C3 andC we get the
3 original circlesC;, Co, C3 and a circleC’ and since an inversion preserves angles
circle C" will also intersect these original circles at equal angles.

The circles orthogonal to all circled are mapped by to lines throughP'.
This means that the circles orthogonalttall pass through the inversion palé.
By symmetry they also pass throuyh and thus form the pencil generated by the
triple of midcircles we started with. The circl€sform therefore a pencil as well,
and their centers lie oY asX andY are the limit-points of this pencil. [

Remark. Not every point on the line leads to a real circle, and not every real circle
leads to real intersections and real angles.

As an example we consider the, B- andC-Soddy circles of a triangld BC.
Recall that thed-Soddy circle of a triangle is the circle with centdrand radius
s — a, wheres is the semiperimeter of triangld BC. The area enclosed in the
interior of ABC by the A-, B- and C'-Soddy circles form a skewed arbelos, as
defined in [S]. The circlesty making equal angles to th&-, B- and C-Soddy
circles form a pencil, their centers lie on the Soddy lined@C', while the only
real line of three centers of midcircles is the tripolar of the Gergonne pgirit

The pointsX andY in the proof of Corollary 4 are the limit points of the pencil
generated byF;. In barycentric coordinates, these points aresfer +1,

(4R+r)-X7+e-\/§s-I:<2ra+s-\/§a:2rb+e-\/§b:2rc+s-\/§c),

whereR, r, rq, 1, 7. are the circumradius, inradius, and inradii. The midpoint of
XY is the Fletcher-poinii323. See Figure 2.

3. The Arbelos

Now consider an arbelos, consisting of two interior semicirékg-;) 2 and
Oz(r2) and an exterior semicircl®(r) = Oy(r), r = r1 + r2. Their points of

The numbering of triangle centers following numbering in [2, 3].
2We adopt notations as used in [4]: BPQ) we denote the circle with diametétQ, by P(r)
the circle with centeP and radiug-, while P(Q) is the circle with centeP through@ and(PQR)



56 E. Danneels and F. M. van Lamoen

Figure 2.

tangency arel, B andC as indicated in Figure 3. The arbelos has an incif€l¢.
For simple constructions ¢fY), see [7, 8].

Figure 3.

We consider three Pappus chai#,,), ¢ = 0,1,2. If (4, j, k) is a permutation
of (0,1, 2), the Pappus chaifP; ,,) is the sequence of circles tangent to bath)

is the circle throughP, @ and R. The circle(P) is the circle with cente, and radius clear from
context.
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and(Oy) defined recursively by
(i) Pip = (O'), the incircle of the arbelos,
(ii) for n > 1, P; , is tangent tdP; ,_1, (O;) and(Oy,),
(iii) for n > 2, P; ,, andP; ,,_» are distinct circles.

These Pappus chains are related to the centers of similitude of the circles of
the arbelos. We denote by, the external center of similitude ¢6,) and(O-),
and, fori, j = 1,2, by M; the internal center of similitude ¢D) and(0;). The
midcircles areMy(C), M;(B) and Mz(A). Each of the three midcircles leaves
(O') and its reflection iM B invariant, so does each of the circles centered,d?
andC respectively and orthogonal {@). These six circles are thus members of a
pencil, and)’ lies on the radical axis of this pencil. Each of the latter three circles
inverts two of the circles forming the arbelos to the tangent€£tpperpendicular
to AB, and the third circle into one tangent(t0'). See Figure 4.

Mo A \ 01| Mo O M0, B

Figure 4.

We make a number of interesting observations pertaining to the construction of
the Pappus chains. Denote By, the center of the circl@, ,,.

3.1 Fori=0,1,2, inversion in the midcirclg¢ ;) leaves(P, ,,) invariant. Con-
sequently,
(1) the point of tangency dff’, ,,) and(P; ,+1) lies on(M;) and their common
tangent passes througls;
(2) for every permuatiori, j, k) of (0,1, 2), the points of tangency aff ,,)
with (O;) and(Oy,) are collinear with};. See Figure 5.

3.2 For every permutationts, j, k) of (0,1,2), inversion in();) swaps(P; )
and(FPy ). Hence,

(1) M;, P;,, and P ,, are collinear;
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(@] M; Oz B

Figure 5.

(2) the points of tangency df; ,) and (P ,) with (O;) are collinear with
M;;

(3) the points of tangency ¢ ,,) with (P} ,41), and of( Py ,,) with (Py, ,,+1)
are collinear withM;;

(4) the points of tangency aff;,,) with (Oy), and of (P ) with (O;) are
collinear withM;. See Figure 6.

My

Figure 6.

3.3 Let (4,4, k) be a permutation of0, 1,2). There is a circleZ; which inverts
(0,) and(Oy,) respectively into the two tangentsand/, of (O') perpendicular
to AB. The Pappus chai(? ;) is inverted to a chain of congruent circlég,)
tangent to/; and/, as well, with(Qg) = (O’). See Figure 7. The lines joining
to

(i) the point of tangency of@,,) with ¢; (respectivelyls) intersect, (respectively
C1) at the points of tangency witR, ,,
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(i) the point of tangency of@Q,,) and(Q,,—1) intersectM, at the point of tangency
of 'Pgm andPQ,n_l.

From these points of tangency the cir¢l ,,) can be constructed.

Similarly, the lines joiningB to
(iii) the point of tangency of Q) with ¢; (respectivelyls) intersectC, (respec-
tively Cp) at the points of tangency with, ,,,
(iv) the point of tangency of@,) and (Q,,—1) intersectM; at the point of tan-
gency of(Py,,) and (P, _1)-

From these points of tangency the cir¢lg ,,) can be constructed.

Finally, the lines joining’”' to
(v) the point of tangency of@,) with ¢;, ¢ = 1,2, intersectC; at the points of
tangency withPy ,,,
(vi) the point of tangency of@,) and (Q,—1) intersectM, at the point of tan-
gency Of(PO,n) and (PO,nfl)'

From these points of tangency the cir¢lg ,,) can be constructed.

Figure 7.

3.4 Now consider the circléC,, through the points of tangency ¢f;,,) with
(O4) and(Oy,) and orthogonal t@;. Then by inversion irZ; we see thafC,, also
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passes through the points of tangency(@f) with ¢; and/,. Consequently the
centerK,, of K, lies on the line through) parallel to/; and /5, which is the
radical axis of the pencil of; and ();). By symmetry/C,, passes through the
points of tangency Py, ,,) with (O;/) and(Oy) for other permutation$?, j/, k")
of (0, 1,2) as well. The circleC,, thus passes through eight points of tangency, and
all IC,, are members of the same pencil.

With a similar reasoning the circlg, = (L,,) tangent ta? ,, and P ,, 1 at their
point of tangency as well as {@),,) and(Q,,+1) at their point of tangency, belongs
to the same pencil &s,,. See Figure 8.

&
%
Ko

Ly

K

O/

2,1] G
O, \ M

The circlesk,, and £,, make equal angles to the three arbelos semicirf@gs
(O1) and(02). In §5 we dive more deeply into circles making equal angles to three
given circles.

PN

/ o M; Oq B

Figure 8.

4. \-Archimedean circles

Recall that in the arbelos the twin circles of Archimedes have radius ~.2.
Circles congruent to these twin circles with relevant additional properties in the
arbelos are called Archimedean.
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Now let the homothety(A, ) mapO andO; to O’ andOj. In [4] we have
seen that the circle tangent@ andO] and to the line through’ perpendicular to
AB is Archimedean for any within obvious limitations. On the other hand from
this we can conclude that when we apply the homothé#y, \) to the line through
C perpendicular tod B, to find the lineZ, then the circle tangent 9 O andO has
radius\r4. These circles are described in a different way in [6]. We call circles
with radiusAr 4 and with additional relevant propertiasArchimedean.

We can find a family ofA-Archimedean circles in a way similar to Bankoff’s
triplet circle. A proof showing that Bankoff’s triplet circle is Archimedean uses the
inversion inA(B), that mapsD andO; to two parallel lines perpendicular 15,
and(O,) and the Pappus chafi ,,) to a chain of tangent circles enclosed by these
two lines. The use of a homothety throughmapping Bankoff’s triplet circl¢i13)
to its inversive image shows that it is Archimedean. We can use this homothety as
(W3) circle is tangent taAB. This we know becausélis) is invariant under
inversion in(Mp), and thus intersect&\y) orthogonally atC'. In the same way
we find A\-Archimedean circles.

Proposition 5. For 7,5 = 1,2, let V; ,, be the point of tangency of (O;) and (P; ).
Thecircle (CV1 , V) is (n + 1)-Archimedean.

Figure 9.

A special circle of this family is(L) = (CVji,1V21), which tangent ta(O)
and (0’) at their point of tangency, as can be easily seen from the figure after
inversion. See Figure 9. We will meet again this circle in the final section.

Let Wy, be the point of tangency dff? ,,) and (O;). Similarly let W5 ,, be
the point of tangency ofR,,) and(O). The circles(CW, ,, W, ,,) are invariant
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under inversion througliM ), hence are tangent td B. We may consideid B
itself as preceding element of these circles, as we may congitleas (13 —1).
Inversion throughC' maps(F ,,) to a chain of tangent congruent circles tangent to
two lines perpendicular tel B, and maps the circle®'W; , 1 ,,) to equidistant
lines parallel tad B and includingA B. The diameters through of (CW; ,,Ws,,)

are thus, by inversion back of these equidistant lines, proportional to the harmonic
sequence. See Figure 10.

Figure 10.

Proposition 6. Thecircle (CW; ,Wa,,) is %H-Archimedean.
5. Inverting the arbelosto congruent circles

Let F} and F;, be the intersection points of the midcircléss), (M;) and
(M) of the arbelos. Inversion throughl maps the circlegO), (O;) and (O3)
to three congruent and pairwise tangent cirdl&s,), (E; 1) and (E;2). Trian-
gle E; o E; 1 E; o of course is equilateral, and stays homothetic independent of the
power of inversion.

The inversion througtF; maps(M) to a straight line which we may consider
as the midcircle of the two congruent circlég; ;) and (E; 2). The centerM
of this degenerate midcircle we may consider at infinity. It follows that the line
F;M, = F;M is parallel to the centrak; ; E; » of these circles. Hence the lines
throughF; parallel to the sides aof; 1 E; » F; 3 pass through the poinfgl, M; and
M.
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Now note thatd, B, andC are mapped to the midpoints of triandlgy E; 1 E; 2,
and the lineAB thus to the incircle off; o F; 1 ;. The pointF; is thus on this
circle, and from inscribed angles in this incircle we see that the directed angles
(F;A,F;B), (F;B, F;C), (F;C, F;A) are congruent module.

Proposition 7. Thepoints F; and F5 arethe Fermat-Torricelli points of degenerate
triangles ABC and My M7 M.

Let the diameter ofO’) parallel AB meet(O’) in G; andG» and LetG) and
G, be their feet of the perpendicular altitudes 4®. From Pappus’ theorem we
know thatG; G2 GG} is a square. Construction 4 in [7] tells us tiditand its re-
flection throughA B can be found as the Kiepert centers of base angles:tan 2.

Multiplying all distances toA B by@ implies that the pointg; form equilateral
triangles withG} andGy,. See Figure 11.

Figure 11.

A remarkable corollary of this and Proposition 7 is that the arbelos erected on
My My M, shares its incircle with the original arbelos. See Figure 12.

Let F; be at the same side of BC as the Arbelos semicircles. The inver-
sion in F1(C) maps(0), (O1) and (O2) to three2-Archimedean circleg Ey),
(E1) and (E,), which can be shown with calculations, that we omit here. The
2-Archimedean circld L) we met earlier meet&F; ) and (E2) in their "highest”
points H; and H respectively. This leads to new Archimedean cirdl&sH )
and(E,H,), which are tangent to Bankoff’s triplet circle. Note that the poifits
E,, L, the point of tangency ofEy) and (E;) and the point of tangency ¢fp)
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Figure 12.

and (E3) lie on the2-Archimedean circle with centef’ tangent to the common
tangent of(O;) and(O,). See Figure 13.

Figure 13.
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Abstract. Suppose; andL, are lines. There exists a unique poihsuch that

if X € £1,thenX~'©U € L2, whereX ~* denotes the isogonal conjugate of

X andX ' ©U istheX ~*-Ceva conjugate dfl. The mappingk — X 'QU

is theU-Ceva collineation. It maps every line onto a line and in particular maps
L, onto L,. Examples are given involving the line at infinity, the Euler line, and
the Brocard axis. Collineations map cubics to cubics, and images of selected
cubics under certaity-Ceva collineations are briefly considered.

1. Introduction

One of the great geometry books of the twentieth century states [1, p.221] that
“M'obius’s invention of homogeneous coordinates was one of the most far-reaching
ideas in the history of mathematics”. In triangle geometry, two systems of homo-
geneous coordinates are in common use: barycentric and trilinear. Trilinears are
especially useful when the angle bisectors of a reference triahBI€ play a cen-
tral role, as in this note.

Suppose thak = = : y : z is a point. If at most one af, y, z is 0, then the
point

X t=yz:zz:ay
is the isogonal conjugate df, and if none ofr, y, z is 0, we can write

X—lil. 11
=iy

A traditional construction foX~! depends on interior angle bisectors: reflect line
AX in the A-bisector, BX in the B-bisector,C X in the C-bisector; then the
reflected lines concur ix 1.

The triangleA x Bx Cx with vertices

Ax =AXNBC, Bx=BXnNCA, Cx=CXnNAB
is thecevian triangle of X, and
Ax=0:y:z, Bx=z:0:2z, Cx=x:y:0.
If U = u:v:wis apoint, then the triangld” BY CY with vertices
AV = —w:iv:w, BY=uw:—v:w, CV=u:v:—w
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is theanticevian triangle of U. The linesAx AY, BxBY, CxCV concur in the
point

u(—uyz +vzr + wry) : v(uyz —vze + wry) @ w(uyz + vze — wyz),
called theX -Ceva conjugate of U and denoted bX(©U (see [2, p. 57]). Itis easy
to verify algebraically thalX(©(X©U) = U and that ifP = p : ¢ : r is a point,
then the equatio®® = X@©U is equivalent to

X =(ru+ pw)(pv + qu) : (pv + qu)(qw + rv) : (qw + rv)(ru + pw) (1)

=cevapointP,U).
A construction of cevapointP, U) is given in the Glossary of [3].

One more preliminary will be needed. @rcumconic is a conic that passes
through the vertices4, B, C. Every pointP = p : ¢ : r, wherepgr # 0, has
its own circumconic, given by the equatigi3y + gva + raf = 0; indeed, this
curve is, loosely speaking, the isogonal conjugate of thegdine- ¢ + ry = 0,
and the curve is an ellipse, parabola, or hyperbola according as the line meets the

circumcircle in0, 1, or 2 points. The circumcircle is the circumconic having
equationa3y + bya + caff = 0.

2. TheMapping X — X~ '©U

In this section, we present first a lemma: that for given circumcéhand line
L, there is a point/ such that the mapping — X@©U takes each poink onP
to a pointonl. The lemma easily implies the main theorem of the paper: that the
mappingX — X~ '©U takes each point of a certain line fo

Lemmal Suppose L =1l:m:nand P = p: ¢ : r arepoints. Let P denote
the circumconic pGvy + ¢ya + raff = 0 and L thelinela + mf3 + ny = 0. There
exists a unique point U such that if X € P, then X©OU € L. Infact,

U=L"'©P=p(-lp+mq+nr):qlp—mq+nr):r(p+mqg—nr).

Proof. We wish to solve the containme©U € L for U, given thatX € P.
That is, we seek : v : w such that

u(—uyztvze+wry)l+v(uyz—vze+wzy)m+w(uyz+vze—wzy)n = 0, (2)
given thatX = x : y : z is a point satisfying
pyz + qzx + qry = 0. 3)
Equation (2) is equivalent to
u(—ul +vm +wn)yz + v(ul — vm + wn)zz + w(ul + vm — wn)zy = 0, (4)

so that, treating: : y : z as a variable point, equations (3) and (4) represent the
same circumconic. Consequently,

u(—lu + mv 4+ nw)gr = v(lu — mv + nw)rp = w(lu + mv — nw)pq.
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In order to solve for : v : w, we assume, as a first of two cases, thahdq are
not both0. Then the equation

u(—lu + mv + nw)gr = v(lu — mv + nw)rp

gives

w— (mv — lu)_(pv + qu)' 5)
n(pv — qu)

Substituting forw in
u(—=lu + mv + nw)gr — w(lu + mv — nw)pg =0
gives

('mpqv — Ipqu + nprv — ngru — lp?v + quu) (mv — lu) uv

=0,
2nr(pv — qu)?

so that
~ (mq—Ip+mnr)pv
~ q(p—mg+nr)”
Consequently, for given, we have

(6)

(mq—Ip+nr)pv - (mv — lu) (pv + qu)
qlp—mq+nr) ~— nlpv—qu)
Substituting foru from (6), canceling, and simplifying lead to

u:vIw=

u:v:w=p(=lp+mqg+nr):q(lp—mqg+nr):r(p+mqg—nr),

sothatlU = L~'©P.
If, as the second case, we hgve= ¢ = 0, thenr # 0 becausey : ¢ : ris
assumed to be a point. In this case, one can start with

u(—lu + mv 4+ nw)gr = w(lu + mv — nw)pq

and solve forv (instead ofw as in (5)) and continue as above to obtain=
L~'©P.
The method of proof shows that the poliitis unique. g

Theorem 2. Suppose £, istheline [y + m18 + nyy = 0 and £ is the line
loa + mo 8 + noy = 0. There exists a unique point U such that if X € £, then
X_1©U € Ly.

Proof. The hypothesis thak € £, is equivalent toX~! € P, the circumconic
having equatiorh 3y + m1ya + niaf8 = 0. Therefore, the lemma applies to the
circumconicP and the linels,. O

We write the mapping¥ — X '©U asCy(X) = X~ '©U and callCy the
U-Ceva collineation. Thafy; is indeed a collineation follows as in [4] from the
linearity of z, y, z in the trilinears

Cu(X) =u(—uzx + vy + wz) : v(ur — vy + wz) : wluxr + vy — wz).

This collineation is determined by its action on the four poitts3, C, U, with
respective imaged?, BV, CY, U.
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Regarding the surjectivity, or onto-nessbf, supposer is a point on’y; then
the equationX ' @©U = F has as solution

X = cevapointF,U)).

3. Corollaries

Lemma 1 tells how to findJ for given £ andP. Here, we tell how to findZ
from given’? andU and how to findP from givenU and L.

Corollary 3. Given a circumconic P and a point U, there exists a line £ such that
if X € P, then X©OU € L.

Proof. Assuming there is such 4, we have the point/ = L~'©P as Theorem
2, so thatZ.—! = cevapointU, P), and

L = (cevapointU, P))~ 1,

so thatl is the line(wq + vr)a + (ur + wp)B + (vp + ug)y = 0. Itis easy to
check that ifX € P, thenX©U < L. O

Corollary 4. Givenaline £ and a point U, there exists a circumconic P such that
if X € P, then X©U € L.

Proof. Assuming there is such 4, we have the poinlU = L—1©P, andP =
L='©U, so thatP is the circumconic

u(—ul + vm + wn) By + v(ul — vm + wn)ya + w(ul + vm — wn)af = 0.
Itis easy to check that iK € P, thenX©U € L. O

4. Examples

41 LetL=P=1:1:1,sothatl; = Ly isthelinea + 3+ v = 1. We find
U=1:1:1,sothat

Cu(X)=—z+y+z:x—y+z: x+y— =z

It is easy to check thal;(X) = X for every X on the linea 4+ 5 4+ v = 1, such
as X4 and X513. On the lineX; X5 we have

CU(X) =XforX e {Xl,ngg},

so thatCyy mapsX; X, onto itself; e.9.Cy(X2) = X3, andCy(Xi201) = Xs,
andCy(Xg) = Xo72 . On X, X we have fixed pointsX; and X4, so thatCy
maps the lineX; X4, to itself. AbbreviatingCyy(X;) = X; asX; — X, we have,
among points orX; X4,

X1100 — X37 — Xg — X9 — Xi73.
The Euler line, X5 X3, is a link in a chain as indicated by
<= X0 Xgs = Xo X3 — Xyu3Xye -
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42 letL =L = Xg =a:b:c sothatl; is the line at infinity andP is the
circumcircle. LetZ, be the Euler line, given by taking, in the statement of the
theorem to be

Xoar = a(B* =) (b +c2—a?) : b(c® —a?) (A +a®—b?) : c(a® —b%)(a® +b>—c2).
The Ceva collineatiofy; that mapsC, onto L is given by
U = X503 =a(b* — c2) : b(c? — a®) : c¢(a® — V?)
=sin(B — C) :sin(C — A) : sin(A — B),
and we find

X512 — Xo,  Xpo0 — Xy, X503 — X,
X526 — X30, Xos7a — Xi312, Xosrs — Xi313.

The penultimate of these, nameks74 — X319, is Of particular interest, as
Xos7q = Xi113, where X1113 is a point of intersection of the Euler line and the
circumcircle andX3; is a point of intersection of the Euler line and the nine-point
circle; and similarly forXss75 — X1313. The mapping’y; carries the Brocard axis,
X3Xg onto the lineX;15 X125, WhereX;15 and X;o5 are the centers of the Kiepert
and Jerabek hyperbolas, respectively

4.3 LetL; = X593, SO thatl; is the Brocard axisX3; Xg, and letl, be the Euler
line, XoX3. ThenU = Xg = a : b: c. The mapping ofZ; to L, is alink in a
chain:

R X2X39 = X2X6 = X3X6 = X2X3 = X6X25 = X3X66 = ...
4.4. Here, we reverse the roles played by the Brocard axis and Euler line in Ex-
ample 3: letZ; be the Euler line and, be the Brocard axis. Theli = X34 =
a’cos A : b®cos B : c?cosC. A few images of theX;g,-Ceva collineation are
given here:

Xo — X3, X3+ Xs71, Xy Xsr7,
X5 — Xg, X3z0+— Xpo, Xao7— X3.

4.5 LetL; = Ly = Brocard axis. Here,
U= X5 =cos(B—C):cos(C—A):cos(A— B),
the center of the nine-point circle, and

X3gg = X3 — X5o and Xsro — Xg — Xogs.

4.6. Let Ly = Ly = the line at infinity, X39X511. Here,
U=X3=cosA: cosB: cosC,
the circumcenter. Among line-to-line images undgrcollineation are these:

X4 X5 — Eulerline— X3X49,
XeXea — X4 Xg — Brocard axis— XgX155.
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5. Cubics

Collineations map cubics to cubics (e.g. [4, p. 23]). In particulal}-&eva
collineation maps a cubid that passes through the verticds B, C to a cubic
Cy(A) that passes through the verticd$, BY, CU of the anticevian triangle of
U.

5.1 LetU = X3, asing4.1, and letA be the Thompson cubi¢& (X, X;), with
equation

beal( 2 — %) + caB(7? — o?) + aby(a® — 3%) = 0.
ThenCy(A) circumscribes the excentral triangle, and for selecte@n A, the
imageCy; (X;) is as shown here:

X; 112 |3 4 6 9 57 | 223
Cu(X;) || 1]43 (46| 1745 |9 | 1743 | 165 | 1750
5.2 LetU = X, and letA be the cubicZ (X3, X75), with equation

(% — 4% + B(a*+? — a?) + y(b?a? — a?p%) = 0.
For selectedX; on A, the imagely (X;) is as shown here:

X; 16| 19 |31 48|55 |56 | 204 | 221

Cu(X;)|[1]9]610|63|19|57|40]|2184| 84

53 LetU = Xg, asing4.3, and letA be the Thompson cubic. Thefky (A)
circumscribes the tangential triangle, and for selectedn A, the imageCy (X;)
is as shown here:

X; 1123 4 |69 | 57 | 223 | 282 | 1073 | 1249
Cu(X;) ||55]6 25| 154 |3 |56 |198 | 1436 | 1035 | 1033 | 64
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Orthocycles, Bicentrics, and Orthodiagonals
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Abstract. We study configurations involving a circle (orthocycle) intimately re-
lated to a cyclic quadrilateral. As an illustration of the usefulness of this circle
we explore its connexions with bicentric (bicentrics) and orthodiagonal quadri-
laterals (orthodiagonals) reviewing the more or less known facts and revealing
some other properties of these classes of quadrilaterals.

1. Introduction

Consider a generic convex cyclic quadrilateja= ABC'D inscribed in the
circle k(K,r) and having finite intersection poinfs G' of opposite sides. Line
e = F'G is the polar of the intersection poiiit of the diagonalsAC, BD. The
circle ¢ with diameterF'G is orthogonal tok. Also, the midpointsX, Y of the
diagonals and the centdf of ¢ are collinear. We calt the orthocycle of the
cyclic quadrilateraly. Consider also the circlg with diameterE K. This is the

Figure 1. The orthocycle of the cyclic quadrilaterah BC' D

locus of the midpoints of chords @f passing througtE. It is also the inverse of
e with respect tok and is orthogonal te. Thus,c belongs to the circle-bundle
%", which is orthogonal to the bundi€(k, f) generated by and f. The bundle

% is of non intersecting type with limit point&/, NV, symmetric with respect to
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e, and%¢”’ is a bundle of intersecting type, all of whose members pass thrédfigh
and N. If we fix the data(k, E, ¢), then all cyclic quadrilateralg having these
ascircumcircle, diagonals-intersection-point, orthocyeckspectively form a one-
parameter family. A membey of this family is uniquely determined by a poitit
on the circular ar¢OM P) of the orthocycle:. Thus the set of alj inscribed in the
circle k£ and having diagonals throughi is parameterized through paits, J), ¢
(the orthocycle) being a circle of bundi and.J a point on the corresponding arc
(OM P) intercepted on the orthocycle by In the following sections we consider
these facts more closely and investigate (i) the bicentrics inscribéd amd (ii)

a certain 1-1 correspondence of cyclics to orthodiagonals in which the orthocycle
plays an essential role.

Regarding the proofs of the statements made, everything (is or) follows immedi-
ately from standard, well known material. In fact, the statement on the polar relies
on its usual construction from two intersecting chords ([3, p.103]). The statement
on the collinearity follows from Newton’s theorem on a complete quadrilateral ([3,
p.62]). From the harmonic ratios appearing in complete quadrilaterals follows also
that the intersection pointg, R of the diagonals with line: divide F', G har-
monically. Consequently the circle with diamet@R is also orthogonal te (]2,
§1237]). The orthogonality of, k follows from the fact that’ F" is the polar ofG,
which implies thatP, G are inverse with respect to Besides, by measuring angles
at P, circlesf, c are shown to be orthogonal. The statement on the parametrization
is analyzed in the following section.

The orthocycle gives a means to establish unity in apparently unrelated proper-
ties. For example the well known formula

1 1 1
2T Ryd?  (R-dp?
is proved to be, essentially, a caseStéwart’s formulgsee next paragraph).
Furthermore, the orthogonality ofto f can be used to characterize the cyclics.
To formulate the characterization we consider more generabitimcycleof a
generic convex quadrilateral to be the circle on the diameter defined by the two
intersection points of its pairs of opposite sides.

Proposition 1. The quadrilateraly = ABC D is cyclic if and only if its orthocycle
cis orthogonal to the circlef passing through the midpoinfs, Y of its diagonals
and their intersection poink.

Proof. If ¢ is cyclic, then we have already seen that its orthocydlelongs to the
bundle%” which is orthogonal to the one generated by its circumcikcind the
circle f passing through the diagonal midpoints and their intersection point.

Conversely, if the orthocycle and f intersect orthogonally, thew and X are
inverse with respect ta Since the same is true with the intersection poits) of
the diagonals of with line F'G (see Figure 2), there is a circlepassing through
the four pointsX, Y, R and@. Then we have

|ER|-|[EX| = [EY]-|EQ|. (1)
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Figure 2. Cyclic characterization

But from the general properties of the complete quadrilaterals we have also that
(Q,E,C,A) = —1is a harmonic division, hence

|[EC|-|EA| = |EQ| - |EY]. )
Analogously,(R, E, B,D) = —1 implies
|EB|-|ED| = |ER|- |EX]|. 3
Relations (1) to (3) imply thatE B|-|ED| = |EC|-|EA|, proving the proposition.
O

For a classical treatment of the properties discussed below see Chapter 10 of
Paul Yiu's Geometry Notes [5]. Zaslavsky (see [6], [1]) uses the tathodiago-
nal for a map between quadrangles and gives characterizations of cyclics in another
context than the one discussed below.

2. Bicentrics

Denote by(k, E, c) the family of quadrilaterals characterized by these elements
(circumcircle, diagonal-intersection-point, orthocytlkeorrespondingly. Referring
to Figure 1 we have the following properties (8674, 675, 1276]).

Proposition 2. (1) There is a 1-1 correspondance between the members of the
family (k, E, ¢) and the points/ of the open ar¢O M P) of circle c.

(2) Let X, Y be the intersection points ¢f with line HJ. X,Y are the mid-
points of the diagonals af and are inverse with respect to
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(3) ThenF'J bisects anglesiF'D and X F'Y. AnalogouslyG.J bisects angles
BGD and XGY'.

Proof. In fact, from the Introduction, it is plain that each membeaf the family
(k, E, c) defines a/ as required. Conversely, a poifibn arc(OM P) of c defines
two intersection pointsX, Y of H.J with f, which are inverse with respect to
¢, since f andc are orthogonal. The chordsX and EY define the cycliog =
ABCD, having these as diagonals afRd Y as the midpoints of these diagonals.
Consider the orthocyclé of this q. By the analysis made in the Introductiof,
belongs to the bundl&” and is also orthogonal to the circle with diametgR.
Thus( is uniquely defined by the chord§ £, Y E and must coincide with. This
proves (1).

(2) is already discussed in the Introduction.

(3) follows from the orthogonality of circles, c. In fact, this implies that/,
J* divide X, Y harmonically. ThenFJ*, FJ, FY, FX) is a harmonic bundle
of lines andF'J*, F'J are orthogonal. Hence, they bise¢X F'Y. They also
bisect/BFC'. This follows immediately from the similarity of triangled F'C'
and DF' B. Analogous is the situation with the angles‘at g

Referring to figure 1, denote hy(c) the particular quadrilateral of the family
(k, E, c), constructed with the recipe of the previous proposition, et M. The
following two lemmas imply tha(c) is bicentric.

L
M

Figure 3. Bundle quadrilaterals

Lemma 3. Consider a circle bundle of non intersecting type and two chords of a
member circle passing through the limit poiltof the bundlgsee Figure 3)The
chords define a quadrilatera] = ABC D having these as diagonals. Extend two
opposite sidest D, BC' until they intersect a second circle membaf the bundle.
The intersection points form a quadrilateral= HIJK. Then the intersection
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point L of the sidesH I, JK lies on the polarM N of E with respect to a circle of
the bundle (all circles: of the bundle have the same polar with respedtjo

Indeed, N, M can be taken as the intersection points of opposite sides of
ThenN is on the polar ofZ, hence the polay(N) of N containsE. Consider the
intersection pointg), P of this polar with sidedd K, I.J respectively. Then,

(a) these sides intersect at a painlying onp(N),
(b) Lis also on lineM N.

(a) follows from the standard theorem on cyclic quadrilaterals.

(b) follows from the fact that the quadruple of line¥ L, NH, NE, NI) at N
is harmonic. BU{NM, NH, NE, N1I) is also harmonic, henck is contained in
line M N.

Lemmad4. qg(c) is bicentric.

Figure 4. Bisectors aof(c)

Indeed, by Proposition 2 the bisectors of angle$G B, ZBFC will intersect
at M. It suffices to show that the bisectors of two opposite anglegfintersect
also atM. Let us show that the bisector of anglel BC passes through/ (Figure
4). We start with the quadrilatergl = F X KY . Its diagonals intersect at/. Ac-
cording to the previous lemma the extensions of its sides will define a quadrilateral
g2 = BDK*Y* inscribed ink and having its opposite sides intersecting on fine
the common polar of with respect to every member circle of the bundleThis
implies that the diagonals a@f intersect at the polé’ of h. But BK* joins B
to the middleK™ of the arc(CK*B), hence is the bisector of angleABC' and
passes through/.
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Proposition 5. (1) There is a unique member= ¢(c) = ABCD, of the family
(k, E, ¢) which is bicentric. The correspondingis the limit point}/ of bundlel
contained in the circle:.

(2) There is a uniqgue member= o(c) = A*B*C*D*, of the family(k, E, ¢)
which is orthodiagonal. The corresponditif)J passes through the centérof the
circle f.

(3) For every bicentric the incenteM is on the line joining the intersection
point of the diagonals with the circumcenter.

(4) For every bicentric the incente¥/ is on the line joining the midpoints of the
diagonals.

Figure 5. The bicentric member (i, F, c)

Proof. In fact, by the previous lemmas we know thgt) is bicentric. To prove
the uniqueness we assume that ABCD is bicircular and consider the incircle
g and the tangential quadrilatergl = UVW Z. From Brianchon’s theorem the
diagonals ofg intersect also afl. Thus, the poles of the diagonalsiV, V Z
being correspondingly’, G, line e will be also polar ofE with respect tag. In
particular the center of will be on line M N and the pairs of opposite sides of the
tangentialy will intersect one at pointsQ, R say. The diagonals @fpass through
Q, R respectively. In factD being the pole of lind?V Z and B the pole ofUV,
BD is the polar ofR with respect tq;. By the standard construction of the polar
it follows that @) is on BD. AnalogouslyR is on AC. The center ofy will be
the intersectionV/’ of the bisectors of angleBG A and BF'C. By measuring the
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angles atM/’ we find easily that the bisectors form there a right angle. Thils,
will be on the orthocycle, hence, being also on line NV, it will coincide with M .
In that case lind7Y X passes through/. This follows from proposition 1 which
identifies the bisector of anglé "X with F'M . This proves (1).

To prove (2) consider the quadrangle= EXKY'. If the diagonals intersect
orthogonally thers is a rectangle. ConsequentkY is a diameter off and passes
throughL. The converse is also valid. Y passes through thens is a rectangle
ando is orthodiagonal.

The other statements are immediate consequences. Notice that property 2 holds
more generally for every circumscriptible quadrilateral 2614]). O

Proposition 6. Consider all trippleq %, E, ¢) with fixedk, E andc running through
the members of the circle bundi&. Denote by;(c) the bicentric member of the
corresponding familyk, FE, ¢) and by = UV W Z the tangential quadrangle of
q(c) (see Figure 5) The following statements are consequences of the previous
considerations:

(1) All tangential quadrilaterals{ = UV W Z are orthodiagonal, the diagonals
being each time parallel to the bisectors of angleBG A, / BFC.

(2) The pairs of opposite sides grintersect at the point§), R, which are the
intersection points of the diagonals g@fc) with e.

(3) The orthocycle’ of the tangential/ is the circle on the diametep R and
intersects the incirclg of ¢(c) orthogonally. The radius, of the incircle satisfies
r? = |ME||MT).

(4) The bicentrics{q(c) : ¢ € ¢”} are precisely the inscribed in circle and
having their diagonals pass through. They, all, have the same incirclg de-
pending only ork and E.

(5) The radiir, of the inscribed circlgy, r of circumscribedk, and the distance
1 1

T dZ  r_ap

: , 1
d = |[M K| of their centers satisfy the relation, =
"
g

Proof. (1) follows from the fact that/ V' is orthogonal to the bisectdr M of angle
BFC. AnalogouslyV Z is orthogonal tazM and FM, GM are orthogonal (]2,
§674]).

(2) follows from the standard construction of the polarffvith respect ta.
Thuse is also the polar of with respect to the incircle ([2, §1274]).

(3) follows also from (2) and the definition of the orthocycle. The relation for
r4 IS a consequence of the orthogonality of cirafes.

(4) is a consequence of (3) and (5) is proved below by specializing to a particular
bicentricq(c) which is simultaneously orthodiagonal ([5, p.159]). Since the radius
and the center of the incirclgis the same for alj(c) this is legitimate. O

Proposition 7. (1) For fixed (k, E), the set of all bicentric§q(c) : ¢ € €'}
contains exactly one member which is simultaneously bicentric and orthodiagonal.
It corresponds to the minimum circle of bund#® is kite-shaped and symmetric
with respect taV/ N (see Figure 6)
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Figure 6. The orthodiagonal bicentric

(2) All the bicentric orthodiagonals are constructed by reflecting an arbitrary
right-angled triangle ABD on its hypotenusésee Figure 7) The center of the
incircle coincides with the trac& of the bisector with the hypotenuse, the length of

1
_|_
(R+d)?  (R—d)?
of ABD andd = |E K] is the distance of the bisector’s trace from the middle of
BD.

(3) There is a patrticular bicentric orthodiagonal constructed directly from a

regular octagon, with inradiuss = —£— and sides equal taw and w + 2r

this bisecton satisying— = . HereR is the circumradius
w

respectively(see Figure 8)

Figure 7. The general orthodiagonal bicentric

Proof. In fact, by applying the previous results to the tangential quadrilagevél
q(c), we know that the orthocycle af is orthogonal to the fixed incircle and
passes through two fixed points, depending only/arE) (the limit points of the
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corresponding circle bundfg¢’ for the pair(g, E)). If the diagonalsE@ and ER
become orthogonal thefi must be on the orthocycle gfand this is possible only
in the limiting position in which it coincides with lind/ N. Then the orthocycle
of ¢(c) hasM N as diameter and this implies (1).

(2) follows immediately from (1). The formula is an application of Stewart’s
general formula (see [5, p.14]) on this particular configuration plus a simple calcu-
lation. The formula implies trivially the formula of the previous proposition, since
all the bicirculars characterized by the fixed p@ir £') have the same incircle
and from the squar&Z AU (Figure 6) we haver? = 2r2.

(3) is obvious and underlines the existence of a particular nice kite. a

Notice the necessary inequality between the distanee)M K and the distance
d; = |EK]| of circumcenter from the intersection point of diagonag/ K| >
|EK|, holding for every bicentric ([6, p.44]) and being a consequence of a general
propety of circle bundles of non intersecting type.

Figure 8. A distinguished kite

3. Circumscribed Quadrilateral

The following proposition give some well known properties of quadrilaterals
circumscribed on circles by adding the ingredient of the orthocycle. For conve-
nience we review here these properties and specialize in a subsequent proposition
to the case of a bicentric circumscribed.

Proposition 8. Consider the tangential quadrilatergl = QRST circumscribed
on the circumcirclek of the cyclic quadrilateraly = ABCD (Figure 9) The
following facts are true:

(1) The diagonals off andq intersect at the same poift.

(2) The pairs of opposite sides @fand pairs of opposite sides gfintersect on
the same line, which is the polar o with respect to the circumcirclg of q.

(3) The diameterUV of the orthocycle off is divided harmonically by the
diameter FG of the orthocycle qf

(4) The orthocycle of is orthogonal to the orthocycle qf

(5) The diagonals off (respectivelyg) pass through the intersection points of
opposite sides af (respectivelyy).
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Figure 9. Circumscribed on cyclic

Proof. (1) is a consequence of Brianchon’s theorem (see a simpler proof in [5,
p.157]). Identify the polar o2 with the diametee = F'G of the orthocycle of
g. The polar ofF" is PG and the polar of7 is OF. T is the pole ofAB which
containsF'. Hence the polar of” will pass throughl’, analogously it will pass
throughR. This proves (2) (see [21275]) and (5).

To show (3) it suffices to see that line&K' P, K'Y, KO, K X) form a harmonic
bundle. But the cross ratio of these four lines througlis independent of the lo-
cation of K on the circle with diameteE K. Hence is the same with the cross ratio
of lines (EP, EY, EO, EX) which is —1 by the general properties of complete
guadrilaterals.

(4) is a consequence of (3). Note that the lin® joining the midpoints of the
diagonals ofy passes through the cenfiéf of the orthocycle and the center bf
([2, §1614])). O
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Proposition 9. For each quadrangle of the family< (k, E, ¢) construct the tan-
gential quadrangle/ = QRST of ¢ = ABCD (Figure 10). The following facts
are true.

(1) There is exactly ongy € (k, E,c) whose corresponding tangentigl is
cyclic. The corresponding line of diagonal midpointsdopasses through the
centerK of circle .

(2) The line of diagonal midpoints @f is orthogonal to the corresponding line
of diagonal midpoints of .

Figure 10. Bicentric circumscribed

Proof. ¢’ being cyclic and circumscriptible it is bicentric. Hence the lines joining
opposite contact points must be orthogonal and the orthocydea$ses through
K. This follows from Proposition 2. Thys= EXKY is a rectangleXY being

a diameter of the circlg. Inversely, by Proposition 3, if is bicentric, therp is

a rectangle and is the limit point of the corresponding bundle and K is the
center of the incircle. For the other statement notice that cirbleing orthogonal
simultaneously to circlé andb has its center on the radical axisiondk. In the
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particular case of bicentri¢, the angledV KK, XY K and EKY are equal and
this implies thatiV' L is then orthogonal td7 XY which becomes the radical axis
of k£ andb.

Note that the diagonals of aflare the same and identical with the liné$, EG
which remain fixed for all membetigof the family (k, E, ¢). Also combining this
proposition and Proposition 3 we have (see [5, p.162]) ¢hatcyclic, if and only
if ¢ is orthodiagonal. O

4. Orthodiagonals

The first part of the following proposition constructs an orthodiagonal from a
cyclic. This is the inverse procedure of the well known one, which produces a
cyclic by projecting the diagonals intersection point of an orthodiagonal to its sides
([4, vol. 1l p. 358], [6], [1]).

Figure 11. Orthodiagonal from cyclic

Proposition 10. (1) For each cyclic quadrilateraly = ABCD of the family
(k, E,c) there is an orthodiagonap = QRST whose diagonals coincide with
the sides of the right angled triangte= FGM, defined by the limit poind/ of
bundle® and the intersection pointg, GG of the pairs of opposite sides @f The
vertices ofg are the projections of the intersection poihf of the diagonals op
on its sides.

(2) The pairs of opposite sides pintersect at point3V’, W* on line h which is
the common polar of all circles of bundlewith respect to its limit poinf/.
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(3) The orthodiagonap is cyclic if and only if the correspondingis bicentric,
i.e., point.J is identical withM/.
(4) The circumcircle of the orthodiagonal and cyclidelongs to bundlé.

Proof. Consider the lines orthogonal fd A, M B, MC, M D at the vertices of
(Figure 11). They build a quadrilateral. To show the statement on the diagonals
consider the two resulting cyclic quadrilatergls= M ATB andg, = MCRD.
Point F' lies on the radical axis of their circumcircles since lideB A, FCD are
chords through?’ of circle k. Besides, for the same reasdnB| - |[F'A| = |FV] -

|FU| = |CF|-|FD| = |FM|?. The last because circlesk are orthogonal and/

is the limit point of bundlel. From|FB| - |[FA| = |F M follows that line F' M

is tangent to the circumcircle a@f. Analogously it is tangent tg, at M. Thus
points G, T, M, R are collinear. Analogously pointg, @, M, S are collinear.

This proves (1).

For (2), note that quadrangld BQS is cyclic, since/TBA = /TMA =
/ZMSA. Thus|FM|? = |FQ|-|FS| and this implies that point&/, Z divide har-
monically @, S, Z being the intersection point &f with the diagonal)S. Analo-
gously the intersection poitit* of 4 with the diagonall’ R and M will divide T', R
harmonically. Thus, by the characteristic property of the diagonals of a complete
guadrilateralZ Z* will be identical with lineWW WW*,

Figure 12. Orthodiagonal and cyclic

For (3), note thap is cyclic if and only if angles’ QT R = ZQ SR (Figure 12).
By the definition ofp this is equivalent to BAM = /M AD, i.e., AM being the
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bisector of angled of q. AnalogouslyM B, M C', M D must be bisectors of the
corresponding angles gf

For (4), note that the circumcenter pimust be on the lindg M. This follows
from the discussion in the first paragraph and the second statement. Indeed, the
circumcenter must be on the line which is orthogonal frbfmto the diameter of
the orthocycle ofp. Besides the circle with centdr and radiusF'M is a circle
of bundle%” and, according to the proof of first statement, is orthogonal to this
circumcircle. Thus the circumcircle @f being orthogonal to two circles of bundle
¢, belongs to bundl&’. O
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Bicevian Tucker Circles

Bernard Gibert

Abstract. We prove that there are exactly ten bicevian Tucker circles and show
several curves containing the Tucker bicevian perspectors.

1. Bicevian Tucker circles

The literature is abundant concerning Tucker circles. We simply recall that a
Tucker circle is centered &t on the Brocard axi®) K and meets the sidelines of
ABC at six pointsAy, A., Be, Ba, C,, Cy such that
(i) the lines X, Y, are parallel to the sidelines efBC,

(i) the linesY, Z, are antiparallel to the sidelines efBC, i.e., parallel to the
sidelines of the orthic trianglél, H, H...

Figure 1. A Tucker circle

If T'is defined byOT = ¢ - OK, we have

2abc ] =
a? + b2 4 2
and the radius of the Tucker circle is

B,C, = CyAp = A.B. = R|t| tan w,

Rr = R\/(l —1)2 4+ 12 tan? w

whereR is the circumradius and is the Brocard angle. See Figure 1.
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One obvious and trivial example consists of the circumcircld BiC which we
do not consider in the sequel. From now on, we assume that the six points are not
all the vertices ofABC.

In this paper we characterize thigevian Tucker circles, namely those for which
a Tucker triangle formed by three of the six points (one on each sideline) is per-
spective toABC. It is known that if a Tucker triangle is perspective ABC,
its companion triangle formed by the remaining three points is also perspective to
ABC'. The two perspectors are then said to be cyclocevian conjugates.

There are basically two kinds of Tucker triangles:
(i) those having one sideline parallel to a sidelinedd®C': there are three pairs of
such triangles e.g4, B.C, and its companioid.B,C,,
(ii) those not having one sideline parallel to a sidelineABC: there is only
one such pair namely, B.C, and its companiom.B,C,. These are the proper
Tucker triangles of the literature.

\
S
B
N
o
& >

4

§

4

Figure 2. A Tucker circle through a vertex diBC

In the former case, there are six bicevian Tucker circles which are obtained
whenT is the intersection of the Brocard axis with an altitudeABC (which
gives a Tucker circle passing through one vertexd&fC', see Figure 2) or with a
perpendicular bisector of the medial triangle (which gives a Tucker circle passing
through two midpoints oA BC, see Figure 3).

The latter case is more interesting but more difficult. Let us consider the Tucker
triangle A, B.C, and denote byX, the intersection of the lineB B, and CCy;
defineX, and X, similarly. Thus,ABC and A, B.C, are perspective (&) if and
only if the three linesA A4,, BB, andCC, are concurrent or equivalently the three
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Figure 3. A Tucker circle through two midpoints dfBC

points X,, X; and X, coincide. Consequently, the triangldsBC and A.B,C}
are also perspective &t, the cyclocevian conjugate of.

Lemmal. When T traverses the Brocard axis, the locus of X, isa conic ~,.

Proof. This can be obtained through easy calculation. Here is a synthetic proof.
Consider the projections; from the line AC' onto the lineBC' in the direction of
H,H,, andm, from the lineBC onto the lineAB in the direction ofAC. Clearly,
ma(m1(B.)) = ma(A:) = Cy. Hence, the tranformation which associates the line
BB._tothe lineCC, is a homography between the pencils of lines passing through
B andC. It follows from the theorem of Chasles-Steiner that their interseckjpn
must lie on a conic. O

This conic~, is easy to draw since it contain3, C', the anticomplement,
of A, the intersection of the mediaAG and the symmedia@ K and since the
tangent aC is the lineC' A. Hence the perspectdf we are seeking must lie on
the three conics,, 74, 7. andY must lie on three other similar conie§, v;, ...
See Figure 4.

Lemma 2. v,, 7, and ~. have three common points X;, ¢ = 1, 2, 3, and one of
themis always real.

Proof. Indeed,y, and~, for example meet ad and three other points, one of them
being necessarily real. On the other hand, it is clear that any poiging on two
conics must lie on the third one. O

This yields the following
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Figure 4. 4, v» and~. with only one real common poinX’

Theorem 3. There are three (proper) bicevian Tucker circles and one of themis
alwaysreal.

2. Bicevian Tucker perspectors

The pointsX; are not ruler and compass constructible since we need intersect
two conics having only one known common point. For ea¢hhere is a corre-
spondingy; which is its cyclocevian conjugate and the Tucker circle passes through
the vertices of the cevian triangles of these two points. We call these six pgints
Y; the Tucker bicevian perspectors.

When X is known, it is easy to find the corresponding cerffenf the Tucker
circle on the lineOK : the perpendicular df; to the line H,H. meetsAK at a
point and the parallel through this point i H. meets the linesi B, AC' at two
points on the required circle. See Figure 5 where only &nis real and Figure 6
where all three point; are real.

We recall that the bicevian coni{ P, Q) is the conic passing through the ver-
tices of the cevian triangles d? and(). See [3] for general bicevian conics and
their properties.

Theorem 4. Thethreelines £; passing through X;, Y; are parallel and perpendic-
ular to the Brocard axis OK..

Proof. We know (see [3]) that, for any bicevian comi¢P, @), there is an inscribed
conic bitangent t@ (P, @) at two points lying on the liné’Q). On the other hand,

any Tucker circle is bitangent to the Brocard ellipse and the line through the con-
tacts is perpendicular to the Brocard axis. Hence, any bicevian Tucker circle must
be tangent to the Brocard ellipse at two points lying on the ¥, and this
completes the proof. O
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Ya|

Figure 5. One real bicevian Tucker circle

Figure 6. Three real bicevian Tucker circles

Corollary 5. Thetwo triangles X; X2 X5 and Y;Y5Y3 are perspective at X515 and
the axis of perspective istheline GK.
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Conversely, any bicevian con@ P, Q) bitangent to the Brocard ellipse must
verify Q = K/P. Such conic has its center on the Brocard line if and onlg if
lies either
(i) on pK(X3051, K) in which case the conic has always its center at the Brocard
midpoint X3q, but the Tucker circle with centeXsg is not a bicevian conic, or
(II) on p/C(X669, K) = K367 in [4]

This gives the following

Theorem 6. The six Tucker bicevian perspectors X;, Y; lie on pK(Xgg9, X6), the
pivotal cubic with pivot the Lemoine point K which isinvariant in the isoconjuga-
tion swapping K and the infinite point X5,5 of the Lemoine axis.

See Figure 7. We give another proof and more details on this cubic below.

Figure 7. Bicevian Tucker circle and Brocard ellipse

3. Nets of conics associated with the Tucker bicevian per spectors

We now consider curves passing through the six Tucker bicevian perspectors
X, Y;. Recall that two of these points are always real and that all six points are
two by two cyclocevian conjugates on three linggperpendicular to the Brocard
axis. We already know two nets of conics containing these points:

(i) the net\ generated by, 74, . which contain the points;, i = 1,2, 3;
(ii) the net\” generated by, +;, . which contain the point¥;, i = 1,2, 3.
The equations of the conics are

Ya : a’y(z +z) — b*z(z +y) =0,
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Ay a’z(z +y) — Ca(x + 2) = 0;

the other equations are obtained through cyclic permutations.
Thus, for any poinf? = : v : w in the plane, a conic iV is

N(P) = UV + VY + W
similarly for N’(P). Clearly, N'(A) = ~,, etc.

Proposition 7. Each net of conics (A and \’) contains one and only one circle.
ThesecirclesT" and I contain X710, the focus of the Kiepert parabola.

These circles are
r: Z VA1 — ) (a® — b*)z? 4+ a2 (b? — A)(c + a®b? — 2P )yz =0

cyclic

and

r: Z VA1 — ) (? - a®)z? — a?(b? — A) (b + a® — 2a*b?)yz = 0.
cyclic

In fact,T' = NV(P") andI” = N’(P") where

TR_—2 2—0 -

These points lie on the trilinear polar &3, the line through the centers of
the Kiepert and Jerabek hyperbolas and on the circum-conic with perspégtor
which is the isotomic transform of the Lemoine axis. See Figure 8.

Proposition 8. Each net of conics contains a pencil of rectangular hyperbolas.
Each pencil contains one rectangular hyperbola passing through X ¢.

Note that these two rectangular hyperbolas have the same asymptotic directions
which are those of the rectangular circum-hyperbola passing thraugh See
Figure 9.

4. Cubicsassociated with the Tucker bicevian perspectors

WhenP has coordinates which are lineariny, z, the curvesV'(P) and\ (P)
are in general cubics bW (z : z : y) andN'(y : z : x) are degenerate. In other
words, for any point: : y : z of the plane, we (loosely) may write

2%+ 2%+ Y =0
and
YYa+ 2%+ =0.
We obtain two circum-cubic&(P) and' (P) when P takes the form

P=qgqz—ry:rx—pz:py—qx
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Figure 9. Rectangular hyperbolas through the Tucker bicevian perspectors

associated to the cevian lines of the pdiht p : ¢ : r and both cubics contaify.
Obviously,KC(P) contains the point¥; andK’(P) contains the point;.
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For example, with) = G, we obtain the two cubick(G) andK'(G) passing
throughG and the vertices of the antimedial triangleG,G.. See Figure 10.

Figure 10. The two cubick(G) andK'(G)

These two cubic&(P) and ' (P) are isotomic pivotal cubics with pivots the
bicentric companions (see [5, p.47] and [2]).%53 respectively

Xtz =0a>—b*: 0% —c*: c* —a?
and

Xla=c*—a?:a® =02 0? - &2
both on the line at infinity. The two other points at infinity of the cubics are those
of the Steiner ellipse.

4.1 An alternative proof of Theorem 6. We already know (Theorem 6) that the
six Tucker bicevian perspector§, Y; lie on the cubigp/C( X469, X6). Here is an
alternative proof. See Figure 11.

Proof. Let U, V, W be the traces of the perpendicularGto the Brocard axis.
We denote byl", the decomposed cubic which is the union of the lif& and
the conic~,. I', contains the vertices cd BC and the pointsX;. I', andTI’. are
defined similarly and contain the same points.

The cubicc? T', 4+ a? 'y + b I, is another cubic through the same points since it
belongs to the net of cubics. Itis easy to verify that this latter cubii€Xseo, X¢).

Now, if I}, I}, I', are defined likewise, the cubié I, + >’} + a*I", is
pK(Xe69, X¢) again and this shows that the six Tucker bicevian perspectors lie on
the curve. O
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Figure 11. pK(Xs69, X6) and the three lines;

4.2 More on the cubic pX(Xg69, X6). The cubicp/C(Xgg9, X¢) also containgy,
X110, X512, X3124 and meets the sidelines dfBC' at the feet of the symmedians.
Note that the poleXgg9 is the barycentric product d& and X5, the isopivot or
secondary pivot (see [1§1.4). This shows that, for any poidt/ on the cubic,

the pointK /M (cevian quotient or Ceva conjugate) lies on the cubic and the line
M K /M containsXs:, i.e. is perpendicular to the Brocard axis.

We can apply to the Tucker bicevian perspectors the usual group law on the
cubic. For any two point$’, @ on pX(Xse9, X¢) We defineP @ @ as the third
intersection of the line throughR and the third point on the lin€Q.

For a permuation, j, kof 1, 2, 3, we have

Furthermore X; ® Y; = K. These properties are obvious since the pivot of the
cubic isK and the secondary pivot i%;15.

The third point ofpC(Xeg9, X6) 0N the lineK Xi1g is X3104 = a?(b* — ¢?)? :
b(c? —a?)? : *(a® —b?)?, the cevian quotient ok and X5;5 and the third point
on the lineX710 X512 is the cevian quotient ok and X 1.

The infinite points 0b/XC(Xg69, X6) areXs12 and two imaginary points, those of
the bicevian ellips&”' (G, K) or, equivalently, those of the circum-ellip§& Xsg)
with perspectorX3g and centetXy4;.

The real asymptote is perpendicular to the Brocard axis and meets the curve at
X = K/X512, the third point on the lind{ X7,, seen aboveX also lies on the
Brocard ellipse, o' (G, K). See Figure 12.
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[Brocard ~ ~\,
N ‘\‘ellip.\"e, -

N
-X

Figure 12. K367 = p/C(Xes9, Xo)

pK(Xes9, X¢) is the isogonal transform @ffC( Xg9, Xo9), @ member of the class
CLOOQ7 in [4]. These are the/C(W, W) cubics or parallel tripolars cubics.
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A Visual Proof of the Erdos-Mordell I nequality

Claudi Alsina and Roger B. Nelsen

Abstract. We present a visual proof of a lemma that reduces the proof of the
Erdds-Mordell inequality to elementary algebra.

In 1935, the following problem proposal appeared in the “Advanced Problems”
section of theAmerican Mathematical Monthly [5]:

3740. Proposed by Paul Erdds, The University, Manchester, England.
From a pointO inside a given triangled BC' the perpendiculars
OP, OQ, OR are drawn to its sides. Prove that

OA+ OB+ 0OC >2(0OP +0Q + OR).

Trigonometric solutions by Mordell and Barrow appeared in [11]. The proofs,
however, were not elementary. In fact, no “simple and elementary” proof of what
had become known as the BsifMordell theorem was known as late as 1956 [13].
Since then a variety of proofs have appeared, each one in some sense simpler or
more elementary than the preceding ones. In 1957 Kazarinoff published a proof
[7] based upon a theorem in Pappus of Alexandiié&ghematical Collection; and
a year later Bankoff published a proof [2] using orthogonal projections and similar
triangles. Proofs using area inequalities appeared in 1997 and 2004 [4, 9]. Proofs
employing Ptolemy’s theorem appeared in 1993 and 2001 [1, 10]. A trigonometric
proof of a generalization of the inequality in 2001 [3], subsequently generalized
in 2004 [6]. Many of these authors speak glowingly of this result, referring to it
as a “beautiful inequality” [9], a “remarkable inequality” [12], “the famous &sd”
Mordell inequality” [4, 6, 10], and “the celebrated BsifMordell inequality...a
beautiful piece of elementary mathematics” [3].

In this short note we continue the progression towards simpler proofs. First
we present a visual proof of a lemma that reduces the proof of thesBvidbtdell
inequality to elementary algebra. The lemma provides three inequalities relating
the lengths of the sides of BC' and the distances frofd to the vertices and to the
sides. While the inequalities in the lemma are not new, we believe our proof of the
lemma is. The proof uses nothing more sophisticated than elementary properties
of triangles. In Figure 1(a) we see the triangle as described byskedhd in Figure

Publication Date: April 30, 2007. Communicating Editor: Paul Yiu.
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1(b) we denote the lengths of relevant line segments by lower case letters, whose
use will simplify the presentation to follow. In terms of that notation, thedsrd”
Mordell inequality becomes

r4+y+z>2(p+q+r).

A A
Q y 0
R Q
1) 1)
p
B P c B

Figure 1(a) Figure 1(b)

In the proof of the lemma, we construct a trapezoid in Figure 2(b) from three
triangles — one similar tel BC', the other two similar to two shaded triangles in
Figure 2(a).

Lemma. For thetriangle ABC inFigure 1, we have ax > br + cq, by > ar + cp,
and cz > aq + bp.

Figure 2(a) Figure 2(b)

Proof. See Figure 2 for a visual proof that > br+cq. The other two inequalities
are established analogously. a

We should note before proceeding that the object in Figure 2(b) really is a trape-
zoid, since the three angles at the point where the three triangles meet measure

T _

5 — 2, @ = a1 + ag, and§ — aq, and thus sum ta.
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We now prove

The Erdés-Mordell Inequality. If O is a point within a triangle ABC' whose
distances to the vertices are x, y, and z, then
r+y+z>2(p+q+r).

Proqf. From the Iemma we'havLe > 31" +2q,y > §r+gp,andz > ¢q + l—;p.
Adding these three inequalities yields

b ¢ c a a b
rtyt+z> |-+~ p+<—+—>q+ -+ 1)
c b a c b a
But the arithmetic mean-geometric mean inequality insures that the coefficients
of p, ¢, andr are each at leagt from which the desired result follows. O

We conclude with several comments about the lemma and thesBvididell
inequality and their relationships to other results.

1. The three inequalities in the lemma are equalities if and on{y is the
center of the circumscribed circle of BC. This follows from the observation
that the trapezoid in Figure 2(b) is a rectangle if and onlg if- o = 7 and
v+ a1 = 3 (and similarly in the other two cases), so thalOQ = 3 = ZCOQ.
Hence the right triangleslOQ and COQ are congruent, and = z. Similarly
one can show that = y. Hence,z = y = z andO must be the circumcenter of
ABC'. The coefficients op, ¢, andr in (1) are equal t@ if and only ifa = b = c.
Consequently we have equality in the Bsedordell inequality if and only ifA BC'
is equilateral and) is its center.

2. How did Era@’s come up with the inequality in his problem proposal? Kazari-
noff [8] speculates that he generalized Euler’s inequality:aihd R denote, respec-
tively, the inradius and circumradius éfBC, thenR > 2. The Era’s-Mordell
inequality implies Euler’s inequality for acute triangles. Note that if we @ki®
be the circumcenter A BC, then3R > 2(p + ¢ + r). However, forany point O
inside ABC, the quantityp + g + r is somewhat surprisingly constant and equal to
R + 7, a result known as Carnot’s theorem. TI3u2 > 2(7% +7), or equivalently,

R > 2F.

3. Many other inequalities relating y, andz to p, ¢, andr can be derived. For
example, applying the arithmetic mean-geometric mean inequality to the right side
of the inequalities in the lemma yields

ax > 2\/beqr, by > 2\/carp, cz > 2+/abpq.

Multiplying these three inequalities together and simplifying yielgs > 8pqr.
More such inequalities can be found in [8, 12].
4. A different proof of (1) appears in [4].
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Construction of Triangle from a Vertex
and the Feet of Two Angle Bisectors

Harold Connelly, Nikolaos Dergiades, and Jean-Pierre Ehrmann

Abstract. We give two simple constructions of a triangle given one vertex and
the feet of two angle bisectors.

1. Construction from (A, T,, Ty)

We present two simple solutions of the following construction problem (number
58) in the list compiled by W. Wernick [2]: Given three noncollinear poiaAfsl;
and T, to construct a triangled BC with T;, T, on BC, C A respectively such
that AT, and BT, are bisectors of the triangle. L. E. Meyers [1] has indicated the
constructibility of such a triangle. Letbe the half lineAZ;. Both solutions we
present here make use of the reflectibof ¢ in AT,. The vertexB necessarily
lies on?'. In what follows P(Q) denotes the circle, centét, passing through the

point Q.

Figure 1

Construction 1. Let Z be the pedal of 7; on ¢'. Construct two circles, one 7;,(Z),
and the other with T, T}, as diameter. Let X be an intersection, if any, of these two
circles. If the line XT,, intersects the half lines ¢ at B and ¢ at C, then ABC isa
desired triangle.
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Construction 2. Let P be an intersection, if any, of the circle 7;(7,) with the half
line ¢’. Construct the perpendicular bisector of P17;. If thisintersects ¢ at a point
B, and if the half line BT, intersects ¢ at C', then ABC' isa desired triangle.

Figure 2

We study the number of solutions for various relative positiond ¢f, andT.
Set up a polar coordinate system withat the pole andj at (1,0). Supposel;,
has polar coordinately, 6) for p > 0 and0 < § < 7. The half line has polar
angle26. The circleT;(T,) intersect¥’ if the equation

02 — 20 cos 20 = p* — 2pcos b (1)
has a positive roaot. This is the case when
@) p > 2cos b, or

(i) p < 2cosh, cos20 > 0 and4cos® 260 + 4p(p — 2cos ) > 0. Equivalently,
p+ < p < 2cos b, where

p+ = cos O £+ Vsin 0 sin 30

are the roots of the equatigi — 2p cos 6 + cos* 20 = 0for 0 < 6 < Z.
Now, the perpendicular bisector &7, intersects the lin¢ at the pointB with
polar coordinate$s, 26), where

_ pcos B — o cos 20

pcosf — o

The requirement > 0 is equivalent tar < pcos 6. From (1), this is equivalent to
p < 4cosb.

For0 < 6 < Z, let P+ be the points with polar coordinatég., ¢). These
points bound a closed cur#€ as shown in Figure 3. IT; lies inside the curvé&’,
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then the circlel},(T,,) does not intersect the half lie We summarize the results
with reference to Figure 3.

The construction problem oA BC from (A, T;, T;) has
(1) aunique solution if;, lies in the region between the two semicircles: 2 cos 6
andp = 4cos#,
(2) two solutions ifT;, lies between the semicircfe= 2 cos 6 and the curves” for
0<7.

Figure 3.

2. Construction from (A, Ty, T¢)

The construction of triangld BC from (A, T, T}) is Problem 60 in Wernick’s
list [2]. Wernick has indicated gonstructibility. We present two simple solutions.

Figure 4.

Construction 3. Given A, T}, T., congtruct the circles with centers T; and Ty,
tangent to AT, and AT, respectively. The common tangent of these circlesthat lies
opposite to A with respect to the line T, T, is the line BC' of the required triangle
ABC'. The construction of the vertices B, C' is obvious.
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Construction 4. Given A, T;, T, construct
(i) the circle through the three points
(i) the bisector of angle T, AT, to intersect the circle at M,
(iii) thereflection M’ of M intheline T, T,
(iv) thecircle M'(Ty) to intersect the bisector at I (so that A and I are on opposite
sides of T, T,),
(v) the half line T I to intersect the half line AT, at B,
(vi) the half line 7.1 to intersect the half line AT} at C.
ABC istherequired triangle with incenter 1.

A

Figure 5.
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Three Pappus Chains Insidethe Arbelos: Some | dentities

Giovanni Lucca

Abstract. We consider the three different Pappus chains that can be constructed
inside the arbelos and we deduce some identities involving the radii of the circles
of n-th order and the incircle radius.

1. Introduction

The Pappus chain [1] is an infinite series of circles constructed starting from the
Archimedean figure named arbelos (also said shoemaker knife) so that the generic
circleC;, (i = 1, 2, ...) of the chain is tangent to the the circlés; andC;
and to two of the three semicircl€s, C, and(, forming the arbelos. In a generic
arbelos three different Pappus chains can be drawn (see Figure 1).

Figure 1.

In Figure 1, the diameteAC' of the left semicircleC, is 2a, the diametelC' B
of the right semicircle?, is 2b, and the diameteA B of the outer semicircl€; is
2r, r = a + b. The first circleC; is common to all three chains and is named the
incircle of the arbelos. By applying the circular inversion technique, it is possible
to determine the center coordinates and radius of each chain; the radii are expressed
by the formulas reported in Table I. The chain tending to p6lrig named;, the
chain tending to point B is namd¢ and the chain tending to poidt is named?,.
As far as chain$', andI'}, are concerned, the expressions for the radii are given in
[2] while for I';, we give an inductive proof below.

Publication Date: June 4, 2007. Communicating Editor: Floor van Lamoen.
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Table I: Radii of the circles forming the three Pappus chains

Chain T, T, Ty

: : b b b
Radius ofn-th circle| pr, = 75572 | pan = #Hb Pbn = #‘;m

For integers: > 1, consider the statement

rab
P R
P(1) is true since the first circle of the chain is the arbelos incircle having radius
given by formula (3).
We show thatP(n) = P(n + 1).
Let us consider the circle§.,, andC;,+1 in the chainl,, together the inner
semicirclesC, andCy, inside the arbelos. Applying Descartes’ theorem we have

2(5371 + 5?n+1 + 52 + €2b) = (€rn + Erny1 +€a+ 8b)za (1)

wheree,,, €141, €4 @ndey, are the curvatures,e., reciprocals of the radii of the
circles. Rewriting this as

2 2 2, .2
Erna1 — 26mnt1(Emn + €a +€p) + €5, + €5 + € — 2(ErnEa + €alb + €bErn) = 0,

we have

Erntl = Ern + €a + €b £ 2v/EmEa + €alb + EbErn- (2)
Substituting into (2, = e = } ande,, = —¢2— we obtain, after a few
steps of simple algebraic calculations,
1 rab

Erns1  (n+1)2r2 —ab’

Prn+1 =

This proves thaP(n) = P(n+1), and by inductionP(n) is true for every integer
n > 1.

2. Relationships among the n-th circlesradii and incircle radius

For the following, it is useful to write explicitly the incircle radiug. that is

given by:
rab

- 3
a? + ab + b? ®)

Formula (3) is directly obtained by each one of the three formulas for the radius
in Table | forn = 1. It is useful too to write the square of the incircle radius that
is:

Pinc =

9 7”2(12172
e = . 4
Pine = 07243 + 20262 + 2ab° + b @
We enunciate now the following proposition related to three different identities
among the circles chains radii and the incircle radius.
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Proposition. Given a generic arbelos with its three Pappus chains, the following
identities hold for each integer n:

1 1 1
Pinc ( +—+ —) = 2% +1, (5)
Prn Pan Pbn
1 1 1
2 4
2 <——|———|——>:2n +1, (6)
‘\pd  Ph P
1 1 1 1 1 1
p?nc( S —— o — )—n4+2n2- ™)
Prn Pan Pan  Pbn Pbn Prn

Proof. To demonstrate (5), one has to substitute in it the expression for the radius
incircle given by (3) and the expressions for the radiieth circles chain given in
Table I. Using the fact that = a + b, one obtains
rab n?r? —ab n?a®+1rb  n%*?+ra 9
+ + =2n°+ 1.
a? + ab + b?

For (6), one has to substitute in it the expression for the square of the radius
incircle given by (4) and to take the squares of the radii-tfi circles chain given
in Table 1. Using the fact that = a + b, one obtains

r2a2b? n2r2 — ab\ > N n2a? 4+ rb\ > N n2b? + ra\’ ot
(a2 + ab + b?%)? rab rab rab
For (7), one has to substitute in it the expression for the square of the incircle

radius given by (4) and the expressions for the radii of+thi circles given in

. r2a2b2 D
Table I. This leads t?a2+ab+b2)2 - 27, Where

rab rab rab

D =(n*r? — ab)(n?a® 4+ rb) + (n%a® + rb)(n*b? + ra) + (n?b* + ra)(n’r* — ab)
=(n* 4+ 2n?)(a® + ab + b*)?,
by using the fact that = a + b. Finally, this leads to (7). O

3. Conclusion

Considering the three Pappus chains that can be drawn inside a generic arbelos,
some identities involving the incircle radius and tia¢h circles chain radii have
been shown. All these identities generate sequences of integers.
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Some Powerian Pairsin the Arbelos

Floor van Lamoen

Abstract. Frank Power has presented two pairs of Archimedean circles in the
arbelos. In each case the two Archimedean circles are tangent to each other and
tangent to a given circle. We give some more of these Powerian pairs.

1. Introduction

We consider an arbelos with greater semicif€k of radiusr and smaller semi-
circle (O1) and(O) of radii ; andr, respectively. The semicirclé®);) and(O)
meet inA4, (O2) and(0O) in B, (01) and(O,) in C and the line througtC' per-
pendicular toAB meets(O) in D. Beginning with Leon Bankoff [1], a number
of interesting circles congruent to the Archimedean twin circles has been found
associated with the arbelos. These have ragii. See [2]. Frank Power [5] has
presented two pairs of Archimedean circles in the Arbelos with a definition unlike
the other known ones given for instance in [2, 34].

D
’ —
Mo
A 0O, o (o] O2 B
Figure 1

Proposition 1 (Power [5]) Let M; and M, be the "highest’ points of (O;) and
(O2) respectively. Then the pairs of congruent circles tangent to (O) and tangent
to each other at M; and M, respectively, are pairs of Archimedean circles.

To pairs of Archimedean circles tangent to a given circle and to each other at a
given point we will give the namBowerian pairs.

Publication Date: June 12, 2007. Communicating Editor: Paul Yiu.

The pair of Archimedean circlegsAs,) and (Asp), with numbering as in [4], qualifies for what
we will later in the paper refer to @®werian pair, as they are tangent to each othe€aaind to the
circular hull of Archimedes’ twin circles. This however is not how they were originally defined.
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2. Three double Powerian pairs

2.1 Let M be the midpoint ofCD. Consider the endpoints; and U, of the
diameter of(C'D) perpendicular t@ M.

Figure 2

Note thatOC? = (r; —r2)? and asC'D = 2,/ri73 thatOD? = 1 — ryry + 13
andOU? = r? + 3.

Now consider the pairs of congruent circles tangent to each otliéraatd U,
and tangent t¢0O). The radiip of these circles satisfy

(7”1 +1rg — ,0)2 = OU12 ‘|-,02
from which we see thgt = ™2, This pair is thus Powerian. By symmetry the

r "

other pair is Powerian as well.

2.2 LetT; andT: be the points of tangency of the common tangent®f and
(O2) not throughC'. Now consider the midpoir® of O; O, also the center of the
semicircle(O; O3), which is tangent to segmeifit 7, at its midpoint.

D
=
~
7
7/
/ \
/. \
/ \
T )
I I
.
\
T,
\ ;2
\ 0
N 7/
N 7
\\ //
A o2} oo C 0> B
Figure 3

As T\ Ty = 2,/ri7; we see thaO'T? = (%)2 + r17m5. Now consider the
pairs of congruent circles tangent to each othéf a&nd tangent t¢0O; O;). The
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radii p of these circles satisfy

T+ T2
< 5 > +p)?—p* =0T}
from which we see that = “™2 and this pair is Powerian. By symmetry the pair
of congruent circles tangent to each othefzaand to(O;03) is Powerian.

Remark: These pairs are also tangent to the circle with ce@tghrough the
point where the Schoch line me€t3).

2.3. Note thatAD = 2,/rr{, hence

2r14/
AT = ap = VL
r N
Now consider the pair of congruent circles tangent to each othgraaid to the
circle with centerA throughC'. The radii of these circles satisfy

ATE + p* = (2r1 — p)?
from which we see thagt = ~™2 and this pair is Powerian. In the same way the

pair of congruent circles tangent to each othéBatnd to the circle with cente
throughC' is Powerian.

Figure 4
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The Arbelos and Nine-Point Circles

Quang Tuan Bui

Abstract. We construct some new Archimedean circles in an arbelos in connec-

tion with the nine-point circles of some appropriate triangles. We also construct

two new pairs of Archimedes circles analogous to those of Frank Power, and one
pair of Archimedean circles related to the tangents of the arbelos.

1. Introduction

We consider an arbelos consisting of three semicird@s, (O2), (O), with
points of tangencyl, B, P. Denote byr, r5 the radii of(O;), (O2) respectively.
Archimedes has shown that the two circles, each tange(d® fpthe common tan-
gentPQ of (O1), (O2), and one 0of01), (O2), have congruent radius= =2
See [1, 2]. LetC be a point on the half lind’Q such thatPC = h. We con-
sider the nine-point circl¢/N) of triangle ABC. This clearly passes through,
the midpoint ofAB, and P, the altitude foot ofC on AB. Let AC intersect(O;)
again atd’, and BC intersect(O;) again atB’. Let O, and H be the circumcenter
and orthocenter of triangld BC'. Note thatC' and H are on opposite sides of the
semicircular ar¢O), and the trianglest BC' and AB H have the same nine-point
circle. We shall therefore assumigbeyond the poin) on the half linePQ. See
Figure 1. In this paper the labeling of knowing Archimedean circles follows [2].

2. Archimedean circles with centers on the nine-point circle

Let the perpendicular bisector dfB cut (V) atO and)/, and the altitude’' P
cut(N) at P andM,,. See Figure 1.

2.1 ltis easy to show thaPO M, M,, is a rectangle sd/, is the reflection ofP
in N. Becausd), is also the reflection off in N, H PO, M, is a parallelogram,
and we have

O.M, = PH. (@)

Furthermore, from the similarity of triangldg PB and APC, we have% =
PA Hence
PC* '

4T1T2

PH =
h

: (2)

Publication Date: June 18, 2007. Communicating Editor: Paul Yiu.
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A 01 P o 02 B

Figure 1.

2.2 SinceC is beyond(@ on the half linePQ, the intersection?’ of A0, and

B’'O4 is a pointF’ below the arbelos. Denote I§y) the incircle of triangle"O, O,.

See Figure 2. The linéO; bisects both angle®,O, F and A’O;A. Because
01A’ = 01 A, 10, is perpendicular toAC, and therefore is parallel tB H. Sim-
ilarly, 10, is parallel toAH. From these, two triangled H B and (,10; are
homothetic with ratigs1g- = 2. It is easy to show thad is the touch point of )

with AB and that the inradius is

1
I0 =5 - PH. (3)
In fact, if F” is the reflection ofF" in the midpoint of 0,0, then O; FO5 F’
is a parallelogram and the circl®H) (with PH as diameter) is the incircle of
F'0O;10,. ltis the reflection of I') in midpoint of O, O5.

2.3, Now we apply these results to the arbelos. From %Z)PH = QHT’"? =
Archimedean radiu% if and only if

CP = hZQ(’Fl +T2) = AB.

In this case, point' and the orthocenteH of ABC are easy constructed and
the circle with diamete H is the Bankoff triplet circlg(W3). From this we can
also construct also the incircle of the arbelos. In this cése- incenter of the
arbelos. From (3) we can show that whei®® = AB, the incircle of FO, 05 is
also Archimedean. See Figure 3.

Let M be the intersection aDO, and the semicircl¢O), i.e,, the highest point
of (O). WhenCP = h =2(r; + 1) = AB,

00, = MyH = M,,C =
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Figure 2.
Therefore,
172 172
OcM = (r1 +1r9) — | r1 + 19 — = .
¢ (1 2) <1 2 7“1—1-7“2) T+ 12
From (1), 0.M. = PH = 242, This means thaf/ is the midpoint of

O.M_,, or the two circles centered & and M, and touchingO) at M are also
Archimedean circles. See Figure 3.
We summarize the results as follows.

Proposition 1. In the arbelos (O), (O2), (0), if C isany point on the half line
PQ beyond  and H isorthocenter of ABC, thenthecircle (PH) is Archimedean
ifand only if CP = AB = 2(r; + r2). Inthis case, we have the following results.
(1). The orthocenter H of ABC' is the intersection point of Bankoff triplet circle
(W3) with PQ (other than P).

(2). Theincircle of triangle F'O;O- is an Archimedean circle touching AB at O;
it isreflection of (13) in the midpoint of O; Os.

(3). Thecircle centered at circumcenter O, of ABC' and touching (O) at its highest
point M isan Archimedean circle. Thiscircleis (Way).

(4). Thecircle centered on nine point circle of ABC and touching (O) at M isan
Archimedean circle; it isthe reflection of (Wa) in M.

(5). Thereflection F” of F in midpoint of O; O, isthe incenter of the arbelos.

Remarks. (a) The Archimedean circles in (2) and (4) above are new.
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Figure 3.

(b) There are two more obvious Archimedean circles with centers on the nine-
point circle. These aréM,) and (M), where M, and M, are the midpoints of
AH and B H respectively. See Figure 3.

(c) The midpointsM,, M, of HA, HB are on nine point circle oA BC' and
are two vertices of Eulerian triangle ofBC. Two circles centered at4,, M,
and touchAB at O, O, respectively are congruent witli#s) so they are also
Archimedean circles (see [2]).

3. Two new pairs of Archimedean circles

If T is a point such tha©O7T? = r} + r3, then there is a pair of Archimedean
circles mutually tangent &f, and each tangent internally (@). Frank Power [5].
constructed two such pairs with= M, M, the highest points of0; ) and(O2)
respectively. Allowing tangency with other circles, Floor van Lamoen [4] called
such a pair Powerian. We construct two new Powerian pairs.
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Figure 4.

3.1 The triangleM M, M, hasMM; = /2 - ry, MM, = +/2 - 1, and a right
angle atM. Its incenter is the poinf on OM such that

1
MI=+2. §(MM1 + MMy — My My) = (r1 +1r9) — /77 +73.
ThereforeO1? = r? + r2, and we have a Powerian pair. See Figure 4.

3.2 Consider also the semicirclé¢%; ) and(7») with diametersAO, and BO;.
The intersectiorny of (71) and(7%) satisfies

OJ* =OP?+ PJ? = (1 —r2)> + 2riry = r{ + 13,
Therefore, we have another Powerian pair. See Figure 5.

Q

A Oq T, P O T> Oz B

Figure 5.

4. Two Archimedean circles related to the tangents of the ar belos

We give two more Archimedean circles related to the tangents of the arbelos.
Let £ be the tangent ofO) at ), and @1, Q2 the orthogonal projections of
01, Oz on L. The linesO; @, and02Q); intersect the semicirclegg); ) and (02)
at Ry and R, respectively. Note thak; R, is a common tangent of the semicir-
cles(0O1) and(O2). The circles(Ny), (N2) with diametersQ; R, andQq R, are
Archimedean. Indeed, {{i’s) and(1/7) are the two Archimedean circles through
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Figure 6.

P with centers ond B (see [2]), thenV;, No, Ws, W+ lie on the same circle with
center the midpoind/ of PQ. See Figure 6. We leave the details to the reader.
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Characterizations of an Infinite Set
of Archimedean Circles

Hiroshi Okumura and Masayuki Watanabe

Abstract. For an arbelos with the two inner circles touching at a pGinwe
give necessary and sufficient conditions that a circle passing thi@ugArchimedean.

Consider an arbelos with two inner circlasand g with radii « andb respec-
tively touching externally at a poiri?. A circle of radiusry = ab/(a+b) is called
Archimedean. In [3], we have constructed three infinite sets of Archimedean cir-
cles. One of these consists of circles passing through the pbirin this note
we give some characterizations of Archimedean circles passing througfe set
up a rectangular coordinate system with origirand the positiver-axis along a
diameterO A of « (see Figure 1).

p a
L]

B A
t ~—T 1
\ Op 9 Oa /
\ \ /

\ \ /
\ / AN 7/
\ / S __ -7

\ Ve
N 7
N 7
\\\ ’//
Figure 1

Theorem 1. Acirclethrough O (not tangent internally to 3) is Archimedean if and
only if its external common tangents with 3 intersect at a point on a.

Proof. Consider a circle) with radiusr # b and centelr cos 6, r sin §) for some
real numbep with cos§ # —1. The intersection of the common external tangents

Publication Date: July 2, 2007. Communicating Editor: Paul Yiu.
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of 8 and/ is the external center of similitude of the two circles, which divides the
segment joining their centers externally in the ratior. This is the point

br(1+ cosf) brsinf
(e ). )
— .
The theorem follows from
br(1 + cos @) 2 brsind\? ~ 2br(a+b)(1 +cos0)
(?_CQ +<b—'r> T (b—r)? (r=ra).
O

Let O, andOg be the centers of the circlesand 3 respectively.

Figure 2

Corollary 2. Let 6 be an Archimedean circle with a diameter OT', and T, the
inter section of the external common tangents of thecircles § and 3; similarly define
j.b- ey e — X . .

(i) Thevectors O7T" and O, T, are parallel with the same direction.

(i) The point 7" divides the ssgment 1;, 73 internally in the ratio a : b.

Proof. We describe the center 6fby (r4 cos 6,14 sin #) for some real numbet
(see Figure 2). Then the poiffit, is described by

bra(l+ cos@) brasind
b—ra  b—ra

= (a(1 + cosf),asinb)

by (1). This impliesO,T,, = a(cos§,sin@). (i) is obtained directly, sincé}; is
expressed byb(—1 + cos §), bsin 0). O
In Theorem 1, we exclude the Archimedean circle which toughiesernally at

the pointO. But this corollary holds even if the circletouchess internally. If§ is
the Bankoff circle touching the lin@ A at the originO [1], thenT, is the highest
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point ona. If § is the Archimedean circle touching externally at the poinO,
thenT, obviously coincides with the poird. This fact is referred in [2] using the
circle labelediVs. Another notable Archimedean circle passing throayts that
having center on the Schoch line= ZI_ZTA’ which is labeled a#/y in [2]. We
have showed that the intersection of the external common tangeptsaiod this
circle is the intersection of the line = 2r4 and the circlex [3].

By the uniqueness of the figure, we get the following characterizations of the

Archimedean circles passing through the pagnt

Corollary 3. Let § beacirclewith adiameter OT', and let 7;, and Tz be points on

« and 3 respectively such that O, T;, and OzT}; are parallel to OT with the same
direction. (i) Thecircle § is Archimedean if and only if the points T" divides the line
segment 7;, T3 internally in the ratio a : b. (i) If the center of  does not lie on the
line OA, then ¢ is Archimedean if and only if the three points 1, T3 and T" are
collinear.

The statement (i) in this corollary also holds whetouchess internally.
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Remarks on Woo’'s Archimedean Circles

Hiroshi Okumura and Masayuki Watanabe

Abstract. The property of Woo’s Archimedean circles does not hold only for
Archimedean circles but circles with any radii. The exceptional case of this has
a close connection to Archimedean circles.

1. Introduction

Let A and B be points with coordinateRa, 0) and(—2b,0) on thez-axis with
the origin O and positive real numbers andb. Let «, $ and~ be semicircles
forming an arbelos with diametei@A, OB and AB respectively. We follow
the notations in [4]. For a real number let a(n) and (n) be the semicircles
in the upper half-plane with cente(s,0) and (—n,0) respectively and passing
through the origirD. A circle with radiusr = a“—fb is called an Archimedean cir-
cle. Thomas Schoch has found that the circle touching the cingfas) and5(2b)
externally andy internally is Archimedean [2] (see Figure 1). Peter Woo called
the Schoch line the one passing through the center of this circle and perpendicular
to the z-axis, and found that the circlE, touching the circlesy(na) and 5(nb)
externally with center on the Schoch line is Archimedean for a nonnegative real
numbern. In this note we consider the property of Woo’s Archimedean circles in
a general way.

B(2b)

a(2a)

B o) A

Figure 1.
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2. A generalization of Woo's Archimedean circles

We show that the property of Woo’s Archimedean circles does not only hold for
Archimedean circles. Indeed circles with any radii can be obtained in a similar
way. We say that a circle touchegna) appropriately if they touch externally
(respectively internally) for a positive (respectively negative) numbdf one of
the two circles is a point circle and lies on the other, we also say that the circle
touchesn(na) appropriately. The same notion of appropriate tangency applies to

B(nb).

Theorem 1. Let s and ¢ be nonzero real numbers such that ¢b + sa # 0. If there
isa circle of radius p touching the circles «(nsa) and 5(ntb) appropriately for a
real number n, then its center lies on the line

tb — sa
€r = .
th+ sa’

(1)

Proof. Consider the centefr, y) of the circle with radiug touchinga(nsa) and
B(ntb) appropriately. The distance betwegn y) and the centers af(nsa) and
B(ntb) are|p + nsa| and|p + ntb| respectively. Therefore by the Pythagorean
theorem,

y? = (p+nsa)® — (z — nsa)?® = (p+ ntb)? — (z + ntb)%.

Solving the equations, we get (1) above. O

For a real numbet different from0 and+p, we can choose the real numbers
andt so that (1) expresses the lime= k. Let us assumet > 0. Then the circles
a(nsa) and3(ntb) lie on opposite sides of the-axis. If sz > 0 andtz > 0, there
is always a circle of radiug touchinga(nsa) and3(ntb) appropriately. Ifns < 0
andnt < 0, such a circle exists wher2n(sa + tb) < 2p. Hence in the case
st > 0, the tangent circle exists if(sa + tb) + p > 0. Now let us assumet < 0.
Then circlesa(nsa) and 3(ntb) lie on the same side of the-axis. The circle of
radiusp touchinga(nsa) and 3(ntb) appropriately exists if-2n(sa + tb) > 2p.
Hence in the cas& < 0, the tangent circle existsif(sa+tb)+p < 0. In any case
the center of the circle with radiystouchinga(nsa) and3(ntb) appropriately is

th — sa iQ\/nabst((sa +tb) + p)p
tb+ sa"’ |sa + tb| '

Therefore, for every poinP not on the linest = 0, +p, we can choose real num-
berss, t andn so that the circle, centd?, radiusp, is touchinga(nsa) and3(tzb)
appropriately.

The Schoch line is the ling = Z:L—Zr (see [4]). Therefore Woo’s Archimedean
circles and the Schoch line are obtained whea t andp = r in Theorem 1. If
st > 0, then—1 < fb’;ig < 1. Hence the line (1) lies in the regichp < = < pin
this case.
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The external center of similitude @f and a circle with radiug and center on
the line (1) lies on the line
2th%p
(b — p)(sa + tb)
by similarity. In particular, the external centers of similitude of Woo’s Archimedean
circles ands lie on the linex = 2r. See [4].

xTr =

3. Circleswith centers on the y-axis

We have excluded the casést sa # 0 in Theorem 1. The cas® + sa = 0
is indeed trivial since the circles(nsa) and(ntb) coincide. By Theorem 1, for
k # 0, the circle touchingy(nsa) and3(ntb) appropriately and with center on the
line 2 = k has radiugz==%k. On the other hand, ifb = sa, the circlesa(nsa)
and3(ntb) are congruent and lie on opposite sides of gkexis, and the line (1)
coincides with they-axis. Therefore the radii of circles touching the two circles
appropriately and having the center on this line cannot be determined uniquely.
We show that this exceptional cagéh = sa) has a close connection with
Archimedean circles. Since(nsa) and 5(ntb) are congruent, we now define
afn] = a(n(a + b)) andBn] = B(n(a + b)). The circlesa[n] and3[n] are con-
gruent, and their radii are times of the radius of. For two circles of radij, p2
and with distancel between their centers, consider their inclination [3] given by

pi+p3 — &
2p1p2

This is the cosine of the angle between the circles if they intersect, andts,
—1 according as they are orthogonal or tangent internally or externally.

Theorem 2. If acircleC of radius p touches a[n| and 3[n] appropriately for areal
number n, then the inclination of C and ~ is% —n.

Proof. The square of the distance between the centers of the cfcéesl v is
(p+mn(a+0b))?— (n(a+b))?+ (a — b)? by the Pythagorean theorem. Therefore
their inclination is

PPt (a+b)?—(p+tnla+b)?+ (n(a+b)*—(a—b)?* 2r

2p(a +b) p

O

Let k& be a positive real number. The radius of a circle touchifig and 5[n]
appropriately iscr if and only if the inclination of the circle ang is% —nfora
real numbenm.

Corollary 3. Acircletouching a[n] and 3[n| appropriately for a real number n is
Archimedean if and only if the inclination of this circleand ~ is2 — n.

This gives an infinite set of Archimedean circlgswith centers on the positive
y-axis. The circle), exists ifn > -—~, and the maximal value of the inclination

2(a+b)’
of v andd, is 2 + The circled; touchesy internally, &, is orthogonal to

2(a:-b) :
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~, andds touchesy externally by the corollary (see Figure 2). The cirglés the
Bankoff circle [1], whose inclination with is 2.

Figure 2 Figure 3

By the remark preceding Corollary 3 we can get circles with various radii and
centers on thg-axis tangent or orthogonal ta Figure 3 shows some such exam-
ples. The three circles all have radit. One touches the degenerate circlgg]
andg[0] (and the linedAB) atO, and~ internally. A second circle toucheg1] and
B[1] externally and are orthogonal to Finally, a third circle touches&[2], 5[2],
and~ externally.

From [4], the center of the Woo circlg, is the point

b=a o fy T
b+a TN T Ay

The inclination ofU,, and~ is 1 + % This depends on the radii of and 3
except the case = 2. In contrast to this, Corollary 3 shows that the inclination of
0, and~ does not depend on the radii@fandg.
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Heronian TrianglesWhose Areas Are Integer Multiples
of Their Perimeters

Lubomir Markov

Abstract. We present an improved algorithm for finding all solutions to Goehl’s
problemA = mP for triangles,i.e.,, the problem of finding all Heronian trian-
gles whose aregA) is an integer multiplém) of the perimetefP). The new
algorithm does not involve elimination of extraneous rational triangles, and is a
true extension of Goehl’s original method.

1. Introduction and main result

In a recent paper [3], we presented a solution to the problem of finding all Hero-
nian triangles (triangles with integer sides and area) for which the Areaa
multiple m of the perimeter”, wherem € N. The problem was introduced by
Goehl [2] and is of interest because although its solution is exceedingly simple in
the special case of right triangles, the general case remained unsolved for about 20
years despite considerable effort. It is also remarkable and somewhat contrary to
intuition that for eachn there are only finitely many triangles with the property
A = mP; for instance, the triangle®, 8, 10), (5, 12,13), (6, 25,29), (7,15, 20)
and(9, 10, 17) are the only ones whose area equals their perimeter (theicase
1). Reproducing Goehl’s solution to the problem in the special case of right tri-
angles is a simple matter: Suppose thaand b are the legs of a right trian-
gle andc = Va2 + b2 is the hypotenuse. Setting the area equal to a multi-
ple m of the perimeter and manipulating, one immediately obtains the identities
8m? = (a — 4m)(b — 4m) andc = a + b — 4m. These allow us to determine
a, b andc after finding all possible factorizations of the left-hand side of the form
8m? = d; - dy and matchingl; anddy with (a — 4m) and (b — 4m), respectively;
restrictingd; to those integers that do not exceggim? = 2v/2m assures: < b
and avoids repetitions. We state Goehl’s result in the following form:
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Theorem 1. For a given m, the right-triangle solutions (a, b, ¢) to the problem
A = mP are determined from the relations

8m? =(a — 4m)(b — 4m), (1)
c=a+b—4m. (2)
Each factorization
8m? = d - do, (3)
where
dp < |2mV2], (4)
generates a solution triangle with sides given by the formulas
a=d; +4m,
b=ds+4m, (5)

c=d1 +do+4m.

Our paper [3] extended Goehl’s result to general triangles, but the solution in-
volved extraneous rational triangles, which then had to be eliminated. The aim of
this work is to present a radical simplification of our previous solution, which does
not introduce extraneous triangles and is a direct generalization of Goehl's method.
Our main goal is to prove the following theorem:

Theorem 2. For a given m, all solutions (a, b, c) to the problem A = mP are
determined as follows: Find all divisors u of 2m; for each w, find all numbers v
relatively prime to « and such that 1 < v < |v/3u/; to each pair u and v, there
correspond a factorization identity

Am? (u? +0?) = [v (a - 27m2}> - QmU} [v (b - 2%1}) - 2mu], (6)

and a relation

c=a+b— 473” 7)
Each factorization
4m2(u® 4+ v?) = 61 - 89, (8)
where
5 < {2m u? + sz 9)

and only those factors ¢, , d, for which v \ 01 + 2mu and v | 02 + 2mu are consid-
ered, generates a solution triangle with sides given by the formulas

__ d1+2mu 2mu
a= v + u

b= 52+§mu + 2731)’ (10)
01+02+4mu

-

CcC =

Furthermore, for each fixed u, one concludes from the corresponding v's that
(1) the obtuse-triangle solutions are obtained exactly when v < u;
(2) the acute-triangle solutions are obtained exactly when u < v < [v/3u/, with



Heronian triangles whose areas are integer multiples of their perimeters 131

. 2
the further restriction —m(v2 —u?) <6 < {Qm\/zﬂ +02];
u
(3) theright-triangle solutions are obtained exactly when v = v = 1.

Note that Theorem 1 is a special case of Theorem 2 and that the substitution
u = v = 1 transforms relations (6) through (10) into relations (1) through (5),
respectively.

2. Summary of preliminary facts

Let A be the area ané@ the perimeter of a triangle with sidesb, ¢, with the
agreement that shall always denote the largest side. Our problem (we call it
A = mP for short) is to find all Heronian triangles whose area equals an integer
multiple m of the perimeter. We state all preliminaries as a sequence of lemmas
whose proofs can either be easily reproduced by the reader, or can be found (except
for Lemma 5) in [3].

First we note that Heron’s formula

4A=+/(a+b+c)a+b—c)a+c—b)(b+c—a)
and simple trigonometry easily imply the following lemma:

Lemma 3. Assume that thetriple (a, b, ¢) solves the problem A = mP.
(1) a + b — cisan even integer.
(2)a+b—c<4mV/3.

obtuse < 4m
(3) Theresulting triangleis{ acute » ifandonlyifa+b—cq > 4m
right =4m

Next, we need a crucial rearrangement of Heron’s formula:
Lemma 4. The following doubly-Pythagorean form of Heron's formula holds:
[ — (a® + %)) + (44)% = (2ab)>. (11)

This representation allows the problesn= mP to be reduced to a problem
about Pythagorean triples; for our purposes, a Pythagorean (riple z) shall
consist of nonnegative integers such thathe “hypotenuse”) shall always rep-
resent the largest number, whereaand y (the “legs”) need not appear in any
particular order. The following parametric representatioprafitive Pythagorean
triples (.e., such that the components do not have a common factor greater than 1)
is the only preliminary statement not proved in [3]; a self-contained proof can be
found in [1]:

Lemma 5. Depending on whether the first leg = is odd or even, every primitive
Pythagorean triple (z, y, z) is uniquely expressed as (12 — v2, 2uv, u? 4 v?) where

2 2 2 2
u° — v u® 4+ v
where
5 T )

u and v are relatively prime of opposite parity, or (
u and v arerelatively prime and odd.

A combination of Lemmas 4 and 5 easily yields
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Lemma 6. For afixed m, solving the problem A = m P is equivalent to determin-
ing all integer a, b, ¢ that satisfy the equation

[ — (a® + %)) + [4m(a + b+ ¢)]* = (2ab)?, (12)
or equivalently, to solving in positive integers the following system of three equa-
tions in six unknowns:

£ [ = (@® + V)] = k(u® —v?);
dm(a + b+ c) = 2kuv; (13)
2ab = k(u?® + v?).
It is easy to see that the first equation in (13) can be interpreted as follows.

Lemma 7. Assume that, corresponding to certain values of v and v, there is a
triple (a, b, ¢) which solves the problem A = mP. Then the triangle (a, b, c) is
obtuse uU>v
acute » if and only if u<v
right u=v=1

3. Proof of Theorem 2

Let us first investigate the case of an obtuse triangle (thewase); thus, the
system (13) i8? — (a® +b%) = k(u? —v?), 4m(a+b+c) = 2kuv, 2ab = k(u?+
v?). For completeness, we reproduce the crucial proof of the main factorization
identity from [3] (equation (17) below), which in essence solves the problem
mP. Indeed, from the first and the third equations in (13) we(get bf — ¢ =
2kv?, and after factoring the left-hand side and using the second equation we get

4 . . . .
a+b—c= —mv. This implies that: must divide2m because. + b — c is even,
u

andu, v are relatively prime. Combining the last relation witht+ b + ¢ = #

m
and solving the resulting system yields

ku?v + 8m2v ku?v — 8m2v
b+ta=—7-—7—, c=—7—"7—.
dmu dmu
Similarly, adding the first and second equations and rearranging terms gives
(a — b)? = ¢ — 2ku®. Let us assume for a moment that> a; then we have

b—a = +c%— 2ku?, and it is clear that the radicand must be a square (Pt

om and substitute it in the expressions b + a andb — a. After simplification,
u
one gets

kv — 2Q%v kv + 2Q%v 1 9
CZT, b+a:T,b—a:@ (kv —2Q%v)” — 32km?,
(14)
where the radicand must be a square. (Rut— 2@21})2 — 32km? = X2, and get
kv — 2Q2 kv 4 2Q? 1
po ko 2Q% k2@ Ly )

2Q ’ 2Q 2Q



Heronian triangles whose areas are integer multiples of their perimeters 133

On the other hand, considgv — 2Q%v)” — 32km? = X? as an equation in the
variablesX andk. Expanding the square and rearranging yields

kv — 4k(0°Q* 4 8m?) + 4Q"* = X2
The last equation is a Diophantine equation solvable by factoring: subtract the
2(v2Q? + 8m?)

2
) from both sides, simplify and rearrange terms;
v

guantity (k:v —
the result is

[2(’02622 + 87112)]2 — (21}2622)2 = (’U2k — 20%Q% - 16m2)2 — (Xv)?. (16)

In (16), factor both sides, substitufg = 2m and simplify. This gives
u

2
(16;%2> (u?+0%) = [v*(k — 2Q%) — 16m® — Xv] [v*(k — 2Q?) — 16m” + Xv]

17)
which is the main factorization identity mentioned above.
Now, the new idea is to eliminate and X in (17), using (15) and the crucial

4 . , .
fact thata +b —c = oy Indeed, from (15) we immediately obtain
u

X =200, k=202 s)

which we substitute in (17) and simplify to get

16m?(u? + v?) = [v(c — b+ a) — 4mu] [v(c+b—a) —4mu].  (19)

: . 4 N : :
In the last relation, substitute= a + b — T and simplify again. The result is
u
2 2
Am? (u? +0?) = [v (a - —mv> - QmU} [v (b - —mv> - 2mu],
u u

which is exactly (6). This identity allows us to find sideandb by directly match-

ing factors of the left-hand side to respective quantities on the right;dinéth be

determined frome = a + b — amo Supposetm?(u? + v?) = §; - 52. Since we
u

2m . .
wanto; = v(a — —v) — 2mu, it is clear that fora to be an integer, we neces-
u

sarily must havey | 01 + 2mu. Similarly, the requiremem| 02 + 2mu will ensure
thatb is an integer. Imposing these additional restrictions will prododg the
integer solutions to the problem. Furthermore, choosing 2 (or equivalently,
51 < 2mv/u? + v?2) will guarantee that < b.

Next, solve

2 2
01 :v(a— —mv> —2mu, & :v(a— —mv> — 2mu

u u

for a andb, express: in terms of them and thus obtain formulas for the sides:
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01 +2mu  2mv
_ 4 +

v U
- 5g+2mu+2mv’
v U

01 + 09 +4mu
c=—"—:

v ?
these are exactly the formulas (10). To ensure b, we solve the inequality
01 + 09 + dmu S 0o + 2mu n 2mu

v v u
and obtain, after simplification,

o > QTm(v2 —u?). (20)

The last relation will always be true if > v, and thus the proof of the obtuse-
case part of the theorem is concluded. Now, consider the acute case; i.e., the case
v > u. The first equation in (13) is agaif — (a® + %) = k(u® — v?) (both
sides are negative), and all the above derivations continue to hold true; it is now
crucial to use the important bound+ b — ¢ < 4my/3 which, combined with

4 . . .
a+b—c= ﬂ, implies thatu < v < v/3u. The only difference from the
(7

obtuse case is that the bound (20) does not hold automatically; now it must be
imposed to avoid repetitions and guarantee thetc. Since the right-triangle case
is obviously incorporated in the theorem, the proof is complete.

4. An example

We again examine the case = 2 (cf. [3]). Let m = 2 in the algorithm
suggested by Theorem 2; theém = 4 and thusu could be 4, 2 or 1. For each
determine the correspondings:

A uv=4=v=1,3;5

Bu=2=v=1;3

Qu=1=v=1.

Now observe how the case = 4, v = 5 has to be discarded since we have
4m?(u? +v?) = 656 = 2% - 41, 9 < §; < 25, the only factor in that range is 16,
and it must be thrown out because= 5 does not dividey + 2mu = 32. The
working factorizations are shown in the table below.
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u | v [ type of triangle] 0y range | 4m?(u® +v?) | 01 - 02 (a,b,c)
41 5, < 16 272 1-272 [ (18,289, 305)
2136 | (19,153, 170)
468 | (21,85,104)
8-34 | (25,51,74)
16-17| (33,34,65)
413 01 <20 400 2200 (9,75,78)
5-80 | (10,35,39)
8-50 | (11,25,30)
20-20 | (15,15,24)
21 5 <8 80 1-80 | (1L,90,97)
2.40 | (12,50,58)
4-20 | (14,30,40)
5-16 | (15,26,37)
810 | (18,20,34)
2 10<n <14 208 13-16 | (13,14,15)
1[1 5 <5 32 1-32 | (9,40,41)
2-16 (10,24, 26)
4-8 | (12,16,20)
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Coincidence of Centersfor Scalene Triangles

Sadi Abu-Saymeh and Mowaffag Hajja

Abstract. A center function is a function Z that assigns to every triangg

in a Euclidean plan& a point Z(T) in E in a manner that is symmetric and
that respects isometries and dilations. A fantilyof center functions is said to

be complete if for every scalene trianglel BC' and every pointP in its plane,
there isZ € F such thatZ(ABC) = P. ltis said to beseparating if no two
center functions irF coincide for any scalene triangle. In this note, we give
simple examples of complete separating families of continuous triangle center
functions. Regarding the impression that no two different center functions can
coincide on a scalene triangle, we show that for every center funciamd
every scalene triangl€, there is another center functici, of a simple type,
such thatz(T) = Z'(T).

1. Introduction

Exercise 1 of [33, p. 37] states that if any two of the four classical centers coin-
cide for a triangle, then it is equilateral. This can be seen by proving each of the
6 substatements involved, as is done for example in [26, pp. 78—79], and it also
follows from more interesting considerations as described in Remark 5 below. The
statement is still true if one adds the Gergonne, the Nagel, and the Fermat-Torricelli
centers to the list. Here again, one proves each of the relevant 21 substatements;
see [15], where variants of these 21 substatements are proved. If one wishes to
extend the above statement to include the hundreds of centers catalogued in Kim-
berling’s encyclopaedic work [25], then one must be prepared to test the tens of
thousands of relevant substatements. This raises the question whether it is possible
to design a definition of the teriniangle center that encompasses the well-known
centers and that allows one to prove in one stroke that no two centers coincide for
a scalene triangle. We do not attempt to answer this expectedly very difficult ques-
tion. Instead, we adhere to the standard definition of what a center is, and we look
at maximal families of centers within which no two centers coincide for a scalene
triangle.

In Section 2, we review the standard definition of triangle centers and introduce
the necessary terminology pertaining to them. Sections 3 and 4 are independent.
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In Section 3, we examine the family of polynomial centers of degree 1. Noting the
similarity between the line that these centers form and the Euler line, we digress to
discuss issues related to these two lines. In Section 4, we exhibit maximal families
of continuous, in fact polynomial, centers within which no two centers coincide
for a scalene triangle. We also show that for every scalene tridfigded for
every center functiotg, there is another center function of a fairly simple type that
coincides withZ onT'.

2. Terminology

By a non-degenerate triangle ABC, we mean an ordered tripled, B, C') of
non-collinear points in a fixed Euclidean plaBie Non-degenerate triangles form a
subset ofE? that we denote bfl'. For a subseU of T, the set of triplega, b, c) €
R3 that occur as the side-lengths of a triangldrs denoted byl,. Thus

Uy = {(a,b,c) € R?:a,b,care the side-lengths of some triangl&C in U},
Ty = {(a,b,c) eR3>:0<a<b+c,0<b<c+a, 0<c<a-+b}.

In the spirit of [23] — [25], asymmetric triangle center function (or simply, a
center function, or acenter) is defined as a function that assigns to every triangle
in T (or more generally in some subgetof T) a point in its plane in a manner
that is symmetric and that respects isometries and dilations. Wi, B, C)
as a barycentric combination of the position vectdrs3, andC, and lettinga, b,
andc denote the side-lengths gfBC' in the standard order, we see that a center
function Z on U is of the form

Z(A7 B7 C) = f(a’7 b7 C)A + f(c7 CL, b)B + f(b7 c? a)C7 (1)

wheref is a real-valued function oly having the following properties:
f(aa bv C) = f(a7 ¢, b)v (2)
fla,b,¢) + f(b,c,a) + f(c,a,b) =1, 3)
f(Aa, Ab, Ac) = f(a,b,c) VX > 0. 4)

Here, we have treated the points in our pldh@s position vectors relative to a
fixed but arbitrary origin. We will refer to the cent&rdefined by (1) ashe center
function defined by f without referring explicitly to (1). The functiorf may be

an explicit function of other elements of the triangle (such as its angles) that are
themselves functions af, b andc.

Also, we will always assume that the domdihof Z is closed under permu-
tations, isometries and dilations, and has non-empty interior. In other words, we
assume thatl; is closed under permutations and multiplication by a positive num-
ber, and that it has a non-empty interior.

According to this definition of a centeZ, one need only defin€ on the sim-
ilarity classes of triangles. On the other hand, the values Zhassigns to two
triangles in different similarity classes are completely independent of each other.
To reflect more faithfully our intuitive picture of centers, one must impose the con-
dition that a center function be continuous. Thus a center fun&ion U is called
continuous if it is defined by a functionf that is continuous oft},. If f can be
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chosen to be a rational function, thehis called apolynomial center function.
Since two rational functions cannot coincide on a non-empty open set, it follows
that the rational function that defines a polynomial center function is unigue. Also,
a rational functionf (z, y, z) that satisfies (4) is necessarily of the fofin= g/h,
whereg andh ared-forms, i.e., homogeneous polynomials of the same degree
If d = 1, f is called aprojective linear function. Projective quadratic functions
correspond t@ = 2, and so on. Thus a polynomial centgiis a center defined by
a projective function.

A family F of center functions ofJ is said to beseparating if no two elements
in F coincide on any scalene triangle. It is said tocbhaplete if for every scalene
triangleT" in U, {Z(T") : Z € F}is all of E. The assumption th&f is scalene
is necessary here. In fact, if a triangle= ABC is such thatAB = AC, then
{Z(T) : Z € F} will be contained in the line that bisects anglebeing a line of
symmetry ofABC, and thus cannot covéa.

3. Polynomial centersof degree 1

We start by characterizing the simplest polynomial center functions, i.e., those
defined by projective linear functions. We note the similarity between the line these
centers form and the Euler line and we discuss issues related to these two lines.

Theorem 1. A projective linear function f(z, vy, z) satisfies (2), (3), and (4) if and

only if

(1-2t)z+t(y +2)
' Y = S

f(.y.2) . (5)

for somet. If S; isthe center function defined by (5) (and(1)), then &, Sy /3, Si ),
and S; are the incenter, centroid, Spieker center, and Nagel center, respectively.
Also, the centers {S;(ABC) : t € R} of a non-equilateral triangle ABC in T
form the straight line whose trilinear equation is

a(b—c)a+b(c—a)B + cla—b)y=0.
Furthermore, the distance |S;S,, | between S, and S,, is given by
|t —ulvVH

a+b+c’

|StSul = (6)

where
H = (—a+b+c)la—b+c)la+b—c)+ (a+b)(b+c)(c+a) — 9abc
= —(@®+ b+ ) +2(a% + Ve + Pa+ ab® + b + ca®) — abe. (7)

Proof. Let f(x,y,z) = Lo/My, whereLy and M, are linear forms i, y, andz,
and suppose that satisfies (2), (3), and (4). Let be the cyclez y z), and let
L; = o*(Lo) and M; = o%(M,). Sincef satisfies (3), it follows thatM; M, +
Ly MoMsy+ Lo My M7 — My My M, vanishes ofJy and hence vanishes identically.
Thus M divides LoM1 Ms. If My divides Ly, then f is a constant, and hence of
the desired form, witht = 1/3. If M, divides M, then it follows easily thaf\/;

is a constant multiple o/, and thatM, is a constant multiple of + y + 2. The
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same holds ifM, divides M. Finally, we use (3) and (4) to see that is of the
desired form.
Let S; be as given. The barycentric coordinatesS¢fA BC') are given by

fla,b,c): f(b,c,a): f(c,a,b)
and therefore the trilinear coordinates 3 : v of S(ABC) are given by
aa:Bb:ye = (1—-2t)a+t(b+c): (1 —-2t)b+t(c+a): (1 —2t)c+tla+d)
a+tb+c—2a):b+t(c+a—2b):c+tla+b—2c)

Therefore there exists non-zekasuch that
Aaa —a=1t(b+c—2a), \Bb—b=1t(c+a—2b), \yc—c=tla+b—2c).
It is clear that the valuée = 0 corresponds to the incenter. Thus we assu#e).
Eliminating ¢, we obtain

(A —Da(c+a—-2b) = (A3—1)b(b+c— 2a),

AB—=1bla+b—2¢) = (Ay—1ec(c+a—2b).
Eliminating A and simplifying, we obtain

(a—2b+c)la(b—c)a+blc—a)f+cla—Db)y] = 0.

Dividing by a — 2b + ¢, we get the desired equation.
Finally, the last statement follows after routine, though tedious, calculations. We
simply note that the actual trilinear coordinatesSoére given by

2K((1=2t)a+tb+c)) 2K((1-2t)b+t(c+a)) 2K((1—2t)c+t(a+b))
ala+b+c) ' bla+b+c) ' cla+b+c)
where K is the area of the triangle, and we use the fact that the distdnee

between the point® and P whose actual trilinear coordinates are 3 : v and
o : 3 :+is given by

(PP = oo V/=abela(3 — )0~ ) + 07— 7){a — @) + el — )@~ D)

see [25, Theorem 1B, p. 31]. a

)

4. TheEuler-likeline L(Z,G)

The straight line{S; : ¢ € R} in Theorem 1 is the first central line in the list
of [25, p. 128], where it is denoted bf(1,2,8,10). The notationL(1,2,8,10)
reflects the fact that it passes through the centers catalogued in [XB] &8s, X5,
and X,. These are the incenter, centroid, Nagel center, and Spieker center, and
they correspond iRS; : ¢t € R} to the values = 0,1/3,1, and1/2, respectively.
We shall denote this line b§(Z, G) to indicate that it is the line joining the incenter
7 and the centroidj. Letting O be the circumcenter, the linB(G, O) is then
nothing but the Euler line. In this section, we survey similarities between these
lines. For the third line. (O, Z) and a natural context in which it occurs, we refer
the reader to [17].
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Figure 1

It follows from (6) that the Spieker centéf = S, and the centroi@y = S, /3
of a triangle are at distances in the ratio 3 : 2 from the incefiter §. This
is shown in Figure 1 which is taken from [17]. The collinearity@®f Z, andG
and the ratio3 : 2 are highlighted in [6, pp. 137-138] and [27], and they also
appear in [22, pp. 225-227] and the first row in [25, Table 5.5, p. 143]. In spite
of this, we feel that these elegant facts and the striking similarity between the line
L(Z,G) and the Euler linel.(O, G) deserve to be better known. Unaware of the
aforementioned references, the authors of [3] rediscovered the collinearity of the
incenter, the Spieker center, and the centroid and the ratio 3 : 2, and they proved,
in Theorems 6 and 7, that the same thing holds for any polygon that admits an
incircle, i.e., a circle that touches the sides of the polygon internally. Here, the
centroid of a polygon is the center of mass of a lamina of uniform density that is
laid on the polygon, the Spieker center is the centroid of wires of uniform density
placed on the sides, and the incenter is the center of the incircle. Later, the same
authors, again unaware of [8, p. 69], rediscovered (in [4]) similar properties of
L(Z,G) in dimension 3 and made interesting generalizations to solids admitting
inspheres. For a deeper explanation of the similarity between the Euler line and its
rival L(Z,G) and for affine and other generalizations, see [29] and [28].

We should also mention that the special case of (6) pertaining to the distance be-
tween the incenter and the centroid appeared in [7]. Also, the fact that the Spieker



142 S. Abu-Saymeh and M. Hajja

centerg, is the midpoint of the segment joining the incerifeand the Nagel point

L is the subject matter of [12], [30], and [31]. In each of these referenfes,
(respectively,G,) is described as the point of intersection of the lines that bisect
the perimeter and that pass through the vertices (respectively, the midpoints of the
sides). It is not apparent that the authors of these references are awafeatiit

G, are the Nagel and Spieker centers. For the interesting paritigindeed the
Spieker center, see [5] and [20, pp. 1-14]. One may also expect that the Euler line
and the lineL(Z, G) cannot coincide unless the triangle is isosceles. This is indeed
S0, as is proved in [21, Problem 4, Section 11, pp. 142-144]. It also follows from
the fact that the area of the triang§€Z is given by the elegant formula

s(b—c)(c—a)(a—0b)
24K ’

wheres is the semiperimeter anll the area ofABC'; see [34, Exercise 5.7].
We also note that the Euler line consists of the cerifatlefined by the function

(1 —2t) tan A + t(tan B + tan C') 3

9= tan A + tan B + tan C ®)
obtained fromf of (5) by replacinga, b, andc by tan A, tan B, andtan C, re-
spectively. Theriy, 7,3, 712, and7; are nothing but the circumcenter, centroid,
the center of the nine-point circle, and the orthocenter, respectively. The distance
|7;7,| betweenZ; and7, is given by

1T, T,| = M,
a+b+c

where H* is obtained fromH in (7) by replacinga, b, andc with tan A, tan B,
andtan C, respectively. Lettings< be the area of the triangle with side-lengths
b, andc, and using the identityan A = 4K/(¥* + ¢ — a?) and its iteratesH*
reduces to a rational function in b, andc. In view of the formulal44K2r? = E
given in [32], where

E =a®b*c? — (0* + % — a®)( + a® — b*)(a® + b? — 2), 9)

and wherer is the distance between the circumcerfeand the centroid 3, H*
is expected to simplify into

[GOT] =

. (a+b+0)?E
a = 16K2
whereF is as given in (9), and wher K? is given by Heron’s formula
16K? = 2(a®b? + b2 + 2a?) — (a* + b* + c*). (10)

Referring to Figure 1, left’ be the point where the lineSO and HZ meet,
and lety be the midpoint ofH£. Then the Euler line and the lin(Z, G) are
medians of both triangle&’H L andOZ). The pointst and) do not seem to be
catalogued in [25]. Also, of the many lines that can be formed in Figure 1, the line
ZIN is catalogued in [25] as the line joinirig N, and the Feuerbach point. As for
distances between various points in Figure 1, formulas for the distan¢eg O,
IH, andOH can be found in [9, pp. 6—7]. The first two are quite well-known and
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they are associated with Euler, Steiner, Chapple and Feuerbach. Also, formulas for
the distance&/Z and GO appeared in [7] and [32], as mentioned earlier. These
formulas, as well as other formulas for distances between several other pairs of
centers, had already been found by Euler [35, Section XIB, pp. 88-90].

5. Complete separating families of polynomial centers

In the next theorem, we exhibit a complete separating family of polynomial cen-
ter functions that contains the functions used to define thel{ie G) encountered
in Theorem 1.

Theorem 2. Let ABC be a scalene triangle and let V' be any point in its plane.
Then there exist unique real numbers¢ and v such that V' isthe center of ABC with
respect to the center function Q; ,, defined by the projective quadratic function f
given by

(1 —2t)2? + t(y? + 22) + 2(1 —v)yz + vy + 2)
(x+y+ 2)?

Consequently, the family F = {9, , : t,v € R} isa complete separating family.
Also, F contains theline L(Z, G) described in Theorem 1.

f(xvyv Z) -

. ay

Proof. Clearly f satisfies the conditions (2), (3), and (4). Sin€és in the plane of
ABC, itfollows thatV = £A+nB+ (C for somet, n, and with{+n+¢ = 1.
Let a, b, andc be the side-lengths ol BC' as usual. The systerfia,b,c) = &,
f(b,e,a) =n, f(e,a,b) = ¢ of equations is equivalent to the system

(b? 4+ — 2a®)t + (—2bc + ca + ab)v = &(a + b+ ¢)? — a® — 2bc,
(a? + % — 2¢*)t + (—2ab + be + ca)v = {(a + b+ ¢)? — ¢ — 2ab.

The existence of a (unique) soluti¢h v) to this system now follows from the fact
that its determinant-3(a — b)(b — ¢)(c — a)(a + b + ¢) is not zero.

The last statement follows from the observation that it= 1 — ¢, then the
expression off (x,y, z) in (11) reduces to the projective linear functigtr, y, z)
given in (5). O

Remarks. (1) According to [25, p. 46], the Fermat-Torricelli point is not a polyno-
mial center. Therefore it does not belong to the fankilglefined in Theorem 2.
Also, the circumcenter, the orthocenter, and the Gergonne point do not belong to
F, although they are polynomial centers. In fact, these centers are defined by the
functions f given by

22y + 22 —2?) 4+ 22— a2? (x—y+2)(x+y—2)
16 K2 a2 4 y? 4227 2@y +yz +zx) — (22 + Y2+ 22)]
respectively, wherds is the area of the triangle whose side-lengths:arg, and
z, and is given by Heron’s formula as in (10); see [24, pp. 172-173)].

(2) One may replace the denominator ofn (11) by an arbitrary symmetric
guadratic form that does not vanish on any pointTiy) and obtain a different
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separating complete family of center functions. Thus if we repfalog the similar

function

(=1 —=2t)z% + t(y? + 22) + 2vyz + (1 —v)x(y + 2)
2(xy +yz + 2x) — (22 + y?> + 22)

g(xv Y, Z) = 5
then we would obtain a complete separating fan@yof center functions that
contains the centroid, the Gergonne center and the Mittenpunkt, but not any of the
other well known traditional centers. Here the Mittenpunkt is the center defined by
the function

xy + 22 — 22

2y +yz+20)— (@ AP+

9(x,y,2) =

(3) Itis clear that complete families are maximal separating families. However,
it is not clear whether the converse is true. It also follows from Zorn’s Lemma
that every separating family of center functions can be imbedded in a maximal
separating family. Thus the seven centers mentioned at the beginning of this note
belong to some maximal separating family of centers. The question is whether
such a family can be defined in a natural way.

The next theorem shows that pairs of center functions that coincide on scalene
triangles exist in abundance. However, it does not answer the question whether
such a pair can be chosen from the hundreds of centers that are catalogued in [25].
In case this is not possible, the question arises whether this is due to certain intrinsic
properties of the centers in [25].

Theorem 3. Let Z be a center function, and let ABC' be any scalene triangle
in the domain of Z. Then there exists another center function Z defined by a
projective function f such that Z(A, B,C) = Z'(A, B, C).

Moreover, if Z is not the centroid, then f can be chosen to be quadratic. If Z is
the centroid, then f can be chosen to be quartic.

Proof. Let F andG be the families of centers defined in Theorem 2 and in Remark
4. Clearly, the centroid is the only center function that these two families have in
common.

If Z ¢ F, then we use Theorem 2 to produce the cedfer= Z, , for which
Z0(A,B,C) = Z(A,B,C), and we takeZ’ = Z, . If Z ¢ G, then we argue
similarly as indicated in Remark 2 to produce the desired center function.

It remains to deal with the case whehis the centroid. In this case, we let

f(z,y,2) = g(x,y,2)/h(x,y, z), where

hWz,y,z) = (@' +y'+2Y)+ (@Py+ P+ P2+ 2%+ iz + 2%y)
+(x2y2 + y222 + 2:2952)
g(z,y,2) = (1—2t)z" +t(y* +2*) + v’ (y + 2) + wz(y® + 2°)

+(1—v —w)z(y’ + 2°) + s2°(y* + 2%) + (1 — 25)y°2%,



Coincidence of centers for scalene triangles 145

and we consider the equations

Flasb,e) = fb.c,) = f(e0.6) = 5.

These are linear equations in the variables, w, and s that have an obvious
solution (¢, v, w,s) = (1/3,1/3,1/3,1/3). Hence they have infinitely many other
solutions. Choose any of these solutions andZlebe the center defined by the
function f that corresponds to that choice. Then for the given triadgh”, Z is
the centroid, as desired. O

Remarks. (4) The question that underlies this paper is whether two centers can
coincide for a scalene triangle. The analogous question, for higher dimensional
simplices, of how much regularity is implied by the coincidence of two or more
centers has led to various interesting results in [18], [19], [10], [11], and [16].

(5, due to the referee) L&?, G, H, andZ be the circumcenter, centroid, ortho-
center, and incenter of a non-equilateral triangle. Euler’s theorem state® that
G, and’H are collinear withOG : GH = 1 : 2. A theorem of Guinand in [13]
shows thatZ ranges freely over the interior of the centroidal disk (with diameter
G'H) punctured at the nine-point cent#f. It follows that no two of the center®,

G, H, andZ coincide for a non-equilateral triangle, thus providing a proof, other
than case by case chasing, of the very first statement made in the introduction.
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On the Diagonals of a Cyclic Quadrilateral

Claudi Alsinaand Roger B. Nelsen

Abstract. We present visual proofs of two lemmas that reduce the proofs of
expressions for the lengths of the diagonals and the area of a cyclic quadrilateral
in terms of the lengths of its sides to elementary algebra

The purpose of this short noteisto give anew proof of the following well-known
results of Brahmagupta and Parameshvara [4, 5].

Theorem. If a, b, ¢, d denote the lengths of the sides; p, ¢ the lengths of the
diagonals, R the circumradius, and () the area of acyclic quadrilateral, then

i

N

Figure 1

)

b= \/(ac + bd)(ad + be) ‘= \/(ac + bd) (ab + cd)

ab + cd ’ ad 4+ be
and

1
Q= iR (ab + cd)(ac + bd)(ad + be).

We begin with visual proofs of two lemmas, which will reduce the proof of the
theorem to elementary algebra. Lemma 1 is the well-known relationship for the
area of atriangle in terms of its circumradius and three side lengths; and Lemma 2
expresses the ratio of the diagonals of a cyclic quadrilateral in terms of the lengths
of the sides.

Lemmal. If a, b, c denote the lengths of the sides, R the circumradius, and K the

; __ab
area of atriangle, then K = %.
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Proof. From Figure 2,

Lemma 2 ([2]). Under the hypotheses of the Theorem, % = —Zgigg_

= (L

N N

Figure 3 Figure 4

Proof. From Figures 3 and 4 respectively,

pab  ped  plab+ cd)
Q=K K =T TR IR
gad  gbc  q(ad + bc)
—Ky Ky =10 D 1A T o0
C=Rs K= Tp TR AR
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Therefore,
p(ab + cd) =q(ad + be),
p ad+ be
¢ abted

O

In the proof of our theorem, we use Lemma 2 and Ptolemy’s theorem: Under
the hypotheses of our theorem,

pq = ac + bd.
For proofs of Ptolemy’s theorem, see[1, 3].

Proof of the Theorem.

ac + bd)(ad + bc
g D (et bd(ad + be)
q ab+ cd
ac + bd)(ab+ cd
2y 0 loc+bd)ab+cd)
D ad + be
Q? ~ pqlab+ cd)(ad + bc)  (ac+ bd)(ab + cd)(ad + be)
B (4R)? a (4R)? '
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Some Triangle Centers Associated with the Excircles

Tibor Dosa

Abstract. We construct a few new triangle centers associated with the excircles
of a triangle.

1. Introduction

Consider a trianglel BC' with its excircles. We study a triad of extouch triangles
and construct some new triangle centers associated with them. Bi+éxéouch
triangle, we mean the triangle with vertices the points of tangency ol tbecircle
with the sidelines oA BC'. This is triangleA4, B,C, in Figure 1. Similarly, theB-
andC-extouch triangles are respectivelyB,C;, andA.B.C.. Consider also the
incircles of these extouch triangles, with cent&rsl,, I35 respectively, and points
of tangencyX of (I;) with B,C,, Y of (I3) with C,A;, andZ of (I3) with A.B..

Figure 1.

In this paper, we adopt the usual notations of triangle geometry as in [3] and
work with homogeneous barycentric coordinates with reference to triahgi€.
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Theorem 1. (1) Thelines AX, BY, C'Z are concurrent at

A A B C C
P = — 2. — 2 — 2= ).
| (cos 2 cos 1 Cos 2 Cos 1 : CoS 5 cos 1 >

(2) Thelines 1 X, I,Y, I3Z are concurrent at

sz( (1—005——00 2> +(b+c) COSE

b1 ¢ + =
— CoS — —cos (c+ a)cos —
2 2

1 A +b) ¢
cos - cos (a + b) cos 5

2. Some preliminary results

Let s and R be the semiperimeter and circumradius respectively of triangle
ABC'. The following homogeneous barycentric coordinates are well known.

A,=0:s—b:s—c), By=(—(s—b):0:5), Co=(—(s—c):5:0);
Ay =(0:—(s—a):s), By=(s—a:0:s—¢), Co=(s:—(s—c):0);
Ac=0:s:—(s—¢)), B.=(s:0:—(s—a)), Co=(s—a:s—>b:0).

The lengths of the sides of th&-extouch triangle are as follows:

A B
BaCa:2s-sin5, CaAa:2(s—c)cosi, AyBq —2(s—b)cos— 1)

Lemma 2.

B C
s —4Rcosicos§cos 5

B C

s—a—4Rcos§sm§sm 5

A B C

s—b—4Rs1nicos§s1n 5

A B C

s—c:4Rsin§sin§cos§

We omit the proof of this lemma. It follows easily from, for example,{293].
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3. Proof of Theorem 1

LB,y — AuCy+ A,BY)

B, X 2(
. B

=s-sin 5 — (s—c)cos;—l—(s—b)cosa
:4Rsinécos Ecosg (COS é — sinE + sin 9)

2 2 2 2 2 2
:4Rsinécos§cos% (sinB;C —sing +sin%>
:4Rsinécos§cosg (25inB+CCOSB+C —QSinB_CcosB+C>

2 2 2 4 4 4 4
:16Rsinécos§cosgcos B+C 'cosgsing.

2 2 4 4 4

Similarly, XC, = 16Rsin £ 2 cos g cos (2; cos B—+C sin % cos %. The pointX
therefore dividesB,C, in the ratio
C

B . C |
B, X : XC, :COSZSIDZ : SIDZCOSZ'

This allows us to compute its absolute barycentric coordinate in ternis ahd
C,. Note that

A A C
(—s1n2s1n2, 0, cos20052)

Ba: ) Ca:

B C
sin 3 sin 5

A B A
(—s1n251n 5, COS 5 COS 2, O)

From these we have

B C
snr14(:os4 By +cos 7 sin g - Cy

sin B+C
A e} A c A B A B
. —sin £ sin < ,0,cos £ cos = . sin £ sin & ,cos % cos =, 0
31n§cosg-( 2 222 2)+cos§smg-( 2 PRAR 2.0)
4 4 sin & 4 4 sin 5
SmBLC
C ( sm%sm Ocos%cosc) B (7sin‘;\sm§,cos‘3cos%,0)
cos 7 - B +cos - =
_ 2cos 2cos 7
sin B+C

2C A C A 2 B A B A
cos” 5 (—smgsm 5,0, cos 5 cos 7) + cos (— sin 4 sin 5, cos % cos 2, O)

QCosfcosgsm B+C
s A (. B C 2C A B 2 B A c 2C
(— sin 5 (smg cos? + sin 5 cos 4) COS % COS 5 COS” 7, COS 5 COS 5 COoS 4)

2 cos 4 cos ff sin B+C

From this we obtain the homogeneous barycentric coordinatés ahd those of
Y andZ by cyclic permutations ofi, B, C:
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Yo (—sin A (sin B0 B i sin Ceos? O - cos A eos Breos? B+ cos A cos € cos? €

= Sl 2 Sin 2 COS 4 sin 2 COS 4 . COSs 2 COS 2 COS 4 . COSs 2 COS 2 COs 4 s
Y —= | cos E COS é COS2 é L= sin E sm g COS2 g + sm é . COs E COS g COS2 g

- 2 2 4 2 2 4 4 2 2 4)°
Z — | cos 9 COSs é COS2 é . COs g COS E COS2 E L= Sil’l C sm - COS — + sm E COS E

- 2 2 4 2 2 4 2 2 4 2 4 ‘
Equivalently,

A(. B ,B _C ,C B ,B c ,C
X = —tana SIDECOS Z—FSID;COS Z :COS — COS™ — 1 COS—COS — |,

2 4 2 4
Y = (cos é cos? é : —tan E (Sin g cos? g + sin é cos? é) : coS g cos? g)
2 4 2 2 4 2 4 2 4 )’
Z = (COSéCOSQ é : COSECOSQ E : —tang (sinécos2 é —|—sin§cos2 E)) .
2 4 2 4 2 2 4 2 4

Itis clear that the linesl X, BY, C'Z intersect at a poinf with coordinates

oS é cos? é : Cos B cos? B : Cos g cos? g
2 4 2 4 2 4 )

This completes the proof of Theorem 1(1).

For (2), note that the lind; X is parallel to the bisector of anglé. Its has
barycentric equation

A B c . ..2C A B 2B A c..2C

—51n5(51n5cos T +sin 5 cos 4) COS %4 COS 5 COS” - COS 4 COS 5 COS”
—(b+¢) b c =0.
x Yy

A routine calculation, making use of the fact that the sum of the entries in the first
row is sin % cos? % + sin % cos? %, gives

B
—(z+y+2) (lmos%—ccos;) +bz—cy=0.

Similarly, the linesl,Y andI3Z have equations

A C
—(z4+y+2) ceos o —acos - + cx — az =0,

B A
—(z+y+2) <acos§ — bcos 5) + ay — bx =0.
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These three lines intersect at

B C A
Pg—(a(l—cosa—cos§> +(b+c)cos§

:b(l—cos%—cosé> —i—(c—i—a)cosg

2
A B C
ef1—cosZ —cos2 =),
c( Cos 2 cos2>—|—(a+b)cos2>

This completes the proof of Theorem 1(2).

Remark. The barycentric coordinates of the incenfepf the A-extouch triangle
are

oA (B in ) s (60 1oAY eos € (cos At sin B
sSin 2 Sin 2 sSin 5 . COS 5 S 5 COS 5 : COS 5 COs 2 sSin 2 .

4. Some collinearities
The homogeneous barycentric coordinategiofan be rewritten as

cosQé—Fcosé 'COSQE—FCOSE 'cos2g+cosg
2 2 2 2 2 2 )

From this it is clear that the poirfg lies on the line joining the two points with
coordinates(cos? % : cos? g : cos? %) and (cos % : cos g : oS %) We briefly
recall their definitions.

(i) The pointM = (0052§ : cos? £+ cos? %) = (a(s—a):b(s—b):c(s—c))
is the Mittenpunkt. It is the perspector of the excentral triangle and the medial
triangle. It is the triangle centeXy of [2].

(i) The point@ = (cos4 :cosL :cos§) appears as\iss in [2], and is
named the second mid-arc point. Here is an explicit description. Consider the
anticomplementary triangld’ B'C’ of ABC, with its incircle(I’). If the segments
I'A', I'B’, I'C' intersect the incirclél’) at A”, B”, C"”, then the linesA A", BB”,

CC" are concurrent af. See Figure 2.

Proposition 3. (1) The point P liesontheline M Q.
(2) The point P lies on the line joining the incenter to Q.

Proof. We need only prove (2). This is clear from

A B C A B C
P=11- - — — - — )1 — — — .
) ( cos2 0052 cosQ> +<C082+COS2+C082>Q

In fact,

A B
P2:I+<cosi+cos§+cos%> E)) 2)



156 T. Dosa

Figure 2.

5. The excircles of the extouch triangles

Consider the excircle of triangld, B,C, tangent to the sid&,C, at X'. Itis
clear thatX’ and X are symmetric with respect to the midpoint BfC,,. Since
triangle AB,C, is isosceles, the lined X’ and AX are isogonal with respect to
AB, andAC,. As such, they are isogonal with respectA® and AC'. Likewise,
if we consider the excircle ofl, B, C), tangent toC, A, atY’, and that ofd.B.C.
tangent toA. B, at 7/, then the linesAX’, BY’, CZ’, being respectively isogonal
to AX, BY,CZ, intersect at the isogonal conjugateref

Proposition 4. The barycentric coordinates of ;5" are
< A LA B . ,B C,QC>
COS — SIn™ — :COS—SINn™ — : COS — S1n™ — .

2 4 2 4 2 4
Proof. This follows from
- ( sinA sin2B sin®C
1 = A 2 A B 2B C 2 C
COS 5 COS I COS b} COS Y COS 5 COS y
-2 A A - 2B B . 2(C c
. (Sln 5 COS 3 . Sin bl COS 23 . Sin 5 COS 7)
- 2A ’ 2 B ’ 2C
COS 1 COS 1 COS 1
A S, A B . ,B c . ,C
= | COS—SIn” — :COS—SIn”- — :COS —SsIin" — ..
2 4 2 4 2 4

Corollary 5. The points P, P; and () are collinear.
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A

Figure 3.

Proposition 6. The perpendicularsto B,C,, at X’,to C,A, at Y’, andto A.B, at
7' are concurrent at the reflection of B in I, which isthe point

B C A
P —a<1+cos§—|—cos§> —(b—l—c)cosE

C A B
.b<1+cos§+cos§> —(c+a)cos§

A B C
.c<1+cos§+cos5> —(a+b)cos§.

Proof. Let P, be the reflection of% in I. SinceX and X’ are symmetric in the
midpoint of B,C,,, and P, X is perpendicular taB,C,, it follows that P, X’ is
also perpendicular t®,C,. The same reasoning shows ttigt” and P;Z’ are
perpendicular t@, A, and A. B, respectively. It follows from (2) that

A B C
P,=1- (cosi—i-cosa—i—cosE) 10.

From this, we easily obtain the homogeneous barycentric coordinates as given
above. 0

We conclude this paper with the construction of another triangle center. It is
known that the perpendiculars from, to B,C,, By to Cy A, andC,. to A.B.
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intersect at
Py=((b+c)cosA : (c+a)cosB : (a+b)cosC). (3)

This is the triangle centeXz, in [2].

If we let Xy, Yo, Zy be these pedals, then it is also known tH&{,, BY;, CZ,
intersect at the MittenpunkXy. Now, let X1, Y7, Z; be the reflections akXj, Yo,
Zy in the midpoints ofB,C,, Cy Ay, A.B. respectively. The lined X, BY;, CZ;
clearly intersect at the reflection &f- in I. This is the point

P, = ((b+c)cosA—2a :(c+a)cos B—2b : (a+b)cosC — 2c).

These coordinates are particularly simple since the sum of the coordinatgs of
givenin (3) isa + b + c.
The triangle center®,, Py, P, P, and P; do not appear in [2].
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Fixed Points and Fixed Lines of Ceva Collineations

Clark Kimberling

Abstract. In the plane of a trianglel BC, theU-Ceva collineation maps points

to points and lines to lines. [ is a triangle center other than the incenter, then
the U-Ceva collineation has three distinct fixed poifts F», F3 and three dis-
tinct fixed linesF; Fs, F5 F1, F1 F>, these being the trilinear polars Bf, F», Fs.
WhenU is the circumcenter, the fixed points are the symmedian point and the
isogonal conjugates of the points in which the Euler line intersects the circum-
circle.

1. Introduction

This note is a sequel to [3], in which the notion ofUaCeva collineation is
introduced. In this introduction, we briefly summarize the main results of [3].

We use homogeneous trilinear coordinates and denote the isogonal conjugate of
apointX by X—!. TheX-Cevaconjugate d/ = u:v:wandX =z :y: zis
given by
XOU = u(—uyz +vzx + wzy) : v(uyz —vze + wzy) : w(uyz + vze —wxy),
and if P = p: ¢ : r is a point, then the equatiaR = X©U is equivalent to

X = (ru+ pw)(pv + qu) : (pv + qu)(qw + rv) : (qw + rv)(ru+ pw) (1)

= cevapointP, U).
If £1isalinelya+mi8+n1y = 0andLs is alineloa+mso3+ngy = 0, then there
exists a unique poirly such that ifX € £;, thenX ~'©U € L,, and the mapping
X — X~ '©U is surjective. This mapping is written @s(X) = X~ '©U, and
Cy is called thel/-Ceva collineation. Explicitly,
Cu(X) = u(—ux + vy + wz) : v(ur — vy + wz) : wluxr + vy — wz).
The inverse mapping is given by
CEI(X) =wy + vz uz + wr : vr + uy
= (cevapointX,U))".

The collineationC;; maps the verticesi, B, C' to the vertices of the anticevian

triangle of U and mapsU~! to U. The coIIineationC,}1 mapsA, B, C to the
vertices of the cevian triangle 6f~' and maps/ to U~!.

Publication Date: October 15, 2007. Communicating Editor: Paul Yiu.



160 C. Kimberling

2. Fixed points

The fixed points of th&;-collineation are also the fixed points of the inverse
coIIineation,C(jl. In this section, we seek all poinfs satisfyingccjl(X) = X;
i.e., we wish to solve the equation

0 w v
CGHX)= w 0 u y | =MX
v u 0 z
for the vectorX. Writing (M — tI)X = 0, wherel denotes th& x 3 identity

matrix, we have the characteristic equation(dét— ¢7) = 0 of M, which can be
written

-t w w
w —t u |=0
voou  —t
Expanding the determinant gives
t3—gt—h=0, ()

whereg = u?+v?+w? andh = 2uvw. Now Suppose is a root,i.e., an eigenvalue
of M. The equatior{M — ¢tI)X = 0 is equivalent to the system

—tr +wy+vz=0
wr —ty+uz =0
vr +uy —tz =0.

For anyz, the first two of the three equations can be written as

o () ()= ().
(5)=(m) (22)

1 tvz + uwz
2 — w2 \ tuz+owz )

Thus, for each,

1
r=5——(tvz +uwz) and y =

R 7102(75“2 + vwz),

t2 _
so that

x:y=tv+uw:tut+ovw and v_ (tu + vw),

z 12— w?

andz : y : z is as shown in (6) below.
Continuing with the cas€ # w?, let f(t) be the polynomial in (2), and let

r=/(u? +0? +w?)/3,
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so that
2
f(=r)= —2ww+ g(u2 +v? + w?)r; (3)
2
flr)= —2uvw — g(u2 + 0?2 4+ w?)r.

Clearly, f(r) < 0. To see thatf(—r) > 0, we shall use the inequality of the
geometric and arithmetic means, stated here:for 0, z5 > 0, 23 > 0 :

. @

(z17273)
Takingz; = u?, o = v?, 3 = w? gives

27u?0*w? < (u? 4+ 0 + w2)3 ,
or equivalently,

Buvw < (u2 +0? 4+ w2) T,

so that by (3), we havg(—r) > 0. We consider two cases;f(—r) > 0 and
f(r) = 0. In the first case, there is a ropin the interval(—oo, —r). Since
f(0) <0, there is a root ir{—r,0), and sincef(r) < 0, there is a root ir{r, o).
For each of the three roots, or eigenvalues, there is an eigenvector, oXpaath
thatC;'(X) = X.

In the second case, thafr) = 0, we have(u? + v? + w?)r = —3uvw, so that
(u? + v% + w?)? = 27uv?w?, which implies that equality holds in (4). This is
known to occur if and only if ifx; = x5 = w3, or equivalentlyu? = v? = w?,
which is to say thatU is the incenter or one of the excenters., thatU is a
member of the set

{t:1:1, —1:1:1, 1:-1:1, 1:1:-1}. (5)

We consider this case further in Examples 1 and 2 below, and summarize the rest
of this section as a theorem.

Theorem 1. Suppose U is not one of the four pointsin (4), that ¢ is a root of (2),
and that ¢? # w?. Then the point

X =tv+uw : tu+ovw : t2 — w? (6)
is a fixed point of C;;!, hence also a fixed point of C;;. There are three distinct
roots ¢, hence three distinct fixed points X.

3. Examples

As a first example, we address the possibility that the hypothesis w? in
Theorem 1 does not hold.
Examplel. U =1:1:1. The characteristic polynomial is

—t 1 1
1 —t 1 |=@2-t)t+1)>
11 —t
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We have two casest = 2 andt = —1. Fort = 2, we easily find the fixed point
1:1:1. Fort = —1, the method of proof of Theorem 1 does not apply because
t2 = w?. Instead, the system to be solved degenerates to the single equation
z = —x —y. The solutions, all fixed points, are many; for example fletg : h

be any point, and let

r=g—h y=h—f z=f—g

(eg.z:y:z=b—c:c—a:a—>b whichis the triangle centerXs;,.).
Geometrically,z : y : z are coefficients of the line joining: 1: 1andf : g: h.

Example2. U = —1:1:1,the A-excenter. The characteristic polynomial is

—t 1 1
—1 —t 1 |=—(@t+1)(¥—t+2).
-1 1 —t

Fort = —1, we find that every point on the line+ y + z = 0 is a fixed point. If
t2 —t+2 =0, thent = (1++/—7)/2, and the (nonreal) fixed pointis: 1 : ¢ — 1.
Similar results are obtained féf € {1: —1:1,1:1: —1}.

Example3. U = cos A : cos B : cosC. It can be checked using a computer
algebra system thaky, Xo574, and Xo575 are fixed points.  The first of these
corresponds to the eigenvaltie- 1, as shown here:

x:y:z:tv+uw:tu+vw:t2—w2

= cos B+ cos AcosC : cos A+ cos BeosC' : 1 — cos?® C
= sinAsinC :sin BsinC : sinC'sin C
=sinA:sinB:sinC

— Xg.

See also Example 6.

Example4. U = a(b? +c?) : b(c? + a?) : c(a® + b?) = X39. The three roots of
t3 — gt —h=0are

—2abe, abc — \/3a2b2c2 + S(2,4), abc + \/3a2b2c2 + 5(2,4),
where
S(2,4) = a®b* + a’b® + a®ct + a'c? + vt bl
The solutiont = —2abc easily leads to the fixed point

X510 = (0> —cH)/a: (2 —ad®)/b: (a®> — V) /c.

Iwe use the indexing of triangle centers in fyclopedia of Triangle Centers [3].
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Example5. For arbitrary reah, letu = cosnA, v = cosnB, w = cosnC. A
fixed point isX = sinnA : sinnB : sinnC, as shown here:

CyH(X) = sinnBcosnC + sinnC cosnB
: sinnC cosnA + sinnA cosnC
: sinnAcosnB + sinnB cosnA

= sin(nB + nC) : sin(nC + nA) : sin(nA + nB)

= sinnA : sinnB : sinnC.

4. Images of lines

Let £ be the linela + mj3 + ny = 0 and letL the poinf I : m : n. We shall
determine coefficients of the lir@;'(£). Two points onC are

P=cm—-bn:an—cl:bl—am andQ=m—-n:n—101:1—m

Their images orﬁ,’(jl(ﬁ) are given by

0 w v cm — bn
P=c;'(P)=| w 0 u an—cl |,
v uw 0 bl —am
0 w v m-—n
Q' _Cﬁl(Q) =l w 0 wu n—1
v u 0 l—m

We expand these products and use the resulting trilinears as rows 2 and 3 of the
following determinant:

a B v
w(an —cl) +v(bl —am) w(em —bn) +u(bl —am) v(em —bn) + u(an — cl)
wn —1)+v(l —m) w(m —n) +u(l —m) vim—mn)+uln—1)

=—(b=c)l+(c—a)m+ (a—b)n)
“(u(=ul + vm +wn) a + b (ul — vm 4+ wn) B+ ¢ (ul + vm — wn) 7).
If the first factor is no0, then the required Iin%l(ﬁ) is given by
u(—ul +vm +wn) a4+ v (ul — vm +wn) B +w (ul + vm —wn)y =0, (7)
of which the coefficients are the trilinears of the point
L7'QU = u(—ul +vm +wn) : v (ul —vm +wn) : w (ul +vm —wn).
Even if the first factor i9), the pointsP and Q' are easily checked to lie on the

line (7).

2Geometrically,ﬁ is the trilinear polar of.~!. However, the methods in this paper are algebraic
rather than geometric, and the results extend beyond the boundaries of euclidean geometry. For
example, in this papet, b, c are unrestricted positive real numbaers;, they need not be sidelengths
of a triangle.
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The same method shows that the coefficients of thediri&€) are the trilinears
of (cevapointL, U))~!; that is,Cy (L) is the line

(wm +wvn) a+ (un + wl) B+ w (vl + um) vy = 0.

5. Fixed lines
The line£ is a fixed line ofCy (and ofC;t) if Cy (L) = L, that is, if

(cevapointU, L)) = L,

SHIONe)

This is the same equation as already solved (itim place of X') in Section 2.
For each of the three roots of (2), there is an eigenvector, or @giahd hence a
line £, such thaty (L) = £, and we have the following theorem.

or, equivalently,

Theorem 2. The mapping Cy; has three distinct fixed lines, corresponding to the
three distinct real roots of f(¢) in (2). For each root ¢, the corresponding fixed line
la+mp + ny = 0isgiven by

l:m:n=tv+uw:tu+ow: t? —w? (8)

6. Iterations and convergence
In this section we examine sequences
X, Cp'(X), C¢p(Cpt (X)), . 9)

of iterates. IfX is a fixed point ofC;*, then the sequence is simply, X, X, ...;
otherwise, with exceptions to be recognized, the sequence converges to a fixed
point. We begin with the case that lies on a fixed line, so that all the points in

(9) lie on that same line. Let the two fixed points on the fixed line be

Fi=fi:g1:h1 and F; = fo: g2 : ha.
Then forX on the lineF; F5, we have
X:fl—l-tfgtgl-l-tggihl-l-thz

for some functiort homogeneous ia, b, ¢, and we wish to show that (9) converges
to Fy or Fy. As afirst step,

0 w v fi+tfe wg1 + vhy + t(wgs + vha)
C(jl(X) = w 0 wu g1 +tge | = | wfi+uhy +t(wfy + uhg)
v u 0 hy + tho vf1 4+ ugr + t(vfo 4+ ugs)
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Fori = 1,2, becausef; : ¢; : h; is fixed byC;;t, there exists a homogeneous
functiont; such that

wg; + vh; =t; f;,

wfi 4+ vh; = tig;,

vfi +ugi = tih,
so that

t
fi+ t—Qtf2
tifi +tatfo 1

_ to
CGHX)=| tigi+tatge | =t1 | o1 + t—t92
tih1 + tathg t%
hi + t—thg
1

Applying C;;' again thus gives

tyt
fi+ ——Qtf2
B
_ 4 L2
CUQ(X) = g1+ gatg2 s
4 to
h ——=th
1+ sty 2
wherets andt, satisfy
to to tyto
wgr +vhy + Et(ng + vhs) tafr + t4atf2 fi+ gatﬁ
t t tyt
wf1+uhy + t—Qt(wa +uhg) | = tzgr+ t4t—2tf2 =t3| g1+ t_4t_2tg2
1 1 31
t t iyt
vf1 +ugr + —t(vfs + ugs) tshy + ta—t fo hi + —Zthy
t1 1 t3t1
Now
W+ vhy  wfi+uht  vfi+ug
1 pr— pr— pr— 5
bil g1 hy
o Wot vhy wfy+uhy  vfy+uge
2 pr— pr— pr— 5
f2 92 ha
wgr +vhy  wfi+uhy  vfi +ug
tS pr— pr— pr— pr— tl’
bil g1 hy
_wl@g o w@h e o)+ u(R)e
bty = 2y = 2y = Y = ta.
(tl)fQ (t1)92 (tl) 2
Consequently,

f1+(§—2)2tf2

1

ClAX)=| o+ ()t |,
2

hy + (E)%hg
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and, by induction,
Ji+ (z—i)ntﬁ
") = | ot (P |- (10)

¢
hi + (2)"thy
ty

Regarding the quotier? in (10), ifi—2 = 1thenC;"(X) is invariant ofn, which
1 1

is to say thatX is a fixed point. Ifi—2 = —1, thenC(;Q(X) = X, which is to say
1

that X is a fixed point of the coIIineatiod[;Q. If # 1, we call the lineF; F5

to
3]

aregular fixed line, and in this case, by (10)lim C;,"(X) is F; or F;, according

to

1

to
tq

as <lor > 1. We summarize these findings as Lemma 3.

Lemma 3. If X lies on a regular fixed line of C[/l (or equivalently, a regular
fixed line of Cyy), then the sequence of points C;" (X) (or equivalently, the points
Cr (X)) converges to a fixed point of C;* (and of Cy).

Next, suppose thaP is an arbitrary point in the plane of BC. We shall show
thatC,;" (P) converges to a fixed point. Léf, F5, 3 be distinct fixed points.
Define

Py=PRNFF, P=PRnRE PO =c ' (P);
P =c(Py) andP{™ =Cc(Py) forn =1,2,3,...
The collineationC;,* maps the linef, P to the line F, P(©), which is also the line

F2P2(1) becauser;, P, P, are collinear; IikewiseC[;1 maps the lineF; P to the
line F3P§1). Consequently,
PO = P N P,

and by induction,

C;"(P) = BRP™ n P, (10)
By Lemma 3,

T}er(}oc[;”(PQ) and nlln;oclj"(Pg)
are fixed points, so that by (10),
lim C;;"(P)

n—o0

must also be a fixed point. This completes a proof of the following theorem.

Theorem 4. Suppose that the fixed lines of Cgl (or, equivalently, of Cyy) are regu-
lar. Then for every point X, the sequence of points G;"(X) (or equivalently, the
sequence Cj; (X)) converges to a fixed point of C;; Y(and of ).
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Example 6. Extending Example 3, the three fixed lin€& Xo574, X6Xo2575,
Xos74 X o575 are regular. The pointXs574 and X575 are the isogonal conjugates
of the pointsXi113 and X7114 in which the Euler line intersects the circumcircle.
Thus, the lineXs574 Xo575 is the line at infinity. Becaus&;13 and X114 are
antipodal points on the circumcircle, the lin&sX o574 are X Xo575 are perpen-
dicular (proof indicated at (x) below).

While visiting the author in February, 2007, Peter Moses analyzed the configu-
ration in Example 6. His findings are given here.

N 1114 ,

Figure 1.
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(I) A point on IineX6X2574 is Xi344; @ point onXgXo575 is X1345.

(i) SegmentG H (in Figure 1) is the diameter of the orthocentroidal circle, with
centerXsg;. The pointsXi344 and X345 are the internal and external centers of
similitude of the orthocentroidal circle and the circumcircle.

(i) Line GH, the Euler line, passes through the points

O, Xi113, X1114, Xi1344, Xi345.

(iv) Xio5 is the center of the Jerabek hyperbola, which is the isogonal conjugate
of the Euler line. (As isogonal conjugacy is a function, one may speak of its image
when applied to lines as well as individual points).

(v) The line throughX;s5 parallel to lineXsX1344 is the Simson line 07114,
and the line througlX; -5 parallel to lineXs X345 is the Simson line ofX113.

(vi) HyperbolaABCGXj113, with center(’y, is the isogonal conjugate of the
Cy-fixed line X Xo574, and hyperbolad BC G X114, with center(Cs, is the isogo-
nal conjugate of théy-fixed line X¢ Xo575.

(vii) €1 is the barycentric square df,575, andC; is the barycentric square of
Xos74.

(viii) The perspectors of the hyperbolasBC'G X113 and ABCG X114 are
Xos75 andXos74, respectively. The fact that these perspectors are at infinity implies
that the two conicsA BCG X1113 and ABC G X1114, are indeed hyperbolas.

(ix) The midpoint of the point€; andCs is the pointXs Xg N X2 Xg47.

(X) Line X¢Xo574 is parallel to the Simson line o114, and line Xg Xo575 is
parallel to the Simson line aX;;13. The two Simson lines are perpendicular ([1,
p. 207]), so that th€-fixed lines X Xo574 and Xg Xo575 are perpendicular.

(xi) The circle that passes through the poiXts X344, and X345 also passes
through the pointX,453, which is the reflection oy in the Euler line. This circle
is a member of the coaxal family of the circumcircle, the nine-point circle, and the
orthocentroidal circle.
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On a Product of Two Points Induced by
Their Cevian Triangles

Cosmin Pohoata and Paul Yiu

Abstract. The intersections of the corresponding sidelines of the cevian trian-

gles of two pointsP, and P; form the anticevian triangle of a poift(Fy, Pi).

We prove a number of interesting results relating the pair of inscribed conics with

perspectors (Brianchon pointg) and P, in particular, a simple description of

the fourth common tangent of the conics. We also show that the corresponding
sides of the cevian triangles of points are concurrent if and only if the points lie

on a circumconic. A characterization is given of circumconics whose centers
lie on the cevian circumcircles of points on them (Brianchon-Poncelet theorem).
We also construct a number of new triangle centers with very simple coordinates.

1. Introduction

A famous problem in triangle geometry [8] asks to show that the corresponding
sidelines of the orthic triangle, the intouch triangle, and the cevian triangle of the
incenter are concurrent.

B Xo X1 Xo c
Figure 1.

Given atriangled BC with orthic triangleX, Yy Z, and intouch triangleé; Y7 71,
let
X/:)/E)Zoﬂ}/lzl, Y,:ZOXoﬂlel, Z/:Xo}/oﬂlel.

Publication Date: November 14, 2007. Communicating Editor: Jean-Pierre Ehrmann.
We thank Jean-Pierre Ehrmann for his excellent comments leading to improvements of this paper,
especially in pointing us to the classic references of Brianchon-Poncelet and Gergonne.
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Emelyanov and Emelyanova [2] have proved the following interesting theorem.
If XY Z is an inscribed triangle (withkX, Y, Z on the sidelinesBC, C A, AB
respectively, and” on X Z andZ’ on XY’), then the circle througlX, Y, Z also
passes through the Feuerbach point, the point of tangency of the incircle with the
nine-point circle of triangleA BC.

Figure 2.

In this note we study a general situation which reveals more of the nature of
these theorems. By showing that the intersections of the corresponding sidelines
of the cevian triangles of two point® and P; form the anticevian triangle of
a pointT'(Fy, Py), we prove a number of interesting results relating the pair of
inscribed conics with perspectors (Brianchon poingsland P,. Proposition 5
below shows that the corresponding sidelines of the cevian triangles of three points
are concurrent if and only if the three points lie on a circumconic. We characterize
such circumconics whose centers lie on the cevian circumcircles of points on them
(Proposition 9).

We shall work with homogeneous barycentric coordinates with reference to tri-
angle ABC, and make use of standard notations of triangle geometry. A basic
reference is [10]. Except for the commonest ones, triangle centers are labeled ac-
cording to [7].

2. A product induced by two cevian triangles

Let Py = (up : vo : wp) andP; = (ug : v; : wy) be two given points, with
cevian trianglesXy Yy Zy and X1Y: Z; respectively. The intersections

X’:YOZoﬂYlZl, Y,:Z()XoﬂZth Z/:XOYE) NnX1Y7
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are the vertices of the anticevian triangle of a point with homogeneous barycentric
coordinates

Vg  Wo Wo  Uo up Yo
u | ———\):v|———): w|——— 1)
(A w1 w1 U U U1
v w w u u v
SGR) @R e GeR) e
vp  wWo wo - Ug up o
That these two sets of coordinates should represent the same point is quite clear
geometrically. They define a product&fandP; which clearly lies on the trilinear

polars of ) andP;. This product is therefore the intersection of the trilinear polars
of Py and P;. We denote this product B§(R), P;).

Figure 3.

The pointT'(P,, P,) is also the perspector of the circumconic throughand
Py. In particular, if By and P, are both on the circumcircle, th&n Ry, P) = K,
the symmedian point.
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Proposition 1. Triangle X'Y’Z’ is perspective to

(i) triangle XY, Z, at the point
2 2
wo uQ UuQ Vo
w1 Ul Uy U1

2 2
wyp Ul up U1
my— - — w\— .
(i) (2
Proof. Since X’Y’Z’ is an anticevian triangle, the perspectivity is clear in each
case by the cevian nest theorem (see fBJ3] and [4, p.165, Supp. Exercise 7]).

The perspectors are the cevian quotieRts(T'(Py, Py)) and P, /(T(Py, P1)).
We need only consider the first case.

Vo wo

%Aﬂaha»—<w(———)2

v wr

(i) triangle X1Y; Z; at the point
2
amﬂaha»—<m(ﬂ—@$

Vo wWo

Py /(T(Po, P1))

Yo Wo Wo Yo Up __ Yo
Vo wWo Uo (Ul wl) 0 (w1 u1> 0 <u1 U1>
_= UO —_——_— —_ —|—
v w1 Uo Vo Wo
Yo _ Wo Wo Uo uo vo
Wo Ug “o (Ul wl) 0 (wl Ul) w (u1 v1>
| — — — -
w1 Uy Ug Vo Wo
0 Wo Wo __ U uog Yo
Uo Vo o (Ul wl) 0 (wl Ul) wo (u1 Ul)
wy [ — — — + —
(5% U1 uQ Vo wo

g

Remark. See Proposition 12 for another triangle whose sidelines contain the points
XY, 7.

The conic with perspectaR) has equation
2 2 2
T z 2yz 2zx 2x
St S S - =2~
Ug Vg wy VoWo wo U upVo

and each point on the conic is of the fotmp? : voq? : wor?) for p 4+ q+r = 0.
Fromthisitis clear thaty /(T'(Py, Py)) lies on the inscribed conic with perspector
Py. Similarly, P, /(T (Py, Pi)) lies on that with perspecta?, .

Proposition 2. Thelinejoining R /(T(Py, P1)) and P,/(T(Py, P1)) isthetri-
linear polar of T'(Ry, Pp) with respect to triangle ABC'. It is also the (fourth)
common tangent of the two inscribed conics with perspectors i) and P;. (See
Figure 3)
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Proof. For the first part it is enough to verify th& /(T (P, P1)) lies on the said
trilinear polar:

V0 wo 2 wo ug 2 uo Vo 2
Y \o ~ w +”0 wi T ur +w0 ur  w _o.
Ui w, w U, U, Ui
w (e —im) (i -de) w2
Note that the coordinates @f( ), P;) are given by both (1) and (2). Interchanging
the subscript®’s and1’s shows that the trilinear polar @f (R, P;) also contains

the pointPl/(T(Po, Pl))
The inscribed conic with perspectdy is represented by the matrix

1 -1 -1
u?2 UV UOWO
-4 1 ~1
UV v3 vowo
—1 -1 1
ugwoy  VowQ wg
The tangent at the poid® /(T(P,, P;)) has line coordinates
b
2
1 -1 -1 uo(v_o M) 2 (wo _ wo) (uo _ v
w2  uovy  uowo v Wl ) uo \ w1 w1 u | n
*(i 1 —1 wo uQ — 2 (uw _ v Yo _ Wo
'U‘OQiO Ugl 'UO{UO Vo ’LU_l - u_1 - V0 ul v1 V1 w1
— i S = 2 2
2 < [ Yo _ wo Wwo __ o
UQwo  VowWo wg wo (Z_(l) — Z—(l)) wo (Ul w1> <w1 uy
This is the line
x Y z
+ + =0,

w(-m) w(m-w) w(w-w)
which is the trilinear polar of (R, P;). Interchanging the subscripi$s and1’s,
we note that the same line is also the tangent at the @i’ (P, P;))of the
inscribed conics with perspectéi. It is therefore the common tangent of the two
conics. O

Proposition 3. The triangle X'Y’Z’ is self polar with respect to each of the in-
scribed conics with perspectors Ry and P;.

Proof. Since XY;Z; is a cevian triangle an’Y’Z’ is an anticevian triangle
with respect taA BC', we have

(Y'Zo,Y'A Y'Yy, Y'C) = (Y' Zo, YA, Y'Y, Y'X') = —1.

Therefore,Y” lies on the polar ofX” with respect to the inscribed conic with per-
spectorR. Similarly, Z" also lies on the polar ok’. It follows thatY’Z’ is the
polar of X’. For the same reasow; X’ and X'Y”’ are the polars ot” and Z’
respectively. This shows that triang¢Y”’Z’ is self-polar with respect to the in-
scribed conic with perspectdr. The same is true with respect to the inscribed
conic with perspectop,. O

In the case of the incircle (witl) = X7), we have the following interesting
result.
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Corollary 4. For an arbitrary point ), the anticevian triangle X7 x @ has ortho-
center 1.

We present some examplesBfR), P;).

G @) H K Ge N, FE
I | X513 Xes2 Xeso Xeao Xeso Xeso X2245
G X520 X503 X512 Xsiu X2 Xsun
@ Xear  Xear
H Xear Xes0 Xeso X3003
K Xeos X187
Ge Xes0  X3002

Remarks. (1) X300z is the intersection of the Brocard axis and the trilinear polar of
the Gergonne point. It has coordinates

(@*(a®(b*+c*)—a?(b+c) (b—c) > —a(b +c*)+(b+c) (b—c) 2 (B*+cP)) « vt o).
(2) X3003 Is the intersection of the orthic and Brocard axes. It has coordinates
(@@ 0 + ) — 2220 — 22 + M)+ (02 — 2R+ 2)):oreen).

The center of the rectangular hyperbola througis X3, the inferior of X7, on
the the circumcircle.

Here are some examples of cevian products with very simple coordinates. They
do not appear in the current edition of [7].

| By | P, |first barycentric coordinate & (R), P1) |

G | Xo | (a(b—1c)(b+c—a)?
G | Xs6 | (a®(b—c)(a(b+c) +b* + ?)
O [ Xa | (@b—c)(b+c—a)b*+c* —a?)?
O | Xs5 | (@®b—c)(b+c—a)*(b* + * — a?)
O | Xs6| (@®(b—c)(b? + c* —a?)
K | Ny | (a(b—c)(b+c—a)(a(b+c)+b*+?)
K | Xgg | (a®(a®(b* + %) — 2b°c?)
G X a?(b°—c?)
€ 56 bt+c—a
G X a(b—c)
e 57 | btc—a
N, | Xs5 | (a?(0? =) (b +c—a)
Xo1 | Xs5 [ (@®(0—c)(b+c—a)
Xs6 | X7 %

Remark. T(Xgl, X55) = T(Xgl, X56) = T(X55, X56).

3. Inscribed triangles which circumscribe a given anticevian triangle

Proposition 5. Let P be a given point with anticevian triangle X'Y'Z’. If XY Z
is an inscribed triangle of ABC (with X, Y, Z on the sidelines BC, CA, AB
respectively) such that X’, Y’, Z’ lieonthelinesY Z, ZX, XY respectively, i.e.,
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X'Y'Z"is an inscribed triangle of XY Z, then XY 7 is the cevian triangle of a
point on the circumconic with perspector P.

Figure 4.

Proof. Let P = (u : v : w) so that
X'=(—u:v:w), Yi=(u:—v:w), Z'=(u:v:—w).
SinceXY Z is an inscribed triangle ai BC,
X=0:¢:1), Y=(1:0:t2), Z=(t3:1:0),

for real numbers, to, t3. Here we assume thaf, Y, Z do not coincide with the
vertices ofABC'. Since the line"Z, ZX, XY contain the points respectively,
we have

tou + totzv +w =0,

U+ t3v + t3tiw =0,

titou +v +tiw = 0.

From these,
to  tots 1
0=1|1 t3 t3t1| = (t1tatz —1)%
tita 1t

It follows from the Ceva theorem that the lindsX, BY, C'Z are concurrent.
The inscribed triangle&XY Z is the cevian triangle of a poirp : ¢ : r). The three
collinearity conditions all reduce to

uqr + vrp + wpq = 0.

This means thafp : ¢ : r) lies on the circumconic with perspector : v : w). O
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Proposition 6. The locus of the perspector of the anticevian triangle of P and the
cevian triangle of a point ¢ on the circumconic with perspector P isthe trilinear
polar of P.

Proof. Let @ = (u : v : w) be a point on the circumconic. The perspector is the
cevian quotient

T T T
p(2reeD):a(t-2eD)r(222- )
u o v w u v w u o v w
= (p(—pvw + quu + ruv) : q(pvw — quu + ruv) : r(pvw + quu — ruv)) .
Sincepvw + quwu + ruv = 0, this simplifies into(p?vw : ¢*wu : r?uv), which
clearly lies on the Iin% + % + = = 0, the trilinear polar ofP. O

4. Brianchon-Poncelet theorem

For Py = H, the orthocenter, an@, = X7, the Gergonne point, we have
T(Py, P1) = Xgs50. The circumconic througlhy and P; is

alb—c)(b+c—a)yz+blc—a)(c+a—b)zx +cla—b)(a+b—c)zy =0,

the Feuerbach conic, which is the isogonal conjugate of th&liheand has center
at the Feuerbach point

X =(b=cPb+c—a): (c—a)*(c+a—0b): (a—0b*a+b—c)).

Yy’

Figure 5.

The theorem of Emelyanov and Emelyanova therefore can be generalized as
follows: the the cevian circumcircle of a point on the Feuerbach hyperbola con-
tains the Feuerbach point. This in turn is a special case of a celebrated theorem of
Brianchon and Poncelet in 1821.
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Theorem 7 (Brianchon-Poncelet [1])Given a point P, the cevian circumcircle
of an arbitrary point on the rectangular circum-hyperbola through P (and the
orthocenter H) contains the center of the hyperbola which is on the nine-point
circle of the reference triangle.

At the end of their paper Brianchon and Poncelet made a remarkable conjec-
ture about the locus of the centers of conics through four given points. This was
subsequently proved by J. D. Gergonne [6].

Theorem 8 (Brianchon-Poncelet-GergonneThe locus of the centers of conics
through four given points in general positions in a plane is a conic through

(i) the midpoints of the six segments joining them and

(ii) the intersections of the three pairs of lines joining them two by two.

Proposition 9. The cevian circumcircle of a point on a nondegenerate circumconic
contains the center of the conic if and only if the conic is a rectangular hyperbola.

Proof. (a) The sufficiency part follows from Theorem 7.

(b) For the converse, consider a nondegenerate conic thuaughC', P whose
centerWV lies on the cevian circumcircle ad?. The locus of centers of conics
through A, B, C, P is, by Theorem 8, a coni€ through the traces aP on the
sidelines of triangled BC'. The four common points @f and the cevian circumcir-
cle of P are the traces oP andW/. By (a), the cevian circumcircle dP contains
the center of the rectangular circum-hyperbola throdghwhich must coincide
with 1. Therefore the conic in question in rectangular. (|

Since the Feuerbach hyperbola contain the incehteve have the following
result. See Figure 5.

Corollary 10. The cevian circumcircle of the incenter contains the Feuerbach
point.

Applying Brianchon-Poncelet theorem to the Kiepert perspectors, we obtain the
following interesting result.

Corollary 11. Giventriangle ABC, construct on the sides similar isosceles trian-
ges BCX', CAY',and ABZ'. Let AX', BY', CZ' intersect BC, CA, AB at
X, Y, Z respectively. Thecirclethrough X, Y, Z also contains the center X5 of
the Kiepert hyperbola, which is also the midpoint between the two Fermat points.

5. Second tangentsto an inscribed conic from the traces of a point

Consider an inscribed coni@ with Brianchon pointFy = (ug : vg : wg), SO
that its equation is

2 2 2
T z 2yz 2zx 2z
uQ Vo wo VoWo WoU upv

Let P, = (u; : v : wy) be a given point with cevian triangl&;Y;Z;. The
sidelines of triangleABC' are tangents fronXi, Y7, Z; to the conicCy. From
each of these points there is a second tangent to the conic. J.-P. Ehrmann [5] has
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computed the second points of tanged&y Y, 75, and concluded that the triangle
XoY5 75 is perspective wittA BC' at the point

ui  vf i
uO'Uo'wo '

Figure 6.

More precisely, the coordinates &%, Y5, Z, are as follows.
2 2 2
U1 w1 vy w1
X2:<uo<———> :—:—>,
Vo wo Vo wWo
2 2 2
ui w1 U1 w1
x@:(_:v(](___) _)
Uo wWo Vo wo
2 2 2
u v u v
Zy = (—1: -1 w0<—1——1> >
Uo Vo Uo Vo

Proposition 12. The lines Yy Zy, Y1741, Y225 are concurrent; similarly for the
trlpI% Z0Xo, Z1X1, Z9 X and XYy, X Y1, XoYs.

Proof. The lineY,Z;5 has equation

T Ul U1 w1 y Ul V1 w1 z (3} (%] w1
u | —(——+—F+— )+ —F— |+~ ———
Ug Uo Vo wo Vo \ U0 Vo Wo Wo \ Uo Vo Wo

201w

VoW
With

o vp o wp\ wy Uy
(z:y:z2)=-uy|——— v |———): w
vp  Wo wo U

we have, apart from a factas,



On a product of two points induced by their cevian triangles 179

!
NN z

Al

w1 (75} V1 Ul U1 w1 27)1’[1)1 V1 w1
Wo \ U Vo 0 Vo Wo VoWo Vo Wo

. 27)1’[1)1 V1 w1 + 22)121}1 V1 w1
- VoW Vo wo VoWo Vo wo
This shows that the lin&; Z, contains the poink’ = Y57, N Y, Z;. O

We conclude with some examples of the triangle centers from the inscribed con-
ics with given perspectorg, and P;. In the table below,

2 2 2 2 02 2
U, (% w u v w
0.% .% I
Q071—< P ) and Q170_< P )
uop

up v w Vo Wo

| R | P | TP, P) | Po/(T(Py, P1)) | P /(T(Py, Pr))| Qoa | Quo |
G| H X523 X125 X115 Xeo | X393
G| K X512 Q1 X084 X6 | X320
G | Ge X514 X1 X1086 Xg | Xorg
G | N, X522 X11 X1146 X7 | X346
H| K Xear Q2 Q3 Xops2 | Xig4
H | G, Xe50 X3022 Q4 Xigs7 | Qs
H | N, X650 Qs Q4 X118 | X1265
K | G, Xe65 Q7 Qs Xoi75 | Qo
Ge | N, X650 Qs X3022 Xyrg | Qo

The new triangle centexg; have simple coordinates given below.
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O |22 — &)

QQ az(bz CZ)Z(bz +C 2)2

QS a4(bz CZ)Z(bz +C 2)5

Q4 | a?>(b—c)?(b+c—a)? (b2 +c 2)

@5 Zzbig:a

Qs | a*(b—c)?’(b+c—a)

Q7 |a*(b—c)?>(b+c—a)(a(d+c) — (b + 2))?
Qs [ a®(b—c)*(a(b+c) — (> + %))

Q9 a2(b+c a)?

Qo | (b+c—a)’
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Steinhaus Problem on Partition of a Triangle

Apoloniusz Tyszka

Abstract. H. Steinhaus has asked whether inside each acute triangle there is a
point from which perpendiculars to the sides divide the triangle into three parts
of equal areas. We present two solutions of Steinhaus’ problem.

Then-dimensional case of Theorem 1 below was proved in [6], see also [2] and
[4, Theorem 2.1, p. 152]. For an earlier mass-partition version of Theorem 1, for
bounded convex massesli®i andr; = ro = ... = 11, See [7].

Theorem 1 (Kuratowski-Steinhaus)Let T C R? be a bounded measurable set,
and let |T| be the measure of T. Let oy, as, a3 be the angles determined by three
rays emanating froma point, and let oy < m, as < 7, ag < w. Let rq, 1o, r3 be
nonnegative numbers such that r; + ro + r3 = |T|. Then there exists a translation
A R? — R? suchthat [A(T) Ny | = 71, [M(T) Naz| = ro, INT) Nag| = 3.

H. Steinhaus asked ([10], [11]) whethigrside each acute triangle there is a
point from which perpendiculars to the sides divide the triangle into three parts
with equal areas. Long and elementary solutions of Steinhaus’ problem appeared
in [8, pp. 101-104], [9, pp. 103-105], [12, pp. 133—-138] and [13]. For some acute
triangles with rational coordinates of vertices, the point solving Steinhaus’ problem
is not constructible with ruler and compass alone, see [15]. Following article [14],
we will present two solutions of Steinhaus’ problem.

C

Figure 1

ForX € AABC, we denote byP(A, X), P(B,X), P(C, X) the areas of the
guadrangles containing vertices B, C' respectively (see Figure 1). The areas

Publication Date: November 19, 2007. Communicating Editor: Paul Yiu.
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P(A, X), P(B,X), P(C,X) are continuous functions of in the triangleABC.
The function

is also continuous. By Weierstrass’ theorgmattains a maximum in trianglé BC,
i.e., there existsXy € AABC such thatf(X) < f(X) forall X € AABC.

Lemma 2. For a point X lying on a side of an acute triangle, the area at the
opposite vertex is greater than one of the remaining two areas.

C

X'/

A X B

Figure 2

Proof. Without loss of generality, we may assume tatc AB and |[AX| <
|BX|, see Figure 2. Straight lin& X’ parallel to straight liné€3C' cuts the triangle
AX X' greater tharP(A, X) (as the angledC B is acute), but not greater than the
triangleC X X’ becaus¢AX'| < @ < |X'C|. HenceP (A, X) < |AAXX'| <
IACXX'| < P(C, X). O

Theorem 3. If atriangle ABC' is acute and f attains a maximum at Xj, then

P(A,Xo) = P(B,Xo) = P(C, o) = 1242

Proof. f(A) = f(B) = f(C) = 0, and0 is not a maximum off. ThereforeX,

is not a vertex of the trianglel BC'. Let us assume that(X,) = P(A, Xo). By
Lemma 2,X, ¢ BC. Suppose, on the contrary, that some of the other areas, let’s
sayP(C, Xy), is greater thatP (A, Xp).

Case 1: Xy ¢ AC. When shifting X, from the segmentdB by appropri-
ately smalle and perpendicularly to the segmefB (see Figure 3), we receive
P(C, X) further greater tharf(X,) and at the same timB(A, X) > P(A, Xj)
andP(B, X) > P(B, Xy). Hencef(X) > f(Xo), a contradiction.

Case 2:Xy € AC \ {A,C}. By Lemma 2,

P(B, Xy) > min{P(A, Xy), P(C, Xo)}
> min{P(A4, Xy), P(B, Xo), P(C, Xo)}
= f(Xo).

When shiftingX, from the segmentiC by appropriately smal and perpendic-
ularly to the segmentiC' (see Figure 4), we receivB(B, X) further greater than
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c
Xo X7
&
I
I
I
B
A B
Figure 3 Figure 4

f(Xo) and at the same tim&(A, X) > P(A,Xy) and P(C,X) > P(C, Xp).
Hencef(X) > f(Xy), a contradiction. O

For each acute trianglé BC there is a uniqu&; € AABC such thatP(A, Xj)
= P(B,Xp) = P(C, Xy) = %. Indeed, ifX # X, thenX lies in some of
the quadrangles determined By. Let us say thafX lies in the quadrangle with
vertex A (see Figure 5). TheR(A, X) < P(A, Xp) = ‘AAi?)BC'.

O D

Figure 5.

The setsRy = {X € AABC : P(A,X) = f(X)}, Rp = {X € AABC':
P(B,X)=f(X)}andRc ={X € AABC : P(C,X) = f(X)} are closed and
cover the triangleABC'. Assume that the triangld BC' is acute. By Lemma 2,
RyNBC =0, RgenNAC = 0, andRc N AB = (. The theorem proved in [5]
guarantees that4 N RpN R # (), see also [4, item D4, p. 101] and [1, item 2.23,
p. 162]. Any point belonging t&?4 N R N R¢ lies inside the triangle BC' and
determines the partition of the triangle3C into three parts with equal areas.
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The above proof remains valid for all right triangles, because the hypothesis of
Lemma 2 holds for all right triangles. For each triangle the following statements
are true.

(1) There is a unique point in the plane which determines the partition of the
triangle into three equal areas.

(2) The point of partition into three equal areas lies inside the triangle if and
only if the hypothesis of Lemma 2 holds for the triangle.

(3) The point of partition into three equal areas lies inside the triangle if and
only if the maximum off on the boundary of the triangle is smaller than
the maximum off on the whole triangle. For each acute or right triangle
ABC, the maximum off on the boundary does not excé@éf—q.

(4) The point of partition into three equal areas lies inside the triangle, if the

triangle has two angles in the interviahrctan —= 1]. This condition

: : V2’2
holds for each acute or right triangle.
(5) If the point of partition into three equal areas lies inside the triangle, then
it is a partition into quadrangles.

Assume nowC' > 7. The point of partition into three equal areas lies inside the
triangle if and only if

\/(1 + tan? A) tan B + \/(1 +tan? B) tan A > \/3(tan A + tan B).

If, on the other hand,

\/(1 + tan? A) tan B + \/(1 + tan? B) tan A = \/3(tan A + tan B),

then the uniqueX, € AB such that

1+ tan? A)tan B 1 + tan? B)tan A
Axg| = /! M B g 1Bl =y [ Jn 4y
3(tan A + tan B) 3(tan A 4 tan B)

determines the patrtition of the triangeBC into three equal areas. It is a parti-
tion into a triangle with vertexd, and a triangle with verte®, and a quadrangle.
Finally, when

\/(1 + tan? A) tan B + \/(1 +tan? B)tan A < \/3(tan A + tan B), (%)

there is a straight line perpendicular to the segmediC which cuts from the
triangle ABC' a figure with the areétAAS—BC| (see Figure 6). There is a straight
line b perpendicular to the segmeBC which cuts from the trianglel BC a figure
with the are |AASBC‘. By (x), the intersection point of the straight linesandb
lies outside the trianglel BC. This point determines the partition of the triangle
ABC into three equal areas.

J.-P. Ehrmann [3] has subsequently found a constructive solution of a general-
ization of Steinhaus’ problem of partitioning a given triangle into three quadrangles
with prescribed proportions.
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Figure 6.
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Constructive Solution of a Gener alization of
Steinhaus’ Problem on Partition of a Triangle

Jean-Pierre Ehrmann

Abstract. We present a constructive solution to a generalization of Hugo Stein-
haus’ problem of partitioning a given triangle, by dropping perpendiculars from
an interior point, into three quadrilaterals whose areas are in prescribed propor-
tions.

1. Generalized Steinhaus problem

Given an acute angled triangléBC, Steinhaus’ problem asks a poift in
its interior with pedalst,, P,, P. on BC, C A, AB such that the quadrilaterals
AP,PP,, BP.P,, andCP,PP, have equal areas. See [3] and the bibliographic
information therein. A. Tyszka [2] has also shown that Steinhaus’ problem is in
general not soluble by ruler-and-compass. We present a simple constructive solu-
tion (using conics) of a generalization of Steinhaus’ problem. In this note, the area
of a polygonZ will be denoted byA(<?). In particular,A = A(ABC). Thus,
given three positive real numbeusv, w, we look for the point(s)P such that
(1) PisinsideABC andPF,, P, P. lie respectively in the segmeni_, CA, AB,
(2) A(AP,PP.) : A(BP.PF,) : A(CP,PF) =u:v:w.

We do not require the triangle to be acute-angled.

Lemma 1. Consider a point P inside the angular sector bounded by the half-
lines AB and AC, with projections B, and P. on AC' and AB respectively. For
a positive real number k, A(AR,PP,) = k- A(ABC) if and only if P lies on
the rectangular hyperbola with center A, focal axis the internal bisector Al, and
semi-major axis v/kbe.

Proof. We takeA for pole and the bisectot ! for polar axis; let p, 6) be the polar
coordinates ofP. As AP, = pcos (4 — ) and PP, = psin (4 — 6), we have
A(APP,) = 1p?sin(A — 26). Similarly, A(AP.P) = 1p?sin(4 + 26). Hence
the quadrilaterad B, PP, has are%p2 sin A cos 26. Therefore,

2k - A(ABC)

= kbc.
sin A ¢

A(AP,PP.) = k- A(ABC) <= p*cos 20 =
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Theorem 2. Let U be the point with barycentric coordinates (v : v : w) and M,

My, M3 betheantipodes on the circumcircle I' of ABC of the points whose Smson
lines pass through U and P the incenter of thetriangle M My Ms. If P verifies (1),

then P isthe unique solution of our problem. Otherwise, the generalized Steinhaus
problem has no solution.

Remarks. (a) Of course, ifABC is acute angled, anB inside ABC, then (1) will
be verified.

(b) As U lies inside the Steiner deltoid, there exist three real Simson lines
throughU; so My, Ms, M3 are real and distinct.

(c) Leth 4 be the rectangular hyperbola with centerfocal axisAI, and semi-
major axis, /L - be, and define rectangular hyperbolas andh ¢ analo-

u—+v+w
gously.

If P verifies (1), it will verify (2) if and only if P € hy N hg. In this case,

P € h¢, and the solutions of our problem are the common pointsiofz, hc
verifying (1).

(d) The four common point#$;, P, P3, P, (real or imaginary) of the rectan-
gular hyperbolaér4, hp, he form an orthocentric system. Ass, hp, ho are
centered respectively &, B, C', any conic through, P, Ps, P, is a rectangular
hyperbola with center of. As the vertices of the diagonal triangle of this ortho-
centric system are the centers of the degenerate conics thigudh, Ps, Py ,
they lie onT".

(e) We will see later thal, P», P, P, are always real.

2. Proof of Theorem 2

If P has homogeneous barycentric coordingtes vy : z) with reference to
triangle ABC, then

b2+ c? —a?
(x+y+2)2A(APPR,) =y (z + Ty) A,

2 2 2
(x+y+2)°A(AP.P) = 2 <y + uz) A,

2c2
whereA = A(ABC'). Hence the barycentric equation /of is
V42 —a? (y? 2 U 9
h = ([ S+ 5 )2y ——— = 0.
A(xayvz) 92 (b2+02>+ Yz u_’_v_’_w(x—i_y—i_z)

We gethp andh¢ by cyclically permutinga, b, ¢; u, v, w; x, y, 2.

If M = (x:y: z)Iis avertex of the diagonal triangle & P, P; Py, it has the
same polar line (the opposite side) with respect to the three cénidss, he.
Hence,

Ohp Ohe  OhpOhc  Ohc Oha  Ohc Oha  Ohadhp  Ohadhp

dy 0z dz Oy 0z Ox or 0z  Ox Oy oy Or

Let NV be the reflection of\f in the circumcente©; N, N, N, the pedal triangle
of N. Clearly, N,, N, N, are the reflections of the vertices of the pedal triangle
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of M in the midpoints of the corresponding sides4aBC'. Now, N, and N, have
coordinates

(b + 2 —a®)y+20%2: 0: (a® + 0% — )y + 2b%x
and

(VP +c2—a®)z+22y: (P +a>—bv)z+2P%: 0
respectively. A straightforward computation shows that

Ohp Oh¢  Ohp Ohc\ 0

Oy 0z oz oy )
Similarly, det[N., N,, U] = det[N,, N, U] = 0. It follows that N lies on
the circumcircle (we knew that already by Remark (d)), and the Simson liné of
passes througly.

Hence,M; M, Ms is the diagonal triangle of the orthocentric syst&n, Ps Py,
which means thaP, P, P; P, are real and are the incenter and the three excenters
of M1M2M3.

As the three excenters of a triangle lie outside his circumcircle, the incenter of

My My Ms is the only common point of 4, hp, he insideT’. This completes the
proof of Theorem 2.

det[Ny, N., U] = b*¢ (u+ v + w) (

3. Constructions

In [1], the author has given a construction of the points on the circumcircle
whose Simson line pass through a given point. UetandU™ be the comple-
ment and the anticomplement b&f, i.e,, the images o/ under the homotheties
h (G, —3) andh(G, —2) respectively. Since

(Reflection inO) o (Translation b)H—U') = Reflection inU ™,

if hg is the reflection iU~ of the rectangular circumhyperbola throughand
the antipode of/* on hg, thenMy, M, Ms, M, are the four common points of
ho and the circumcircle.

In the case. = v = w = 1, Iy is the reflection in the centroi@ of the Kiepert
hyperbola ofABC. It intersects the circumcirclE at M, M, M3 and the Steiner
point of ABC'. See Figure 1.
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Figure 1.
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The Soddy Circles

Nikolaos Dergiades

Abstract. Given three circles externally tangent to each other, we investigate
the construction of the two so called Soddy circles, that are tangent to the given
three circles. From this construction we get easily the formulas of the radii and
the barycentric coordinates of Soddy centers relative to the triah@€' that

has vertices the centers of the three given circles.

1. Construction of Soddy circles

In the general Apollonius problem it is known that, given three arbitrary circles
with noncollinear centers, there are at m®strcles tangent to each of them. In the
special case when three given circles are tangent externally to each other, there are
only two such circles. These are called the inner and outer Soddy circles respec-
tively of the given circles. Let the mutually externally tangent circleghel, 1),
¢y(B,r2), ¢.(C,13), and Ay, By, C; be their tangency points (see Figure 1).

Figure 1.

Consider the inversiom with pole A; that mapsé, to %,. This also maps the
circles%;, €. to the two lines perpendicular t8C' and tangent t&, at the points
P, P; where P, P; is parallel fromA to BC. The only circles tangent t&, and
to the above lines are the circléS(T;), K'(1]) whereT}, T} are lying on%, and
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the A-altitude of ABC'. These circles are the images, in the above inversion, of the
Soddy circles we are trying to construct. Since the cif€[d;) must be the inverse

of the inner SOddy circle, the line4; Ty, A1T5, AqTs3, (PQTQ = P3Ty = P2P3)
meets,, ¢, %, at the pointsly,, T, T, respectively, that are the tangency points of
the inner Soddy circle. Hence the linB9; andCT. give the center S of the inner
SOddy circle. Slmllarly the |in8311T1/, A1T2/, AlTé, (P2T2/ = PgTé = P2P3),
meet%,, ¢, €. at the pointsl),, T}, T/ respectively, that are the tangency points
of the outer Soddy circle. Triangl&37 1., 1,1, are the inner and outer Soddy
triangles. A construction by the so called Soddy hyperbolas can be found in [5,
§12.4.2].

2. Theradii of Soddy circles
If the sidelengths o BC area, b, ¢, ands = 3(a + b + ¢), then
a=r9+ T3, b:’l”g-l-Tl, c=7r1+7T9,;
r =S —a, r9 =8 —b, r3 =8 —C.

If A isthe area oABC, thenA = \/r1r2r3(r1 + r9 + 13). The A-altitude of
ABC'is AD = h, = 22, and the inradius is =

ri+reo+rs”

Figure 2.

The pointsA;, By, C; are the points of tangency of the incirdér) of ABC
with the sidelines. If4; P is perpendicular td% P; andl B meetsA;C; atQ, then
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the inversionr mapsC; to P, and the quadrilateralQ P is cyclic (see Figure

2). The power of the inversion is
4
d2 = A101 . Alpg = 2A1Q . A1P2 = 2A1[ . A1P = 27“ha = T1T2T3. (1)
ro + T3

2.1 Inner Soddy circle. Since the inner Soddy circle is the inverse of the circle
K(ry), its radius is given by

d2
T ALK =3
In triangle A;AK, Ay K? — Ay A%2 = 2AK - T\ D = 4r{(r1 + h,). Hence,
A K% — 12 = A A2 — 92 1 4y (ry 4 he) = d? + 471 (r1 + he),
and from (1), (2),

T

T 2)

r1irers
T = . (3)
rorg 4+ r3ry + rirg + 2A
Here is an alternative expression for If r,, r, 7. are the exradii of triangle

ABC, andR its circumradius, it is well known that
re +1p+7r.=4R + 1.
See, for example, [42.4.1]. Now also that,r, = rory, = r3r. = A. Therefore,

- 17273
rary +rary + rirg 4 240
B A
S+L4242.
B A
CTa 7y e+ 2(r1 +ro 4 73)
A
AR+ 7 +2s ()
As a special case, iff — oo, then the circleg;, tends to a common tangent of
%, €., and

T

A2
riTra2r3

L1 1 5)
VT \fra T3

In this case the outer Soddy circle degenerates into the common tanggratnaf

G-

2.2 Outer Soddy circle. If %, is the smallest of the three circl&s, €3, 6. and is
greater than the circle of (5).e., \/% < V% + V% then the outer Soddy circle

is internally tangent t&,, %, ¢.. Otherwise, the outer Soddy circle is externally
tangent toé,, ¢, €..
Since the outer Soddy circle is the inverse of the cifcle ), its radius is given
by
/ &

r = ——7:
AlKQ—’F%

1. (6)
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This is a signed radius and is negative whgnis inside the circleg’(r1) or when
the outer Soddy circle is tangent internally 4, %, ¢.. In triangle A;AK’,
A1A%? — A K? = 2AK' - T|D = 4r1(h, — r1), and from (6),

/ r1rars

= . 7
v rire + rors + ryr; — 20 (7)

Analogous to (4) we also have
AN
/
=—. 8
YT AR+ —2s ®
Hence this radius is negative, equivalently, the outer Soddy circle is tangent inter-
nally to ¢, ¢, 6., whendR + r < 2s. From (4) and (8), we have
1 1 2s 4

A AAN

If 4R +r = 2s, thenz = 7.

3. Thebarycentric coordinates of Soddy centers

3.1 Thelnner Soddy center. If d; is the distance of the inner Soddy circle center
S from BC, then since4; is the center of similitute of the inner Soddy circle and
the circle (1) we have 25 = £, or

dl:wzm 14_& — 9 1+L
1 2ry a(s—a) /)’

Similarly we obtain the distances, ds from S to the sides”’ A and AB respec-
tively. Hence the homogeneous barycentric coordinatésare

A A A)

(adlzbdgzcdg):(a-i- b+ e+
s—a s—b s—c
The inner Soddy cente¥ appears in [3] as the triangle centEr¢, also called
the equal detour point. It is obvious that for the Inner Soddy cefténe “detour”

of triangle SBC' is
SB+ SC — BC = (z 4 73) + (z +13) — (ra +13) = 2.

Similarly the trianglesSC' A and SAB also have detour8z. Hence the three
incircles of trianglesSBC, SC A, SAB are tangent to each other and their three
tangency pointds, Bs, Cs are the pointd},, Ty, T, on the inner Soddy circle [1]
sinceSAs = SBy = SCy = x. See Figure 3.

Working with absolute barycentric coordinates, we have

(a+ﬁ)A+<b+$)B+<c+$)c
a+ 2 b+ S et 2

(a—i—b—i—c)I—I—A(s a+ﬁ+ﬁ>Ge
— , )

S =

-

s[>
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Figure 3.

whereG, = (ﬁ Pt é) is the Gergonne point. Hence, the inner Soddy

centersS lies on the line connecting the incenteandG,. This explains whey G,
is called the Soddy line. Indeed,divides I G, in the ratio

IS :SGe=rqo+rp+rc:a+b+c=4R+1r:2s.

3.2 The outer Soddy center. If ] is the distance of the outer Soddy circle center
S’ from BC, then sinced; is the center of similitute of the outer Soddy circle and
the circleK’(r), a similar calculation referring to Figure 1 shows that

d) = —2x (1— a(f_a)).

Similarly, we have the distances andd; from S’ to C'A and AB respectively.
The homogeneous barycentric coordinates’ afre

A A A
(adﬁ:bdé:cdé)z(a— tb— - )

e
s—a s—b s—c¢

This is the triangle centeX; 75 of [3], called the isoperimetric point. It is obvi-
ous that if the outer Soddy circle is tangent internallygtp%;,, 6. or4R+r < 2s,
then the perimeter of triangl€ BC'is

S'B+S'C+ BC = (2' —r9) + (2’ —r3) + (ro +1r3) = 22'.

Similarly the perimeters of triangleS'C A and S’AB are also2x’. Therefore
the S’-excircles of triangless’ BC', S’C A, S’ AB are tangent to each other at the
tangency pointd}, T;, T.. of the outer Soddy circle witl,, €, ¢..

If the outer Soddy circle is tangent externallydh %), %., equivalently4R +
r > 2s, then the triangle$’ BC, S’C A, S’ AB have equal detourd’ because for
triangle S'BC,

S'B+5'C —BC = (2'+7r9)+ (2’ +r3) — (ro +1r3) = 22,



196 N. Dergiades

and similarly for the other two triangles. In this casgjs second equal detour
point. Analogous to (9), we have

S§—C

o (a—l—b—l—c)[—A(ﬁ—i—ﬁ—i—%)Ge

(10)

>

x/

A comparison of (9) and (10) shows théitand S' are harmonic conjugates with
respect ta Ge.

4. Thebarycentric equations of Soddy circles
We find the barycentric equation of the inner Soddy circle in the form
a’yz + b2z + Pay — (x4 y + 2)(prz + poy + p3z) =0,

wherepy, p2, ps are the powers oA, B, C with respect to the circle. See [5,
Proposition 7.2.3]. It is easy to see that

p1 =ri(r1 +2z) = (s — a)(s — a + 2x),
p2 =r2(r2 + 2x) = (s — b)(s — b+ 2x),
p3 =r3(rs +2x) = (s — ¢)(s — ¢+ 2x).
Similarly, the barycentric equation of the outer Soddy circle is
a’yz +0za + ey — (@ +y + 2) (@ + gy + g32) = 0,
where
¢ =(s —a)(s —a+ 20"),
q2 =(s — b)(s — b+ 21",
q3 =(s —c)(s — c+227),

wherez’ is thesigned radius of the circle given by (8), treated as negative when
2s > 4R + 1.

5. The Soddy triangles and the Eppstein points

The incenter of ABC is the radical center of the circlég, €, €.. The inver-
sion with respect to the incircle leaves eachéf¢;, 4. invariant and swaps the
inner and outer Soddy circles. In particular, it interchanges the points of tangency
T, andT}; similarly, T, andT}, T, and.. The Soddy triangle$,T,T. andT,T;T;
are clearly perspective at the incenferThey are also perspective withBC', at
S and S’ respectively. SincelT, : 7,5 = ri : z, we haveT, = 4012, |n
homogeneous barycentric coordinates,

Ta—(a—l—%: b—i—é: c—l—é>.

™ T2 3
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Since the intouch poin#; has coordinate€0 : % : %) the lineT, A; clearly
contains the point
2/ 2/ 2/
FE= <a+—: b+ —: c+—).
1 T2 r3

Similarly, the linesI, B, and7.C; also contain the same poift, which is there-
fore the perspector of the triangl@s1,T,. and the intouch triangle. This is the
Eppstein pontX,g; in [3]. See also [2]. It is clear thak' also lies on the Soddy
line. See Figure 4.

Figure 4.

The triangleT, T, T/ is also perspective with the intouch triangle, at a point
2\ 2\ 2\
E = (a——: b— —: c——>,

on the Soddy line, dividing with®' the segmeni GG, harmonically. This is the
second Eppstein pointg, of [3].
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Cyclic Quadrilateralswith Prescribed Varignon
Parallelogram

Michel Bataille

Abstract. We prove that the vertices of a given parallelogrgnare the mid-
points of the sides of infinitely margyclic quadrilaterals and show how to con-
struct such quadrilaterals. Then we discuss some of thejrgpties and identify
related loci. Lastly, the cases whénis a rectangle or a rhombus are examined.

1. Introduction

The following well-known theorem of elementary geometrrilauted to the
French mathematician Pierre Varignon (1654-1722), wasighdd in 1731: ifA,
B, C, D are four points in the plane, the respective midpoifis), R, S of AB,
BC, CD, DA are the vertices of a parallelogram. We will say tR& RS is the
Varignon parallelogram oA BC D, in shortPQRS = V(ABCD). In a converse
way, given a parallelograr®, there exist infinitely many quadrilateral6BC' D
such thatP = V(ABCD). In §2, we offer a quick review of this general result, in-
troducing the diagonal midpoints efBC D which are of constant use afterwards.
The primary result of this paper, namely that infinitely mafthese quadrilaterals
ABCD are cyclic, is proved i33 and the proof leads naturally to a construction
of such quadrilaterals. Further results, including a senpbnstruction, are estab-
lished ing4, all centering on a rectangular hyperbola determine® bizinally, §5
is devoted to particular results that holdHfis either a rectangle or a rnombus.

In what follows,P = PQRS denotes a parallelogram whose vertices are not
collinear. The whole work takes place in the planéof

2. Quadrilaterals ABC D with P = V(ABCD)

The construction of a quadrilaterdlBC D satisfyingP? = V(ABCD) is usu-
ally presented as follows: start with an arbitrary podnand construct successively
the symmetricB of A aboutP, the symmetric” of B about() and the symmetric
D of C aboutR (see Figure 1). Becaugeis a parallelogramA is automatically
the symmetric ofD aboutS andABC D is a solution (see [1, 2]).

Let M, M’ be the midpoints of the diagonals dfBC D (in brief, the diagonal
midpoints of ABC' D) and letO be the center oP. SincedO = 2P +2R = A +
B+C+D = 2M +2M’, the midpoint ofd/ M’ is O. This simple property allows
another construction ol BC' D from P that will be preferred in the next sections:
start with two points\/, M’ symmetric abou©; then obtain4, C such thatAM —
— — —_— — _— .

PQ = MC andB, D such thatBM’ = QR = M'D. Exchanging the roles af/,
M’ provides another solutiod’ B'C' D’ with the same sefM, M’} of diagonal

Publication Date: December 3, 2007. Communicating EdRawl Yiu.



200 M. Bataille

Figure 1

midpoints (see Figure 2). ClearlyBC D and A’B’C’' D’ are symmetrical about
0.

Figure 2

3. Cyclicquadrilaterals ABC'D with P = V(ABCD)

The previous section has brought out the role of diagonapaoiids when look-
ing for quadrilateralsABC'D such thatP = V(ABCD). We characterize the
diagonal midpoints otyclic solutions and show how to construct them frGm
obtaining the following theorem.

Theorem 1. GivenP, there exist infinitely many cyclic quadrilateraBC D
such thatP = V(ABCD). Such quadrilaterals can be constructed frgmby
ruler and compass.
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Proof. Consider a Cartesian system with origin(atand z-axis parallel toPQ
(see Figure 3). The affix of a poitt is denoted by:. For exampleg — p is a real
number.

Figure 3

Let ABCD be such thatP = V(ABCD). ThenA # C, B # D and the
quadrilateralABC D is cyclic if and only if the cross-ratip = =% - <=t s a real
number. Withb = 2p —a, ¢ = 2¢ — 2p + a, d = —2q — a and allowing for

q — p € R, the calculation op yields the condition:

(g—p+a)’=p"+Ap+q)
for some real numbex. Thus,ABC D is cyclic if and only if the affixesm, m’ =
— m of its diagonal midpointd/, M’ are the square roots of a complex number of
the formp? 4+ \(p + ¢), whereX € R. Clearly, distinct values.;, X, for A lead to
corresponding disjoint sets\f1, M }, { M», M} of diagonal midpoints, hence to
distinct solutions for cyclic quadrilaterals. It followlsat our problem has infinitely
many solutions.

ConsiderP;, with affix p? and choose a poidt” on the line throughP, parallel to
QR. The affixk of K is of the formp? + A(p +¢) with X\ € R. The construction of
the corresponding paik/, M’ is straightforward and achieved in Figure 4 where
for the sake of simplification we tak®@ P as the unit of length:M, M’ are on
the angle bisector of zOK andOM = OM’ = +OK (we skip the classical
construction of the square root of a given length). a

Exchanging the roles g/ and)’ (as in§2) evidently gives a solution inscribed
in the symmetric of the circléeABC D) aboutO. In §4, we will indicate a different
construction of suitable diagonal midpoints, /.

4. Therectangular hyperbola H(P)

With the aim of obtaining the diagonal midpointg, A/’ more directly, it seems
interesting to identify their locus as the real numbaeraries. This brings to light
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Figure 4

an unexpected hyperbola which will also provide more resaltiout our quadrilat-
erals.

Theorem 2. Consider the cyclic quadrilaterald BC' D such thatP = V(ABCD).

If P is not a rhombus, the locus of their diagonal midpoints is tbetangu-
lar hyperbola(P) with the same centeP as P, passing through the vertices
P,Q,R,Sof P. If Pisarhombus, the locus is the pair of diagonalsFof

Proof. We use the same system of axes as in the preceding sectioroatile
to suppose thabDP = 1. We denote by the directed angIeC(S_>R, 5_15) that is,
0 = arg(p + ¢q). Note thatsinf # 0. Letm = = + iy with z,y € R. From
m? = p? + \(p + q), we obtain(z + iy)? = €2 + \ue’ wheret = arg(p) and
= |p + ¢q| and we readily deduce:

x? — y? = cos 2t + A\ cos b, 2xy = sin 2t 4+ Ap sin 6.

The elimination of\ shows that the locus df/ (and of M’ as well) is the curve
C with equation

2% —y? — 2(cot O)zy + v =0, 1)
wherev = cot 0 sin 2t — cos 2t = % Thus, whenv # 0, C is a rectangular
hyperbola centered & with asymptotes
(0) y = wtan(6/2),
and
(&) y = —xcot(6/2),

andC degenerates into these two lines/if= 0 (we shall soon see that the lat-
ter occurs if and only ifP is a rhombus). Note thd?) and (¢) are the axes of
symmetry of the medians @P. An easy calculation shows that the coordinates
xp = cost, yp = sint of P satisfy (1), meaning that? € C. As for Q, the
coordinates areg = pcosf — cost, yg = psinf — sint, but observing that



Cyclic quadrilaterals with prescribed Varignon paralggkim 203

yo = yp, We findzg = 2sintcot @ — cost, ygo = sint. Again,zq,yq Satisfy
(1) andQ is a point ofC as well. Thus, the parallelograf is inscribed inC. It
follows thaty = 0 if and only if (¢) and(¢') are the diagonals d®. Since(¢) and
(¢") are perpendicular, the situation occur®ifs a rhombus and only in that case.
Otherwise( is the rectangular hyperbotd(P), as defined in the statement of the
theorem (see Figure 5). O

Figure 5

Figure 5 shows the centér of the circle through4, B, C, D as a point of
‘H(P). This is no coincidence! Being the circumcenterXfiBC, U is also the
orthocenter of its median triangle/ PQ. Since the latter is inscribed iH(P), a
well-known property of the rectangular hyperbola ensunasits orthocenter is on
H(P) as well. Conversely, any poiiif of H(P) can be obtained in this way by
taking for M the orthocenter oAU PQ. We have proved:

Theorem 3. If P is not a rhombus?(P) is the locus of the circumcenter of a
cyclic quadrilateral ABC D such thatP = V(ABCD,).

Of course, ifP is a rhombus, the locus is the pair of diagonal$of
As another consequence of Theorem 2, we give a construdctiampair M, M’
of diagonal midpoints simpler than the one§B: through a vertex oP, say(Q,
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draw a line intersecting¢) and(¢') atW andW’. As is well-known, the symmetric
M of @ about the midpoint of¥ W’ is onH(P). This pointM and its symmetric
M’ aboutO provide a suitable pair. In addition, the orthocente\df/ PQ is the
centerU of the circumcircle ofABC D (see Figure 6).

Figure 6

We shall end this section with a remark about the circumcdntef the quadri-
lateral A’ B’C’ D" which shares the diagonal midpoints, M’ of ABC D (as seen
in §2). Clearly, UMU’'M’ is a parallelogram with cent&, inscribed inH(P)
(Figure 6). Sincd/ M andU M’ are respectively perpendicular f&Q and PS,
the directed angles of lines(UM,UM’) andZ(PQ, PS) are equal (modula).
Thus,UMU’ M’ andP are equiangular.

5. Special cases

First, suppose thaP is a rectangle and consider a cyclic quadrilatet®C D
suchthatP = V(ABC D). From the final remark of the previous secti6h}/U’ M’
is a rectangle and sindé M is perpendicular ta?Q, the sides o/ MU’ M’ are
parallel to those oP. Recalling thaf\/ is on AC and M’ on BD, we conclude that
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U’ is the point of intersection of the (perpendicular) diadsra ABC D. Now,
suppose thatlC intersectsPS at A1, QR atCy and thatB D intersectsPQ at By,
RS at D (see Figure 7). Obviouslyl,, By, C; andD; are the midpoints o/’ A,
U'B,U'C andU’D, so thatA,, By, Cy, Dy are on the circle image ¢fABC D)

under the homothety with cent&¥ and ratio%. SinceUTO> = %ﬁ, the center of
this circle(A; B1C1 D, ) is just the cente© of P.

Figure 7

Conversely, draw any circle with centérintersecting the line§' P at 4;, A,
PQ at By, B, QR atC;, C{ and RS at D;, D], the notations being chosen
so thatA,Cy, A}C] are parallel toPQ and By D;, B] D are parallel taQR. If
U’ = A1C1 N B1Dq, then the imaged BC' D of A, B;C1D; under the homothety
with centerU’ and ratio2 is cyclic and satisfie® = V(ABCD). For instance,
becausd/' A, PB; is a rectangle P is the image of the midpoint ofl; B; and
as such, is the midpoint ol B. The companion solutiod’ B'C'D’ is similarly
obtained fromA} B C{ Dj.

Thus, in the case wheR is a rectangle, a very quick construction provides
suitable quadrilaterald BC'D. As a corollary of the analysis above, we have the
following property that can also be proved directly:

Theorem 4. If A, B, C, D are on a circle with centet/ and AC' is perpendicular
to BD atU’, then the midpoint o’ U’ is the center of the rectanglé(ABC D).
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We conclude with a brief comment on the case wlRaa a rhombus. Remarking
that if P = V(ABCD), thenAC = 2P(Q = 2QR = BD, we see that any cyclic
solution for ABC'D must be an isosceles trapezoid (possibly a self-crossiayj on
Conversely, ifABCD is an isosceles trapezoid, then it is cyclic A BC D) is
arhombus. The construction of a solutid®C' D from P simply follows from the
choice of two points\/, M’ as diagonal midpoints ol BC' D on either diagonal
of P (see Figure 8).

Figure 8
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Another Verification of Fagnano’s Theorem

Finbarr Holland

Abstract. We present a trigonometrical proof of Fagnano’s theoremhwtates
that, among all inscribed triangles in a given acute-angiadgle, the feet of its
altitudes are the vertices of the one with the least perimete

1. Introduction

At the outset, and to avoid ambiguity, we fix the followingnenology. Let
ABC be any triangle. The feet of its altitudes are the verticesludt we call its
orthic triangle, and, ifX,Y, and Z, respectively, are interior points of the sides
AB, BC, andC A, respectively, we call the triangl&®Y Z an inscribed triangle
of ABC.

In 1775, Fagnano proved the following theorem.

Theorem 1. Suppose ABC isan acute-angled triangle. Of all inscribed triangles
in ABC, itsorthic triangle has the smallest perimeter.

Not surprisingly, over the years this beautiful result htisaated the attentions
of many mathematicians, and there are several proofs kndwnl. Fagnano
himself apparently used differential calculus to provehigugh, by modern stan-
dards, it seems to me that this is far from being a routinecis&r Perhaps the
most appealing proofs of the theorem are those based on flexfita Principle,
and two of these, in particular, due independently to LeFajid H. A. Schwarz,
have made their appearance in several books aimed at gaweiiehces [2], [3],
[4], [6]. A proof based on vector calculus appeared receily The purpose of
this note is to offer one based on trigonometry.

Theorem 2. Let ABC be any triangle, with a = |BC|,b = |C A|,¢ = |AB|, and
area A. If XY Z isinscribed in ABC, then

2
IXY|+|VZ|+|2X] > %. 1)

Equality holdsin (1) if and only if ABC' is acute-angled; and then only if XY Z
isitsorthic triangle. If ABC isright-angled (respectively, obtuse-angled), and C

Publication Date: December 5, 2007. Communicating EdRawl Yiu.
The author is grateful to the referee for his helpful remarks
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isthe right-angle (respectively, the obtuse-angle), then an inequality stronger than
() holds, viz.,

| XY |+ |YZ|+ |ZX| > 2h,, (2

where h. denotes the length of the altitude from C'; and, in either case, this estimate
is best possible.

2. Proof of Theorem 2

Let XY Z be atriangle inscribed iIABC'. Letx = |BX|,y = |CY |,z = |AZ|.
Then0 < z < a,0 <y < b, 0 < z < c. By applying the Cosine Rule in the
triangle ZBX we have

|1ZX|* = (c — 2)* + 2* — 2x(c — 2) cos B
=(c—2)? 4+ 2%+ 2z(c — 2) cos(A + O)
= (zcos A+ (¢ — z) cos C)? + (zsin A — (¢ — z)sin C)2.
Hence,
|ZX| > |rcos A+ (¢ — z)cos C|,
with equality if and only ifxsin A = (¢ — z)sin C, i.e,, if and only if
ax +cz =, (3)
by the Sine Rule. Similarly,
|XY| > |ycos B+ (a — x)cos Al
with equality if and only if
az + by = a’. (4)
And
YZ| > |zcosC + (b—y)cos B,
with equality if and only if
by + cz = b2, (5)
Thus, by the triangle inequality for real numbers,
I XY |+ |YZ|+|ZX]
> |ycos B+ (a—x)cos A| + |zcos C + (b —y) cos B| + |x cos A+ (¢ — z) cos C|
> |ycos B+ (a—x)cos A+ zcosC + (b—y)cos B+ xzcos A+ (¢ — z)cos C|
=|acos A+ bcos B + ccos C|
_a? (b + 2 = a?) + B3P+ a® = ) + A(a® + b7 — )|
B 2abc

_ 8A?
-~ abe’
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This proves (1). Moreover, there is equality here if and ahgguations (3), (4),
and (5) hold, and the expressions

u=xcos A+ (c—z)cosC,
v=ycos B+ (a—x)cos A,
w=zcosC + (b—y)cos B,

are either all non-negative or all non-positive. Now it isye#0 verify that the
system of equations (3), (4), and (5), has a unique solufii@ngy

x=ccosB, y=acosC, z=bcos A,

in which case
u="bcos B, v=ccosC, w=acosA.
Thus, in this case, at most onewfv, w can be non-positive. But, if one af v, w
is zero, then one of, y, z must be zero, which is not possible. It follows that
8A2?
XY |+|YZ|+|ZX| > —,
abc

unlessABC is acute-angled, and'Y 7 is its orthic triangle. IfABC' is acute-
angled, theri%l%2 is the perimeter of its orthic triangle, in which case we k&ro
Fagnano’s theorem, equality being attained in (1) when antgl when XY 7 is
the orthic triangle.

Turning now to the case whetiBC' is not acute-angled, suppose first thais
aright-angle. Then

2
XY| 4 [YZ]+|2X] > 50 218 g
abc c

and so (2) holds in this case. Next,fis an obtuse-angle, denote yand F,
respectively, the points of intersection of the sdlB and the lines through' that
are perpendicular to the sidésC' and C A, respectively. TherZ is an interior
point of one of the line segmeni®, D] and[E, A]. Suppose, for definiteness, that
Z is an interior point offB, D]. If Y’ is the point of intersection ofX, Y] and
[C, D], then

XY |+ |YZ|+|ZX| = | XY'|+|YY|+|YZ|+|ZX]
> | XY'|+|Y'Z|+|ZX]|
> 2h,,

since the triangleXY”’Z is inscribed in the right-angled triangleC D. A similar
argument works iZ is an interior point of E, A]. Hence, (2) also holds if' is
obtuse.

That (2) is stronger than (1), for a non acute-angled trianfgllows from the
fact that, in any triangled BC,

4N? B 2Asin C
abe c

It remains to prove that inequality (2) cannot be improvecewlthe angleC is
right or obtuse. To see this, |t be the foot of the perpendicular fro@ito AB,

=asinBsinC < asin B = he.
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and0 < ¢ < 1. ChooseY on C'A so that|CY | = ¢b, and X on BC' so thatXY is
parallel toAB. Then, ag — 0T, both X andY converge ta”, and so

li%l+ (| XY+ |YZ|+|ZX|) =|CC|+ |CZ| +|ZC| = 2|CZ| = 2h..
E—

This finishes the proof.
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How Pivotal | socubics I ntersect the Circumcircle

Bernard Gibert

Abstract. Given the pivotal isocubidC = pK(Q2, P), we seek its common
points with the circumcircle and we also study the tangentisese points.

1. Introduction

A pivotal cubic/C = pK(Q2, P) with pole (2, pivot P, is the locus of point\/
such thatP, M and its{2-isoconjugateM * are collinear. It is also the locus of
point M such thatP* (the isopivot or secondary pivot)4 and the cevian quotient
P/M are collinear. See [2] for more informatichThe isocubickC meets the cir-
cumcircle(O) of the reference triangld BC at its vertices and three other points
Q1, Q2, Q3, one of them being always real. This paper is devoted to g sttid
these points and special emphasis on their tangents.

2. Isogonal pivotal cubics

We first consider the case where the pivotal isocibie pK(Xg, P) isisogonal
with pole the Lemoine poini .

2.1 Circular isogonal cubics.When the pivotP lies at infinity, X contains the
two circular points at infinity. Hence it is a circular cubittbe classCL035 in
[3], and has only one real intersection wiif?). This is the isogonal conjugafe*
of the pivot.

The tangent aP is the real asymptot& P* of the cubic and the isotropic tan-
gents meet at the singular fochsof the circular cubicF is the antipode of* on
(0).

The pairP and P* are the foci of an inscribed conic, which is a parabola with
focal axisP P*. WhenP traverses the line at infinity, this axis envelopes the dtklto
H3 tritangent to(©O) at the vertices of the circumtangential triangle. The cctrbé
the deltoid with this axis is the reflection i* of the second intersection &fP*
with the circumcircle. See Figure 1 with the Neuberg cub@)1 and the Brocard
cubicK 021. For example, with the Neuberg cubié; = X4, the second point on
the axis isX,7¢, the contact is the reflection of 476 in X74.

Publication Date: December 10, 2007. Communicating EdRaul Yiu.
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Neuberg
. cubic
Xso
‘? \ A

\ /

Figure 1. Isogonal circular cubic with pivot at infinity

2.2 Isogonal cubics with pivot on the circumcircl&/hen P lies on(O), the re-
maining two intersection§1, Q) are antipodes of(0). They lie on the perpendic-
ular atO to the lineP P* or the parallel a© to the Simson line oP. The isocubic
K has three real asymptotes:

(i) One is the parallel aP/ P* (cevian quotient) to the lin@ P*.

(i) The two others are perpendicular and can be obtaineslesvs. ReflectP

in Q1, Q2 to getS;, Se and draw the parallels &t}, S5 to the linesPQ1, PQs.
These asymptotes meet.&ton the lineO P. Note that the tangent to the cubic at
Q1, Q2 are the lineg), 57, Q2.55. See Figure 2.

2.3 The general caseln both cases above, the orthocenter of the triangle formed
by the pointsQ):, Q2, Q3 is the pivotP of the cubic, although this triangle is not

a proper triangle in the former case and a right triangle enlétter case. More
generally, we have the following

Theorem 1. For any pointP, the isogonal cubi& = pK(Xg, P) meets the cir-
cumcircle atA, B, C and three other point§)1, 2, 3 such thatP is the ortho-
center of the trianglé) Q2 Q3.
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Figure 2. Isogonal cubic with pivot on the circumcircle

Proof. The linesQ1Q7, Q2Q5, Q3Q3 pass through the piva? and are parallel to
the asymptotes of the cubic. Since they are the axes of thseeeled parabolas,
they must be tangent to the deltdit}, the anticomplement of the Steiner deltoid.
This deltoid is a bicircular quartic of clags Hence, for a giverP, there are only
three tangents (at least one of which is real) to the deltagsimg throughP.
According to a known result); must be the antipode qi®) of @', the isogo-
nal conjugate of the infinite point of the lin@,Qs. The Simson lines of);, Q-,
(3 are concurrent. Hence, the axes are also concurredt But the Simson line
of ), is parallel toQ2Q3. Hence®; Q7 is an altitude o1 Q2Q3. This completes
the proof. See Figure 3. O

Remark.These points), @2, Q3 are not necessarily all real nor distinct. In [1],
H. M. Cundy and C. F. Parry have shown that this depends of dséign of P
with respect toHs. More precisely, these points are all real if and onlyPilies
strictly insideHs. One only is real wher® lies outsideH3. This leaves a special
case wherP lies onHz. See§2.4.

Recall that the contacts of the deltdit with the line PQ; Q7 is the reflection
in @; of the second intersection of the circumcircle and the i, Q7. Conse-
guently, every conic passing through Q1, @2, Q3 is a rectangular hyperbola and
all these hyperbolas form a pengil of rectangular hyperbolas.
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§'S =7
& /Qj‘ x VI

Figure 3. The deltoid{s and the point€)1, Q2, Q3

LetD be the diagonal rectangular hyperbola which contains tineifidexcenters
of ABC, P*, andP/P*. Its center iX)p. Note that the tangent d@* to D con-
tains P and the tangent &/ P* to D containsP. In other words, the polar line of
P in Dis the line throughP* and P/ P*.

The pencilF contains the hyperbol& passing througtP, P*, P/P* andQp
having the same asymptotic directions7as The center of{ is the midpoint of
P andQp. This gives an easy conic construction of the poi@ts 02, Q3 when
P is given. See Figure 4. The pendil contains another very simple rectangular
hyperbola’, which is the homothetic of the polar conic Bfin K underh (P, 1).
Since this polar conic is the diagonal conic passing thrdbglin/excenters anH,
‘H’ containsP and the four midpoints of the segments joiniAdo the in/excenters.

Corollary 2. The isocubicC contains the projectiong?;, Ry, R3 of P* on the
sidelines 0f;Q.Qs. These three points lie on the bicevian cofi¢, P). 2

Proof. Let R; be the third point ofC on the lineQ)> Q3. The following table shows
the collinearity relations of nine points dé and proves thaP*, R; andQ); are
collinear.

2This is the conic through the vertices of the cevian trias@eG and P. This is theP-Ceva
conjugate of the line at infinity.
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Ial

Figure 4. The hyperbolak andD

P | P | P* |« P*isthetangential of
Q2 | Q3 | Ry | « definition of R,
Q5 | Q5 | Q7 | «— these three points lie at infinity

This shows that, foi = 1, 2, 3, the pointsP*, R; and(; are collinear and, since
P, Q; andQ); are also collinear, the lineBQ; and P*R; are parallel. It follows
from Theorem 1 thaR; is the projection ofP* onto the lineR; R;..

Recall thatP* is the secondary pivot of hence, for any poinf/ on I, the
points P*, M and P/M (cevian quotient) are three collinear points/onConse-
quently,R; = P/Q;} and, since)); lies at infinity, R; is a point onC(G, P). O

Corollary 3. The linesQ; R}, i = 1,2, 3, pass through the cevian quotieRf P*.

Proof. This is obvious from the following table.

P* | P*| P | — P/P*is the tangential oP*
P | Q7 | Q1 | < Q1Q7F must contain the pival
P | Ry | R} | < R{ R} must contain the pivoP
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Recall thatP* is the tangential o (first column). The second column is the
O

corollary above.
Corollary 4. Let S1, S, S5 be the reflections aP in Q1, @2, Q3 respectively. The
asymptotes of are the parallel atS; to the linesPQ); or P*R;.

Proof. These pointsS; lie on the polar conic of the pivaP since they are the har-
monic conjugate of” with respect ta; and@;. The construction of the asymp-
O

totes derives from [21.4.4].

Theorem 5. The inconicZ(P) concentric withC(G, P) 3 is also inscribed in the
triangle Q1 Q2@3 and in the triangle formed by the Simson linegxf Q2, Q3.

Proof. Since the trianglesi BC and Q1Q-Q3 are inscribed in the circumcircle,
there must be a conic inscribed in both triangles. The rewele calculation. [

In [4, §29, p.88], A. Haarbleicher remarks that the triangl&C and the re-
flection of Q1Q2Q3 in O circumscribe the same parabola. These two parabolas
are obviously symmetric about. Their directrices are the line throudh and the
reflectionP’ of P in O in the former case, and its reflectiondnin the latter case.
The foci are the isogonal conjugates of the infinite pointtheke directrices and

its reflection abou©.

Thomson|

N ’
“H H
N cubic 1

N |

N /

Figure 5. Thomson cubic

3This center is the complement of the complemenPof.e., the homothetic of” underh(G, %)
Note that these two conics(P) andC(G, P) are bitangent at two points on the liG&P. When

P = @G, they coincide since they both are the Steiner in-ellipse.
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For example, Figures 5 and 6 show the cBse . Note, in particular,
—KC is the Thomson cubic,
—D is the Steiner (or Don Wallace) hyperbola,
—H containsXs, X3, X6, X110, X154, X354, X392, X1201, Xo574, X575,
-H containsXs, Xog, X376, X551,
—the inconicZ (P) and the bicevian coni€(G, P) are the Steiner in-ellipse,
— the two parabolas are the Kiepert parabola and its reffecti®.

N Kiepert
parabola

reflection \zvf
. \

the Kiepert,

parabola in.O

Figure 6. The Thomson cubic and the two parabolas

More generally, anyp(Xg, P) with pivot P on the Euler line is obviously
associated to the same two parabolas. In other words, amny aiuihe Euler pencil
meets the circumcircle at three (not always real) poipis Q2, Q3 such that the
reflection of the Kiepert parabola i is inscribed in the triangl€); Q2Q3 and in
the circumcevian triangle @.

In particular, takingP? = O, we obtain the McCay cubic and this shows that the
reflection of the Kiepert parabola i is inscribed in the circumnormal triangle.

Another interesting case {s/C(Xg, X145) in Figure 7 since the incircle is in-
scribed in the triangl€)1 Q2Q)s.
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Figure 7. pK(Xe, X145)

2.4. 1sogonal pivotal cubics tangent to the circumcircle. this section, we tak®
onH3 so that/C has a multiple point at infinity.

Here is a special cas@(s is tangent to the six bisectors diBC. If we take the
bisectorAI, the contactP is the reflection of4d in the second intersectiod; of
AT with the circumcircle. The corresponding culiicis the union of the bisector
AT and the conic passing throudh C, the excenterg, and., A;, the antipode
of A on the circumcircle.

Let us now takeM on the circleCy with centerH, radius2R and let us de-
note by7,, the tangent af\/ to Cy. The orthopoleP of 7, with respect to the
antimedial triangle is a point oHs.

The corresponding cubif meets(Q) at P, (double) andPs;. The common
tangent atP; to X and(Q) is parallel to7,,. Note thatP; lies on the Simson line
Sp of P with respect to the antimedial triangle.

The perpendicular aP; to Sp meets(Q) again atPs; which is the antipode on
(O) of the second intersectiaf; of Sp and(O). The Simson line of; is parallel
to 7yy.

It follows thatC has a triple common point witf©) if and only if P, andQs are
antipodes onlO) i.e. if and only ifSp passes throug®. This gives the following
theorem.
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Theorem 6. There are exactly three isogonal pivotal cubics which aieetnts.

Their pivots are the cusps of the deltdits. The triple contacts witiO) are
the vertices of the circumnormal triandleThese points are obviously inflexion
points and the inflexional tangent is parallel to a sidelihéhe Morley triangle.
See Figure 8.

Figure 8. Isogonal pivotal trident

2.5 Tangents af), @2, Q3. We know that the tangents dt B, C to any pivotal
cubic concur afP*. This is not necessarily true for those@t, Q2, @s.

Theorem 7. The tangents af);, 2, @3 to the isogonal cubip/ (X, P) concur
if and only if P lies on the quinticQ063 with equation

Z a’y?2? (Sc(x+y)— Sp(x+2)) =0.
cyclic

Q063 is a circular quintic with singular focuXs-, the reflection of7 in O. It
has three real asymptotes parallel to those of the Thomduio and concurrent at
G.

“These three points are the common points of the circumcamtethe McCay cubic apant, B,
C.
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A, B, C are nodes and the fifth points on the sidelinesi&fC are the vertices
A’, B', C' of the pedal triangle o5, the de Longchamps point. The tangents at
these points pass througt,, and meet the corresponding bisectors at six points
on the curve. See Figure 9.

Figure 9. The quinti€063

Q063 containsl, the excenters7, H, Xo9, X1113, X1114. Hence, for the Thom-
son cubic, the orthocubic, and the Darboux cubic, the talsgeid),, (2, @3 con-
cur. The intersection of these tangents Arg for the orthocubic, and(; 9 for
the Darboux cubic. For the Thomson cubic, this is an unknoaint?)in the current
edition of ETC on the lin&7 X 350.

SThis has first barycentric coordinate
a®(38% + 2a°Sa + 5b°C°).
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3. Non-isogonal pivotal cubics

We now consider a non-isogonal pivotal culiiovith polew # K and pivotr.
We recall thatr* is thew—isoconjugate ofr and thatr /7* is the cevian quotient
of m andn*, these three points lying on the cubic.

3.1 Circular cubics. In this special case, two of the points, sgy and (s, are
the circular points at infinity. This gives already five conmyamints of the cubic
on the circumcircle and the sixth poi€; must be real.

The isoconjugation with poler swaps the pivotr and the isopivotr* which
must be the inverse (in the circumcircle 4BC) of the isogonal conjugate of.
In this case, the cubic contains the pdinhtisogonal conjugate of the complement
of 7. This gives the following

Theorem 8. A non isogonal circular pivotal cubif meets the circumcircle &,
B, C, the circular points at infinity and another (real) poi@t, which is the second
intersection of the line througf and = /7* with the circle passing through, =*
andr/7*.

Example: The Droussent cubi008. This is the only circular isotomic pivotal
cubic. See Figure 10.

Figure 10. The Droussent cutk008

The pointsz, ©*, T, Q1 are X314, Xg7, X671, Xo373 respectively. The point
m/m* is not mentioned in the current edition of [6].

Note that whenr = H, there are infinitely many circular pivotal cubics with
pivot H, with isopivot7* at infinity. These cubics are the isogonal circular pivotal
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cubics with respect to the orthic triangle. They have thieigslar focusF’' on the
nine point circle and their pole on the orthic axis. The isoconjugaté* of H
is the point at infinity of the cubic. The intersection witlethreal asymptote is
X, the antipode ofF" on the nine point circle and, in this casg, = = /7*. This
asymptote envelopes the Steiner delthigd The sixth point); on the circumcircle
is the orthoassociate df, i.e. the inverse oX in the polar circle.

Example: The Neuberg orthic culd050. This is the Neuberg cubic of the orthic
triangle. See [3].

3.2 General theorems for non circular cubics.

Theorem 9. K meets the circumcircle ad, B, C and three other point§)1, Q-,
Q@3 (one at least is real) lying on a same conic passing thromgh* and /7*.

Note that this conic meets the circumcircle again at thedeafconjugate of the
infinite point of the trilinear polar of the isoconjugatewfinder the isoconjugation
with fixed pointr.

Withw =p:q:randr =u: v : w, this conic has equation
Z P2 w? (Py+b22) (wy—vz)+gru’z(vw (v —b*w) e+u(b*w?y—cv?z)) = 0,
cyclic
and the point on the circumcircle is :

a® ' b2 ' c?
u2(rv? — quw?) " v (pw? — ru2) ~ w2(qu? — pv?)
Theorem 10. The conic inscribed in trianglest BC and Q1(Q2Q3 is that with
perspector the cevian product efandtgw, the isotomic of the isogonal af.

3.3 Relation with isogonal pivotal cubics.

Theorem 11. K meets the circumcircle at the same points as the isogonataliv
cubic with pivotP = u : v : w if and only if its polew lie on the cubidC,,.. with
equation

22
Z (v + w)(cty — b2) pehe Z (b —Au | zyz=0

cyclic cyclic

= Z a*u(cty — b22)(—atyz + bza 4 ctay) = 0.
cyclic

In other words, for any point on K., there is a pivotal cubic with pole
meeting the circumcircle at the same points as the isogaviatip cubic with pivot
P=u:v:w.

Kpole IS @ circum-cubic passing through, the vertices of the cevian triangle of
gcP, the isogonal conjugate of the complemen#bfThe tangents afl, B, C are
the cevians 0fX3s.

The second equation above clearly shows that all thesesbblong to a same
net of circum-cubics passing throughti having the same tangents 4t B, C.
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This net can be generated by three decomposed cubics, oheroftieing the
union of the symmediad K and the circum-conic with perspector theharmonic
associate 0f(ss.

For example, with? = H, K. is a nodal cubic with nodé< and nodal
tangents parallel to the asymptotes of the Jerabek hy@erbicdontainsXg, Xgg,
X193, X303, X571, Xeos, X1974, X2911 Which are the poles of cubics meeting the
circumcircle at the same points as the orthocub96.

Theorem 12. K meets the circumcircle at the same points as the isogonataliv
cubic with pivotP = u : v : w if and only if its pivotr lie on the cubidCp; o, With
equation

Z (v +w)(cty — br2) 2® + Z (b — *u | zyz = 0.

cyclic cyclic

In other words, for any point on KCy,ivot, there is a pivotal cubic with pivat
meeting the circumcircle at the same points as the isogavatib cubic with pivot
P=u:v:w.

Kopivot IS @ circum-cubic tangent at, B, C' to the symmedians. It passes through
P, the points on the circumcircle and on the isogonal pivotdic with pivot P,
the infinite points of the isogonal pivotal cubic with pivbetcomplement oP, the
vertices of the cevian triangle of &, the isotomic conjugate of the complement of
P.

Following the example above, witR = H, K,y IS also a nodal cubic with
noded and nodal tangents parallel to the asymptotes of the Jetalpekbola. It
containsXs, X4, Xs, X76, Xsa7r Which are the pivots of cubics meeting the cir-
cumcircle at the same points as the orthocubic, three of benyp/C( X193, X76),
pPK (X571, X3) andpK(Xag11, Xs).

Remark.Adding up the equations &f .. and;y.¢ Shows that these two cubics
generate a pencil containing tipéC with pole the Xs»-isoconjugate of £, pivot
the X 39-isoconjugate of £ and isopivotXos; .

For example, withP = Xgg, this cubic ispA(Xg, X141). The nine common
points of all the cubics of the pencil are B, C, K, X149 and the four foci of the
inscribed ellipse with centeX4;, perspectotX .

3.4. Pivotal K01 and Kpivor. The equations o, and/Cpivor, Clearly show that
these two cubics are pivotal cubics if and onlyifies on the lineG K. This gives
the two following corollaries.

Corallary 13. WhenP lies on the lineGK, K, is a pivotal cubic and contains
K, Xo5, X39. Its pivot is g& (on the circum-conic througldir and K) and its
isopivot isX3s. Its pole is the barycentric product dfs; and gcP. It lies on the
circum-conic throughXss and Xos; .

All these cubics belong to a same pencil of pivotal cubicsititermore Cp,o1e
contains the cevian quotients of the pivotljand K, Xs5, X35. Each of these



224 B. Gibert

points is the third point of the cubic on the correspondirdgkne of the triangle
with verticesK, Xo5, X32. In particular,Xo5 gives the point gP.
Table 1 shows a selection of these cubics.

| P [ Kpol containsk, Xps, X3; and | cubic|
Xo X31, Xa1, X184, X604, X2199 K346
Xeo | Xo, X3, X6, Xoo6, X1676, X1677 K177

Xg1 | X1169, X1333, X2194, X2206
Xgs | X58, X1171
X193 | X1974, X3053
Xogg | X15, Xogg1
X323 | X50, X1495
X325 | X511, Xoggr
X35 | X1691, X1976
X394 | X154, X577
Xug1 | X372, X589
Xy92 | X371, Xsgg
Xsoq | X111, Xugr
X270 | X493, X1151
Xior1 | Xugsa, X1152
Xiesa | X2, X1918, X2200
X1992 | X1383, X1384
X1994 | X51, X2965
Xoggs | X37, X013, Xo2g, X1030
atX1916 | X237, X384, X385, X694, X733, X004, X1911, X2076, X3051

Table 1.1 With P on the lineGK.

Remark.atX 914 is the anticomplement of the isotomic conjugateXahg.

Corallary 14. WhenP lies on the lineG K, Ko CcOntainsP, G, H, K. Its pole
is gcP (on the cubic) and its pivot is & on the Kiepert hyperbola.

All these cubics also belong to a same pencil of pivotal aibic

Table 2 shows a selection of these cubics.

We remark thatC,c is the isogonal of the isotomic transform/6f;,.; but this
correspondence is not generally true for the piwand the polev. To be more
precise, forr on KCpivot, the polew on K. is the Ceva-conjugate of gtand gtr.

From the two corollaries above, we see that, given an isdgowatal cubic /C
with pivot on the lineG K, we can always find two cubics with poléSs, X35 and
three cubics with pivotss, H, K sharing the same points on the circumcircle as
KC. Obviously, there are other such cubics but their pole awot fnioth depend of
P. In particular, we have/C(gcP, tcP) andp/(Ox gcP, gcP).

We illustrate this with? = G (and g = K) in which caselCy;y.; is the
Thomson cubid 002 andXC,,. is K346. Form andw chosen accordingly on these
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| P | Kpivet CONtainsXs, X4, X and | cubic]|
Xo | Xy, X3, Xg, X57, X993, Xoga, X1073, X1249 K002
X | Xs3, Xos1, X1176
Xeg | Xo2, Xe9, X76, X1670, X1671 K14l
Xg1 | Xo1, Xs8, Xg1, X572, Xo61, X1169, X1220, X1798, X2208 | K379
Xgo | Xs6, X1126, X1171
X193 | Xos, X193, X371, X372, X2362 K233
Xogg | Xogg, Xogg1
X323 | X30, X323, Xoos6
X325 | X325, Xoo65, X2087
X3g5 | Xog, Xog7, Xoag, X385, X1687, X1688, X1976 K380
X394 | X20, X304, Xs01
X491 | X401, X589
Xy92 | X492, Xsss
X524 | X3, X111, X524, X671, X505 K273
X170 | X493, X1270
Xio71 | Xaga, X1o71
X611 | X439, X1611
X154 | X10, X42, X71, X199, X1654
X1992 | X508, X1383, X1992, X1995 K283
X1993 | X54, Xo75, X1903
X994 | X5, X1166, X1994
Xoog7 | Xis17, X227
Xoggs | X37, X702, X321, Xogos, Xo915
X3051 | X384, X3051
atXig16 | X39, Xos6, X291, X511, X694, X1432, X1916 K354

Table 2.Kivor With P on the lineGK

cubics, we obtain a family of pivotal cubics meeting the wincircle at the same
points as the Thomson cubic. See Table 3 and Figure 11.

With P = Xgg (isotomic conjugate off), we obtain several interesting cubics

related to the centroid’=gcP, the circumcenteO=gtP. Kp1c IS K177, Kpivor IS
K141 and the cubicpX(Xo, X76) = K141, pK (X3, X2) = K168, pk(Xg, Xeo)

= K169, pK(X32, X22) = K174, pK (X206, X6) have the same common points on

the circumcircle.
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| 7 | w(X; or SEARCH)] cubic orX; on the cubic

X1 | Xq X1, X6, X9, X55, Xo59
Xy | X K002
Xs | Xa K172
Xy 10.1732184721703 | X4, X¢, Xog, Xo5, X154, X1249
Xe | Xiss K167
X9 | Xz X1, X¢, Xo, X56, X84, X165, X198, X365
Xs7 | Xo1g9 X, X410, X56, X57, X108, X203
X223 | X604 X, X57, X223, X266, X1035, X1436
Xi073 | 0.6990940852287 | Xg, Xe4, X1033, X1073, X1498
X1249 | Xo5 Xy, X6, Xoa, X1033, X1249

Table 3. Thomson cubik 002 and some related cubics

K002 ‘ pK(X31,X9)
K172 | pK(X41,X1)
K167 | pK(X604,X223)

Figure 11. Thomson cubi€ 002 and some related cubics

4. Non isogonal pivotal cubicsand concurrent tangents

We now generalize Theorem 7 for any pivotal cubic with @ele- p : ¢ : » and
pivot P = u : v : w, meeting the circumcircle at, B, C' and three other points
Q1, Q2, Q3. We obtain the two following theorems.
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Theorem 15. For a given polef?, the tangents af), -, Q3 to the pivotal cubic
with pole(2 are concurrent if and only if its pivaP lies on the quinticQ(€2).

Remark.Q(2) contains the following points:
— A, B, C which are nodes,

— the square roots @2,

—tg(?, theQ)-isoconjugate of¢,

— the vertices of the cevian triangle af = (C4pq+b4£§_“4q’”)p sl ) the
isoconjugate of the crossconjugatefdfand td? in the isoconjugation with fixed
point tgf2,

—the common points of the circumcircle and the trilineamapdi; of tg?,
—the common points of the circumcircle and the lihg passing through fg and
the cross-conjugate df and td?.

Theorem 16. For a given pivotP, the tangents af){, (02, Q3 to the pivotal cubic
with pivot P are concurrent if and only if its pol€ lies on the quinticQ’(P).

Remark. Q'(P) contains the following points:

— the barycentric produad® x K,

— A, B, C which are nodes, the tangents being the cevian line¥gfand the
sidelines of the anticevian triangle f x K,

— the barycentric squar®? of P and the vertices of its cevian triangle, the tangent
at P? passing througtP x K.

5. Equilateral triangles

The McCay cubic meets the circumcircle 4t B, C and three other points
N,, Ny, N. which are the vertices of an equilateral triangle. In thistisa, we
characterize all the pivotal cubiés = p/C(€2, P) having the same property.

We know that the isogonal conjugates of three such padiptsV,, N, are the in-
finite points of an equilateral cubic (&, see [2]) and that the isogonal transform
of K is another pivotal cubi&’’ = pK (', P") with pole Q' the X3,-isocongate
of Q, with pivot P’ the barycentric product a? and the isogonal conjugate Of
Hencek meets the circumcircle at the vertices of an equilaterahgie if and only
if X' is apep.

Following [2, §6.2], we obtain the following theorem.

Theorem 17. For a given pol& or a given pivotP, there is one and only one piv-
otal cubickC = pK (€2, P) meeting the circumcircle at the vertices of an equilateral
triangle.

With Q = K (or P = O) we obviously obtain the McCay cubic and the equilat-
eral triangle is the circumnormal triangle. More generalp/C meets the circum-
circle at the vertices of circumnormal triangle if and orfiyt$ pole Q2 lies on the
circum-cubicK 378 passing through, the vertices of the cevian triangle of the
Kosnita pointXs,4, the isogonal conjugates &f3o4, X343. The tangents afl, B,

C are the cevians aK3,. The cubic is tangent & to the Brocard axis andl’ is a
flex on the cubic. See [3] and Figure 12.
The locus of pivots of these same cubic&361. See [3] and Figure 13.



228 B. Gibert

Figure 13.K 361, the locus of pivots of circumnormalCs
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On a Construction of Hagge

Christopher J. Bradley and Geoff C. Smith

Abstract. In 1907 Hagge constructed a circle associated with eaghrcewint

P of triangle ABC. If P is on the circumcircle this circle degenerates to a
straight line through the orthocenter which is paralleh® Wallace-Simson line
of P. We give a new proof of Hagge's result by a method based orctiefies.
We introduce an axis associated with the construction, gizdah areal anal-
ysis) a conic which generalizes the nine-point circle. Trecige locus of the
orthocenter in a Brocard porism is identified by using Haggjf@orem as a tool.
Other natural loci associated with Hagge’s constructiendiscussed.

1. Introduction

One hundred years ago, Karl Hagge wrote an articieitschrift fir Mathema-
tischen und Naturwissenschaftliche Unterrighmititled (in loose translation) “The
Fuhrmann and Brocard circles as special cases of a geneskd construction”
[5]. In this paper he managed to find an elegant extensioneofMallace-Simson
theorem when the generating point is not on the circumcitagtead of creating a
line, one makes a circle through seven important point§2 e give a new proof
of the correctness of Hagge’s construction, extend andyappl idea in various
ways. As a tribute to Hagge’s beautiful insight, we presaid work as a cente-
nary celebration. Note that the name Hagge is also assdamtk other circles
[6], but here we refer only to the construction just desatilidere we present new
synthetic arguments to justify Hagge’s construction, It first author has also
performed detailed areal calculations which provide arlalgic alternative in [2].

The triangleABC has circumcircld’, circumcenteiO and orthocentefl. See
Figure 1. Choosé a point in the plane oA BC. The cevian linesAP, BP, CP
meetl" again atD, F and F' respectively. ReflecD in BC' to a pointU, Ein CA
to a pointV and F' in AB to a pointWW. LetUP meetAH at X, VP meetBH
atY andW P meetC H at Z. Hagge proved that there is a circle passing through
X, Y, Z, U, V,WandH [5, 7]. See Figure 1. Our purpose is to amplify this
observation.

Hagge explicitly notes [5] the similarities betwedBC' and XY Z, between
DEF andUV W, and the fact that both pairs of triangld$3C, DEF and XY Z,
UVW are in perspective througR. There is an indirect similarity which carries
the pointsABCDEFPto XY ZUVW P.

Peiser [8] later proved that the centgfP) of this Hagge circle is the rotation
throughz about the nine-point center gfBC' of the isogonal conjugatf* of P.
His proof was by complex numbers, but we have found a diremifdoy classical

Publication Date: December 18, 2007. Communicating EdRaul Yiu.
We thank the editor Paul Yiu for very helpful suggestionsahhimproved the development of
Section 5.
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Figure 1. The Hagge construction

means [4]. In our proof of the validity of Hagge's constroatiwe work directly
with the center of the circle, whereas Hagge worked with thiatpat the far end

of the diameter througlif. This gives us the advantage of being able to study the
distribution of points on a Hagge circle by means of refletion lines through its
center, a device which was not available with the origingrapch.

The pointP* is collinear withGG andT, the far end of the diameter frofd. The
vector argument which justifies this is given at the staig®of.. Indeed, we show
thatP*G : GT =1: 2.

There are many important special cases. Here are some esrbpt Hagge
[5] listed even more.

0] V\llhenP = K, the symmedian point, the Hagge circle is the orthocerditoid
circle.

(i) When P = I, the incenter, the Hagge circle is the Fuhrmann circle.

(iif) When P = O, the circumcenter, the Hagge circle and the circumcirate ar
concentric.

In [5] Hagge associates the name Boklen with the study efdincle (there were two geometers
with this name active at around that time), and refers theeet a work of Prof Dr Lieber, possibly
H. Lieber who wrote extensively on advanced elementary emagtics in thdin de siecle
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(iv) When P = H, the orthocenter, the Hagge circle degenerates to the foint
(v) The circumcenter is the orthocenter of the medial trliengnd the Brocard
circle on diameteO K arises as a Hagge circle of the medial triangle with respect

to the centroid~ of ABC.

Note thatl H is the doubled Wallace-Simson line B%, by which we mean the
enlargement of the Wallace-Simson line with scale fagttnom centerD. Sim-
ilarly VH and W H are the doubled Wallace-Simson linesfofand F'. Now it
is well known that the angle between two Wallace-Simsorslisehalf the angle
subtended a® by the generating points. This applies equally well to dedbl
Wallace-Simson lines. A careful analysis (taking care &iidguish between an-
gles and their supplements) will yield the angles betwééh V H andW H, from
which it can be deduced th&tV W is indirectly similar toD EF'. We will not ex-
plain the details but rather we present a robust argumerRrgposition 2 which
does not rely on scrupulous bookkeeping.

Incidentally, if P is onT’, then the Hagge circle degenerates to the doubled
Wallace-Simson line oP. For the rest of this paper, we make the explicit assump-
tion that P is not onT". The work described in the rest of this introduction is not
foreshadowed in [5]. Sincd BCDEFP is similar to XY ZUVW P, it follows
that ABC' is indirectly similar toXY Z and the similarity send® FF to UV V.
The pointP turns out to be the unique fixed point of this similarity. Thisnilarity
must carry a distinguished poif™ on T to H. We will give a geometric recipe
for locating H in Proposition 3.

This process admits of extension both inwards and outw&rds.may construct
the Hagge circle ofX'Y Z with respect toP, or find the triangleRST so that the
Hagge circle ofRST with respect toP is T' (with ABC playing the former role
of XY Z). The composition of two of these indirect similarities isenlargement
with positive scale factor froni.

Proposition 2 sheds light on some of our earlier work [3]. &zdte the centroid,
K the symmedian point, andthe Brocard angle of triangld BC'. Also, letJ be
the center of the orthocentroidal circle (the circle on dé¢enGG H). We have long

- OK? JK?
been intrigued by the fact thatR— =7 since areal algebra can be used to

show that each quantity is-3 tan? w. In §3.3 we will explain how the similarity is
a geometric explanation of this suggestive algebraic adémce. In [3] we showed
how to construct the sides of (non-equilateral) triandlBC' given only the data
O, G, K. The method was based on finding a cubic which iad?, ¢? as roots.

We will present an improved algebraic explanatio33n2.

We show in Proposition 4 that there is a pointwhich when used as a cevian
point, generates the same Hagge circle for every triangidBrocard porism. Thus
the locus of the orthocenter in a Brocard porism must be cedfio a circle. We
describe its center and radius. We also exhibit a point whieés rise to a fixed
Hagge circle with respect to the medial triangles, as thereeice triangle ranges
over a Brocard porism.
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We make more observations about Hagge’s configuration.nGheslarge num-
ber of points lying on conics (circles), it is not surprisititat Pascal’'s hexagon
theorem comes into play. L&W meetAH at L, WU meetBH at M, andUV
meetsC'H at N. In §4 we will show thatL.M N P are collinear, and we introduce
the term Hagge axis for this line.

In §5 we will exhibit amidpoint coniovhich passes through six points associated
with the Hagge construction. In special case (iv), wiier= H, this conic is the
nine-point circle ofABC'. Drawings lead us to conjecture that the center of the
midpoint conic isNV.

In §6 we study some natural loci associated with Hagge's coctitru

2. The Hagge Similarity

We first locate the center of the Hagge circle, but not, assiP8$ did, by using
complex numbers. A more leisurely exposition of the nextiltesppears in [4].

Proposition 1. Given a pointP in the plane of triangleA BC, the centeri(P) of
the Hagge circle associated wiff is the point such the nine-point cent¥ris the
midpoint ofh(P) P* where P* denotes the isogonal conjugate Bf

Proof. Let AP meet the circumcircle ab, and reflectD in BC to the pointU.
The lineU H is the doubled Simson line @, and the reflections ab in the other
two sides are also on this line. The isogonal conjugat® @$ well known to be
the point at infinity in the direction parallel tdP* . (This is the degenerate case
of the result that ifD’ is not on the circumcircle, then the isogonal conjugat®bof
is the center of the circumcircle of the triangle with veziche reflections ab’

in the sides ofABC).

ThusUH L AP*. To finish the proof it suffices to show that@U’ is the
rotation throughr of UH about N, then AP* is the perpendicular bisector of
OU’. However,AO = R so it is enough to show thatU’ = R. Let A’ denote
the rotation throughr of A aboutN. From the theory of the nine-point circle it
follows thatA’ is also the reflection ab in BC'. ThereforeOU D A’ is an isosceles
trapezium withOA’//UD. ThereforeAU’ = A’'U = OD = R. O

We are now in a position to prove what we call the Hagge siibflavhich is
the essence of the construction [5].

Proposition 2. The triangleABC' has circumcirclel’, circumcenteiO and ortho-
centerH. Choose a poinP in the plane ofABC other thanA, B, C. The cevian
lines AP, BP, C' P meetl’ again atD, F, F respectively. Refledd in BC to a
pointU, E in CAto apointV and F'in AB to a pointWV. LetU P meetAH at X,
VP meetBH atY andW P meetCH at Z. The pointsXY ZUVW H are con-
cyclic, and there is an indirect similarity carryind BCDEFPto XY ZUVW P.

Discussion. The strategy of the proof is as follows. We consider six limeseting
at a point. Any point of the plane will have reflections in tlve Isnes which are
concyclic. The angles between the lines will be arrangetiathere is an indirect
similarity carryingABC D E F' to the reflections off in the six lines. The location
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of the point of concurrency of the six lines will be chosen Isat the relevant six
reflections ofH areUVW X1Y1Z; where Xy, Y; and Z; are to be determined,
but are placed on the appropriate altitudes so that theyargidates to become
X, Y and Z respectively. The similarity then ensures th&t'W and X,Y; 2,
are in perspective from a poift’. Finally we show that” = P/, and it follows
immediately thatX = X;,Y = Y; andZ = Z;. We rely on the fact that we know
where to make the six lines cross, thanks to Proposition 1s iShmot the proof
given in [5].

Proof of Proposition 2.Let /ZDAC = ay andZBAD = ay. Similarly we define
b1, b2, ¢ andcy. We deduce that the angles subtendediby’, B, D, D andFE at
O as shown in Figure 2.

Figure 2. Angles subtended at the circumcented 8fC

By Proposition 1,(P) is on the perpendicular bisector Gff which is parallel
to AP* (and similar results by cyclic change).

Draw three lines through(P) which are parallel to the sides dfBC and three
more lines which are parallel td P* , BP* andC P* . See Figure 3.

Let X1, Y7 andZ; be the reflections off in the lines parallel taBC', C A and
AB respectively. Alsd/, V andW are the reflections off in the lines parallel to
AP*, BP*andC P*. ThusX Y1 Z;UVW are all points on the Hagge circle. The
angles between the lines are as shown, and the consequenttes $ix reflections
of H are thatX,1 Y, Z,UV W is a collection of points which are indirectly similar
to ABCDEF:. Itis not necessary to know the locationffin Figure 3 to deduce
this result. Just compare Figures 2 and 4. The point isAl&th(P)V = ZEOA.

A similar argument works for each adjacent pair of vertiaeshie cyclic list
X1V Z1UY1W and an indirect similarity is established. Let this simtiacarrying
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Figure 3. Reflections of the orthocenter

ABCDEF to X1Y1Z,UVW bek. It remains to show that(P) = P (for then it
will follow immediately thatX; = X,Y; =Y andZ; = 2).

X1

Figure 4. Two reflections off

Now XY7 Z; is similar toABC, and the vertices oK Y7 Z; are on the altitudes
of ABC. Also UVW is similar to DEF, and the linesX U, Y1V andZ, W are
concurrent at a poinP;. Consider the directed line segment® and XU which
meet atQ). The linesAX; andU D are parallel scd X, Q) and DUQ are similar
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triangles, so in terms of lengthgl@ : QD = X10Q : QU. Sincek carriesAD
to XU, it follows that@ is a fixed point ofx. Now if x had at least two fixed
points, then it would have a line of fixed points, and would lreféection in that
line. Howeverx takesDEF to UVW, to this line would have to b&C, C A and
AB. This is absurd, s@ is the unique fixed point of. By cyclic chang&) is on
AD,BE andCF so@ = P. AlsoQisonX U, Y7V andZ;W so(@ = P;. Thus
XU, Y1V andZ, W concur atP. ThereforeX; = X, Y, =Y andZ; =Z. O

Proposition 3. The similarity of Proposition 2 applied td BC', P carries a point
H* onT to H. The same result applied t§Y Z, P carries H to the orthocenter
H~ of XY Z. We may construckl ™ by drawing the rayPH ~ to meefl’ at H .

Proof. The similarity associated witA BC' and P is expressible as: reflect iRA,
scale by a factor ok from P, and rotate abouP through a certain angle. Note that
if we repeat the process, constructing a similarity usirgXty” Z as the reference
triangle, but still with cevian poinP, the resulting similarity will be expressible
as: reflect inX P, scale by a factor of from P, and rotate abouP through a
certain angle. Sinc&Y ZP is indirectly similar toABC P, the angles through
which the rotation takes place are equal and opposite. Taetef composing the
two similarities will be an enlargement with centBrand (positive) scale factor
A2, O

Thus in a natural example one would expect the péiritto be a natural point.
Drawings indicate that when we consider the Brocard cilg,is the Tarry point.
3. Implications for the Symmedian Point and Brocard geomety

3.1 Standard formulasWe first give a summary of useful formulas which can
be found or derived from many sources, including Wolfram ivairld [11]. The
variables have their usual meanings.

abc = 4RA, Q)

a2+ b+ =4Acotw, (2

a?b? + b?c + a® = 4A? esc® w, 3)
at b 4t =8A%(escPw — 2), 4)

where (3) can be derived from the formula
R — abcvat + bt 4+ ¢ — a2b? — b2c2 — c2a?
5= 4(a®> + 02+ A)A

RvV1 —4sin?2w

2cosw

for the radiusR g of the Brocard circle given in [11]. The square of the dis&anc
between the Brocard points was determined by Shail [9]:

Q02 = 4R%*sin? w(1 — 4sin® w) (5)




238 C. J. Bradley and G. C. Smith

which in turn is an economical way of expressing
a0 (at + 0% + ¢t — a20? — B2 — 2a?)
(a2b? + b2c2 + 2a?)?

We will use these formulas in impending algebraic maniporhest

3.2 The symmedian pointet G be the centroid K the symmedian point, and
be the Brocard angle of trianglé BC. Also let J be the center of the orthocen-
troidal circle (the circle on diamet&¥H). It is an intriguing fact that
2 2

since one can calculate that each quantity-s3 tan? w. The similarity of Propo-
sition 2 explains this suggestive algebraic coincidenegh following paragraph.

We first elaborate on Remark (v) 1. Let h,,q denote the function which
assigns to a poinP the centerh,q(P) of the Hagge circle associated with
when the triangle of reference is the medial triangle. Thelialdriangle is the
enlargement oA BC from G with scale factor—%. Let K,,.q be the symmedian
point of the medial triangle. NouK ,,,.q, G, K are collinear and{,,,.qG : GK =
1:2 = QG : GN, where@ is the midpoint ofON. Thus, triangleGN K and
GQKeq are similar andy is the nine-point center of the medial triangle. By [8],
hmed(G) is the reflection i of K ,.q. But the lineQh,.q(G) is parallel toN K
and@ is the midpoint ofON. Therefore si,.q(G) is the midpoint ofO K, and so
is the center of the Brocard circle dfBC. The similarity of Proposition 2 and the
one between the reference and medial triangle, serve taiax().

3.3 The Brocard porism A Brocard porism is obtained in the following way. Take
a triangle ABC and its circumcircle. Draw cevian lines through the symraedi
point. There is a unique conic (the Brocard ellipse) whickarggent to the sides
where the cevians cuts the sides. The Brocard points areotheff the ellipse.
There are infinitely many triangle with this circumcircledathis inconic. Indeed,
every point of the circumcircle arises as a vertex of a ungpah triangle.

These poristic triangles have the same circumcenter, sylmam@oint, Brocard
points and Brocard angle. For each of them, the inconic is Brecard ellipse.
Any geometrical feature of the triangle which can be exmésxclusively in terms
of R, w and the locations aP and K will give rise to a conserved quantity among
the poristic triangles.

This point of view also allows an improved version of the algec proof that,

b andc are determined bg, G and K [3]. Because of the ratios on the Euler line,
the orthocenter H and the orthocentroidal center are de@iedmNow Equation (6)
determinesk and angles. However9R? — (a? +b? + ¢?) = OH? soa? + b2 + ¢?

is determined. Also the area of ABC' is determined by (2). Now (1) means
abe and soa?b?c? is determined. Also, (3) determinadb? + b2c? + ¢%a®. Thus
the polynomial( X — a?)(X — b?)(X — ¢?) is determined and so the sides of the
triangle can be deduced.
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As we move through triangles in a Brocard porism using a fixedben pointP,
the Hagge circles of the triangles vary in general, but i chosen appropriately,
the Hagge circle if each triangle in the porism is the same.

Proposition 4. Let F’ be the fourth power poirftof a triangle in a Brocard porism,
so that it has areal coordinate&?, b*, ¢*). The fourth power poinf is the same
point for all triangles in the porism. Moreover, whéh= F’, the Hagge circle of
each triangle is the same.

Proof. Our plan is to show that the point F') is the same for all triangles in the
porism, and then to show that the distarigd”) H is also constant (though the
orthocentersH vary). Recall that the nine-point center is the midpoinCoand
H, and of F* and h(P). Thus there is a (variable) parallelogradh (F')H F*
which will prove very useful.

The fourth power poinf’ is well known to lie on the Brocard axis where the
tangents to the Brocard circle & and 2’ meet. ThusF is the same point for
all triangles in the Brocard porism. The isogonal conjugsté’ (incidentally the
isotomic conjugate of the symmedian pointffis = K; = (%, 7, %).

In any triangleO K is parallel toF* H. To see this, note tha@? K has equation

VA% — A+ Ea®(® — a®)y + a*b*(a® — b))z = 0.
Also F* H has equation
ZbQQ Hr+ 2 —a)z =0.

cyclic

These equations are linearly dependent withy 4+ z = 0 and hence the lines are
parallel. (DERIVE confirms that th&x 3 determinant vanishes). In a Hagge circle
with P = F, P* = F* and F*Hh(F)O is a parallelogram. Thu9 K is parallel
to F*H and because of the parallelograhiF") is a (possibly variable) point on
the Brocard axi® K.

Next we show that the poirit(F") us a common point for the poristic triangles.
The first component of the normalized coordinateg'dfand H are
b2 c?

*

T T 0202 + B2C2 + 2a2

and
(a% + b2 — )(? + a? — b?)
162

whereA is the area of the triangle in question. The components ofligEace-
mentF™* H are therefore

a? +b% + 2
162

H, =

(a®b? + b%c? + a?)(z,y, 2)

2Geometers who speak trilinear rather than areal are aplité'¢he third power point for obvious
reasons.
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wherez = a?(a?b? + a%c? — b* — ¢*), with yy and z found by cyclic change of,
b, c. Using the areal distance formula this provides

a’b?c2(a® + b* + 2)%(a* + bt + ¢t — a?b? — b2 — c*a?)
16A2(a2b? + b2c? 4 c%a?)? ’
Using the formulas 0§3.1 we see that

Oh(F) = F*H = 2RcoswV 1 — 4sin?w

is constant for the poristic triangles. The poitis fixed so there are just two
candidates for the location @f(F') on the common Brocard axis. By continuity
h(F') cannot move between these places antl(€0) is a fixed point.

To finish this analysis we must show that the distalc€) H is constant for the
poristic triangles. This distance is the saméd&6é) by the parallelogram. If a point
X has good areal coordinates, it is often easy to find a fornaul@f? using the
generalized parallel axis theorem [10] beca(s€? = R? — 0% ando% denotes
the mean square distance of the triangle vertices from tbeas given that they
carry weights which are the corresponding areal coordénaiteX .

In our caseF™* = (a2, b=2, ¢72), s0

1
a2 +b2+4c2)
a’b?c?

T a?b? + b2 + c2a?
This can be tidied using the standard formulas to showrfiat = R(1—4sin?w).
The distanceH h(F) = F*O is constant for the poristic triangles andF) is a
fixed point, so the Hagge circle associated withs the same for all the poristic
triangles. a

F*H? =

o2, = ( 5 (@®b 22 + a2 2+ a2

(a* +b* + ).

Corollary 5. In a Brocard porism, as the poristic triangles vary, the leaf their
orthocenters is contained in a circle with their common eeh{ F") on the Brocard
axis, whereF’ is the(areal)fourth power point of the triangles. The radius of this
circle is R(1 — 4sin?w).

In fact there is a direct method to show that the locu&/oh the Brocard porism
is a subset of a circle, but this approach reveals neithéeceaor radius. We have
JK? . . .
already observed th% =1 —3tan?w so for triangles in a Brocard porism

. JK? 1-3tan’w .
(with commonO and K) we have 707 = A % s constant. So as you
consider the various triangle in the porisshis constrained to move on a circle of
Apollonius with center some point on the fixed lio’. Now the vectorOH is
%OJ, SOH is constrained to move on a circle with its centéron the lineO K. In
fact H can occupy any position on this circle but we do not need #sslt (which
follows from K ranging over a circle centef for triangles in a Brocard porism
[3]).

There is a point which, when used Bdor the Hagge construction using medial
triangles, gives rise to a common Hagge circle as we rangerefgrence triangles
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in a Brocard porism. We use dashes to indicate the namesmbpoith respect to
the medial triangled’ B’C” of a poristic triangleA BC. We now know that is a

common point for the porism, so the distar@é’ is fixed. SinceO is fixed in the

Brocard porism and the locus &f is a circle, it follows that the locus oW is a

circle with center half way between and the center of the locus é&f.

Proposition 6. Let P be the center of the Brocard ellipse (the midpoint of the
segment joining the Brocard points afBC"). When the Hagge construction is
made for the medial triangld’ B’C’ using this pointP, then for eachA BC'in the
porism, the Hagge circle is the same.

Proof. If the areal coordinates of a point aflem, n) with respect toABC, then
the areal coordinates of this point with respect to the miédgmgle are(m + n —
I,n +1—m,l+n—m). The reference areals @ are (a(b*> + ¢?),b(c* +
a?),c?(a® + b)) so the medial areals afé*c?, c2a?, a®b*). The medial areals of
the medial isogonal conjugafe’ of P are(a?, b*, ¢*). Now the similarity carrying
ABC to A'B'C’ takesO to N and F to Pf. Thus in terms of distancO@F =
2PT N and moreove© F is parallel toPT N. Now, OP N1/ (P) is a parallelogram
with center the nine-point center of the medial triangle af(d) is the center of
the medial Hagge circle. It follows that(P) lies onOK at the midpoint oD F.
Therefore all triangles in the Brocard porism give rise toaayéke circle ofP (with
respect to the medial triangle) which is the circle diaméxér. O

Incidentally, P is the center of the locus @¥ in the Brocard porism. To see this,
note thatV is the midpoint ofO H, so it suffices to show th& P = PX whereX
is the center of the locus df in the Brocard cycle (given thdt is on the Brocard
axis of ABC). However, it is well known thaDP = R+/1 — 4sin’w and in
Proposition 4 we showed th@tX = 2R cosw+/1 — 4sin? w. We must eliminate
the possibility thatX and P are on different sides ab. If this happened, there
would be at least one triangle for whiechHOK = x. However,K is confined to
the orthocentroidal disk [3] so this is impossible.

4. The Hagge axis

Proposition 7. In the Hagge configuration, 18f1/ meetAH at L, WU meetBH
at M andUV meetC H and N. Then the pointd,, M, N and P are collinear.

We prove the following more general result. In order to applyhe letters
should be interpreted in the usual manner for the Hagge aoafign, andX
should be taken as the Hagge circle.

Proposition 8. Let three pointsX, Y and Z lie on a conicX and letly, Iy, I3 be
three chordsX H, Y H, Z H all passing through a poin{ on X. Suppose further
that P is any point in the plane of, and letX P, Y P, ZP meetX again atU, V
and W respectively. Now, I8 W meetl; at L, WU meetl, at M, UV meetls at
N. ThenLM N is a straight line passing througR.
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Figure 5. The Hagge axiBM N

Proof. Consider the hexagoHY VUW Z inscribed inX.. Apply Pascal’'s hexagon
theorem. It follows thaf\/, P, N are collinear. By taking another hexagdn P,
L are collinear. O

5. The Hagge configuration and associated Conics

In this section we give an analysis of the Hagge configuraiging barycentric
(areal) coordinates. This is both an enterprise in its oghtriserving to confirm
the earlier synthetic work, but also reveals the existeries interesting sequence
of conics. In what followsA BC' is the reference triangle and we taReto have
homogeneous barycentric coordinatesv, w). The algebra computer package
DERIVE is used throughout the calculations.

5.1 The Hagge circle and the Hagge axig he equation oAP is wy = vz. This
meets the circumcircle, with equatiafy z + b2z + czy = 0, at the pointD with
coordinates(—a?vw, v(b?*w + c*v), w(b*w + c*v)). Note that the sum of these
coordinates is-a?vw + v(b*w + c*v) + w(b*w + c*v)). We now want to find the
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coordinates ot/ (l,m,n), the reflection ofD in the sideBC'. It is convenient to
take the normalization ab to be the same as that bfso that

I+ m+n=—ad?vw+ v(b*w + ) + wb?w + 2v)). (7)

In order that the midpoint of/ D lies on BC the requirement is thdt = avw.
There is also the condition that the displacemént0, —1, 1) andU D(—a?vw—

1, v(b*w+c?v) —m, w(b?w+c*v) —n) should be at right angles. The condition for
perpendicular displacements may be found in [1, p.180]. Mthese conditions
are taken into account we find the coordinateg/aire

(I, m,n) = (a®>vw,v( (v + w) — a*w), wb*(v + w) — a®v)). (8)

The coordinates o, F', V, W can be obtained from those &1, U by cyclic

permutations of, b, c andu, v, w.
The Hagge circle is the circle throudgh V, W and its equation, which may be
obtained by standard means, is

(a®vw + b2wu + Cuv)(a®yz + b2 za + ay)
—(z +y+ 2)(a®(* + 2 — a®)vwz + b*(* + a® — bV )wuy + 2(a® + b — )uvz)
—0. (9)

It may now be checked that this circle has the charactefistiperty of a Hagge
circle that it passes througt, whose coordinates are

1 1 1
V+c2—a? 24+a? -0 a?2+b02—-c2)

Now the equation ofAH is (¢ + a® — b?)y = (a® + b*> — ¢?)z and this meets the
Hagge circle with Equation (9) again at the poitwith coordinateg —a?vw +
b2wu + uv, (a? + b? — )vw, (¢ + a® — b?)vw). The coordinates of, Z can
be obtained from those of by cyclic permutations of, b, ¢ andu, v, w.

Proposition 9. XU, YV, ZW are concurrent atP.

This has already been proved in Proposition 2, but may béeeiy checking
that when the coordinates of, U, P are placed as entries in the rows of & 3
determinant, then this determinant vanishes. This shoas\thU, P are collinear
asarey,V,PandZ, W, P.

If the equation of a conic i&? + my? + nz? + 2fyz + 2gzx + 2hxy = 0, then
the first coordinate of its center {gwn — gm — hn — f? + fg + hf) and other
coordinates are obtained by cyclic change of letters. Bhimecause it is the pole
of the line at infinity. Thez-coordinate of the centét(P) of the Hagge circle is
therefore—a® (b2 + ¢ — a?)vw + (a*(b? + ¢2) — (b* — ¢*)?)(b*wu + c2uv) with
y- andz-coordinates following by cyclic permutations @fb, ¢ andu, v, w.
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In §4 we introduced the Hagge axis and we now deduce its equaitomlines
VW and AH meet at the poinL with coordinates
(u(a®(b?w(u +v)(w +u —v) + v(w +u)(u+v —w)) + brw(u +v)(v+w — )
— b2 (U (v 4+ w) + u(v? + w?) 4+ 20w(v + w)) + cto(w + u) (v +w — u)),
vw(a® + % — ) (a®(u + v)(w + u) — u(d®(u +v) + A (w +u))),
vw(c® + a® — b)) (a®(u + v)(w + u) — u(b*(u +v) + (w + u)))).

The coordinates oM and N follow by cyclic permutations ofi, b, c andu, v, w.
From these we obtain the equation of the Hagge &XiEN as

Z vw(a® (u+v)(w+u) —u(d? (u+v)+c(w+u))) (e (v—w)— (b* — ) (v+w))z = 0.
cyclic

' (10)
It may now be verified that this line passes through

5.2 The midpoint Hagge conic\We now obtain a dividend from the areal analysis
in §5.1. The midpoints in question are thoseAdX, BY,CZ, DU, EV, FW and

in Figure 6 these points are label&d, Y, Z1, Uy, V1, Wi. This notation is not to
be confused with the now discarded notatip, Y; andZ; of Proposition 2. We
now show these six points lie on a conic.

Proposition 10. The pointsXy, Y1, Z1, Uy, Vi, Wy lie on a conic (the Hagge
midpoint conic).

Their coordinates are easily obtained and are
X1 (2u(b?w + *v),vw(a® + b* — %), vw(c® + a® — b)),
Uy (0,v(2¢%0 + w(b? + ¢ — a?)), w(2b?w + v(b?* + & — a?))),

with coordinates ofvy, 71, V4, Wi following by cyclic change of letters. It may
now be checked that these six points lie on the conic with tamua

4(a*vw + b*wu + Cuw) ( Z u?(—a*vw + b2 (v + w)w + v(v + w))yz)
cyclic

—(r+y+=2) ( Z v*w?((a® + 0% — )u + 2a%0)((? + a® — b*)u + 2a°w)x | = 0.
cyclic

(11)

Following the same method as before for the center, we findtheoordinates
are(u(b*w + c*v), v(Fu + a®w), w(a*v + b*u)).
Proposition 11. Uy, X4, P are collinear.

This is proved by checking that when the coordinateX'of U;, P are placed

as entries in the rows of &ix 3 determinant, then this determinant vanishes. This
shows thatX;, Uy, P are collinear as ar&;, V1, P andZ;, Wy, P.

Proposition 12. The center of the Hagge midpoint conic is the midpoir@b{ P).
It divides P*G in the ratio3 : —1.
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The proof is straightforward and is left to the reader.

In similar fashion to above we define the six poixis, Y, Z, U, Vi, Wy that
divide the six linesAX, BY,CZ, DU, EV, FW respectively in the ratié : 1 (k
real and£ 1).

Proposition 13. The six pointsXy, Y, Z;, Ug, Vi, W} lie on a conic and the
centers of these conics, for all valueskoflie on the lineOh(P) and divide it in
the ratiok : 1.

This proposition was originally conjectured by us on thadakdrawings by the
geometry software package CABRI and we are grateful to thieEdr confirming
the conjecture to be correct. We have rechecked his calmuland for the record
the coordinates ok, andU,, are

(1 = k)a*vw + (1 + E)u(b®w + ), k(a® + b* — A)ow, k(2 + a® — b?)ow),
and

(—a?(1—k)vw, v((1+k) v+ 0>+ ke —ka®)w), w((1+k)b*w(+kb* —ka?)v)),
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respectively. The conic involved has center with coorainat
((a®(0* + ¢* — a®)(a®vw + b*wu + uv)
+ k(=a*(0* + ¢ — a®)vw + (@*(b* + 2) — (b? — 2)H) (u(b*w + *v)),
)
Proposition 14. Uy, X}, P are collinear.

The proof is by the same method as for Proposition 11.

6. Loci of Haggi circle centers

The Macbeath conic o BC' is the inconic with foci at the circumcentér and
the orthocentef{. The center of this conic i8/, the nine-point center.

Proposition 15. The locus of centers of those Hagge circles which are tanigent
the circumcircle is the Macbeath conic.

Proof. We address the elliptical case (see Figure 7) wA&ITC is acute and{ is
inside the circumcircle of radiuR. The major axis of the Macbeath ellipieis
well known to have lengttR. Suppose thaP is a point of the plane. Now(P) is
onX if and only if Oh(P) + h(P)H = R, buth(P)H is the radius of the Hagge
circle, so this condition holds if and only if the Hagge aird$ internally tangent
to the circumcircle. Note thai(P) is on X if and only if P* is on X, and as
P* moves continuously rountl, the Hagge circle moves around the inside of the
circumcircle. The poinf> moved around the ‘deltoid’ shape as shown in Figure 7.

The case wherel BC' is obtuse and the Macbeath conic is a hyperbola is very
similar. The associated Hagge circles are externally tanigethe circumcircle.

O

Proposition 16. The locus of centers of those Hagge circles which cut theigirc
circle at diametrically opposite points is a straight linerpendicular to the Euler
line.

Proof. Let ABC have circumcente® and orthocenteir/. ChooseH’ on HO
produced so thalfO - OH' = R? whereR is the circumradius oA BC. Now if

X, Y are diametrically opposite points ¢h(but not on the Euler line), then the
circumcircleS” of XY H is of interest. By the converse of the power of a point
theorem,H’ lies on eachS’. These circless” form an intersecting coaxal system
throughH and H’ and their centers lie on the perpendicular bisectaiféf’. [
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