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Euler’s Triangle Determination Problem

Joseph Stern

Abstract. We give a simple proof of Euler’s remarkable theorem that for a non-
degenerate triangle, the set of points eligible to be the incenter is precisely the
orthocentroidal disc, punctured at the nine-point center. The problem is handled
algebraically with complex coordinates. In particular, we show how the vertices
of the triangle may be determined from the roots of a complex cubic whose co-
efficients are functions of the classical centers.

1. Introduction

Consider the determination of a triangle from its centers.1 What relations must
be satisfied by pointsO,H, I so that a unique triangle will have these points as
circumcenter, orthocenter, and incenter? In Euler’s groundbreaking article [3],So-
lutio facilis problematum quorundam geometricorum difficillimorum, this intrigu-
ing question is answered synthetically, but without any comment on the geometric
meaning of the solution.

Euler proved the existence of the required triangle by treating the lengths of the
sides as zeros of a real cubic, the coefficients being functions ofOI, OH, HI. He
gave the following algebraic restriction on the distances to ensure that the cubic
has three real zeros:

OI2 < OH2 − 2 ·HI2 < 2 ·OI2.

Though Euler did not remark on the geometric implications, his restriction was
later proven equivalent to the simpler inequality

GI2 + IH2 < GH2,

whereG is the point that dividesOH in the ratio1 : 2 (G is the centroid). This
result was presented in a beautiful 1984 paper [4] by A. P. Guinand. Its geometric
meaning is immediate:I must lie inside the circle on diameterGH. It also turns
out thatI cannot coincide with the midpoint ofOH, which we denote byN (the
nine-point center). The remarkable fact is thatall and only points inside the circle
and different fromN are eligible to be the incenter. This region is often called
the orthocentroidal disc, and we follow this convention.2 Guinand considered the

Publication Date: January 8, 2007. Communicating Editor: Paul Yiu.
Dedicated to the tercentenary of Leonhard Euler.
1The phrase “determination of a triangle” is borrowed from [7].
2Conway discusses several properties of the orthocentroidal disc in [1].



2 J. Stern

cosines of the angles as zeros of a real cubic. He showed that this cubic has three
real zeros with positive inverse cosines summing toπ. Thus the angles are known,
and the scale may be determined subsequently fromOH. The problem received
fresh consideration in 2002, when B. Scimemi [7] showed how to solve it using
properties of the Kiepert focus, and again in 2005, when G. C. Smith [8] used
statics to derive the solution.

The approach presented here uses complex coordinates. We show that the ver-
tices of the required triangle may be computed from the roots of a certain complex
cubic whose coefficients depend only upon the classical centers. This leads to a
relatively simple proof.

2. Necessity of Guinand’s Locus

Given a nonequilateral triangle, we show first that the incenter must lie within
the orthocentroidal disc and must differ from the nine-point center. The equilateral
triangle is uninteresting, since all the centers coincide.

Let �ABC be nonequilateral. As usual, we writeO,H, I,G,N,R, r for the
circumcenter, orthocenter, incenter, centroid, nine-point center, circumradius and
inradius. Two formulas will feature very prominently in our discussion:

OI2 = R(R − 2r) and NI = 1
2(R − 2r).

The first is due to Euler and the second to Feuerbach.3 They jointly imply

OI > 2 ·NI,

provided the triangle is nonequilateral. Now given a segmentPQ and a number
λ > 1, the Apollonius Circle Theorem states that

(1) the equationPX = λ · QX describes a circle whose center lies onPQ,
with P inside andQ outside;

(2) the inequalityPX > λ ·QX describes the interior of this circle (see [6]).

Thus the inequalityOI > 2 · NI placesI inside the circleOX = 2 · NX, the
center of which lies on the Euler lineON . SinceG andH lie on the Euler line and
satisfy the equation of the circle,GH is a diameter, and this circle turns out to be
the orthocentroidal circle. Finally, the formulas of Euler and Feuerbach show that
if I = N , thenO = I. This means that the incircle and the circumcircle arecon-
centric, forcing�ABC to be equilateral. ThusN is ineligible to be the incenter.

3. Complex Coordinates

Our aim now is to express the classical centers of�ABC as functions of
A,B,C, regarded as complex numbers.4 We are free to putO = 0, so that

|A| = |B| = |C| = R.

3Proofs of both theorems appear in [2].
4See [5] for a more extensive discussion of this approach.
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The centroid is given by3G = A+B+C. The theory of the Euler line shows that
3G = 2O + H, and sinceO = 0, we have

H = A + B + C.

Finally, it is clear that2N = O + H = H.

O
I

A

B C

X

Y

Z

Figure 1.

To deal with the incenter, letX,Y,Z be the points at which the extended angle
bisectors meet the circumcircle (Figure 1). It is not difficult to see thatAX ⊥ Y Z,
BY ⊥ ZX andCZ ⊥ XY . For instance, one angle betweenAX andY Z is
the average of the minor arc fromA to Z and the minor arc fromX to Y . The
first arc measureŝC, and the second,̂A + B̂. Thus the angle betweenAX and
Y Z is π/2. Evidently the angle bisectors of�ABC coincide with the altitudes of
�XY Z, andI is the orthocenter of�XY Z. Since this triangle has circumcenter
0, its orthocenter is

I = X + Y + Z.

We now introduce complex square rootsα, β, γ so that

α2 = A, β2 = B, γ2 = C.

There are two choices for each ofα, β, γ. Observe that

|βγ| = R and arg(βγ) = 1
2 (argB + argC),

so that±βγ are the mid-arc points betweenB andC. It follows thatX = ±βγ,
depending on our choice of signs. For reasons to be clarified later, we would like
to arrange it so that

X = −βγ, Y = −γα, Z = −αβ.
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These hold ifα, β, γ are chosen so as to make�αβγ acute, as we now show.
Let Γ denote the circle|z| =

√
R, on whichα, β, γ must lie. Temporarily let

α1, α2 be the two square roots ofA, andβ1 a square root ofB. Finally, letγ1 be the
square root ofC on the side ofα1α2 containingβ1 (Figure 2). Now�αiβjγk is
acute if and only if any two vertices are separated by the diameter ofΓ through the
remaining vertex. Otherwise one of its angles would be inscribed in a minor arc,
rendering it obtuse. It follows that of all eight triangles�αiβjγk, only �α1β2γ1

and�α2β1γ2 are acute.

0

α1

α2

β1

β2

γ1

γ2

Figure 2.

Now let (α, β, γ) be either(α1, β2, γ1) or (α2, β1, γ2), so that�αβγ is acute.
Consider the stretch-rotationz �→ βz. This carries the diameter ofΓ with endpoints
±α to the diameter of|z| = R with endpoints±αβ, one of which isZ. Now β
andγ are separated by the diameter with endpoints±α, and thereforeB andβγ
are separated by the diameter with endpoints±Z. Thus to proveX = −βγ, we
must only show thatX andB are on thesame side of the diameter with endpoints
±Z. This will follow if the arc fromZ to X passing throughB is minor (Figure
3); but of course its measure is

∠ZOB + ∠BOX = 2∠ZCB + 2∠BAX = Ĉ + Â < π.

HenceX = −βγ. Similar arguments show thatY = −γα andZ = −αβ.
To summarize, the incenter of�ABC may be expressed as

I = −(βγ + γα + αβ),

whereα, β, γ are complex square roots ofA,B,C for which �αβγ is acute.
Note that this expression is indifferent to the choice between(α1, β2, γ1) and
(α2, β1, γ2), since each of these triples is the negative of the other.
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Figure 3.

4. Sufficiency of Guinand’s Locus

PlaceO andH in the complex plane so thatO lies at the origin. DefineN
andG as the points which divideOH internally in the ratios1 : 1 and 1 : 2,
respectively. Suppose thatI is a point different from N selected from within the
circle on diameterGH. SinceH − 2I = 2(N − I) is nonzero, we are free to scale
coordinates so thatH − 2I = 1. Let u = |I|. Guinand’s inequalityOI > 2 · NI,
which we write in complex coordinates as

|I| > 2|N − I|
now acquires the very simple formu > 1.

Consider the cubic equation

z3 − z2 − Iz + u2I = 0.

By the Fundamental Theorem of Algebra, this has three complex zerosα, β, γ.
These turn out to be square roots of the required vertices. From the standard rela-
tions between zeros and coefficients, one has the important equations:

α + β + γ = 1, βγ + γα + αβ = −I, αβγ = −u2I.

Let us first show that the zeros lie on a circle centered at the origin. In fact,

|α| = |β| = |γ| = u.

If z is a zero of the cubic, thenz2(z − 1) = I(z − u2). Taking moduli, we get

|z|2|z − 1| = u|z − u2|.
Squaring both sides and applying the rule|w|2 = ww̄, we find that

|z|4(z − 1)(z̄ − 1) = u2(z − u2)(z̄ − u2),
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(|z|6 − u6) − (|z|4 − u4)(z + z̄) + |z|2(|z|2 − u2) = 0.
Assume for contradiction that a certain zeroz has modulus
= u. Then we may
divide the last equation by the nonzero number|z|2 − u2, getting

|z|4 + u2|z|2 + u4 − (|z|2 + u2)(z + z̄) + |z|2 = 0,

or after a slight rearrangement,

(|z|2 + u2)(|z|2 − (z + z̄)) + u4 + |z|2 = 0.

An elementary inequality of complex algebra says that

−1 ≤ |z|2 − (z + z̄).

From this inequality and the above equation, we find that

(|z|2 + u2)(−1) + u4 + |z|2 ≤ 0,

or after simplifying,
u4 − u2 ≤ 0.

As this result is inconsistent with the hypothesisu > 1, we have proven that all the
zeros of the cubic equation have modulusu.

Now define A,B,C by

A = α2, B = β2, C = γ2.

Clearly |A| = |B| = |C| = u2. Since three points of a circle cannot be collinear,
�ABC will be nondegenerate so long asA,B,C are distinct. Thus suppose for
contradiction thatA = B. It follows that α = ±β. If α = −β, then γ =
α+β+γ = 1, yielding the falsehoodu = |γ| = 1. The only remaining alternative
is α = β. In this case,2α + γ = 1 andα(2γ + α) = −I, so that

|α||2γ + α| = |I|, or |2γ + α| = 1.

Since2α+ γ = 1, one has|2− 3α| = |2γ +α| = 1. Squaring this last result gives

4 − 6(α + ᾱ) + 9|α|2 = 1, or 2(α + ᾱ) = 1 + 3u2.

Since|α + ᾱ| = 2|Re(α)| ≤ 2|α|, we have1 + 3u2 ≤ 4u. Therefore the value of
u is bounded between the zeros of the quadratic

3u2 − 4u + 1 = (3u− 1)(u− 1),

yielding the falsehood13 ≤ u ≤ 1. By this kind of reasoning, one shows that any
two of A,B,C are distinct, and hence that�ABC is nondegenerate.

As in §3, since�ABC has circumcenter0, its orthocenter is

A + B + C = α2 + β2 + γ2

= (α + β + γ)2 − 2(βγ + γα + αβ)
= 1 + 2I
= H.

Here we see the rationale for having chosenI = −(βγ + γα + αβ).
Lastly we must show that the incenter of�ABC lies atI. It has already ap-

peared thatI = −(βγ + γα + αβ). As in §3, exactly two of the eight possible
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triangles formed from square roots ofA,B,C are acute, and these are mutual im-
ages under the mapz �→ −z. Moreover, the incenter of�ABC is necessarily the
value of the expression−(z2z3 + z3z1 + z1z2) whenever�z1z2z3 is one of these
two acute triangles. Thus to identify the incenter withI, we must only show that
�αβγ is acute.

Angle α̂ is acute if and only if

|β − γ|2 < |α− β|2 + |α− γ|2.
On applying the rule|w|2 = ww̄, this becomes

2u2 − (βγ̄ + β̄γ) < 4u2 − (αβ̄ + ᾱβ + αγ̄ + ᾱγ),

αβ̄ + ᾱβ + αγ̄ + ᾱγ + βγ̄ + β̄γ < 2(u2 + βγ̄ + β̄γ).

Here the left-hand side may be simplified considerably as

(α + β + γ)(ᾱ + β̄ + γ̄) − |α|2 − |β|2 − |γ|2 = 1 − 3u2.

In a similar way, the right-hand side simplifies as

2u2 + 2(β + γ)(β̄ + γ̄) − 2|β|2 − 2|γ|2
= 2(1 − α)(1 − ᾱ) − 2u2

= 2(1 + |α|2 − α− ᾱ− u2)
= 2 − 2(α + ᾱ).

To complete the proof that̂α is acute, it remains only to show that

2(α + ᾱ) < 1 + 3u2.

However,2(α + ᾱ) ≤ 4|α| = 4u, and we have already seen that

4u < 1 + 3u2,

since the opposite inequality yields the falsehood1
3 ≤ u ≤ 1. Similar arguments

establish that̂β andγ̂ are acute.
To summarize, we have produced a nondegenerate triangle�ABC which has

classical centers at the given pointsO,H, I. We now return to original notation
and writeR = u2 for the circumradius of�ABC.

5. Uniqueness

Suppose some other triangle�DEF hasO,H, I as its classical centers. The
formulas of Euler and Feuerbach presented in§2 have a simple but important con-
sequence: If a triangle hasO,N, I as circumcenter, nine-point center, and incenter,
then itscircumdiameter is OI2/NI. This means that�ABC and�DEF share
not only the same circumcenter, but also the same circumradius. It follows that
|D| = |E| = |F | = R.

Since�DEF has circumcenter0, its orthocenterH is equal toD + E + F .
Choose square rootsδ, ε, ζ of D,E,F so that the incenterI will satisfy

I = −(εζ + ζδ + δε).
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Then

(δ + ε + ζ)2 = δ2 + ε2 + ζ2 + 2(εζ + ζδ + δε)
= D + E + F − 2I
= H − 2I
= 1.

Since the mapz �→ −z leavesI invariant, but reverses the sign ofδ + ε + ζ, we
may change the signs ofδ, ε, ζ if necessary to make it so that

δ + ε + ζ = 1.

Observe next that|δεζ| = u3 = |u2I|. Thus we may write

δεζ = −θu2I, where |θ| = 1.

The elementary symmetric functions ofδ, ε, ζ are now

δ + ε + ζ = 1, εζ + ζδ + δε = −I, δεζ = −θu2I.

It follows thatδ, ε, ζ are the roots of the cubic equation

z3 − z2 − Iz + θu2I = 0.

As in §4, we rearrange and take moduli of both sides to obtain

|z|2|z − 1| = u|z − θu|.
Squaring both sides of this result, we get

|z|4(|z|2 − z − z̄ + 1) = u2(|z|2 − u2zθ̄ − u2z̄θ + u4).

Since all zeros of the cubic have modulusu, we may replace every occurrence of
|z|2 by u2. This dramatically simplifies the equation, reducing it to

z + z̄ = zθ̄ + z̄θ.

Substitutingδ, ε, ζ here successively forz and adding the results, one finds that

2 = θ̄ + θ,

since
δ + ε + ζ = δ̄ + ε̄ + ζ̄ = 1.

It follows easily thatθ = 1. Evidentlyδ, ε, ζ are determined from the same cubic
asα, β, γ. Therefore(D,E,F ) is a permutation of(A,B,C), and the solution of
the determination problem is unique.
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On a Porism Associated with the Euler
and Droz-Farny Lines

Christopher J. Bradley, David Monk, and Geoff C. Smith

Abstract. The envelope of the Droz-Farny lines of a triangle is determined to
be the inconic with foci at the circumcenter and orthocenter by using purely
Euclidean means. The poristic triangles sharing this inconic and circumcircle
have a common circumcenter, centroid and orthocenter.

1. Introduction

The triangleABC has orthocenterH and circumcircleΣ. Suppose that a pair
of perpendicular lines throughH are drawn, then they meet the sidesBC, CA,
AB in pairs of points. The midpointsX, Y , Z of these pairs of points are known
to be collinear on the Droz-Farny line [2]. The envelope of the Droz-Farny line
is the inconic with foci atO andH, known recently as the Macbeath inconic, but
once known as the Euler inconic [6]. We support the latter terminology because of
its strong connection with the Euler line [3]. According to Goormaghtigh writing
in [6] this envelope was first determined by Neuberg, and Goormaghtigh gives an
extensive list of early articles related to the Droz-Farny line problem. We will not
repeat the details since [6] is widely available through the archive service JSTOR.

We give a short determination of the Droz-Farny envelope using purely Eu-
clidean means. Taken in conjunction with Ayme’s recent proof [1] of the existence
of the Droz-Farny line, this yields a completely Euclidean derivation of the enve-
lope.

This envelope is the inconic of a porism consisting of triangles with a common
Euler line and circumcircle. The sides of triangles in this porism arise as Droz-
Farny lines of any one of the triangles in the porism. Conversely, if the orthocenter
is interior toΣ, all Droz-Farny lines will arise as triangle sides.

2. The Droz-Farny envelope

Theorem. Each Droz-Farny line of triangle ABC is the perpendicular bisector of
a line segment joining the orthocenter H to a point on the circumcircle.

Proof. Figure 1 may be useful. Let perpendicular linesl and l′ throughH meet
BC, CA, AB atP andP ′, Q andQ′, R andR′ respectively and letX, Y , Z be
the midpoints ofPP ′,QQ′,RR′.

The collinearity ofX, Y , Z is the Droz-Farny theorem. LetK be the foot of
the perpendicular fromH toXY Z and produceHK toL with HK = KL. Now
the circleHPP ′ has centerX andXH = XL soL lies on this circle. LetM ,M′
be the feet of the perpendiculars fromL to l, l′. Note thatLMHM ′ is a rectangle

Publication Date: January 16, 2007. Communicating Editor: Paul Yiu.
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A
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R

R′

X

Y

Z

K

L

M

M ′

S

T

Figure 1. The Droz-Farny envelope

soK is onMM ′. Then the foot of the perpendicular fromL to the linePP′ (i.e.
BC) lies onMM ′ by the Wallace-Simson line property applied to the circumcircle
of PP ′H. Equally well, both perpendiculars dropped fromL toAB andCA have
feet onMM ′. HenceL lies on circleABC with MM′ as its Wallace-Simson line.
ThereforeXY Z is a perpendicular bisector of a line segment joiningH to a point
on the circumcircle. �

Note thatK lies on the nine-point circle ofABC. An expert in the theory of
conics will recognize that the nine-point circle is the auxiliary circle of the Euler
inconic of ABC with foci at the circumcenter and orthocenter, and for such a
reader this article is substantially complete. The pointsX, Y , Z are collinear
and the lineXY Z is tangent to the conic inscribed in triangleABC and having
O, H as foci. The direction of the Droz-Farny line is a continuous function of
the direction of the mutual perpendiculars; the argument of the Droz-Farny line
against a reference axis increases monotonically as the perpendiculars rotate (say)
anticlockwise throughθ, with the position of the Droz-Farny line repeating itself
asθ increases byπ2 . By the intermediate value theorem, the envelope of the Droz-
Farny lines is the whole Euler inconic.

We present a detailed discussion of this situation in§3 for the lay reader.
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Incidentally, the fact thatXY is a variable tangent to a conic of whichBC,CA
are fixed tangents mean that the correspondenceX ∼ Y is a projectivity between
the two lines. There is a neat way of setting up this map: let the perpendicular
bisectors ofAH,BH meetAB at S andT respectively. ThenSY andTX are
parallel. With a change of notation denote the linesBC, CA, AB, XY Z by a,
b, c, d respectively; lete, f be the perpendicular bisectors ofAH, BH. All these
lines are tangents to the conic in question. Consider the Brianchon hexagon of
linesa, b, c, d, e, f . The intersectionsae, fb are at infinity so their join is the line
at infinity. We haveec = S, bd = Y , cf = T , da = X. By Brianchon’s theorem
SY is parallel toXT .

3. The porism

A

B C

O
N

H

J

Ot

X

Y

Z

T

U

V

Figure 2. A porism associated with the Euler line

In a triangle with side lengthsa, b andc, circumradiusR and circumcenterO,
the orthocenterH always lies in the interior of a circle centerO and radius3R
since, as Euler showed,OH2 = 9R2 − (a2 + b2 + c2).

We begin afresh. Suppose that we draw a circleΣ with centerO and radiusR in
which is inscribed a non-right angled triangleABC which has an orthocenterH,
soOH < 3R andH is not onΣ.

This H will serve as the orthocenter of infinitely many other trianglesXY Z
inscribed in the circle and a porism is obtained. We construct these triangles by
choosing a pointJ on the circle. Next we draw the perpendicular bisector ofHJ ,
and need this line to meetΣ again atY andZ with XY Z anticlockwise. We can
certainly arrange that the line andΣ meet by choosingX sufficiently close toA,
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B orC. When this happens it follows from elementary considerations that triangle
XY Z has orthocenterH, and is the only such triangle with circumcircleΣ and
vertexX. In the event thatH is inside the circumcircle (which happens precisely
when triangleABC is acute), then every pointX on the circumcircle arises as a
vertex of a triangleXY Z in the porism.

The construction may be repeated to create as many trianglesABC, TUV ,
PQR as we please, all inscribed in the circle and all having orthocenterH, as
illustrated in Figure 2. Notice that the triangles in this porism have the same cir-
cumradius, circumcenter and orthocenter, so the sum of the squares of the side
lengths of each triangle in the porism is the same.

We will show that all these triangles circumscribe a conic, with one axis of
lengthR directed along the common Euler line, and with eccentricityOH

R . It fol-
lows that this inconic is an ellipse ifH is chosen inside the circle, but a hyperbola
if H is chosen outside.

Thus a porism arises which we call anEuler line porism since each triangle in
the porism has the same circumcenter, centroid, nine-point center, orthocentroidal
center, orthocenteretc. A triangle circumscribing a conic gives rise to aBrianchon
point at the meet of the three Cevians which join each vertex to its opposite contact
point.

We will show that the Brianchon point of a triangle in this porism is the isotomic
conjugateOt of the common circumcenterO.

In Figure 2 we pinpointOt for the triangleXY Z. The computer graphics system
CABRI gives strong evidence for the conjecture that the locus ofOt, as one runs
through the triangles of the porism, is a a subset of a conic.

It is possible to choose a pointH at distance greater than3R from O so there
is no triangle inscribed in the circle which has orthocenterH and then there is no
pointJ on the circle such that the perpendicular bisector ofHJ cuts the circle.

The acute triangle case. See Figure 3. The construction is as follows. DrawAH,
BH andCH to meetΣ atD,E andF . DrawDO,EO andFO to meet the sides
atL,M ,N . LetAO meetΣ atD∗ andBC atL∗. Also letDO meetΣ atA∗. The
pointsM∗,N∗, E∗, F ∗,B∗ andC∗ are not shown but are similarly defined. Here
A′ is the midpoint ofBC and the line throughA′ perpendicular toBC is shown.

3.1. Proof of the porism. Consider the ellipse defined as the locus of pointsP
such thatHP + OP = R, whereR the circumradius ofΣ. The triangleHLD is
isosceles, soHL+OL = LD +OL = R; thereforeL lies on the ellipse.

Now∠OLB = ∠CLD = ∠CLH, because the line segmentHD is bisected by
the sideBC. Therefore the ellipse is tangent toBC atL, and similarly atM and
N . It follows thatAL,BM ,CN are concurrent at a point which will be identified
shortly.

This ellipse depends only onO,H andR. It follows that ifTUV is any triangle
inscribed inΣ with centerO, radiusR and orthocenterH, then the ellipse touches
the sides ofTUV . The porism is established.
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A
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F
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A′

D∗

L∗L

M

N

Figure 3. The inconic of the Euler line porism

Identification of the Brianchon point. This is the point of concurrence ofAL,BM ,
CN . SinceO andH are isogonal conjugates, it follows thatD∗ andA∗ are reflec-
tions ofD andA in the line which is the perpendicular bisector ofBC. The same
applies toB∗, C∗, E∗ andF ∗ with respect to other perpendicular bisectors. Thus
A∗D andAD∗ are reflections of each other in the perpendicular bisector. ThusL∗
is the reflection ofL and thusA′L = A′L∗. Thus sinceAL∗, BM∗, CN∗ are
concurrent atO, the linesAL, BM andCN are concurrent atOt, the isotomic
conjugate ofO.

The obtuse triangle case. Refer to Figure 4. Using the same notation as before,
now consider the hyperbola defined as the locus of pointsP such that|HP −
OP | = R. We now haveHL − OL = LD − OL = R so thatL lies on the
hyperbola.

Also ∠A∗LB = ∠CLD = ∠HLC, so the hyperbola touchesBC atL, and the
argument proceeds as before.

It is a routine matter to obtain the Cartesian equation of this inconic. Scaling so
thatR = 1 we may assume thatO is at(0, 0) andH at (c, 0) where0 ≤ c < 3 but
c �= 1.
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Figure 4. The Euler inconic can be a hyperbola

The inconic then has equation

4y2 + (1 − c2)(2x − c)2 = (1 − c2). (1)

Whenc < 1, soH is internal toΣ, this represents an ellipse, but whenc > 1 it
represents a hyperbola. In all cases the center is at(c2 , 0), which is the nine-point
center.

One of the axes of the ellipse is the Euler line itself, whose equation isy = 0.
We see from Equation (1) that the eccentricity of the inconic isc = OH

R and of
course its foci are atO andH. Not every tangent line to the inconic arises as a side
of a triangle in the porism ifH is outsideΣ.

Areal analysis. One can also perform the geometric analysis of the envelope us-
ing areal co-ordinates, and we briefly report relevant equations for the reader in-
terested in further areal work. TakeABC as triangle of reference and define
u = cotB cotC, v = cotC cotA, w = cotA cotB so thatH(u, v,w) and
O(v + w,w + u, u + v). This means that the isotomic conjugateOt of O has
co-ordinates

Ot

(
1

v + w
,

1
w + u

,
1

u+ v

)
.

The altitudes areAH, BH, CH with equationswy = vz, uz = wx, vx = uy
respectively.
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The equation of the inconic is

(v + w)2x2 + (w + u)2y2 + (u+ v)2z2 − 2(w + u)(u+ v)yz

−2(u+ v)(v + w)zx− 2(v + w)(w + u)xy = 0. (2)

This curve can be parameterized by the formulas:

x =
(1 + q)2

v + w
, y =

1
w + u

, z =
q2

u+ v
, (3)

whereq has any real value (including infinity). The perpendicular linesl and l′
throughH may be taken to pass through the points at infinity with co-ordinates
((1 + t),−t,−1) and((1 + s),−s,−1) and then the Droz-Farny line has equation

−(sw+ tw− 2v)(2stw − sv− tv)x− (sw+ tw+ 2(u+w))(2stw − sv− tv)y

+(sw + tw − 2v)(2st(u + v) + sv + tv)z = 0. (4)

In Equation (4) for the midpointsX, Y , Z to be collinear we must take

s = − v(tw + u+ w)
w(t(u+ v) + v)

. (5)

If we now substitute Equation (3) into Equation (4) and use Equation (5), a discrim-
inant test on the resulting quadratic equation with the help of DERIVE confirms
the tangency for all values oft.

Incidentally, nowhere in this areal analysis do we use the precise values of
u, v,w in terms of the anglesA,B,C. Therefore we have a bonus theorem: if
H is replaced by another pointK, then given a line throughK, there is always a
second line throughK (but not generally at right angles to it) so thatXY Z is a
straight line. As the linel rotates,l′ also rotates (but not at the same rate). How-
ever the rotations of these lines is such that the variable pointsX, Y , Z remain
collinear and the lineXY Z also envelops a conic. This affine generalization of the
Droz-Farny theorem was discovered independently by Charles Thas [5] in a paper
published after the original submission of this article. We happily cede priority.
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The Edge-Tangent Sphere of a Circumscriptible
Tetrahedron

Yu-Dong Wu and Zhi-Hua Zhang

Abstract. A tetrahedron is circumscriptible if there is a sphere tangent to each
of its six edges. We prove that the radius� of the edge-tangent sphere is at least√

3 times the radius of its inscribed sphere. This settles affirmatively a problem
posed by Z. C. Lin and H. F. Zhu. We also briefly examine the generalization
into higher dimension, and pose an analogous problem for ann−dimensional
simplex admitting a sphere tangent to each of its edges.

1. Introduction

Every tetrahedron has a circumscribed sphere passing through its four vertices
and an inscribed sphere tangent to each of its four faces. A tetrahedron is said
to be circumscriptible if there is a sphere tangent to each of its six edges (see [1,
§§786–794]). We call this the edge-tangent sphere of the tetrahedron.

Let P denote a tetrahedronP0P1P2P3 with edge lengthsPiPj = aij for 0 ≤
i < j ≤ 3. The following necessary and sufficient condition for a tetrahedron to
admit an edge-tangent sphere can be found in [1,§§787, 790, 792]. See also [4, 6].

Theorem 1. The following statement for a tetrahedronP are equivalent.
(1) P has an edge-tangent sphere.
(2) a01 + a23 = a02 + a13 = a03 + a12;
(3) There existxi > 0, i = 0, 1, 2, 3, such thataij = xi + xj for 0 ≤ i < j ≤ 3.

Fori = 0, 1, 2, 3, xi is the length of a tangent fromPi to the edge-tangent sphere
of P. Let 	 denote the radius of this sphere.

Theorem 2. [1, §793] The radius of the edge-tangent sphere of a circumscriptible
tetrahedron of volumeV is given by

	 =
2x0x1x2x3

3V
. (1)

Lin and Zhu [4] have given the formula (1) in the form

	2 =
(2x0x1x2x3)

2

2x0x1x2x3
∑

0≤i<j≤3
xixj − (x2

1x
2
2x

2
3 + x2

2x
2
3x

2
0 + x2

3x
2
0x

2
1 + x2

0x
2
1x

2
2)

. (2)
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The fact that this latter denominator is(3V )2 follows from the formula for the
volume of a tetrahedron in terms of its edges:

V 2 =
1

288

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 (x0 + x1)2 (x0 + x2)2 (x0 + x3)2

1 (x0 + x1)2 0 (x1 + x2)2 (x1 + x3)2

1 (x0 + x2)2 (x1 + x2)2 0 (x2 + x3)2

1 (x0 + x3)2 (x1 + x3)2 (x2 + x3)2 0

∣∣∣∣∣∣∣∣∣∣
.

Lin and Zhuop. cit. obtained several inequalities for the edge-tangent sphere
of P. They also posed the problem of proving or disproving	2 ≥ 3r2 for a
circumscriptible tetrahedron. See also [2]. The main purpose of this paper is to
settle this problem affirmatively.

Theorem 3. For a circumscriptible tetrahedron with inradiusr and edge-tangent
sphere of radius	, 	 ≥√

3r.

2. Two inequalities

Lemma 4. If xi > 0 for 0 ≤ i ≤ 3, then(
x1 + x2 + x3

x1x2x3
+

x2 + x3 + x0

x2x3x0
+

x3 + x0 + x1

x3x0x1
+

x0 + x1 + x2

x0x1x2

)

· 4(x0x1x2x3)2

2x0x1x2x3
∑

0≤i<j≤3
xixj − (x2

1x
2
2x

2
3 + x2

2x
2
3x

2
0 + x2

3x
2
0x

2
1 + x2

0x
2
1x

2
2)

≥ 6.
(3)

Proof. From

x2
0x

2
1(x2 − x3)2 + x2

0x
2
2(x1 − x3)2 + x2

0x
2
3(x1 − x2)2

+x2
1x

2
2(x0 − x3)2 + x2

1x
2
3(x0 − x2)2 + x2

2x
2
3(x0 − x1)2 ≥ 0,

we have

x2
1x

2
2x

2
3 + x2

2x
2
3x

2
0 + x2

3x
2
0x

2
1 + x2

0x
2
1x

2
2 ≥ 2

3
x0x1x2x3

∑
0≤i<j≤3

xixj ,

and

2x0x1x2x3

∑
0≤i<j≤3

xixj − (x2
1x

2
2x

2
3 + x2

2x
2
3x

2
0 + x2

3x
2
0x

2
1 + x2

0x
2
1x

2
2)

≤4
3
x0x1x2x3

∑
0≤i<j≤3

xixj,

or
4(x0x1x2x3)2

2x0x1x2x3
∑

0≤i<j≤3
xixj − (x2

1x
2
2x

2
3 + x2

2x
2
3x

2
0 + x2

3x
2
0x

2
1 + x2

0x
2
1x

2
2)

≥ 4(x0x1x2x3)2
4
3x0x1x2x3

∑
0≤i<j≤3

xixj
=

3x0x1x2x3∑
0≤i<j≤3

xixj
.

(4)
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On the other hand, it is easy to see that

x1 + x2 + x3

x1x2x3
+

x2 + x3 + x0

x2x3x0
+

x3 + x0 + x1

x3x0x1
+

x0 + x1 + x2

x0x1x2
=

2
∑

0≤i<j≤3
xixj

x0x1x2x3
.

(5)
Inequality (3) follows immediately from (4) and (5). �

Corollary 5. For a circumscriptible tetrahedronP with an edge-tangent sphere
of radius	, and faces with inradiir0, r1, r2, r3,(

1
r2
0

+
1
r2
1

+
1
r2
2

+
1
r2
3

)
	2 ≥ 6.

Equality holds if and only ifP is a regular tetrahedron.

Proof. From the famous Heron formula, the inradius of a triangleABC of side-
lengthsa = y + z, b = z + x andc = x + y is given by

r2 =
xyz

x + y + z
.

Applying this to the four faces ofP, we see that the first factor on the left hand

side of (3) is
(

1
r2
0

+ 1
r2
1

+ 1
r2
2

+ 1
r2
3

)
. Now the result follows from (2). �

Proposition 6. Let P be a circumscriptible tetrahedron of volumeV . If, for i =
0, 1, 2, 3, the opposite face of vertexPi has area�i and inradiusri, then

(�0 + �1 + �2 + �3)2 ≥ 9V 2

2

(
1
r2
0

+
1
r2
1

+
1
r2
2

+
1
r2
3

)
. (6)

Equality holds if and only ifP is a regular tetrahedron.

P0

P1

P2

P3

H

Q1

α

γ

β Q2

Q3

Figure 1.
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Proof. Let α be the angle between the planesP0P2P3 andP1P2P3. If the perpen-
diculars fromP0 to the lineP2P3 and to the planeP1P2P3 intersect these atQ1 and
H respectively, then∠P0QH = α. See Figure 1. Similarly, we have the angles
β between the planesP0P3P1 andP1P2P3, andγ betweenP0P1P2 andP1P2P3.
Note that

P0H = P0Q1 · sin α = P0Q2 · sin β = P0Q3 · sin γ.

Hence,

P0H · P2P3 =2�1 sinα = 2
√

(�1 + �1 cos α)(�1 −�1 cos α), (7)

P0H · P3P1 =2�2 sinβ = 2
√

(�2 + �2 cos β)(�2 −�2 cos β), (8)

P0H · P1P2 =2�3 sin γ = 2
√

(�3 + �3 cos γ)(�3 −�3 cos γ). (9)

From (7–9), together withP0H = 3V
�0

and �0

r0
= 1

2(P1P2 + P2P3 + P3P1), we
have

3V
r0

=
√

(�1 + �1 cos α)(�1 −�1 cos α)

+
√

(�2 + �2 cos β)(�2 −�2 cos β) (10)

+
√

(�3 + �3 cos γ)(�3 −�3 cos γ).

Applying Cauchy’s inequality and noting that

�0 = �1 cos α + �2 cos β + �3 cos γ,

we have(
3V
r0

)2

≤(�1 + �1 cos α + �2 + �2 cos β + �3 + �3 cos γ)

·(�1 −�1 cos α + �2 −�2 cos β + �3 −�3 cos γ)

=(�1 + �2 + �3 + �0)(�1 + �2 + �3 −�0)

=(�1 + �2 + �3)2 −�2
0,

(11)

or

(�1 + �2 + �3)2 −�2
0 ≥

(
3V
r0

)2

. (12)

It is easy to see that equality in (12) holds if and only if

�1 + �1 cos α

�1 −�1 cos α
=

�2 + �2 cos β

�2 −�2 cos β
=

�3 + �3 cos γ

�3 −�3 cos γ
.

Equivalently,cos α = cos β = cos γ, or α = β = γ. Similarly, we have

(�2 + �3 + �0)2 −�2
1 ≥

(
3V

r1

)2

, (13)

(�3 + �0 + �1)2 −�2
2 ≥

(
3V

r2

)2

, (14)

(�0 + �1 + �2)2 −�2
3 ≥

(
3V

r3

)2

. (15)
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Summing (12) to (15), we obtain the inequality (6), with equality precisely when
all dihedral angles are equal,i.e., whenP is a regular tetrahedron. �

Remark.Inequality (6) is obtained by X. Z. Yang in [5].

3. Proof of Theorem 3

Sincer = 3V
�0+�1+�2+�3

, it follows from Proposition 6 and Corollary 5 that

	2 ≥ 6
1
r2
0

+ 1
r2
1

+ 1
r2
2

+ 1
r2
3

≥ 27V 2

(�0 + �1 + �2 + �3)2
= 3r2.

This completes the proof of Theorem 3.

4. A generalization with an open problem

As a generalization of the tetrahedron, we say that ann−dimensional simplex
is circumscriptible if there is a sphere tangent to each of its edges. The following
basic properties of a circumscriptible simplex can be found in [3].

Theorem 7. Suppose the edge lengths of ann-simplexP = P0P1 · · ·Pn are
PiPj = aij for 0 ≤ i < j ≤ n. Then-simplex has an edge-tangent sphere if and
only if there existxi, i = 0, 1, . . . , n, satisfyingaij = xi + xj for 0 ≤ i �= j ≤ n.
In this case, the radius of the edge-tangent sphere is given by

	2 = − D1

2D2
, (16)

where

D1 =

∣∣∣∣∣∣∣∣

−2x2
0 2x0x1 · · · 2x0xn−1

2x0x1 −2x2
1 · · · 2x1xn−1

· · · · · · · · · · · ·
2x0xn−1 2x1xn−1 · · · −2x2

n−1

∣∣∣∣∣∣∣∣
,

and

D2 =

∣∣∣∣∣∣∣∣∣

0 1 · · · 1
1 · · · · ·
...

... D1
...

1 · · · · ·

∣∣∣∣∣∣∣∣∣
.

We conclude this paper with an open problem: for a circumscriptiblen-simplex
with a circumscribed sphere of radiusR, an inscribed sphere of radiusr and an
edge-tangent sphere of radius	, prove or disprove that

R ≥
√

2n
n − 1

l ≥ nr.
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A Stronger Triangle Inequality for Neutral Geometry

Melissa Baker and Robert C. Powers

Abstract. Bailey and Bannister [College Math. Journal, 28 (1997) 182–186]
proved that a stronger triangle inequality holds in the Euclidean plane for all
triangles having largest angle less thanarctan(24

7
) ≈ 74◦. We use hyperbolic

trigonometry to show that a stronger triangle inequality holds in the hyperbolic
plane for all triangles having largest angle less than or equal to65.87◦.

1. Introduction

One of the most fundamental results of neutral geometry is the triangle inequal-
ity. How can this cherished inequality be strengthened? Under certain restrictions,
the sum of the lengths of two sides of a triangle is greater than the length of the
remaining side plus the length of the altitude to this side.

C

A B

F

ab

c

h

α β

γ′ γ

Figure 1. Strong triangle inequalitya + b > c + h

Let ABC be a triangle belonging to neutral geometry (see Figure 1). Leta, b
andc be the lengths of sidesBC, AC andAB, respectively. Also, letα, β and
γ denote the angles atA, B andC respectively. If we letF be the foot of the
perpendicular fromC onto sideAB and if h is the length of the segmentCF ,
when is it true thata + b > c + h? Sincea > h andb > h, this question is of
interest only ifc is the length of the longest side ofABC, or, equivalently, ifγ is
the the largest angle ofABC. With this notation, if the inequalitya + b > c + h
holds whereγ is the largest angle of the triangleABC, we say thatABC satisfies
thestrong triangle inequality.
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The following result, due to Bailey and Bannister [1], explains what happens if
the triangleABC belongs to Euclidean geometry.

Theorem 1. If ABC is a Euclidean triangle having largest angle γ < arctan(247 ) ≈
74◦, then ABC satisfies the strong triangle inequality.

An elegant trigonometric proof of Theorem 1 can by found in [3]. It should
be noted that the bound ofarctan(247 ) is the best possible since any isosceles Eu-
clidean triangle withγ = arctan(24

7 ) violates the strong triangle inequality.
The goal of this note is to extend the Bailey and Bannister result to neutral

geometry. To get the appropriate bound for the extended result we need the function

f(γ) := −1 − cos γ + sin γ + sin
γ

2
sin γ. (1)

Observe thatf ′(γ) = sin γ+cos γ+sin γ
2 cos γ+ 1

2 cos γ
2 sin γ > 0 on the interval[

0, π
2

]
. Therefore,f(γ) is strictly monotone increasing on the interval(0,π2 ). Since

f(0) = −2, f(π
2 ) =

√
2

2 , andf is continuous it follows thatf has a unique root
r in the interval

(
0, π

2

)
. In fact, r is approximately1.15 (radians) or65.87◦. See

Figure 2.

1

−2

0
2π

2

1

r

Figure 2. Graph off(γ)

Theorem 2. In neutral geometry a triangle ABC having largest angle γ satisfies
the strong triangle inequality if γ ≤ r ≈ 1.15 radians or 65.87◦.

The proof of Theorem 2 is based on the fact that a model of neutral geometry is
isomorphic to either the Euclidean plane or a hyperbolic plane. Given Theorem 1,
it is enough to establish our result for the case of hyperbolic geometry. Moreover,
since the strong triangle inequality holds if and only ifka + kb > kc + kh for
any positive constantk, it is enough to assume that the distance scale in hyperbolic
geometry is 1. An explanation about the distance scalek and how it is used in
hyperbolic geometry can be found in [4].
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2. Hyperbolic trigonometry

Recall that the hyperbolic sine and hyperbolic cosine functions are given by

sinhx =
ex − e−x

2
and cosh x =

ex + e−x

2
.

The formulas needed to prove the main result are given below. First, there are the
standard identities

cosh2 x − sinh2 x = 1 (2)

and
cosh(x + y) = cosh x cosh y + sinhx sinh y. (3)

If ABC is a hyperbolic triangle with a right angle atC, i.e., γ = π
2 , then

sinha = sinh c sin α (4)

and
cosh a sin β = cos α. (5)

For any hyperbolic triangleABC,

cosh c = cosh a cosh b − sinh a sinh b cos γ, (6)
sin α

sinh a
=

sin β

sinh b
=

sin γ

sinh c
, (7)

cosh c =
cos α cos β + cos γ

sin α sin β
. (8)

See [2, Chapter 10] or [5, Chapter 8] for more details regarding (4 – 8).

3. Proof of Theorem 2

The strong triangle inequalitya + b > c + h holds if and only ifcosh(a + b) >
cosh(c + h). Expanding both sides by the identity given in (3) we have

cosh a cosh b + sinha sinh b > cosh c cosh h + sinh c sinh h,

cosh c + sinha sinh b cos γ + sinha sinh b > cosh c cosh h + sinh c sinhh, by (6)

cosh c (1 − cosh h) + sinha sinh b (cos γ + 1) − sinh c sinh h > 0.

SinceACF is a right triangle with the length ofCF equal toh, it follows from
(4) thatsinh h = sinh b sinα. Applying (7), we have

cosh c (1 − cosh h) + sinh a sinh b (cos γ + 1) − sinha

sin α
· sin γ sinh b sin α > 0,

cosh c (1 − cosh h) + sinh a sinh b (cos γ + 1 − sin γ) > 0,

cosh c
(
1 − cosh2 h

)
+ sinha sinh b(1 + cosh h) (cos γ + 1 − sin γ) > 0,

cosh c
(− sinh2 h

)
+ sinha sinh b(1 + cosh h) (cos γ + 1 − sin γ) > 0, by (2)

cosh c
(− sinh2 b sin2 α

)
+ sinha sinh b(1 + cosh h)(cos γ + 1 − sin γ) > 0.
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Dividing both sides of the inequality bysinh b > 0, we have

− cosh c sinh b sin2 α + sinha(1 + cosh h)(cos γ + 1 − sin γ) > 0.

By (7) and (8), we have

−
(

cosα cosβ + cos γ

sin α sin β

)
sinh a sinβ

sin α
sin2 α+sinh a(1+coshh)(cos γ +1− sinγ) > 0.

Simplifying and dividing bysinha > 0, we have

− (cos α cos β + cos γ) sinh a + sinh a(1 + cosh h)(cos γ + 1 − sin γ) > 0,

− (cos α cos β + cos γ) + (1 + cosh h)(cos γ + 1 − sin γ) > 0, (9)

We have manipulated the original inequality into one involving the original an-
gles,α, β, andγ, and the length of the altitude onAB. In the right triangleACF ,
let γ′ be the angle atC. We may assumeγ′ ≤ γ

2 (otherwise we can work with the
right triangleBCF ). Applying (5) to triangleACF givescosh h = cos α

sinγ′ . Now
continuing with the inequality (9) we get

−(cos α cos β + cos γ) +
(

1 +
cos α

sin γ′

)
(1 + cos γ − sin γ) > 0

Multiplying both sides by− sin γ′ < 0, we have

sin γ′ (cos α cos β + cos γ) − (
sin γ′ + cos α

)
(1 + cos γ − sin γ) < 0,

Simplifying this and rearranging terms, we have

cos α
(
sin γ′ cos β − 1 − cos γ + sin γ

)
+ sin γ′ (sin γ − 1) < 0. (10)

If sin γ′ cos β − 1 − cos α + sin α > 0, then

cos α
(
sin γ′ cos β − 1 − cos γ + sin γ

)
+ sin γ′ (sin γ − 1)

< sin γ′ − 1 − cos γ + sin γ + sin γ′ (sin γ − 1)

= − 1 − cos γ + sin γ + sin γ′ sin γ

≤− 1 − cos γ + sin γ + sin
γ

2
sin γ.

Note that this last expression isf(γ) defined in (1). We have shown that

cos α(sin γ′ cos β − 1 − cos γ + sin γ) + sin γ′(sin γ − 1) < max{0, f(γ)}.
Forγ ≤ r, we havef(γ) ≤ 0 and the strong triangle inequality holds.

This completes the proof of Theorem 2.

If r < γ < π
2 , thenf(γ) > 0. In this case, we can find an angleα such that

0 < α < π
2 − γ

2 and

cos α
(
sin

γ

2
cos α − 1 − cos α + sin α

)
+ sin

γ

2
(sin γ − 1) > 0.

Sinceγ + 2α < π it follows from [5, Theorem 6.7] that there exists a hyper-
bolic triangleABC with anglesα, α, andγ. Our previous work shows that the
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triangleABC satisfies the strong triangle inequality if and only if (10) holds. Con-
sequently,a + b > c + h providedf(γ) ≤ 0. Therefore, the boundr given in
Theorem 2 is the best possible.
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A Simple Construction of the Golden Ratio

Jingcheng Tong and Sidney Kung

Abstract. We construct the golden ratio by using an area bisector of a trapezoid.

Consider a trapezoid PQRS with bases PQ = b, RS = a, a < b. Assume, in

Figure 1, that the segment MN of length
√

a2+b2

2 is parallel to PQ. Then MN

lies between the bases PQ and RS (see [1, p.57]). It is easy to show that MN
bisects the area of the trapezoid. It is more interesting to note that M and N divide
SP and RQ in the golden ratio if b = 3a. To see this, construct a segment SW
parallel to RQ and let V = MN ∩ SW . It is clear that

SM

SP
=

MV

PW
=

√
a2+b2

2 − a

b − a
=

√
5 − 1
2

if b = 3a.

P QW

M N

RS

V

a

b − a a

Figure 1

Based upon this result, we present the following simple division of a given seg-
ment AB in the golden ratio. Construct
(1) a trapezoid ABCD with AD//BC and BC = 3 · AD,
(2) a right triangle BCD with a right angle at C and CE = AD,
(3) the midpoint F of BE and a point H on the perpendicular bisector of BE such
that FH = 1

2BE,
(4) a point I on BC such that BI = BH .

Complete a parallelogram BIJG with J on DC and G on AB. See Figure 2.
Then G divides AB in the golden ratio, i.e., AB

AB =
√

5−1
2 .
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A B

C

D

E

F H

I
J

G

Figure 2

Proof. The trapezoid ABCD has AD = a, BC = b with b = 3a. The segment
JG is parallel to the bases and

JG = BI = BH =
√

2 ·
√

a2 + b2

2
=

√
a2 + b2

2
.

Therefore, AG
AB =

√
5−1
2 . �
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The Method of Punctured Containers

Tom M. Apostol and Mamikon A. Mnatsakanian

Abstract. We introduce the method of punctured containers, which geometri-
cally relates volumes and centroids of complicated solids to those of simpler
punctured prismatic solids. This method goes to the heart of some of the ba-
sic properties of the sphere, and extends them in natural and significant ways
to solids assembled from cylindrical wedges (Archimedean domes) and to more
general solids, especially those with nonuniform densities.

1. Introduction

Archimedes (287-212 B.C.) is regarded as the greatest mathematician of ancient
times because of his masterful and innovative treatment of a remarkable range of
topics in both pure and applied mathematics. One landmark discovery is that the
volume of a solid sphere is two-thirds the volume of its circumscribing cylinder,
and that the surface area of the sphere is also two-thirds the total surface area of
the same cylinder. Archimedes was so proud of this revelation that he wanted the
sphere and circumscribing cylinder engraved on his tombstone. He discovered the
volume ratio by balancing slices of the sphere against slices of alarger cylinder
and cone, using centroids and the law of the lever, which he had also discovered.

Today we know that the volume ratio for the sphere and cylinder can be derived
more simply by an elementary geometric method that Archimedes overlooked. It
is illustrated in Figure 1. By symmetry it suffices to consider a hemisphere, as
in Figure 1a, and its circumscribing cylindrical container. Figure 1b shows the
cylinder with a solid cone removed. The punctured cylindrical container has ex-
actly the same volume as the hemisphere, because every horizontal plane cuts the
hemisphere and the punctured cylinder in cross sections of equal area. The cone’s
volume is one-third that of the cylinder, hence the hemisphere’s volume is two-
thirds that of the cylinder, which gives the Archimedes volume ratio for the sphere
and its circumscribing cylinder.

This geometric method extends to more general solids we call Archimedean
domes. They and their punctured prismatic containers are described below in Sec-
tion 2. Any plane parallel to the equatorial base cuts such a dome and its punctured
container in cross sections of equal area. This implies that two planes parallel to the
base cut the dome and the punctured container in slices of equal volumes, equality
of volumes being a consequence of the following:

Slicing principle. Two solids have equal volumes if their horizontal cross sections
taken at any height have equal areas.

Publication Date: February 12, 2007. Communicating Editor: Xiao-Dong Zhang.
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(a) (b)

Figure 1. (a) A hemisphere and (b) a punctured cylindrical container of equal volume.

This statement is often called Cavalieri’s principle in honor of Bonaventura Cav-
alieri (1598-1647), who attempted to prove it for general solids. Archimedes used
it sixteen centuries earlier for special solids, and he credits Eudoxus and Democri-
tus for using it even earlier in their discovery of the volume of a cone. Cavalieri
employed it to find volumes of many solids, and tried to establish the principle
for general solids by applying Archimedes’ method of exhaustion, but it was not
demonstrated rigorously until integral calculus was developed in the 17th century.
We prefer using the neutral and more descriptive termslicing principle.

To describe the slicing principle in the language of calculus, cut two solids by
horizontal planes that produce cross sections of equal areaA(x) at an arbitrary
heightx above a fixed base. The integral

∫ x2

x1
A(x) dx gives the volume of the

portion of each solid cut by all horizontal planes asx varies over some interval
[x1, x2]. Because the integrandA(x) is the same for both solids, the corresponding
volumes are also equal. We could just as well integrate any functionf(x,A(x)),
and the integral over the interval[x1, x2] would be the same for both solids. For
example,

∫ x2

x1
xA(x) dx is the first moment of the area function over the interval

[x1, x2], and this integral divided by the volume gives the altitude of thecentroid
of the slice between the planesx = x1 andx = x2. Thus, not only are the volumes
of these slices equal, but also the altitudes of their centroids are equal. Moreover,
all moments

∫ x2

x1
xkA(x) dx with respect to the plane of the base are equal for both

slices.
In [1; Theorem 6a] we showed that the lateral surface area of any slice of an

Archimedean dome between two parallel planes is equal to the lateral surface area
of the corresponding slice of the circumscribing (unpunctured) prism. This was
deduced from the fact that Archimedean domes circumscribe hemispheres. It im-
plies that the total surface area of a sphere is equal to the lateral surface area of its
circumscribing cylinder which, in turn, is two-thirds the total surface area of the
cylinder. The surface area ratio was discovered by Archimedes by a completely
different method.
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This paper extends our geometric method further, from Archimedean domes to
more general solids. First we dilate an Archimedean dome in a vertical direction to
produce a dome with elliptic profiles, then we replace its base by an arbitrary poly-
gon, not necessarily convex. This leads naturally to domes with arbitrary curved
bases. Such domes and their punctured prismatic containers have equal volumes
and equal moments relative to the plane of the base because of the slicing princi-
ple, but if these domes do not circumscribe hemispheres the corresponding lateral
surface areas will not be equal. This paper relaxes the requirement of equal surface
areas and concentrates on solids having the same volume and moments as their
punctured prismatic containers. We call such solidsreducible and describe them in
Section 3. Section 4 treats reducible domes and shells with polygonal bases, then
Section 5 extends the results to domes with curved bases, and formulates reducibil-
ity in terms of mappings that preserve volumes and moments.

The full power of our method, which we callthe method of punctured con-
tainers, is revealed by the treatment of nonuniform mass distributions in Section
6. Problems of calculating masses and centroids of nonuniform wedges, shells,
and their slices with elliptic profiles, including those with cavities, are reduced to
those ofsimpler punctured prismatic containers. Section 7 gives explicit formulas
for volumes and centroids, and Section 8 reveals the surprising fact that uniform
domes are reducible to their punctured containers if and only if they have elliptic
profiles.

2. Archimedean domes

Archimedean domes are solids of the type shown in Figure 2a, formed by assem-
bling portions of circular cylindrical wedges. Each dome circumscribes a hemi-
sphere, and its horizontal base is a polygon, not necessarily regular, circumscrib-
ing the equator of the hemisphere. Cross sections cut by planes parallel to the base
are similar polygons circumscribing the cross sections of the hemisphere. Figure
2b shows the dome’s punctured prismatic container, a circumscribing prism, from
which a pyramid with congruent polygonal base has been removed as indicated.
The shaded regions in Figure 2 illustrate the fundamental relation between any
Archimedean dome and its punctured prismatic container:

Each horizontal plane cuts both solids in cross sections of equal area.

Hence, by the slicing principle, any two horizontal planes cut both solids in
slices of equal volume. Because the removed pyramid has volume one-third that
of the unpunctured prism, we see that the volume of any Archimedean dome is
two-thirds that of its punctured prismatic container.

We used the name “Archimedean dome” because of a special case considered
by Archimedes. In his preface to The Method [3; Supplement, p. 12] Archimedes
announced (without proof) that the volume of intersection of two congruent orthog-
onal circular cylinders is two-thirds the volume of the circumscribing cube. In [3;
pp. 48-50], Zeuthen verifies this with the method of centroids and levers employed
by Archimedes in treating the sphere. However, if we observe that half the solid of
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intersection is an Archimedean dome with a square base, and compare its volume
with that of its punctured prismatic container, we immediately obtain the required
two-thirds volume ratio.

O

(a) Archimedean dome (b) Punctured prismatic container

Figure 2. Each horizontal plane cuts the dome and its punctured prismatic con-
tainer in cross sections of equal area.

As a limiting case, when the polygonal cross sections of an Archimedean dome
become circles, and the punctured container becomes a circumscribing cylinder
punctured by a cone, we obtain a purely geometric derivation of the Archimedes
volume ratio for a sphere and cylinder.

When an Archimedean dome and its punctured container areuniform solids,
made of material of the same constant density (mass per unit volume), the corre-
sponding horizontal slices also have equal masses, and the center of mass of each
slice lies at the same height above the base [1; Section 9].

3. Reducible solids

This paper extends the method of punctured containers by applying it first to
general dome-like structures far removed from Archimedean domes, and then to
domes withnonuniform mass distributions. The generality of the structures is
demonstrated by the following examples.

Cut any Archimedean dome and its punctured container into horizontal slices
and assign to each pair of slices the same constant density, which can differ from
pair to pair. Because the masses are equal slice by slice, the total mass of the dome
is equal to that of its punctured container, and the centers of mass are at the same
height. Or, cut the dome and its punctured container into wedges by vertical half
planes through the polar axis, and assign to each pair of wedges the same constant
density, which can differ from pair to pair. Again, the masses are equal wedge by
wedge, so the total mass of the dome is equal to that of its punctured container,
and the centers of mass are at the same height. Or, imagine an Archimedean dome
divided into thin concentric shell-like layers, like those of an onion, each assigned
its own constant density, which can differ from layer to layer. The punctured con-
tainer is correspondingly divided into coaxial prismatic layers, each assigned the
same constant density as the corresponding shell layer. In this case the masses are
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equal shell by shell, so the total mass of the dome is equal to that of its punctured
container, and again the centers of mass are at the same height. We are interested
in a class of solids, with pyramidically punctured prismatic containers, that share
the following property with Archimedean domes:

Definition. (Reducible solid) A solid is called reducible if an arbitrary horizontal
slice of the solid and its punctured container have equal volumes, equal masses,
and hence centers of mass at the same height above the base.

Every uniform Archimedean done is reducible, and in Section 5 we exhibit some
nonuniform Archimedean domes that are reducible as well.

The method of punctured containers enables us to reduce both volume and
mass calculations of domes to those of simpler prismatic solids, thus generaliz-
ing the profound volume relation between the sphere and cylinder discovered by
Archimedes. Another famous result of Archimedes [3; Method, Proposition 6]
states that the centroid of a uniform solid hemisphere divides its altitude in the
ratio 5:3. Using the method of punctured containers we show that the same ratio
holds for uniform Archimedean domes and other more general domes (Theorem
7), and we also extend this result to the center of mass of a more general class of
nonuniform reducible domes (Theorem 8).

4. Polygonal elliptic domes and shells

To easily construct a more general class of reducible solids, start with any
Archimedean dome, and dilate it and its punctured container in a vertical direc-
tion by the same scaling factorλ > 0. The circular cylindrical wedges in Figure
2a become elliptic cylindrical wedges, as typified by the example in Figure 3a. A
circular arc of radiusa is dilated into an elliptic arc with horizontal semi axisa
and vertical semi axisλa. Dilation changes the altitude of the prismatic wedge
from a to λa (Figure 3b). The punctured container is again a prism punctured by a
pyramid.

x

λa λa

a a

equal areas

x

O O

(a) (b)

Figure 3. (a) Vertical dilation of a cylindrical wedge by a factor λ. (b) Its punc-
tured prismatic container.
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Each horizontal plane at a given height above the base cuts both the elliptic
wedge and the corresponding punctured prismatic wedge in cross sections of equal
area. Consequently, any two horizontal planes cut both solids in slices of equal
volume.

If the elliptic and prismatic wedges have the same constant density, then they
also have the same mass, and their centers of mass are at the same height above the
base. In other words, we have:

Theorem 1. Every uniform elliptic cylindrical wedge is reducible.

Now assemble a finite collection of nonoverlapping elliptic cylindrical wedges
with their horizontal semi axes, possibly of different lengths, in the same horizon-
tal plane, but having a common vertical semi axis, which meets the base at a point
O called the center. We assume the density of each component wedge is con-
stant, although this constant may differ from component to component. For each
wedge, the punctured circumscribing prismatic container with the same density is
called its prismatic counterpart. The punctured containers assembled in the same
manner produce the counterpart of the wedge assemblage. We call an assemblage
nonuniform if some of its components can have different constant densities. This
includes the special case of a uniform assemblage where all components have the
same constant density. Because each wedge is reducible we obtain:

Corollary 1. Any nonuniform assemblage of elliptic cylindrical wedges is re-
ducible.

Polygonal elliptic domes. Because the base of a finite assemblage is a polygon (a
union of triangles with a common vertex O) we call the assemblage a polygonal
elliptic dome. The polygonal base need not circumscribe a circle and it need not be
convex. Corollary 1 gives us:

Corollary 2. The volume of any polygonal elliptic dome is equal to the volume of
its circumscribing punctured prismatic container, that is, two-thirds the volume of
the unpunctured prismatic container, which, in turn, is the area of the base times
the height.

In the special limiting case when the equatorial polygonal base of the dome
turns into an ellipse with center at O, the dome becomes half an ellipsoid, and the
circumscribing prism becomes an elliptic cylinder. In this limiting case, Corollary
2 reduces to:

Corollary 3. The volume of any ellipsoid is two-thirds that of its circumscribing
elliptic cylinder.

In particular, we have Archimedes’ result for “spheroids” [3; Method, Proposi-
tion 3]:

Corollary 4. (Archimedes) The volume of an ellipsoid of revolution is two-thirds
that of its circumscribing circular cylinder.

Polygonal elliptic shells. A polygonal elliptic shell is the solid between two con-
centric similar polygonal elliptic domes. From Theorem 1 we also obtain:
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Theorem 2. The following solids are reducible:
(a) Any uniform polygonal elliptic shell.
(b) Any wedge of a uniform polygonal elliptic shell.
(c) Any horizontal slice of a wedge of type (b).
(d) Any nonuniform assemblage of shells of type (a).
(e) Any nonuniform assemblage of wedges of type (b).
(f) Any nonuniform assemblage of slices of type (c).

By using as building blocks horizontal slices of wedges cut from a polygonal
elliptic shell, we can see intuitively how one might construct, from such building
blocks, very general polygonal elliptic domes that are reducible and have more or
less arbitrary mass distribution. By considering limiting cases of polygonal bases
with many edges, and building blocks with very small side lengths, we can imagine
elliptic shells and domes whose bases are more or less arbitrary plane regions, for
example, elliptic, parabolic or hyperbolic segments.

The next section describes an explicit construction of general reducible domes
with curvilinear bases.

5. General elliptic domes

Replace the polygonal base by any plane region bounded by a curve whose polar
coordinates (r, θ) relative to a “center” O satisfy an equation r = ρ(θ), where ρ
is a given piecewise continuous function, and θ varies over an interval of length
2π. Above this base we build an elliptic dome as follows. First, the altitude of the
dome is a segment of fixed height h > 0 along the polar axis perpendicular to the
base at O. We assume that each vertical half plane through the polar axis at angle
θ cuts the surface of the dome along a quarter of an ellipse with horizontal semi
axis ρ(θ) and the same vertical semi axis h, as in Figure 4a. The ellipse will be
degenerate at points where ρ(θ) = 0. Thus, an elliptic wedge is a special case of
an elliptic dome.

When ρ(θ) > 0, the cylindrical coordinates (r, θ, z) of points on the surface of
the dome satisfy the equation of an ellipse:(

r

ρ(θ)

)2

+
( z

h

)2
= 1. (1)

The dome is circumscribed by a cylindrical solid of altitude h whose base is con-
gruent to that of the dome (Figure 4b). Incidentally, we use the term “cylindrical
solid” with the understanding that the solid is a prism when the base is polygonal.

Each point (r′, θ′, z′) on the lateral surface of the cylinder in Figure 4b is related
to the corresponding point (r, θ, z) on the surface of the dome by the equations

θ′ = θ, z′ = z, r′ = ρ(θ).

From this cylindrical solid we remove a conical solid whose surface points have
cylindrical coordinates (r′′, θ, z), where z/h = r′′/ρ(θ), or

r′′ = zρ(θ)/h.
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polar axis
polar axis

h
r

z

ρ(θ) ρ(θ)

z

r''

O O

(a) (b)

Figure 4. An elliptic dome (a), and its circumscribing punctured prismatic con-
tainer (b).

When z = h, this becomes r′′ = ρ(θ), so the base of the cone is congruent to
the base of the elliptic dome. When the base is polygonal, the conical solid is a
pyramid.

More reducible domes. The polar axis of an elliptic dome depends on the location
of center O. For a given curvilinear base, we can move O to any point inside the
base, or even to the boundary. Moving O will change the function ρ(θ) describing
the boundary of the base, with a corresponding change in the shape of the ellipse
determined by (1). Thus, this construction generates not one, but infinitely many
elliptic domes with a given base. For any such dome, we can generate another
family as follows: Imagine the dome and its prismatic counterpart made up of very
thin horizontal layers, like two stacks of cards. Deform each solid by a horizon-
tal translation and rotation of each horizontal layer. The shapes of the solids will
change, but their cross-sectional areas will not change. In general, such a defor-
mation may alter the shape of each ellipse on the surface to some other curve, and
the deformed dome will no longer be elliptic. The same deformation applied to the
prismatic counterpart will change the punctured container to a nonprismatic punc-
tured counterpart. Nevertheless, all the results of this paper (with the exception of
Theorem 11) will hold for such deformed solids and their counterparts.

However, if the deformation is a linear shearing that leaves the base fixed but
translates each layer by a distance proportional to its distance from the base, then
straight lines are mapped onto straight lines and the punctured prismatic solid is
deformed into another prism punctured by a pyramid with the same base. The
correspondingly sheared dome will be elliptic because each elliptic curve on the
surface of the dome is deformed into an elliptic curve. To visualize a physical
model of such a shearing, imagine a general elliptic dome and its counterpart sliced
horizontally to form stacks of cards. Pierce each stack by a long pin along the polar
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axis, and let O be the point where the tip of the pin touches the base. Tilting the
pin away from the vertical polar axis, keeping O fixed, results in horizontal linear
shearing of the stacks and produces infinitely many elliptic domes, all with the
same polygonal base. The prismatic containers are correspondingly tilted, and the
domes are reducible.

Reducibility mapping. For a given general elliptic dome, we call the correspond-
ing circumscribing punctured cylindrical solid its punctured container. Our goal is
to show that every uniform general elliptic dome is reducible. This will be deduced
from a more profound property, stated below in Theorem 3. It concerns a mapping
that relates elliptic domes and their punctured containers.

To determine this mapping, regard the dome as a collection of layers of similar
elliptic domes, like layers of an onion. Choose O as the center of similarity, and for
each scaling factor µ ≤ 1, imagine a surface E(µ) such that a vertical half plane
through the polar axis at angle θ intersects E(µ) along a quarter of an ellipse with
semiaxes µρ(θ) and µh. When ρ(θ) > 0, the coordinates r and z of points on this
similar ellipse satisfy (

r

µρ(θ)

)2

+
(

z

µh

)2

= 1. (2)

Regard the punctured container as a collection of coaxial layers of similar punc-
tured cylindrical surfaces C(µ).

It is easy to relate the cylindrical coordinates (r′, θ′, z′) of each point on C(µ) to
the coordinates (r, θ, z) of the corresponding point on E(µ). First, we have

θ′ = θ, z′ = z, r′ = µρ(θ). (3)

From (2) we find r2 + z2ρ (θ)2 /h2 = µ2ρ(θ)2 , hence (3) becomes

θ′ = θ, z′ = z, r′ =
√

r2 + z2ρ (θ)2 /h2. (4)

The three equations in (4), which are independent of µ, describe a mapping from
each point (r, θ, z), not on the polar axis, of the solid elliptic dome to the corre-
sponding point (r′, θ′, z′) on its punctured container. On the polar axis, r = 0 and
θ is undefined.

Using (2) in (4) we obtain (3), hence points on the ellipse described by (2) are
mapped onto the vertical segment of length µh through the base point (µρ(θ), θ). It
is helpful to think of the solid elliptic dome as made up of elliptic fibers emanating
from the points on the base. Mapping (4) converts each elliptic fiber into a vertical
fiber through the corresponding point on the base of the punctured container.

Preservation of volumes. Now we show that mapping (4) preserves volumes. The
volume element in the (r, θ, z) system is given by r dr dθ dz, while that in the
(r′, θ′, z′) system is r′dr′dθ′dz′. From (4) we have

(r′)2 = r2 + z2ρ (θ)2 /h2

which, for fixed z and θ, gives r′dr′ = rdr. From (4) we also have dθ′ = dθ
and dz′ = dz, so the volume elements are equal: r dr dθ dz = r′dr′dθ′dz′. This
proves:
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Theorem 3. Mapping (4), from a general elliptic dome to its punctured prismatic
container, preserves volumes. In particular, every general uniform elliptic dome is
reducible.

As an immediate consequence of Theorem 3 we obtain:

Corollary 5. The volume of a general elliptic dome is equal to the volume of its
circumscribing punctured cylindrical container, that is, two-thirds the volume of
the circumscribing unpunctured cylindrical container which, in turn, is simply the
area of the base times the height.

The same formulas show that for a fixed altitude z, we have r dr dθ = r′dr′dθ′.
In other words, the mapping also preserves areas of horizontal cross sections cut
from the elliptic dome and its punctured container. This also implies Corollary 5
because of the slicing principle.

Lambert’s classical mapping as a special case. Our mapping (4) generalizes
Lambert’s classical mapping [2], which is effected by wrapping a tangent cylinder
about the equator, and then projecting the surface of the sphere onto this cylinder by
rays through the axis which are parallel to the equatorial plane. Lambert’s mapping
takes points on the spherical surface (not at the north or south pole) and maps them
onto points on the lateral cylindrical surface in a way that preserves areas. For
a solid sphere, our mapping (4) takes each point not on the polar axis and maps
it onto a point of the punctured solid cylinder in a way that preserves volumes.
Moreover, analysis of a thin shell (similar to that in [1; Section 6]) shows that (4)
also preserves areas when the surface of an Archimedean dome is mapped onto the
lateral surface of its prismatic container. Consequently, we have:

Theorem 4. Mapping (4), from the surface of an Archimedean dome onto the lat-
eral surface of its prismatic container, preserves areas.

In the limiting case when the Archimedean dome becomes a hemisphere we get:

Corollary 6. (Lambert) Mapping (4), from the surface of a sphere to the lateral
surface of its tangent cylinder, preserves areas.

If the hemisphere in this limiting case has radius a, it is easily verified that (4)
reduces to Lambert’s mapping: θ′ = θ, z′ = z, r′ = a.

6. Nonuniform elliptic domes

Mapping (4) takes each point P of an elliptic dome and carries it onto a point
P ′ of its punctured container. Imagine an arbitrary mass density assigned to P , and
assign the same mass density to its image P′. If a set of points P fills out a portion
of the dome of volume v and total mass m, say, then the image points P′ fill out a
solid, which we call the counterpart, having the same volume v and the same total
mass m. This can be stated as an extension of Theorem 3:

Theorem 5. Any portion of a general nonuniform elliptic dome is reducible.
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By analogy with Theorem 3, we can say that mapping (4) “with weights” also
preserves masses.

Fiber-elliptic and shell-elliptic domes. Next we describe a special way of assign-
ing variable mass density to the points of a general elliptic dome and its punctured
container so that corresponding portions of the dome and its counterpart have the
same mass. The structure of the dome as a collection of similar domes plays an
essential role in this description.

First assign mass density f(r, θ) to each point (r, θ) on the base of the dome and
of its cylindrical container. Consider the elliptic fiber that emanates from any point
(µρ(θ), θ) on the base, and assign the same mass density f(µρ(θ), θ) to each point
of this fiber. In other words, the mass density along the elliptic fiber has a constant
value inherited from the point at which the fiber meets the base. Of course, the
constant may differ from point to point on the base. The elliptic fiber maps into a
vertical fiber in the punctured container (of length µh, where h is the altitude of
the dome), and we assign the same mass density f(µρ(θ), θ) to each point on this
vertical fiber. In this way we produce a nonuniform elliptic dome and its punctured
container, each with variable mass density inherited from the base. We call such a
dome fiber-elliptic. The punctured container with density assigned in this manner
is called the counterpart of the dome. The volume element multiplied by mass
density is the same for both the dome and its counterpart.

An important special case occurs when the assigned density is also constant
along the base curve r = ρ(θ) and along each curve r = µρ(θ) similar to the base
curve, where the constant density depends only on µ. Then each elliptic surface
E(µ) will have its own constant density. We call domes with this assignment of
mass density shell-elliptic. For fiber-elliptic and shell-elliptic domes, horizontal
slices cut from any portion of the dome and its counterpart have equal masses, and
their centers of mass are at the same height above the base. Thus, as a consequence
of Theorem 3 we have:

Corollary 7. (a) Any portion of a fiber-elliptic dome is reducible.
(b) In particular, any portion of a shell-elliptic dome is reducible.
(c) In particular, a sphere with spherically symmetric mass distribution is re-

ducible.

The reducibility properties of an elliptic dome also hold for the more general
case in which we multiply the mass density f(µρ(θ), θ) by any function of z.
Such change of density could be imposed, for example, by an external field (such
as atmospheric density in a gravitational field that depends only on the height z).
Consequently, not only are the volume and mass of any portion of this type of
nonuniform elliptical dome equal to those of its counterpart, but the same is true
for all moments with respect to the horizontal base.

Elliptic shells and cavities. Consider a general elliptic dome of altitude h, and
denote its elliptic surface by E(1). Scale E(1) by a factor µ, where 0 < µ <
1, to produce a similar elliptic surface E(µ). The region between the two surfaces
E(µ) and E(1) is called an elliptic shell. It can be regarded as an elliptic dome
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with a cavity, or, equivalently, as a shell-elliptic dome with density 0 assigned to
each point between E(µ) and the center.

Figure 5a shows an elliptic shell element, and Figure 5b shows its counterpart.
Each base in the equatorial plane is bounded by portions of two curves with polar
equations r = ρ(θ) and r = µρ(θ), and two segments with θ = θ1 and θ = θ2.
The shell element has two vertical plane faces, each consisting of a region between
two similar ellipses. If µ is close to 1 and if θ1 and θ2 are nearly equal, the elliptic
shell element can be thought of as a thin elliptic fiber, as was done earlier.

Consider a horizontal slice between two horizontal planes that cut both the inner
and outer elliptic boundaries of the shell element. In other words, both planes are
pierced by the cavity. The prismatic counterpart of this slice has horizontal cross
sections congruent to the base, so its centroid lies midway between the two cutting
planes. The same is true for the slice of the shell and for the center of mass of a
slice cut from an assemblage of uniform elliptic shell elements, each with its own
constant density.

h h

r
µr

µhµh

(a) (b)

Figure 5. An elliptic shell element (a) and its counterpart (b).

In the same way, if we build a nonuniform shell-elliptic solid with a finite num-
ber of similar elliptic shells, each with its density inherited from the base, then any
horizontal slice pierced by the cavity has its center of mass midway between the
two horizontal cutting planes. Moreover, the following theorem holds for every
such shell-elliptic wedge.

Theorem 6. Any horizontal slice pierced by the cavity of a nonuniform shell-
elliptic wedge has volume and mass equal, respectively, to those of its prismatic
counterpart. Each volume and mass is independent of the height above the base
and each is proportional to the thickness of the slice. Consequently, the center of
mass of such a slice lies midway between the two cutting planes.

Corollary 8. (Sphere with cavity) Consider a spherically symmetric distribution
of mass inside a solid sphere with a concentric cavity. Any slice between parallel
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planes pierced by the cavity has volume and mass proportional to the thickness of
the slice, and is independent of the location of the slice.

Corollary 8 implies that the one-dimensional vertical projection of the density
is constant along the cavity. This simple result has profound consequences in to-
mography, which deals with the inverse problem of reconstructing spatial density
distributions from a knowledge of their lower dimensional projections. Details of
this application will appear elsewhere.

7. Formulas for volume and centroid

This section uses reducibility to give specific formulas for volumes and centroids
of various building blocks of elliptic domes with an arbitrary curvilinear base.

Volume of a shell element. We begin with the simplest case. Cut a wedge from
an elliptic dome of altitude h by two vertical half planes θ = θ1 and θ = θ2

through the polar axis, and then remove a similar wedge scaled by a factor µ,
where 0 < µ < 1, as shown in Figure 5a. Assume the unpunctured cylindrical
container in Figure 5b has volume V . By Corollary 5 the outer wedge has volume
2V/3, and the similar inner wedge has volume 2µ3V/3, so the volume v of the
shell element and its prismatic counterpart is the difference

v =
2
3
V (1 − µ3). (5)

Now V = Ah, where A is the area of the base of both the elliptic wedge and its
container. The base of the elliptic shell element and its unpunctured container have
area B = A − µ2A, so A = B/(1 − µ2), V = Bh/(1 − µ2), and (5) can be
written as

v =
2
3
Bh

1 − µ3

1 − µ2
. (6)

Formula (6) also holds for the total volume of any assemblage of elliptic shell ele-
ments with a given h and µ, with B representing the total base area. The product
Bh is the volume of the corresponding unpunctured cylindrical container of alti-
tude h, so (6) gives us the formula

vµ(h) =
2
3
vcyl

1 − µ3

1 − µ2
, (7)

where vµ(h) is the volume of the assemblage of elliptic shell elements and of the
counterpart, and vcyl is the volume of its unpunctured cylindrical container. When
µ = 0 in (7), the assemblage of elliptic wedges has volume v0(h)= 2vcyl/3, so we
can write (7) in the form

vµ(h) = v0(h)
1 − µ3

1 − µ2
, (8)

where v0(h) is the volume of the outer dome of the assemblage and its counterpart.
If µ approaches 1 the shell becomes very thin, the quotient (1−µ3)/

(
1 − µ2

)
ap-

proaches 3/2, and (7) shows that vµ(h) approaches vcyl. In other words, a very thin
elliptic shell element has volume very nearly equal to that of its very thin unpunc-
tured cylindrical container. An Archimedean shell has constant thickness equal
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to that of the prismatic container, so the lateral surface area of any assemblage of
Archimedean wedges is equal to the lateral surface area of its prismatic container,
a result derived in [1]. Note that this argument cannot be used to find the surface
area of an nonspherical elliptic shell because it does not have constant thickness.

Next we derive a formula for the height of the centroid of any uniform elliptic
wedge above the plane of its base.

Theorem 7. Any uniform elliptic wedge or dome of altitude h has volume two-
thirds that of its unpunctured prismatic container. Its centroid is located at height
c above the plane of the base, where

c =
3
8
h. (9)

Proof. It suffices to prove (9) for the prismatic counterpart. For any prism of alti-
tude h, the centroid is at a distance h/2 above the plane of the base. For a cone or
pyramid with the same base and altitude it is known that the centroid is at a dis-
tance 3h/4 from the vertex. To determine the height c of the centroid of a punctured
prismatic container above the plane of the base, assume the unpunctured prismatic
container has volume V and equate moments to get

c

(
2
3
V

)
+

3h
4

(
1
3
V

)
=

h

2
V,

from which we find (9). By Theorem 5, the centroid of the inscribed elliptic wedge
is also at height 3h/8 above the base. The result is also true for any uniform elliptic
dome formed as an assemblage of wedges. �

Equation (9) is equivalent to saying, in the style of Archimedes, that the centroid
divides the altitude in the ratio 3:5.

Corollary 9. (a) The centroid of a uniform Archimedean dome divides its altitude
in the ratio 3:5.

(b) (Archimedes) The centroid of a uniform hemisphere divides its altitude in
the ratio 3:5.

Formula (9) is obviously true for the center of mass of any nonuniform assem-
blage of elliptic wedges of altitude h, each with its own constant density.

Centroid of a shell element. Now we can find, for any elliptic shell element, the
height cµ(h) of its centroid above the plane of its base. The volume and centroid
results are summarized as follows:

Theorem 8. Any nonuniform assemblage of elliptic shell elements with common
altitude h and scaling factor µ has volume vµ(h) given by (8). The height cµ(h) of
the centroid above the plane of its base is given by

cµ(h) =
3
8
h

1 − µ4

1 − µ3
. (10)

Proof. Consider first a single uniform elliptic shell element. Again it suffices to do
the calculation for the prismatic counterpart. The inner wedge has altitude µh, so
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by (9) its centroid is at height 3µh/8. The centroid of the outer wedge is at height
3h/8. If the outer wedge has volume Vouter, the inner wedge has volume µ3Vouter ,
and the shell element between them has volume (1−µ3)Vouter. Equating moments
and canceling the common factor Vouter we find(

3
8
µh

)
µ3 + cµ(h)(1 − µ3) =

3
8
h,

from which we obtain (10). Formula (10) also holds for any nonuniform assem-
blage of elliptic shell elements with the same h and µ, each of constant density,
although the density can differ from element to element. �

When µ = 0, (10) gives c0(h) = 3h/8.
When µ → 1, the shell becomes very thin and the limiting value of cµ(h) in

(10) is h/2. This also follows from Theorem 6 when the shell is very thin and
the slice includes the entire dome. It is also consistent with Corollary 15 of [1],
which states that the centroid of the surface area of an Archimedean dome is at the
midpoint of its altitude.

Centroid of a slice of a wedge. More generally, we can determine the centroid
of any slice of altitude z of a uniform elliptic wedge. By reducing this calculation
to that of the prismatic counterpart, shown in Figure 6, the analysis becomes very
simple. For clarity, the base in Figure 6 is shown as a triangle, but the same ar-
gument applies to a more general base like that in Figure 5. The slice in question
is obtained from a prism of altitude z and volume V (z) = λV , where V is the
volume of the unpunctured prismatic container of altitude h, and λ = z/h. The
centroid of the slice is at an altitude z/2 above the base. We remove from this slice
a pyramidal portion of altitude z and volume v(z) = λ3V/3, whose centroid is at
an altitude 3z/4 above the base. The portion that remains has volume

V (z) − v(z) =
(

λ − 1
3
λ3

)
V (11)

and centroid at altitude c(z) above the base. To determine c(z), equate moments to
obtain

3z
4

v(z) + c(z)(V (z) − v(z)) =
z

2
V (z),

which gives

c(z) =

z

2
V (z) − 3z

4
v(z)

V (z) − v(z)
.

Because V (z) = λV , and v(z) = λ3V/3, we obtain the following theorem.

Theorem 9. Any slice of altitude z cut from a uniform elliptic wedge of altitude h
has volume given by (11), where λ = z/h and V is the volume of the unpunctured
prismatic container. The height c(z) of the centroid is given by

c(z) =
3
4
z

2 − λ2

3 − λ2
. (12)
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3z/4
c(z)

h

z

Figure 6. Calculating the centroid of a slice of altitude z cut from a wedge of
altitude h.

When z = h then λ = 1 and this reduces to (9). For small z the right member of
(12) is asymptotic to z/2. This is reasonable because for small z the walls of the
dome are nearly perpendicular to the plane of the equatorial base, so the dome is
almost cylindrical near the base.

Centroid of a slice of a wedge shell element. There is a common generalization
of (10) and (12). Cut a slice of altitude z from a shell element having altitude h
and scaling factor µ, and let cµ(z) denote the height of its centroid above the base.
Again, we simplify the calculation of cµ(z) by reducing it to that of its prismatic
counterpart. The slice in question is obtained from an unpunctured prism of altitude
z, whose centroid has altitude z/2 above the base. As in Theorem 9, let λ = z/h.
If λ ≤ µ, the slice lies within the cavity, and the prismatic counterpart is the same
unpunctured prism of altitude z, in which case we know from Theorem 6 that

cµ(z) =
z

2
, (λ ≤ µ). (13)

But if λ ≥ µ, the slice cuts the outer elliptic dome as shown in Figure 7a. In this
case the counterpart slice has a slant face due to a piece removed by the puncturing
pyramid, as indicated in Figure 7b.

Let V denote the volume of the unpunctured prismatic container of the outer
dome. Then λV is the volume of the unpunctured prism of altitude z. Remove
from this prism the puncturing pyramid of volume λ3V/3, leaving a solid whose
volume is

V (z) = λV − 1
3
λ3V, (λ ≥ µ) (14)

and whose centroid is at altitude c(z) given by (12). This solid, in turn, is the
union of the counterpart slice in question, and an adjacent pyramid with vertex O,
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c  (z)µ
c  (z)µ

µhc(z)

µh3
8

z

(a) (b)

Figure 7. Determining the centroid of a slice of altitude z ≥ µh cut from an
elliptic shell element.

altitude µh, volume

vµ =
2
3
µ3V, (15)

and centroid at altitude 3µh/8. The counterpart slice in question has volume

V (z) − vµ =
(

λ − 1
3
λ3 − 2

3
µ3

)
V. (16)

To find the altitude cµ(z) of its centroid we equate moments and obtain(
3
8
µh

)
vµ + cµ(z)(V (z) − vµ) = c(z)V (z),

from which we find

cµ(z) =
c(z)V (z) −

(
3
8
µh

)
vµ

V (z) − vµ
.

Now we use (12), (14), (15)and (16). After some simplification we find the
result

cµ(z) =
3
4
h

λ2(2 − λ2) − µ4

λ(3 − λ2) − 2µ3
(λ ≥ µ). (17)
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When λ = µ, (17) reduces to (13); when λ = 1 then z = h and (17) reduces to
(10); and when µ = 0, (17) reduces to (12). The results are summarized by the
following theorem.

Theorem 10. Any horizontal slice of altitude z ≥ µh cut from a wedge shell
element of altitude h and scaling factor µ has volume given by (16), where λ =
z/h. The altitude of its centroid above the base is given by (17). In particular
these formulas hold for any slice of a shell of an Archimedean, elliptic, or spherical
dome.

Note: Theorem 6 covers the case z ≤ µh.

In deriving the formulas in this section we made no essential use of the fact that
the shell elements are elliptic. The important fact is that each shell element is the
region between two similar objects.

8. The necessity of elliptic profiles

We know that every horizontal plane cuts an elliptic dome and its punctured
cylindrical container in cross sections of equal area. This section reveals the sur-
prising fact that the elliptical shape of the dome is actually a consequence of this
property.

Consider a dome of altitude h, and its punctured prismatic counterpart having
a congruent base bounded by a curve satisfying a polar equation r = ρ(θ). Each
vertical half plane through the polar axis at angle θ cuts the dome along a curve
we call a profile, illustrated by the example in Figure 8a. This is like the elliptic
dome in Figure 5a, except that we do not assume that the profiles are elliptic. Each
profile passes through a point (ρ(θ), θ) on the outer edge of the base. At altitude
z above the base a point on the profile is at distance r from the polar axis, where
r is a function of z that determines the shape of the profiles. We define a general
profile dome to be one in which each horizontal cross section is similar to the base.
Figure 8a shows a portion of a dome in which ρ(θ) > 0. This portion is a wedge
with two vertical plane faces that can be thought of as “walls” forming part of the
boundary of the wedge.

Suppose that a horizontal plane at distance z above the base cuts a region of area
A(z) from the wedge and a region of area B(z) from the punctured prism. We
know that A(0) = B(0). Now we assume that A(z) = B(z) for some z > 0 and
deduce that the point on the profile with polar coordinates (r, θ, z) satisfies the
equation (

r

ρ(θ)

)2

+
( z

h

)2
= 1 (18)

if ρ(θ) > 0. In other words, the point on the profile at a height where the areas are
equal lies on an ellipse with vertical semi axis of length h, and horizontal semi axis
of length ρ(θ). Consequently, if A(z) = B(z) for every z from 0 to h, the profile
will fill out a quarter of an ellipse and the dome will necessarily be elliptic. Note
that (18) implies that r → 0 as z → h.
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Figure 8. Determining the elliptic shape of the profiles as a consequence of the
relation A(z) = B(z).

To deduce (18), note that the horizontal cross section of area A(z) in Figure 8a
is similar to the base with similarity ratio r/ρ(θ), where ρ(θ) denotes the radial
distance to the point where the profile intersects the base, and r is the length of the
radial segment at height z. By similarity, A(z) = (r/ρ(θ))2A(0). In Figure 8b,
area B(z) is equal to A(0) minus the area of a smaller similar region with similarity
ratio c/ρ(θ), where c is the length of the parallel radial segment of the smaller
similar region at height z. By similarity, c/ρ(θ) = z/h, hence B(z) = (1 −
(z/h)2)A(0). Equating this to A(z) we find (1 − (z/h)2)A(0) = (r/ρ(θ))2A(0),
which gives (18). And, of course, we already know that (18) implies A(z) =
B(z) for every z. Thus we have proved:

Theorem 11. Corresponding horizontal cross sections of a general profile uniform
dome and its punctured prismatic counterpart have equal areas if, and only if, each
profile is elliptic.

As already remarked in Section 5, an elliptic dome can be deformed in such a
way that areas of horizontal cross sections are preserved but the deformed dome no
longer has elliptic profiles. At first glance, this may seem to contradict Theorem
11. However, such a deformation will distort the vertical walls; the dome will not
satisfy the requirements of Theorem 11, and also the punctured counterpart will no
longer be prismatic.

An immediate consequence of Theorem 11 is that any reducible general pro-
file dome necessarily has elliptic profiles, because if all horizontal slices of such
a dome and its counterpart have equal volumes then the cross sections must have
equal areas. We have also verified that Theorem 11 can be extended to nonuniform
general profile domes built from a finite number of general profile similar shells,
each with its own constant density, under the condition that corresponding horizon-
tal slices of the dome and its counterpart have equal masses, with no requirements
on volumes or reducibility.
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Concluding remarks. The original motivation for this research was to extend
to more general solids classical properties which seemed to be unique to spheres
and hemispheres. Initially an extension was given for Archimedean domes and a
further extension was made by simply dilating these domes in a vertical direction.
These extensions could also have been analyzed by using properties of inscribed
spheroids.

A significant extension was made when we introduced polygonal elliptic domes
whose bases could be arbitrary polygons, not necessarily circumscribing the circle.
In this case there are no inscribed spheroids to aid in the analysis, but the method of
punctured containers was applicable. This led naturally to general elliptic domes
with arbitrary base, and the method of punctured containers was formulated in
terms of mappings that preserve volumes.

But the real power of the method is revealed by the treatment of nonuniform
mass distributions. Problems of determining volumes and centroids of elliptic
wedges, shells, and their slices, including those with cavities, were reduced to
those of simpler prismatic containers. Finally, we showed that domes with elliptic
profiles are essentially the only ones that are reducible.
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Midcircles and the Arbelos

Eric Danneels and Floor van Lamoen

Abstract. We begin with a study of inversions mapping one given circle into
another. The results are applied to the famous configuration of an arbelos. In
particular, we show how to construct three infinite Pappus chains associated with
the arbelos.

1. Inversions swapping two circles

Given two circlesOi(ri), i = 1, 2, in the plane, we seek the inversions which
transform one of them into the other. Set up a cartesian coordinate system such
that for i = 1, 2, Oi is the point(ai, 0). The endpoints of the diameters of the
circles on thex-axis are(ai ± ri, 0). Let (a, 0) andΦ be the center and the power
of inversion. This means, for an appropriate choice ofε = ±1,

(a1 + ε · r1 − a)(a2 + r2 − a) = (a1 − ε · r1 − a)(a2 − r2 − a) = Φ.

Solving these equations we obtain

a =
r2a1 + ε · r1a2

r2 + ε · r1 , (1)

Φ =
ε · r1r2((r2 + ε · r1)2 − (a1 − a2)2)

(r2 + ε · r1)2 . (2)

From (1) it is clear that the center of inversion is a center of similitude of the
two circles, internal or external according asε = +1 or −1. The two circles of
inversion, real or imaginary, are given by(x− a)2 + y2 = Φ, or more explicitly,

r2((x− a1)2 + y2 − r21) + ε · r1((x− a2)2 + y2 − r22) = 0. (3)

They are members of the pencil of circles generated by the two given circles. Fol-
lowing Dixon [1, pp.86–88], we call these themidcircles Mε, ε = ±1, of the two
given circlesOi(ri), i = 1, 2. From (2) we conclude that
(i) the internal midcircleM+ is real if and only ifr1 + r2 > d, the distance be-
tween the two centers, and
(ii) the external midcircleM− is real if and only if|r1 − r2| < d.
In particular, if the two given circles intersect, then there are two real circles of
inversion through their common points, with centers at the centers of similitudes.
See Figure 1.

Lemma 1. The image of the circle with center B, radius r, under inversion at a

point A with power Φ is the circle of radius
∣∣∣ Φ
d2−r2

∣∣∣ r, and center dividing AB at

the ratio AP : PB = Φ : d2 − r2 − Φ, where d is the distance between A and B.

Publication Date: February 19, 2007. Communicating Editor: Paul Yiu.
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O1 O2M− M+

Figure 1.

2. A locus property of the midcircles

Proposition 2. The locus of the center of inversion mapping two given circles
Oi(ai), i = 1, 2, into two congruent circles is the union of their midcircles M+

and M−.

Proof. Let d(P,Q) denote the distance between two pointsP andQ. Suppose
inversion inP with powerΦ transforms the given circles into congruent circles.
By Lemma 1,

d(P,O1)2 − r21
d(P,O2)2 − r22

= ε · r1
r2

(4)

for ε = ±1. If we set up a coordinate system so thatOi = (ai, 0) for i = 1, 2,
P = (x, y), then (4) reduces to (3), showing that the locus ofP is the union of the
midcirclesM+ andM−. �

Corollary 3. Given three circles, the common points of their midcircles taken by
pairs are the centers of inversion that map the three given circles into three con-
gruent circles.

For i, j = 1, 2, 3, let Mij be a midcircle of the circlesCi = Oi(Ri) andCj =
Oj(Rj). By Proposition 2 we haveMij = Rj · Ci + εij · Ri · Cj with εij = ±1.
If we chooseεij to satisfyε12 · ε23 · ε31 = −1, then the centers ofM12, M23

andM31 are collinear. Since the radical centerP of the triadCi, i = 1, 2, 3, has
the same power with respect to these circles, they form a pencil and their common
pointsX andY are the poles of inversion mapping the circlesC1, C2 andC3 into
congruent circles.

The number of common points that are the poles of inversion mapping the circles
C1, C2 andC3 into a triple of congruent circles depends on the configuration of these
circles.

(1) The maximal number is8 and occurs when each pair of circlesCi and
Cj have two distinct intersections. Of these8 points, two correspond to
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the three external midcircles while each pair of the remaining six points
correspond to a combination of one external and two internal midcircles.

(2) The minimal number is0. This occurs for instance when the circles belong
to a pencil of circles without common points.

Corollary 4. The locus of the centers of the circles that intersect three given circles
at equal angles are 0, 1, 2, 3 or 4 lines through their radical center P perpendicular
to a line joining three of their centers of similitude.

Proof. Let C1 = A(R1), C2 = B(R2), andC3 = C(R3) be the given circles.
Consider three midcircles with collinear centers. IfX is an intersection of these
midcircles, reflection in the center line gives another common pointY . Consider
an inversionτ with poleX that maps circleC3 to itself. CirclesC1 andC2 become
C′

1 = A′(R3) andC2 = B′(R3). If P ′ is the radical center of the circlesC1, C′
2

andC′3, then every circleC = P ′(R) will intersect these 3 circles at equal angles.
When we apply the inversionτ once again to the circlesC′1, C′

2, C3 andC we get the
3 original circlesC1, C2, C3 and a circleC′ and since an inversion preserves angles
circleC′ will also intersect these original circles at equal angles.

The circles orthogonal to all circlesC′ are mapped byτ to lines throughP′.
This means that the circles orthogonal toC′ all pass through the inversion poleX.
By symmetry they also pass throughY , and thus form the pencil generated by the
triple of midcircles we started with. The circlesC′ form therefore a pencil as well,
and their centers lie onXY asX andY are the limit-points of this pencil. �
Remark. Not every point on the line leads to a real circle, and not every real circle
leads to real intersections and real angles.

As an example we consider theA-,B- andC-Soddy circles of a triangleABC.
Recall that theA-Soddy circle of a triangle is the circle with centerA and radius
s − a, wheres is the semiperimeter of triangleABC. The area enclosed in the
interior of ABC by theA-, B- andC-Soddy circles form a skewed arbelos, as
defined in [5]. The circlesFφ making equal angles to theA-, B- andC-Soddy
circles form a pencil, their centers lie on the Soddy line ofABC, while the only
real line of three centers of midcircles is the tripolar of the Gergonne pointX7. 1

The pointsX andY in the proof of Corollary 4 are the limit points of the pencil
generated byFφ. In barycentric coordinates, these points are, forε = ±1,

(4R + r) ·X7 + ε ·
√

3s · I =
(
2ra + ε ·

√
3a : 2rb + ε ·

√
3b : 2rc + ε ·

√
3c

)
,

whereR, r, ra, rb, rc are the circumradius, inradius, and inradii. The midpoint of
XY is the Fletcher-pointX1323. See Figure 2.

3. The Arbelos

Now consider an arbelos, consisting of two interior semicirclesO1(r1) 2 and
O2(r2) and an exterior semicircleO(r) = O0(r), r = r1 + r2. Their points of

1The numbering of triangle centers following numbering in [2, 3].
2We adopt notations as used in [4]: By(PQ) we denote the circle with diameterPQ, by P (r)

the circle with centerP and radiusr, while P (Q) is the circle with centerP throughQ and(PQR)



56 E. Danneels and F. M. van Lamoen

A

B C

X

Y

X1323

Figure 2.

tangency areA,B andC as indicated in Figure 3. The arbelos has an incircle(O′).
For simple constructions of(O′), see [7, 8].

C O2 BO1A O

O′

P0,1

P1,1

P2,1

P1,2

P2,2

P0,2

Figure 3.

We consider three Pappus chains(Pi,n), i = 0, 1, 2. If (i, j, k) is a permutation
of (0, 1, 2), the Pappus chain(Pi,n) is the sequence of circles tangent to both(Oj)

is the circle throughP , Q andR. The circle(P ) is the circle with centerP , and radius clear from
context.
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and(Ok) defined recursively by
(i) Pi,0 = (O′), the incircle of the arbelos,
(ii) for n ≥ 1, Pi,n is tangent toPi,n−1, (Oj) and(Ok),
(iii) for n ≥ 2, Pi,n andPi,n−2 are distinct circles.

These Pappus chains are related to the centers of similitude of the circles of
the arbelos. We denote byM0 the external center of similitude of(O1) and(O2),
and, fori, j = 1, 2, byMi the internal center of similitude of(O) and(Oj). The
midcircles areM0(C), M1(B) andM2(A). Each of the three midcircles leaves
(O′) and its reflection inAB invariant, so does each of the circles centered atA,B
andC respectively and orthogonal to(O′). These six circles are thus members of a
pencil, andO′ lies on the radical axis of this pencil. Each of the latter three circles
inverts two of the circles forming the arbelos to the tangents to(O′) perpendicular
toAB, and the third circle into one tangent to(O′). See Figure 4.

C O2 BO1A O

O′

M0 M2 M1

F ′

F

Figure 4.

We make a number of interesting observations pertaining to the construction of
the Pappus chains. Denote byPi,n the center of the circlePi,n.

3.1. For i = 0, 1, 2, inversion in the midcircle(Mi) leaves(Pi,n) invariant. Con-
sequently,

(1) the point of tangency of(Pi,n) and(Pi,n+1) lies on(Mi) and their common
tangent passes throughMi;

(2) for every permuation(i, j, k) of (0, 1, 2), the points of tangency of(Pi,n)
with (Oj) and(Ok) are collinear withMi. See Figure 5.

3.2. For every permutation(i, j, k) of (0, 1, 2), inversion in(Mi) swaps(Pj,n)
and(Pk,n). Hence,

(1) Mi, Pj,n andPk,n are collinear;
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C O2 BO1A O
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Figure 5.

(2) the points of tangency of(Pj,n) and (Pk,n) with (Oi) are collinear with
Mi;

(3) the points of tangency of(Pj,n) with (Pj,n+1), and of(Pk,n) with (Pk,n+1)
are collinear withMi;

(4) the points of tangency of(Pj,n) with (Ok), and of(Pk,n) with (Oj) are
collinear withMi. See Figure 6.

P0,1

P1,1

P2,1

C O2 BO1A O

O′

M0 M2 M1

P1,2

P2,2

P0,2

Figure 6.

3.3. Let (i, j, k) be a permutation of(0, 1, 2). There is a circleIi which inverts
(Oj) and(Ok) respectively into the two tangents�1 and�2 of (O′) perpendicular
to AB. The Pappus chain(Pi,n) is inverted to a chain of congruent circles(Qn)
tangent to�1 and�2 as well, with(Q0) = (O′). See Figure 7. The lines joiningA
to
(i) the point of tangency of(Qn) with �1 (respectively�2) intersectC0 (respectively
C1) at the points of tangency withP2,n,
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(ii) the point of tangency of(Qn) and(Qn−1) intersectM2 at the point of tangency
of P2,n andP2,n−1.

From these points of tangency the circle(P2,n) can be constructed.
Similarly, the lines joiningB to

(iii) the point of tangency of(Qn) with �1 (respectively�2) intersectC2 (respec-
tively C0) at the points of tangency withP1,n,
(iv) the point of tangency of(Qn) and(Qn−1) intersectM1 at the point of tan-
gency of(P1,n) and(P1,n−1).

From these points of tangency the circle(P1,n) can be constructed.
Finally, the lines joiningC to

(v) the point of tangency of(Qn) with �i, i = 1, 2, intersectCi at the points of
tangency withP0,n,
(vi) the point of tangency of(Qn) and(Qn−1) intersectM0 at the point of tan-
gency of(P0,n) and(P0,n−1).

From these points of tangency the circle(P0,n) can be constructed.

Q1

Q2

C O2 BO1A O

O′

M2 M1

P0,1

P1,1

P2,1

P1,2

P2,2

P0,2

F


1 
2

Figure 7.

3.4. Now consider the circleKn through the points of tangency of(Pi,n) with
(Oj) and(Ok) and orthogonal toIi. Then by inversion inIi we see thatKn also
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passes through the points of tangency of(Qn) with �1 and�2. Consequently the
centerKn of Kn lies on the line throughO′ parallel to�1 and �2, which is the
radical axis of the pencil ofIi and (Mi). By symmetryKn passes through the
points of tangency(Pi′,n) with (Oj′) and(Ok′) for other permutations(i′, j′, k′)
of (0, 1, 2) as well. The circleKn thus passes through eight points of tangency, and
all Kn are members of the same pencil.

With a similar reasoning the circleLn = (Ln) tangent toPi,n andPi,n+1 at their
point of tangency as well as to(Qn) and(Qn+1) at their point of tangency, belongs
to the same pencil asKn. See Figure 8.
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Q1

Q2

C O2 BO1A O
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K2

K1

L1

Figure 8.

The circlesKn andLn make equal angles to the three arbelos semicircles(O),
(O1) and(O2). In §5 we dive more deeply into circles making equal angles to three
given circles.

4. λ-Archimedean circles

Recall that in the arbelos the twin circles of Archimedes have radiusrA = r1r2
r .

Circles congruent to these twin circles with relevant additional properties in the
arbelos are called Archimedean.



Midcircles and the arbelos 61

Now let the homothetyh(A,µ) mapO andO1 to O′ andO′
1. In [4] we have

seen that the circle tangent toO′ andO′
1 and to the line throughC perpendicular to

AB is Archimedean for anyµ within obvious limitations. On the other hand from
this we can conclude that when we apply the homothetyh(A,λ) to the line through
C perpendicular toAB, to find the line�, then the circle tangent to�,O andO′ has
radiusλrA. These circles are described in a different way in [6]. We call circles
with radiusλrA and with additional relevant propertiesλ-Archimedean.

We can find a family ofλ-Archimedean circles in a way similar to Bankoff’s
triplet circle. A proof showing that Bankoff’s triplet circle is Archimedean uses the
inversion inA(B), that mapsO andO1 to two parallel lines perpendicular toAB,
and(O2) and the Pappus chain(P2,n) to a chain of tangent circles enclosed by these
two lines. The use of a homothety throughAmapping Bankoff’s triplet circle(W3)
to its inversive image shows that it is Archimedean. We can use this homothety as
(W3) circle is tangent toAB. This we know because(W3) is invariant under
inversion in(M0), and thus intersects(M0) orthogonally atC. In the same way
we findλ-Archimedean circles.

Proposition 5. For i, j = 1, 2, let Vi,n be the point of tangency of (Oi) and (Pj,n).
The circle (CV1,nV2,n) is (n+ 1)-Archimedean.

P ′
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P ′
1,1

P ′
1,2

C′

V ′
1,0

V ′
1,1

V ′
1,2

C O2 BO1A O

V1,0

Z
O′

P1,1

P2,1

V1,1

P1,2

V1,2

P2,2

Figure 9.

A special circle of this family is(L) = (CV1,1V2,1), which tangent to(O)
and(O′) at their point of tangencyZ, as can be easily seen from the figure after
inversion. See Figure 9. We will meet again this circle in the final section.

Let W1,n be the point of tangency of(P0,n) and (O1). Similarly letW2,n be
the point of tangency of(P0,n) and(O2). The circles(CW1,nW2,n) are invariant
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under inversion through(M0), hence are tangent toAB. We may considerAB
itself as preceding element of these circles, as we may consider(O) as (P0,−1).
Inversion throughC maps(P0,n) to a chain of tangent congruent circles tangent to
two lines perpendicular toAB, and maps the circles(CW1,nW2,n) to equidistant
lines parallel toAB and includingAB. The diameters throughC of (CW1,nW2,n)
are thus, by inversion back of these equidistant lines, proportional to the harmonic
sequence. See Figure 10.
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Figure 10.

Proposition 6. The circle (CW1,nW2,n) is 1
n+1 -Archimedean.

5. Inverting the arbelos to congruent circles

Let F1 and F2 be the intersection points of the midcircles(M0), (M1) and
(M2) of the arbelos. Inversion throughFi maps the circles(O), (O1) and (O2)
to three congruent and pairwise tangent circles(Ei,0), (Ei,1) and (Ei,2). Trian-
gleEi,0Ei,1Ei,2 of course is equilateral, and stays homothetic independent of the
power of inversion.

The inversion throughFi maps(M0) to a straight line which we may consider
as the midcircle of the two congruent circles(Ei,1) and (Ei,2). The centerM ′

0

of this degenerate midcircle we may consider at infinity. It follows that the line
FiM0 = FiM

′
0 is parallel to the centralEi,1Ei,2 of these circles. Hence the lines

throughFi parallel to the sides ofEi,1Ei,2Ei,3 pass through the pointsM0,M1 and
M2.
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Now note thatA,B, andC are mapped to the midpoints of triangleEi,0Ei,1Ei,2,
and the lineAB thus to the incircle ofEi,0Ei,1Ei,2. The pointFi is thus on this
circle, and from inscribed angles in this incircle we see that the directed angles
(FiA,FiB), (FiB,FiC), (FiC,FiA) are congruent moduloπ.

Proposition 7. The points F1 and F2 are the Fermat-Torricelli points of degenerate
triangles ABC and M0M1M2.

Let the diameter of(O′) parallelAB meet(O′) in G1 andG2 and LetG′
1 and

G′
2 be their feet of the perpendicular altitudes onAB. From Pappus’ theorem we

know thatG1G2G
′
1G

′
2 is a square. Construction 4 in [7] tells us thatO′ and its re-

flection throughAB can be found as the Kiepert centers of base angles± arctan 2.
Multiplying all distances toAB by

√
3

2 implies that the pointsFi form equilateral
triangles withG′

1 andG′
2. See Figure 11.
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Figure 11.

A remarkable corollary of this and Proposition 7 is that the arbelos erected on
M0M1M2 shares its incircle with the original arbelos. See Figure 12.

Let F1 be at the same side ofABC as the Arbelos semicircles. The inver-
sion in F1(C) maps(O), (O1) and (O2) to three2-Archimedean circles(E0),
(E1) and (E2), which can be shown with calculations, that we omit here. The
2-Archimedean circle(L) we met earlier meets(E1) and(E2) in their ”highest”
pointsH1 andH2 respectively. This leads to new Archimedean circles(E1H1)
and(E2H2), which are tangent to Bankoff’s triplet circle. Note that the pointsE1,
E2, L, the point of tangency of(E0) and(E1) and the point of tangency of(E0)
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and(E2) lie on the2-Archimedean circle with centerC tangent to the common
tangent of(O1) and(O2). See Figure 13.
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Figure 13.
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Ceva Collineations

Clark Kimberling

Abstract. SupposeL1 andL2 are lines. There exists a unique pointU such that
if X ∈ L1, thenX−1 c©U ∈ L2, whereX−1 denotes the isogonal conjugate of
X andX−1 c©U is theX−1-Ceva conjugate ofU . The mappingX �→ X−1 c©U
is theU -Ceva collineation. It maps every line onto a line and in particular maps
L1 ontoL2. Examples are given involving the line at infinity, the Euler line, and
the Brocard axis. Collineations map cubics to cubics, and images of selected
cubics under certainU -Ceva collineations are briefly considered.

1. Introduction

One of the great geometry books of the twentieth century states [1, p.221] that
“M öbius’s invention of homogeneous coordinates was one of the most far-reaching
ideas in the history of mathematics”. In triangle geometry, two systems of homo-
geneous coordinates are in common use: barycentric and trilinear. Trilinears are
especially useful when the angle bisectors of a reference triangleABC play a cen-
tral role, as in this note.

Suppose thatX = x : y : z is a point. If at most one ofx, y, z is 0, then the
point

X−1 = yz : zx : xy

is the isogonal conjugate ofX, and if none ofx, y, z is 0, we can write

X−1 =
1
x

:
1
y

:
1
z
.

A traditional construction forX−1 depends on interior angle bisectors: reflect line
AX in the A-bisector,BX in the B-bisector,CX in the C-bisector; then the
reflected lines concur inX−1.

The triangleAXBXCX with vertices

AX = AX ∩ BC, BX = BX ∩ CA, CX = CX ∩ AB

is thecevian triangle of X, and

AX = 0 : y : z, BX = x : 0 : z, CX = x : y : 0.

If U = u : v : w is a point, then the triangleAUBUCU with vertices

AU = −u : v : w, BU = u : −v : w, CU = u : v : −w

Publication Date: February 26, 2007. Communicating Editor: Paul Yiu.
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is theanticevian triangle of U . The linesAXAU , BXBU , CXCU concur in the
point

u(−uyz + vzx + wxy) : v(uyz − vzx + wxy) : w(uyz + vzx − wyz),

called theX-Ceva conjugate of U and denoted byX c©U (see [2, p. 57]). It is easy
to verify algebraically thatX c©(X c©U) = U and that ifP = p : q : r is a point,
then the equationP = X c©U is equivalent to

X =(ru + pw)(pv + qu) : (pv + qu)(qw + rv) : (qw + rv)(ru + pw) (1)

=cevapoint(P,U).

A construction of cevapoint(P,U) is given in the Glossary of [3].
One more preliminary will be needed. Acircumconic is a conic that passes

through the vertices,A,B,C. Every pointP = p : q : r, wherepqr �= 0, has
its own circumconic, given by the equationpβγ + qγα + rαβ = 0; indeed, this
curve is, loosely speaking, the isogonal conjugate of the linepα + qβ + rγ = 0,
and the curve is an ellipse, parabola, or hyperbola according as the line meets the
circumcircle in0, 1, or 2 points. The circumcircle is the circumconic having
equationaβγ + bγα + cαβ = 0.

2. The Mapping X �→ X−1 c©U

In this section, we present first a lemma: that for given circumconicP and line
L, there is a pointU such that the mappingX �→ X c©U takes each pointX onP
to a point onL. The lemma easily implies the main theorem of the paper: that the
mappingX �→ X−1 c©U takes each point of a certain line toL.

Lemma 1. Suppose L = l : m : n and P = p : q : r are points. Let P denote
the circumconic pβγ + qγα + rαβ = 0 and L the line lα + mβ + nγ = 0. There
exists a unique point U such that if X ∈ P, then X c©U ∈ L. In fact,

U = L−1 c©P = p(−lp + mq + nr) : q(lp − mq + nr) : r(lp + mq − nr).

Proof. We wish to solve the containmentX c©U ∈ L for U , given thatX ∈ P.
That is, we seeku : v : w such that

u(−uyz+vzx+wxy)l+v(uyz−vzx+wxy)m+w(uyz+vzx−wxy)n = 0, (2)

given thatX = x : y : z is a point satisfying

pyz + qzx + qxy = 0. (3)

Equation (2) is equivalent to

u(−ul + vm + wn)yz + v(ul − vm + wn)zx + w(ul + vm − wn)xy = 0, (4)

so that, treatingx : y : z as a variable point, equations (3) and (4) represent the
same circumconic. Consequently,

u(−lu + mv + nw)qr = v(lu − mv + nw)rp = w(lu + mv − nw)pq.
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In order to solve foru : v : w, we assume, as a first of two cases, thatp andq are
not both0. Then the equation

u(−lu + mv + nw)qr = v(lu − mv + nw)rp

gives

w =
(mv − lu) (pv + qu)

n(pv − qu)
. (5)

Substituting forw in

u(−lu + mv + nw)qr − w(lu + mv − nw)pq = 0

gives
(
mpqv − lpqu + nprv − nqru − lp2v + mq2u

)
(mv − lu)uv

2nr(pv − qu)2
= 0,

so that

u =
(mq − lp + nr) pv

q(lp − mq + nr)
. (6)

Consequently, for givenv, we have

u : v : w =
(mq − lp + nr) pv

q(lp − mq + nr)
: v :

(mv − lu) (pv + qu)
n(pv − qu)

.

Substituting foru from (6), cancelingv, and simplifying lead to

u : v : w = p (−lp + mq + nr) : q (lp − mq + nr) : r (lp + mq − nr) ,

so thatU = L−1 c©P .
If, as the second case, we havep = q = 0, thenr �= 0 becausep : q : r is

assumed to be a point. In this case, one can start with

u(−lu + mv + nw)qr = w(lu + mv − nw)pq

and solve forv (instead ofw as in (5)) and continue as above to obtainU =
L−1 c©P .

The method of proof shows that the pointU is unique. �
Theorem 2. Suppose L1 is the line l1α + m1β + n1γ = 0 and L2 is the line
l2α + m2β + n2γ = 0. There exists a unique point U such that if X ∈ L1, then
X−1 c©U ∈ L2.

Proof. The hypothesis thatX ∈ L1 is equivalent toX−1 ∈ P, the circumconic
having equationl1βγ + m1γα + n1αβ = 0. Therefore, the lemma applies to the
circumconicP and the lineL2. �

We write the mappingX �→ X−1 c©U asCU (X) = X−1 c©U and callCU the
U -Ceva collineation. ThatCU is indeed a collineation follows as in [4] from the
linearity ofx, y, z in the trilinears

CU(X) = u(−ux + vy + wz) : v(ux − vy + wz) : w(ux + vy − wz).

This collineation is determined by its action on the four pointsA, B, C, U−1, with
respective imagesAU , BU , CU , U .
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Regarding the surjectivity, or onto-ness, ofCU , supposeF is a point onL2; then
the equationX−1 c©U = F has as solution

X = cevapoint(F,U))−1.

3. Corollaries

Lemma 1 tells how to findU for givenL andP. Here, we tell how to findL
from givenP andU and how to findP from givenU andL.

Corollary 3. Given a circumconic P and a point U , there exists a line L such that
if X ∈ P, then X c©U ∈ L.

Proof. Assuming there is such aL, we have the pointU = L−1 c©P as Theorem
2, so thatL−1 = cevapoint(U,P ), and

L = (cevapoint(U,P ))−1,

so thatL is the line(wq + vr)α + (ur + wp)β + (vp + uq)γ = 0. It is easy to
check that ifX ∈ P, thenX c©U ∈ L. �

Corollary 4. Given a line L and a point U , there exists a circumconic P such that
if X ∈ P, then X c©U ∈ L.

Proof. Assuming there is such aL, we have the pointU = L−1 c©P , andP =
L−1 c©U , so thatP is the circumconic

u(−ul + vm + wn)βγ + v(ul − vm + wn)γα + w(ul + vm − wn)αβ = 0.

It is easy to check that ifX ∈ P, thenX c©U ∈ L. �

4. Examples

4.1. Let L = P = 1 : 1 : 1, so thatL1 = L2 is the lineα + β + γ = 1. We find
U = 1 : 1 : 1, so that

CU(X) = −x + y + z : x − y + z : x + y − z.

It is easy to check thatCU(X) = X for everyX on the lineα + β + γ = 1, such
asX44 andX513. On the lineX1X2 we have

CU (X) = X for X ∈ {X1,X899},
so thatCU mapsX1X2 onto itself; e.g.,CU (X2) = X43, andCU(X1201) = X8,
andCU (X8) = X972 . On X1X6 we have fixed pointsX1 andX44, so thatCU

maps the lineX1X44 to itself. AbbreviatingCU (Xi) = Xj asXi �→ Xj , we have,
among points onX1X44,

X1100 �→ X37 �→ X6 �→ X9 �→ X1743.

The Euler line,X2X3, is a link in a chain as indicated by

· · · �→ X42X65 �→ X2X3 �→ X43X46 �→ · · ·
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4.2. Let L = L1 = X6 = a : b : c, so thatL1 is the line at infinity andP is the
circumcircle. LetL2 be the Euler line, given by takingL2 in the statement of the
theorem to be

X647 = a(b2−c2)(b2+c2−a2) : b(c2−a2)(c2+a2−b2) : c(a2−b2)(a2+b2−c2).

The Ceva collineationCU that mapsL1 ontoL2 is given by

U = X523 =a(b2 − c2) : b(c2 − a2) : c(a2 − b2)

= sin(B − C) : sin(C − A) : sin(A − B),

and we find

X512 �→ X2, X520 �→ X4, X523 �→ X5,
X526 �→ X30, X2574 �→ X1312, X2575 �→ X1313.

The penultimate of these, namelyX2574 �→ X1312, is of particular interest, as
X2574 = X−1

1113, whereX1113 is a point of intersection of the Euler line and the
circumcircle andX1312 is a point of intersection of the Euler line and the nine-point
circle; and similarly forX2575 �→ X1313. The mappingCU carries the Brocard axis,
X3X6 onto the lineX115X125, whereX115 andX125 are the centers of the Kiepert
and Jerabek hyperbolas, respectively.

4.3. Let L1 = X523, so thatL1 is the Brocard axis,X3X6, and letL2 be the Euler
line, X2X3. ThenU = X6 = a : b : c. The mapping ofL1 to L2 is a link in a
chain:

· · · �→ X2X39 �→ X2X6 �→ X3X6 �→ X2X3 �→ X6X25 �→ X3X66 �→ · · ·
4.4. Here, we reverse the roles played by the Brocard axis and Euler line in Ex-
ample 3: letL1 be the Euler line andL2 be the Brocard axis. ThenU = X184 =
a2 cos A : b2 cos B : c2 cos C. A few images of theX184-Ceva collineation are
given here:

X2 �→ X32, X3 �→ X571, X4 �→ X577,
X5 �→ X6, X30 �→ X50, X427 �→ X3.

4.5. Let L1 = L2 = Brocard axis. Here,

U = X5 = cos(B − C) : cos(C − A) : cos(A − B),

the center of the nine-point circle, and

X389 �→ X3 �→ X52 and X570 �→ X6 �→ X216.

4.6. Let L1 = L2 = the line at infinity,X30X511. Here,

U = X3 = cos A : cos B : cos C,

the circumcenter. Among line-to-line images underX3-collineation are these:

X4X51 �→ Euler line �→ X3X49,

X6X64 �→ X4X6 �→ Brocard axis�→ X6X155.
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5. Cubics

Collineations map cubics to cubics (e.g. [4, p. 23]). In particular, aU -Ceva
collineation maps a cubicΛ that passes through the verticesA, B, C to a cubic
CU(Λ) that passes through the verticesAU , BU , CU of the anticevian triangle of
U .

5.1. Let U = X1, as in§4.1, and letΛ be the Thompson cubic,Z(X2,X1), with
equation

bcα(β2 − γ2) + caβ(γ2 − α2) + abγ(α2 − β2) = 0.
ThenCU(Λ) circumscribes the excentral triangle, and for selectedXi on Λ, the
imageCU(Xi) is as shown here:

Xi 1 2 3 4 6 9 57 223
CU (Xi) 1 43 46 1745 9 1743 165 1750

5.2. Let U = X1, and letΛ be the cubicZ(X1,X75), with equation

α(c2β2 − b2γ2) + β(a2γ2 − c2α2) + γ(b2α2 − a2β2) = 0.

For selectedXi onΛ, the imageCU (Xi) is as shown here:

Xi 1 6 19 31 48 55 56 204 221
CU (Xi) 1 9 610 63 19 57 40 2184 84

5.3. Let U = X6, as in§4.3, and letΛ be the Thompson cubic. ThenCU (Λ)
circumscribes the tangential triangle, and for selectedXi on Λ, the imageCU (Xi)
is as shown here:

Xi 1 2 3 4 6 9 57 223 282 1073 1249
CU (Xi) 55 6 25 154 3 56 198 1436 1035 1033 64
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Orthocycles, Bicentrics, and Orthodiagonals

Paris Pamfilos

Abstract. We study configurations involving a circle (orthocycle) intimately re-
lated to a cyclic quadrilateral. As an illustration of the usefulness of this circle
we explore its connexions with bicentric (bicentrics) and orthodiagonal quadri-
laterals (orthodiagonals) reviewing the more or less known facts and revealing
some other properties of these classes of quadrilaterals.

1. Introduction

Consider a generic convex cyclic quadrilateralq = ABCD inscribed in the
circle k(K, r) and having finite intersection pointsF,G of opposite sides. Line
e = FG is the polar of the intersection pointE of the diagonalsAC,BD. The
circle c with diameterFG is orthogonal tok. Also, the midpointsX,Y of the
diagonals and the centerH of c are collinear. We callc the orthocycle of the
cyclic quadrilateralq. Consider also the circlef with diameterEK. This is the
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Figure 1. The orthocyclec of the cyclic quadrilateralABCD

locus of the midpoints of chords ofk passing throughE. It is also the inverse of
e with respect tok and is orthogonal toc. Thus,c belongs to the circle-bundle
C ′, which is orthogonal to the bundleC (k, f) generated byk andf . The bundle
C is of non intersecting type with limit pointsM , N , symmetric with respect to
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e, andC ′ is a bundle of intersecting type, all of whose members pass throughM
andN . If we fix the data(k,E, c), then all cyclic quadrilateralsq having these
ascircumcircle, diagonals-intersection-point, orthocyclerespectively form a one-
parameter family. A memberq of this family is uniquely determined by a pointJ
on the circular arc(OMP ) of the orthocyclec. Thus the set of allq inscribed in the
circle k and having diagonals throughE is parameterized through pairs(c, J), c
(the orthocycle) being a circle of bundleC′ andJ a point on the corresponding arc
(OMP ) intercepted on the orthocycle byf . In the following sections we consider
these facts more closely and investigate (i) the bicentrics inscribed ink, and (ii)
a certain 1-1 correspondence of cyclics to orthodiagonals in which the orthocycle
plays an essential role.

Regarding the proofs of the statements made, everything (is or) follows immedi-
ately from standard, well known material. In fact, the statement on the polar relies
on its usual construction from two intersecting chords ([3, p.103]). The statement
on the collinearity follows from Newton’s theorem on a complete quadrilateral ([3,
p.62]). From the harmonic ratios appearing in complete quadrilaterals follows also
that the intersection pointsQ, R of the diagonals with linee divide F , G har-
monically. Consequently the circle with diameterQR is also orthogonal toc ([2,
§1237]). The orthogonality ofc, k follows from the fact thatPF is the polar ofG,
which implies thatP,G are inverse with respect tok. Besides, by measuring angles
atP , circlesf , c are shown to be orthogonal. The statement on the parametrization
is analyzed in the following section.

The orthocycle gives a means to establish unity in apparently unrelated proper-
ties. For example the well known formula

1
r2

=
1

(R + d)2
+

1
(R − d)2

is proved to be, essentially, a case ofStewart’s formula(see next paragraph).
Furthermore, the orthogonality ofc to f can be used to characterize the cyclics.

To formulate the characterization we consider more general theorthocycleof a
generic convex quadrilateral to be the circle on the diameter defined by the two
intersection points of its pairs of opposite sides.

Proposition 1. The quadrilateralq = ABCD is cyclic if and only if its orthocycle
c is orthogonal to the circlef passing through the midpointsX, Y of its diagonals
and their intersection pointE.

Proof. If q is cyclic, then we have already seen that its orthocyclec belongs to the
bundleC ′ which is orthogonal to the one generated by its circumcirclek and the
circle f passing through the diagonal midpoints and their intersection point.

Conversely, if the orthocyclec andf intersect orthogonally, thenY andX are
inverse with respect toc. Since the same is true with the intersection pointsR, Q of
the diagonals ofq with line FG (see Figure 2), there is a circlea passing through
the four pointsX, Y , R andQ. Then we have

|ER| · |EX| = |EY | · |EQ|. (1)
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Figure 2. Cyclic characterization

But from the general properties of the complete quadrilaterals we have also that
(Q,E,C,A) = −1 is a harmonic division, hence

|EC| · |EA| = |EQ| · |EY |. (2)

Analogously,(R,E,B,D) = −1 implies

|EB| · |ED| = |ER| · |EX|. (3)

Relations (1) to (3) imply that|EB| · |ED| = |EC| · |EA|, proving the proposition.
�

For a classical treatment of the properties discussed below see Chapter 10 of
Paul Yiu’s Geometry Notes [5]. Zaslavsky (see [6], [1]) uses the termorthodiago-
nal for a map between quadrangles and gives characterizations of cyclics in another
context than the one discussed below.

2. Bicentrics

Denote by(k,E, c) the family of quadrilaterals characterized by these elements
(circumcircle, diagonal-intersection-point, orthocycle) correspondingly. Referring
to Figure 1 we have the following properties ([2,§§674, 675, 1276]).

Proposition 2. (1) There is a 1-1 correspondance between the members of the
family (k,E, c) and the pointsJ of the open arc(OMP ) of circle c.

(2) Let X,Y be the intersection points off with line HJ . X,Y are the mid-
points of the diagonals ofq and are inverse with respect toc.
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(3) ThenFJ bisects anglesAFD andXFY . Analogously,GJ bisects angles
BGD andXGY .

Proof. In fact, from the Introduction, it is plain that each memberq of the family
(k,E, c) defines aJ as required. Conversely, a pointJ on arc(OMP ) of c defines
two intersection pointsX, Y of HJ with f , which are inverse with respect to
c, sincef andc are orthogonal. The chordsEX andEY define the cyclicq =
ABCD, having these as diagonals andX, Y as the midpoints of these diagonals.
Consider the orthocyclec′ of this q. By the analysis made in the Introduction,c′
belongs to the bundleC ′ and is also orthogonal to the circle with diameterQR.
Thusc′ is uniquely defined by the chordsXE, Y E and must coincide withc. This
proves (1).

(2) is already discussed in the Introduction.
(3) follows from the orthogonality of circlesk, c. In fact, this implies thatJ ,

J∗ divide X, Y harmonically. Then(FJ∗, FJ, FY, FX) is a harmonic bundle
of lines andFJ∗, FJ are orthogonal. Hence, they bisect∠XFY . They also
bisect∠BFC. This follows immediately from the similarity of trianglesAFC
andDFB. Analogous is the situation with the angles atG. �

Referring to figure 1, denote byq(c) the particular quadrilateral of the family
(k,E, c), constructed with the recipe of the previous proposition, forJ ≡ M . The
following two lemmas imply thatq(c) is bicentric.
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Figure 3. Bundle quadrilaterals

Lemma 3. Consider a circle bundle of non intersecting type and two chords of a
member circle passing through the limit pointE of the bundle(see Figure 3). The
chords define a quadrilateralq = ABCD having these as diagonals. Extend two
opposite sidesAD,BC until they intersect a second circle memberc of the bundle.
The intersection points form a quadrilateralr = HIJK. Then the intersection
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pointL of the sidesHI, JK lies on the polarMN of E with respect to a circle of
the bundle (all circlesc of the bundle have the same polar with respect toE).

Indeed,N , M can be taken as the intersection points of opposite sides ofq.
ThenN is on the polar ofE, hence the polarp(N) of N containsE. Consider the
intersection pointsO,P of this polar with sidesHK, IJ respectively. Then,
(a) these sides intersect at a pointL lying on p(N),
(b) L is also on lineMN .

(a) follows from the standard theorem on cyclic quadrilaterals.
(b) follows from the fact that the quadruple of lines(NL,NH,NE,NI) at N

is harmonic. But(NM,NH,NE,NI) is also harmonic, henceL is contained in
line MN .

Lemma 4. q(c) is bicentric.
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Figure 4. Bisectors ofq(c)

Indeed, by Proposition 2 the bisectors of angles∠AGB,∠BFC will intersect
atM . It suffices to show that the bisectors of two opposite angles ofq(c) intersect
also atM . Let us show that the bisector of angle∠ABC passes throughM (Figure
4). We start with the quadrilateralq1 = EXKY . Its diagonals intersect atM . Ac-
cording to the previous lemma the extensions of its sides will define a quadrilateral
q2 = BDK∗Y ∗ inscribed ink and having its opposite sides intersecting on lineh
the common polar ofE with respect to every member circle of the bundleI. This
implies that the diagonals ofq2 intersect at the poleE of h. But BK∗ joins B
to the middleK∗ of the arc(CK∗B), hence is the bisector of angle∠ABC and
passes throughM .
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Proposition 5. (1) There is a unique memberq = q(c) = ABCD, of the family
(k,E, c) which is bicentric. The correspondingJ is the limit pointM of bundleI
contained in the circlek.

(2) There is a unique membero = o(c) = A∗B∗C∗D∗, of the family(k,E, c)
which is orthodiagonal. The correspondingHJ passes through the centerL of the
circle f .

(3) For every bicentric the incenterM is on the line joining the intersection
point of the diagonals with the circumcenter.

(4) For every bicentric the incenterM is on the line joining the midpoints of the
diagonals.
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Figure 5. The bicentric member in(k, E, c)

Proof. In fact, by the previous lemmas we know thatq(c) is bicentric. To prove
the uniqueness we assume thatq = ABCD is bicircular and consider the incircle
g and the tangential quadrilateralq′ = UV WZ. From Brianchon’s theorem the
diagonals ofq′ intersect also atE. Thus, the poles of the diagonalsUW , V Z
being correspondinglyF , G, line e will be also polar ofE with respect tog. In
particular the center ofg will be on lineMN and the pairs of opposite sides of the
tangentialq′ will intersect one at pointsQ,R say. The diagonals ofq pass through
Q, R respectively. In fact,D being the pole of lineWZ andB the pole ofUV ,
BD is the polar ofR with respect tog. By the standard construction of the polar
it follows that Q is on BD. AnalogouslyR is on AC. The center ofg will be
the intersectionM′ of the bisectors of anglesBGA andBFC. By measuring the
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angles atM ′ we find easily that the bisectors form there a right angle. Thus,M′
will be on the orthocyclec, hence, being also on lineMN , it will coincide withM .
In that case lineHY X passes throughM . This follows from proposition 1 which
identifies the bisector of angleY FX with FM . This proves (1).

To prove (2) consider the quadrangles = EXKY . If the diagonals intersect
orthogonally thens is a rectangle. ConsequentlyXY is a diameter off and passes
throughL. The converse is also valid. IfXY passes throughL thens is a rectangle
ando is orthodiagonal.

The other statements are immediate consequences. Notice that property 2 holds
more generally for every circumscriptible quadrilateral ([2,§1614]). �

Proposition 6. Consider all tripples(k,E, c) with fixedk,E andc running through
the members of the circle bundleC ′. Denote byq(c) the bicentric member of the
corresponding family(k,E, c) and byq′ = UV WZ the tangential quadrangle of
q(c) (see Figure 5). The following statements are consequences of the previous
considerations:

(1) All tangential quadrilateralsq′ = UV WZ are orthodiagonal, the diagonals
being each time parallel to the bisectors of angles∠BGA,∠BFC.

(2) The pairs of opposite sides orq′ intersect at the pointsQ,R, which are the
intersection points of the diagonals ofq(c) with e.

(3) The orthocyclec′ of the tangentialq′ is the circle on the diameterQR and
intersects the incircleg of q(c) orthogonally. The radiusrg of the incircle satisfies
r2
g = |ME||MT |.

(4) The bicentrics{q(c) : c ∈ C ′} are precisely the inscribed in circlek and
having their diagonals pass throughE. They, all, have the same incircleg, de-
pending only onk andE.

(5) The radiirg of the inscribed circleg, r of circumscribedk, and the distance

d = |MK| of their centers satisfy the relation
1
r2
g

=
1

(r + d)2
+

1
(r − d)2

.

Proof. (1) follows from the fact thatUV is orthogonal to the bisectorFM of angle
BFC. AnalogouslyV Z is orthogonal toGM andFM , GM are orthogonal ([2,
§674]).

(2) follows from the standard construction of the polar ofE with respect tog.
Thuse is also the polar ofE with respect to the incircleg ([2, §1274]).

(3) follows also from (2) and the definition of the orthocycle. The relation for
rg is a consequence of the orthogonality of circlesc′, g.

(4) is a consequence of (3) and (5) is proved below by specializing to a particular
bicentricq(c) which is simultaneously orthodiagonal ([5, p.159]). Since the radius
and the center of the incircleg is the same for allq(c) this is legitimate. �

Proposition 7. (1) For fixed (k,E), the set of all bicentrics{q(c) : c ∈ C′}
contains exactly one member which is simultaneously bicentric and orthodiagonal.
It corresponds to the minimum circle of bundleC′, is kite-shaped and symmetric
with respect toMN (see Figure 6).
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Figure 6. The orthodiagonal bicentric

(2) All the bicentric orthodiagonals are constructed by reflecting an arbitrary
right-angled triangleABD on its hypotenuse(see Figure 7). The center of the
incircle coincides with the traceE of the bisector with the hypotenuse, the length of

this bisectorw satisying
2

w2
=

1
(R + d)2

+
1

(R − d)2
. HereR is the circumradius

of ABD andd = |EK| is the distance of the bisector’s trace from the middle of
BD.

(3) There is a particular bicentric orthodiagonal constructed directly from a
regular octagon, with inradiusr = R√

2+
√

2
and sides equal tow and w + 2r

respectively(see Figure 8).
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Figure 7. The general orthodiagonal bicentric

Proof. In fact, by applying the previous results to the tangential quadrilateralq′ of
q(c), we know that the orthocycle ofq′ is orthogonal to the fixed incircleg and
passes through two fixed points, depending only on(k,E) (the limit points of the
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corresponding circle bundleC ′ for the pair(g,E)). If the diagonalsEQ andER
become orthogonal thenE must be on the orthocycle ofq′ and this is possible only
in the limiting position in which it coincides with lineMN . Then the orthocycle
of q(c) hasMN as diameter and this implies (1).

(2) follows immediately from (1). The formula is an application of Stewart’s
general formula (see [5, p.14]) on this particular configuration plus a simple calcu-
lation. The formula implies trivially the formula of the previous proposition, since
all the bicirculars characterized by the fixed pair(k,E) have the same incircleg
and from the squareEZAU (Figure 6) we havew2 = 2r2.

(3) is obvious and underlines the existence of a particular nice kite. �
Notice the necessary inequality between the distanced = MK and the distance

d1 = |EK| of circumcenter from the intersection point of diagonals:2|MK| >
|EK|, holding for every bicentric ([6, p.44]) and being a consequence of a general
propety of circle bundles of non intersecting type.
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Figure 8. A distinguished kite

3. Circumscribed Quadrilateral

The following proposition give some well known properties of quadrilaterals
circumscribed on circles by adding the ingredient of the orthocycle. For conve-
nience we review here these properties and specialize in a subsequent proposition
to the case of a bicentric circumscribed.

Proposition 8. Consider the tangential quadrilateralq′ = QRST circumscribed
on the circumcirclek of the cyclic quadrilateralq = ABCD (Figure 9). The
following facts are true:

(1) The diagonals ofq′ andq intersect at the same pointE.
(2) The pairs of opposite sides ofq′ and pairs of opposite sides ofq intersect on

the same linee, which is the polar ofE with respect to the circumcirclek of q.
(3) The diameterUV of the orthocycle ofq′ is divided harmonically by the

diameter FG of the orthocycle ofq.
(4) The orthocycle ofq′ is orthogonal to the orthocycle ofq.
(5) The diagonals ofq′ (respectivelyq) pass through the intersection points of

opposite sides ofq (respectivelyq′).
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Figure 9. Circumscribed on cyclic

Proof. (1) is a consequence of Brianchon’s theorem (see a simpler proof in [5,
p.157]). Identify the polar ofE with the diametere = FG of the orthocycle of
q. The polar ofF is PG and the polar ofG is OF . T is the pole ofAB which
containsF . Hence the polar ofF will pass throughT , analogously it will pass
throughR. This proves (2) (see [2,§1275]) and (5).

To show (3) it suffices to see that lines(KP,KY,KO,KX) form a harmonic
bundle. But the cross ratio of these four lines throughK is independent of the lo-
cation ofK on the circle with diameterEK. Hence is the same with the cross ratio
of lines (EP,EY,EO,EX) which is−1 by the general properties of complete
quadrilaterals.

(4) is a consequence of (3). Note that the lineLN joining the midpoints of the
diagonals ofq′ passes through the centerW of the orthocycle and the center ofk
([2, §1614]). �
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Proposition 9. For each quadrangle of the familyq ∈ (k,E, c) construct the tan-
gential quadrangleq′ = QRST of q = ABCD (Figure 10). The following facts
are true.

(1) There is exactly oneq0 ∈ (k,E, c) whose corresponding tangentialq′ is
cyclic. The corresponding line of diagonal midpoints ofq′ passes through the
centerK of circle k.

(2) The line of diagonal midpoints ofq0 is orthogonal to the corresponding line
of diagonal midpoints ofq′.

E

F

G

H

K

c

M
k

O

P

X

Y

W

Q

R

S

T

U

V

b f

Figure 10. Bicentric circumscribed

Proof. q′ being cyclic and circumscriptible it is bicentric. Hence the lines joining
opposite contact points must be orthogonal and the orthocycle ofq′ passes through
K. This follows from Proposition 2. Thusp = EXKY is a rectangle,XY being
a diameter of the circlef . Inversely, by Proposition 3, ifq′ is bicentric, thenp is
a rectangle andK is the limit point of the corresponding bundleI, andK is the
center of the incircle. For the other statement notice that circlec being orthogonal
simultaneously to circlek andb has its center on the radical axis ofb andk. In the
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particular case of bicentricq′, the anglesWKK, XY K andEKY are equal and
this implies thatWL is then orthogonal toHXY which becomes the radical axis
of k andb.

Note that the diagonals of allq′ are the same and identical with the linesEF,EG
which remain fixed for all membersq of the family(k,E, c). Also combining this
proposition and Proposition 3 we have (see [5, p.162]) thatq′ is cyclic, if and only
if q is orthodiagonal. �

4. Orthodiagonals

The first part of the following proposition constructs an orthodiagonal from a
cyclic. This is the inverse procedure of the well known one, which produces a
cyclic by projecting the diagonals intersection point of an orthodiagonal to its sides
([4, vol. II p. 358], [6], [1]).
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Figure 11. Orthodiagonal from cyclic

Proposition 10. (1) For each cyclic quadrilateralq = ABCD of the family
(k,E, c) there is an orthodiagonalp = QRST whose diagonals coincide with
the sides of the right angled trianglet = FGM , defined by the limit pointM of
bundleC and the intersection pointsF , G of the pairs of opposite sides ofq. The
vertices ofq are the projections of the intersection pointM of the diagonals ofp
on its sides.

(2) The pairs of opposite sides ofp intersect at pointsW , W∗ on lineh which is
the common polar of all circles of bundleI with respect to its limit pointM .



Orthocycles, bicentrics, and orthodiagonals 85

(3) The orthodiagonalp is cyclic if and only if the correspondingq is bicentric,
i.e., pointJ is identical withM .

(4) The circumcircle of the orthodiagonal and cyclicp belongs to bundleI.

Proof. Consider the lines orthogonal toMA, MB, MC, MD at the vertices ofq
(Figure 11). They build a quadrilateral. To show the statement on the diagonals
consider the two resulting cyclic quadrilateralsq1 = MATB andq2 = MCRD.
PointF lies on the radical axis of their circumcircles since linesFBA,FCD are
chords throughF of circle k. Besides, for the same reason|FB| · |FA| = |FV | ·
|FU | = |CF |·|FD| = |FM |2. The last because circlesc, k are orthogonal andM
is the limit point of bundleI. From|FB| · |FA| = |FM |2 follows that lineFM
is tangent to the circumcircle ofq1. Analogously it is tangent toq2 at M . Thus
points G,T,M,R are collinear. Analogously pointsF , Q, M , S are collinear.
This proves (1).

For (2), note that quadrangleABQS is cyclic, since∠TBA = ∠TMA =
∠MSA. Thus|FM |2 = |FQ| · |FS| and this implies that pointsM,Z divide har-
monicallyQ,S, Z being the intersection point ofh with the diagonalQS. Analo-
gously the intersection pointZ∗ of h with the diagonalTR andM will divide T , R
harmonically. Thus, by the characteristic property of the diagonals of a complete
quadrilateralZZ∗ will be identical with lineWW∗.
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Figure 12. Orthodiagonal and cyclic

For (3), note thatp is cyclic if and only if angles∠QTR = ∠QSR (Figure 12).
By the definition ofp this is equivalent to∠BAM = ∠MAD, i.e., AM being the
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bisector of angleA of q. AnalogouslyMB, MC, MD must be bisectors of the
corresponding angles ofq.

For (4), note that the circumcenter ofp must be on the lineEM . This follows
from the discussion in the first paragraph and the second statement. Indeed, the
circumcenter must be on the line which is orthogonal fromM to the diameter of
the orthocycle ofp. Besides the circle with centerF and radiusFM is a circle
of bundleC ′ and, according to the proof of first statement, is orthogonal to this
circumcircle. Thus the circumcircle ofp, being orthogonal to two circles of bundle
C ′, belongs to bundleC . �
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Bicevian Tucker Circles

Bernard Gibert

Abstract. We prove that there are exactly ten bicevian Tucker circles and show
several curves containing the Tucker bicevian perspectors.

1. Bicevian Tucker circles

The literature is abundant concerning Tucker circles. We simply recall that a
Tucker circle is centered atT on the Brocard axisOK and meets the sidelines of
ABC at six pointsAb, Ac, Bc, Ba, Ca, Cb such that
(i) the linesXyYx are parallel to the sidelines ofABC,
(ii) the linesYxZx are antiparallel to the sidelines ofABC, i.e., parallel to the
sidelines of the orthic triangleHaHbHc.

A

B C
Ab Ha

H

Brocard axis

Hb

Hc

Ac

Ba

Bc

Ca

Cb T

Figure 1. A Tucker circle

If T is defined by
−→
OT = t · −−→OK, we have

BaCa = CbAb = AcBc =
2abc

a2 + b2 + c2
|t| = R|t| tanω,

and the radius of the Tucker circle is

RT = R
√

(1 − t)2 + t2 tan2 ω

whereR is the circumradius andω is the Brocard angle. See Figure 1.
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One obvious and trivial example consists of the circumcircle ofABC which we
do not consider in the sequel. From now on, we assume that the six points are not
all the vertices ofABC.

In this paper we characterize thebicevian Tucker circles, namely those for which
a Tucker triangle formed by three of the six points (one on each sideline) is per-
spective toABC. It is known that if a Tucker triangle is perspective toABC,
its companion triangle formed by the remaining three points is also perspective to
ABC. The two perspectors are then said to be cyclocevian conjugates.

There are basically two kinds of Tucker triangles:
(i) those having one sideline parallel to a sideline ofABC: there are three pairs of
such triangles e.g.AbBcCb and its companionAcBaCa,
(ii) those not having one sideline parallel to a sideline ofABC: there is only
one such pair namelyAbBcCa and its companionAcBaCb. These are the proper
Tucker triangles of the literature.

A

B CAbHa

T

Brocard axis

Hb

Hc

Ac

Ba

Ca

Cb = Bc

Figure 2. A Tucker circle through a vertex ofABC

In the former case, there are six bicevian Tucker circles which are obtained
whenT is the intersection of the Brocard axis with an altitude ofABC (which
gives a Tucker circle passing through one vertex ofABC, see Figure 2) or with a
perpendicular bisector of the medial triangle (which gives a Tucker circle passing
through two midpoints ofABC, see Figure 3).

The latter case is more interesting but more difficult. Let us consider the Tucker
triangleAbBcCa and denote byXa the intersection of the linesBBc andCCa;
defineXb andXc similarly. Thus,ABC andAbBcCa are perspective (atX) if and
only if the three linesAAb, BBc andCCa are concurrent or equivalently the three
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Figure 3. A Tucker circle through two midpoints ofABC

pointsXa, Xb andXc coincide. Consequently, the trianglesABC andAcBaCb

are also perspective atY , the cyclocevian conjugate ofX.

Lemma 1. When T traverses the Brocard axis, the locus of Xa is a conic γa.

Proof. This can be obtained through easy calculation. Here is a synthetic proof.
Consider the projectionsπ1 from the lineAC onto the lineBC in the direction of
HaHb, andπ2 from the lineBC onto the lineAB in the direction ofAC. Clearly,
π2(π1(Bc)) = π2(Ac) = Ca. Hence, the tranformation which associates the line
BBc to the lineCCa is a homography between the pencils of lines passing through
B andC. It follows from the theorem of Chasles-Steiner that their intersectionXa

must lie on a conic. �
This conicγa is easy to draw since it containsB, C, the anticomplementGa

of A, the intersection of the medianAG and the symmedianCK and since the
tangent atC is the lineCA. Hence the perspectorX we are seeking must lie on
the three conicsγa, γb, γc andY must lie on three other similar conicsγ′a, γ′

b, γ
′
c.

See Figure 4.

Lemma 2. γa, γb and γc have three common points Xi, i = 1, 2, 3, and one of
them is always real.

Proof. Indeed,γb andγc for example meet atA and three other points, one of them
being necessarily real. On the other hand, it is clear that any pointX lying on two
conics must lie on the third one. �

This yields the following
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A

B C

Ga

K

B
rocard axis

X

γa

γb

γc

Figure 4. γa, γb andγc with only one real common pointX

Theorem 3. There are three (proper) bicevian Tucker circles and one of them is
always real.

2. Bicevian Tucker perspectors

The pointsXi are not ruler and compass constructible since we need intersect
two conics having only one known common point. For eachXi there is a corre-
spondingYi which is its cyclocevian conjugate and the Tucker circle passes through
the vertices of the cevian triangles of these two points. We call these six pointsXi,
Yi theTucker bicevian perspectors.

WhenXi is known, it is easy to find the corresponding centerTi of the Tucker
circle on the lineOK : the perpendicular atTi to the lineHbHc meetsAK at a
point and the parallel through this point toHbHc meets the linesAB, AC at two
points on the required circle. See Figure 5 where only oneX is real and Figure 6
where all three pointsXi are real.

We recall that the bicevian conicC(P,Q) is the conic passing through the ver-
tices of the cevian triangles ofP andQ. See [3] for general bicevian conics and
their properties.

Theorem 4. The three lines Li passing through Xi, Yi are parallel and perpendic-
ular to the Brocard axis OK.

Proof. We know (see [3]) that, for any bicevian conicC(P,Q), there is an inscribed
conic bitangent toC(P,Q) at two points lying on the linePQ. On the other hand,
any Tucker circle is bitangent to the Brocard ellipse and the line through the con-
tacts is perpendicular to the Brocard axis. Hence, any bicevian Tucker circle must
be tangent to the Brocard ellipse at two points lying on the lineXiYi and this
completes the proof. �
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Figure 5. One real bicevian Tucker circle
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Y2
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γ‘c

Figure 6. Three real bicevian Tucker circles

Corollary 5. The two triangles X1X2X3 and Y1Y2Y3 are perspective at X512 and
the axis of perspective is the line GK .
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Conversely, any bicevian conicC(P,Q) bitangent to the Brocard ellipse must
verify Q = K/P . Such conic has its center on the Brocard line if and only ifP
lies either
(i) on pK(X3051,K) in which case the conic has always its center at the Brocard
midpointX39, but the Tucker circle with centerX39 is not a bicevian conic, or
(ii) on pK(X669,K) = K367 in [4].

This gives the following

Theorem 6. The six Tucker bicevian perspectors Xi, Yi lie on pK(X669,X6), the
pivotal cubic with pivot the Lemoine point K which is invariant in the isoconjuga-
tion swapping K and the infinite point X512 of the Lemoine axis.

See Figure 7. We give another proof and more details on this cubic below.

Brocard axis

A

B C

X1

γa

γbγc

Y1

γ‘a

γ‘b

γ‘c

K

pK(X669, X6)

Brocard
 ellipse

L1

   Tucker
   circle

Figure 7. Bicevian Tucker circle and Brocard ellipse

3. Nets of conics associated with the Tucker bicevian perspectors

We now consider curves passing through the six Tucker bicevian perspectors
Xi, Yi. Recall that two of these points are always real and that all six points are
two by two cyclocevian conjugates on three linesLi perpendicular to the Brocard
axis. We already know two nets of conics containing these points:
(i) the netN generated byγa, γb, γc which contain the pointsXi, i = 1, 2, 3;
(ii) the netN ′ generated byγ′a, γ′

b, γ
′
c which contain the pointsYi, i = 1, 2, 3.

The equations of the conics are

γa : a2y(x + z) − b2x(x + y) = 0,
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γ′
a : a2z(x + y) − c2x(x + z) = 0;

the other equations are obtained through cyclic permutations.
Thus, for any pointP = u : v : w in the plane, a conic inN is

N (P ) = u γa + v γb + w γc;

similarly for N ′(P ). Clearly,N (A) = γa, etc.

Proposition 7. Each net of conics (N and N′) contains one and only one circle.
These circles Γ and Γ′ contain X110, the focus of the Kiepert parabola.

These circles are

Γ :
∑
cyclic

b2c2(b2 − c2)(a2 − b2)x2 + a2(b2 − c2)(c4 + a2b2 − 2a2c2)yz = 0

and

Γ′ :
∑
cyclic

b2c2(b2 − c2)(c2 − a2)x2 − a2(b2 − c2)(b4 + a2c2 − 2a2b2)yz = 0.

In fact,Γ = N (P ′) andΓ′ = N ′(P ′′) where

P ′ =
c2

c2 − a2
:

a2

a2 − b2
:

b2

b2 − c2
,

P ′′ =
b2

b2 − a2
:

c2

c2 − b2
:

a2

a2 − c2
.

These points lie on the trilinear polar ofX523, the line through the centers of
the Kiepert and Jerabek hyperbolas and on the circum-conic with perspectorX76,
which is the isotomic transform of the Lemoine axis. See Figure 8.

Proposition 8. Each net of conics contains a pencil of rectangular hyperbolas.
Each pencil contains one rectangular hyperbola passing through X110.

Note that these two rectangular hyperbolas have the same asymptotic directions
which are those of the rectangular circum-hyperbola passing throughX110. See
Figure 9.

4. Cubics associated with the Tucker bicevian perspectors

WhenP has coordinates which are linear inx, y, z, the curvesN (P ) andN′(P )
are in general cubics butN (z : x : y) andN′(y : z : x) are degenerate. In other
words, for any pointx : y : z of the plane, we (loosely) may write

z γa + x γb + y γc = 0

and
y γ′

a + z γ′
b + x γ′

c = 0.
We obtain two circum-cubicsK(P ) andK′(P ) whenP takes the form

P = q z − r y : r x− p z : p y − q x
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Figure 8. Circles through the Tucker bicevian perspectors
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Figure 9. Rectangular hyperbolas through the Tucker bicevian perspectors

associated to the cevian lines of the pointQ = p : q : r and both cubics containQ.
Obviously,K(P ) contains the pointsXi andK′(P ) contains the pointsYi.
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For example, withQ = G, we obtain the two cubicsK(G) andK′(G) passing
throughG and the vertices of the antimedial triangleGaGbGc. See Figure 10.
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X1 γa
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Y1

X2

X3

Y3

Y2

γ‘a

γ‘b

γ‘c

K(G)

K’(G)
G

Ga

Gb

Figure 10. The two cubicsK(G) andK′(G)

These two cubicsK(P ) andK′(P ) are isotomic pivotal cubics with pivots the
bicentric companions (see [5, p.47] and [2]) ofX523 respectively

X ′
523 = a2 − b2 : b2 − c2 : c2 − a2

and
X ′′

523 = c2 − a2 : a2 − b2 : b2 − c2

both on the line at infinity. The two other points at infinity of the cubics are those
of the Steiner ellipse.

4.1. An alternative proof of Theorem 6. We already know (Theorem 6) that the
six Tucker bicevian perspectorsXi, Yi lie on the cubicpK(X669,X6). Here is an
alternative proof. See Figure 11.

Proof. Let U , V , W be the traces of the perpendicular atG to the Brocard axis.
We denote byΓa the decomposed cubic which is the union of the lineAU and
the conicγa. Γa contains the vertices ofABC and the pointsXi. Γb andΓc are
defined similarly and contain the same points.

The cubicc2 Γa +a2 Γb +b2 Γc is another cubic through the same points since it
belongs to the net of cubics. It is easy to verify that this latter cubic ispK(X669,X6).

Now, if Γ′
a, Γ′

b, Γ′
c are defined likewise, the cubicb2 Γ′

a + c2 Γ′
b + a2 Γ′

c is
pK(X669,X6) again and this shows that the six Tucker bicevian perspectors lie on
the curve. �



96 B. Gibert

Brocard axis
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X3
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X110

K

pK(X669, X6)

Figure 11.pK(X669, X6) and the three linesLi

4.2. More on the cubic pK(X669,X6). The cubicpK(X669,X6) also containsK,
X110, X512, X3124 and meets the sidelines ofABC at the feet of the symmedians.
Note that the poleX669 is the barycentric product ofK andX512, the isopivot or
secondary pivot (see [1],§1.4). This shows that, for any pointM on the cubic,
the pointK/M (cevian quotient or Ceva conjugate) lies on the cubic and the line
M K/M containsX512 i.e. is perpendicular to the Brocard axis.

We can apply to the Tucker bicevian perspectors the usual group law on the
cubic. For any two pointsP , Q on pK(X669,X6) we defineP ⊕ Q as the third
intersection of the line throughK and the third point on the linePQ.

For a permuationi, j, k of 1, 2, 3, we have

Xi ⊕Xj = Yk, Yi ⊕ Yj = Xk.

Furthermore,Xi ⊕ Yi = K. These properties are obvious since the pivot of the
cubic isK and the secondary pivot isX512.

The third point ofpK(X669,X6) on the lineKX110 is X3124 = a2(b2 − c2)2 :
b2(c2 −a2)2 : c2(a2− b2)2, the cevian quotient ofK andX512 and the third point
on the lineX110X512 is the cevian quotient ofK andX110.

The infinite points ofpK(X669,X6) areX512 and two imaginary points, those of
the bicevian ellipseC(G,K) or, equivalently, those of the circum-ellipseC(X39)
with perspectorX39 and centerX141.

The real asymptote is perpendicular to the Brocard axis and meets the curve at
X = K/X512, the third point on the lineKX110 seen above.X also lies on the
Brocard ellipse, onC(G,K). See Figure 12.
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Figure 12.K367 = pK(X669, X6)

pK(X669,X6) is the isogonal transform ofpK(X99,X99), a member of the class
CL007 in [4]. These are thepK(W,W ) cubics or parallel tripolars cubics.
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A Visual Proof of the Erdős-Mordell Inequality

Claudi Alsina and Roger B. Nelsen

Abstract. We present a visual proof of a lemma that reduces the proof of the
Erdős-Mordell inequality to elementary algebra.

In 1935, the following problem proposal appeared in the “Advanced Problems”
section of theAmerican Mathematical Monthly [5]:

3740. Proposed by Paul Erdős, The University, Manchester, England.
From a pointO inside a given triangleABC the perpendiculars
OP , OQ, OR are drawn to its sides. Prove that

OA + OB + OC ≥ 2(OP + OQ + OR).

Trigonometric solutions by Mordell and Barrow appeared in [11]. The proofs,
however, were not elementary. In fact, no “simple and elementary” proof of what
had become known as the Erd˝os-Mordell theorem was known as late as 1956 [13].
Since then a variety of proofs have appeared, each one in some sense simpler or
more elementary than the preceding ones. In 1957 Kazarinoff published a proof
[7] based upon a theorem in Pappus of Alexandria’sMathematical Collection; and
a year later Bankoff published a proof [2] using orthogonal projections and similar
triangles. Proofs using area inequalities appeared in 1997 and 2004 [4, 9]. Proofs
employing Ptolemy’s theorem appeared in 1993 and 2001 [1, 10]. A trigonometric
proof of a generalization of the inequality in 2001 [3], subsequently generalized
in 2004 [6]. Many of these authors speak glowingly of this result, referring to it
as a “beautiful inequality” [9], a “remarkable inequality” [12], “the famous Erd˝os-
Mordell inequality” [4, 6, 10], and “the celebrated Erd˝os-Mordell inequality. . . a
beautiful piece of elementary mathematics” [3].

In this short note we continue the progression towards simpler proofs. First
we present a visual proof of a lemma that reduces the proof of the Erd˝os-Mordell
inequality to elementary algebra. The lemma provides three inequalities relating
the lengths of the sides ofABC and the distances fromO to the vertices and to the
sides. While the inequalities in the lemma are not new, we believe our proof of the
lemma is. The proof uses nothing more sophisticated than elementary properties
of triangles. In Figure 1(a) we see the triangle as described by Erd˝os, and in Figure

Publication Date: April 30, 2007. Communicating Editor: Paul Yiu.
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1(b) we denote the lengths of relevant line segments by lower case letters, whose
use will simplify the presentation to follow. In terms of that notation, the Erd˝os-
Mordell inequality becomes

x + y + z ≥ 2(p + q + r).

A

B C

O

P

Q
R

Figure 1(a)

a

bc

p

q

r

x

y z

A

B C

O

Figure 1(b)

In the proof of the lemma, we construct a trapezoid in Figure 2(b) from three
triangles – one similar toABC, the other two similar to two shaded triangles in
Figure 2(a).

Lemma. For the triangle ABC in Figure 1, we have ax ≥ br + cq, by ≥ ar+ cp,
and cz ≥ aq + bp.

α1

α2

β
γ

a

bc

p

q

r

x

A

B C

O

Figure 2(a)

cq
br

α1

α2

α

β
γ

ax

bx
cx

A

B C

Figure 2(b)

Proof. See Figure 2 for a visual proof thatax ≥ br+cq. The other two inequalities
are established analogously. �

We should note before proceeding that the object in Figure 2(b) really is a trape-
zoid, since the three angles at the point where the three triangles meet measure
π
2 − α2, α = α1 + α2, andπ

2 − α1, and thus sum toπ.
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We now prove

The Erdős-Mordell Inequality. If O is a point within a triangle ABC whose
distances to the vertices are x, y, and z, then

x + y + z ≥ 2(p + q + r).

Proof. From the lemma we havex ≥ b
ar + c

aq, y ≥ a
b r + c

bp, andz ≥ a
c q + b

cp.
Adding these three inequalities yields

x + y + z ≥
(

b

c
+

c

b

)
p +

( c

a
+

a

c

)
q +

(
a

b
+

b

a

)
r. (1)

But the arithmetic mean-geometric mean inequality insures that the coefficients
of p, q, andr are each at least2, from which the desired result follows. �

We conclude with several comments about the lemma and the Erd˝os-Mordell
inequality and their relationships to other results.

1. The three inequalities in the lemma are equalities if and only ifO is the
center of the circumscribed circle ofABC. This follows from the observation
that the trapezoid in Figure 2(b) is a rectangle if and only ifβ + α2 = π

2 and
γ + α1 = π

2 (and similarly in the other two cases), so that∠AOQ = β = ∠COQ.
Hence the right trianglesAOQ andCOQ are congruent, andx = z. Similarly
one can show thatx = y. Hence,x = y = z andO must be the circumcenter of
ABC. The coefficients ofp, q, andr in (1) are equal to2 if and only if a = b = c.
Consequently we have equality in the Erd˝os-Mordell inequality if and only ifABC
is equilateral andO is its center.

2. How did Erdős come up with the inequality in his problem proposal? Kazari-
noff [8] speculates that he generalized Euler’s inequality: ifr andR denote, respec-
tively, the inradius and circumradius ofABC, thenR ≥ 2r. The Erdős-Mordell
inequality implies Euler’s inequality for acute triangles. Note that if we takeO to
be the circumcenter ofABC, then3R ≥ 2(p + q + r). However, forany point O
insideABC, the quantityp+ q + r is somewhat surprisingly constant and equal to
R + r, a result known as Carnot’s theorem. Thus3R ≥ 2(R + r), or equivalently,
R ≥ 2r.

3. Many other inequalities relatingx, y, andz to p, q, andr can be derived. For
example, applying the arithmetic mean-geometric mean inequality to the right side
of the inequalities in the lemma yields

ax ≥ 2
√

bcqr, by ≥ 2
√

carp, cz ≥ 2
√

abpq.

Multiplying these three inequalities together and simplifying yieldsxyz ≥ 8pqr.
More such inequalities can be found in [8, 12].

4. A different proof of (1) appears in [4].
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[5] P. Erdős, Problem 3740,Amer. Math. Monthly, 42 (1935) 396.
[6] W. Janous, Further inequalities of Erd˝os-Mordell type,Forum Geom., 4 (2004) 203–206.
[7] D. K. Kazarinoff, A simple proof of the Erd˝os-Mordell inequality for triangles,Michigan Math.

J., 4 (1957) 97–98.
[8] N. D. Kazarinoff,Geometric Inequalities, MAA, Washington, 1961.
[9] V. Komornik, A short proof of the Erd˝os-Mordell theorem,Amer. Math. Monthly, 104 (1997)

57–60.
[10] H. Lee, Another proof of the Erd˝os-Mordell theorem,Forum Geom., 1 (2001) 7–8.
[11] L. J. Mordell and D. F. Barrow, Solution 3740,Amer. Math. Monthly, 44 (1937) 252–254.
[12] A. Oppenheim, The Erd˝os inequality and other inequalities for a triangle,Amer. Math. Monthly,

68 (1961) 226–230.
[13] G. Steensholt, Note on an elementary property of triangles,Amer. Math. Monthly, 63 (1956)

571–572.

Claudi Alsina: Secci´o de Matem`atiques, ETSAB, Universitat Polit`ecnica de Catalunya, E-08028
Barcelona, Spain

E-mail address: claudio.alsina@upc.edu

Roger B. Nelsen: Department of Mathematical Sciences, Lewis & Clark College, Portland, Ore-
gon 97219, USA

E-mail address: nelsen@lclark.edu



Forum Geometricorum
Volume 7 (2007) 103–106. b b

b

b

FORUM GEOM

ISSN 1534-1178

Construction of Triangle from a Vertex
and the Feet of Two Angle Bisectors

Harold Connelly, Nikolaos Dergiades, and Jean-Pierre Ehrmann

Abstract. We give two simple constructions of a triangle given one vertex and
the feet of two angle bisectors.

1. Construction from (A, Ta, Tb)

We present two simple solutions of the following construction problem (number
58) in the list compiled by W. Wernick [2]: Given three noncollinear pointsA, Ta
andTb, to construct a triangleABC with Ta, Tb on BC, CA respectively such
thatATa andBTb are bisectors of the triangle. L. E. Meyers [1] has indicated the
constructibility of such a triangle. Let� be the half lineATb. Both solutions we
present here make use of the reflection�′ of � in ATa. The vertexB necessarily
lies on�′. In what followsP (Q) denotes the circle, centerP , passing through the
pointQ.

A

Tb

Ta

B

C

Z

X

��′

Figure 1

Construction 1. Let Z be the pedal of Tb on �′. Construct two circles, one Tb(Z),
and the other with TaTb as diameter. Let X be an intersection, if any, of these two
circles. If the line XTa intersects the half lines �′ at B and � at C , then ABC is a
desired triangle.
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Construction 2. Let P be an intersection, if any, of the circle Tb(Ta) with the half
line �′. Construct the perpendicular bisector of PTa. If this intersects �′ at a point
B, and if the half line BTa intersects � at C , then ABC is a desired triangle.

A Tb

Ta

P

B

C

Figure 2

We study the number of solutions for various relative positions ofA, Ta andTb.
Set up a polar coordinate system withA at the pole andTb at (1, 0). SupposeTa

has polar coordinates(ρ, θ) for ρ > 0 and0 < θ < π
2 . The half line�′ has polar

angle2θ. The circleTb(Ta) intersects�′ if the equation

σ2 − 2σ cos 2θ = ρ2 − 2ρ cos θ (1)

has a positive rootσ. This is the case when
(i) ρ > 2 cos θ, or
(ii) ρ ≤ 2 cos θ, cos 2θ > 0 and4 cos2 2θ + 4ρ(ρ − 2 cos θ) ≥ 0. Equivalently,
ρ+ ≤ ρ ≤ 2 cos θ, where

ρ± = cos θ ±
√

sin θ sin 3θ

are the roots of the equationρ2 − 2ρ cos θ + cos2 2θ = 0 for 0 < θ < π
3 .

Now, the perpendicular bisector ofPTa intersects the line�′ at the pointB with
polar coordinates(β, 2θ), where

β =
ρ cos θ − σ cos 2θ

ρ cos θ − σ
.

The requirementβ > 0 is equivalent toσ < ρ cos θ. From (1), this is equivalent to
ρ < 4 cos θ.

For 0 < θ < π
3 , let P± be the points with polar coordinates(ρ±, θ). These

points bound a closed curveC as shown in Figure 3. IfTa lies inside the curveC ,
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then the circleTb(Ta) does not intersect the half line�′. We summarize the results
with reference to Figure 3.

The construction problem ofABC from (A, Ta, Tb) has
(1) a unique solution ifTa lies in the region between the two semicirclesρ = 2cos θ
andρ = 4cos θ,
(2) two solutions ifTa lies between the semicircleρ = 2cos θ and the curveC for
θ < π

4 .

A Tb

θ

P+

P−

Figure 3.

2. Construction from (A, Tb, Tc)

The construction of triangleABC from (A, Ta, Tb) is Problem 60 in Wernick’s
list [2]. Wernick has indicated constructibility. We present two simple solutions.

A

B C

Tb

Tc

Figure 4.

Construction 3. Given A, Tb, Tc, construct the circles with centers Tb and Tb,
tangent to ATc and ATb respectively. The common tangent of these circles that lies
opposite to A with respect to the line TbTc is the line BC of the required triangle
ABC . The construction of the vertices B, C is obvious.
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Construction 4. Given A, Tb, Tc, construct
(i) the circle through the three points
(ii) the bisector of angle TbATc to intersect the circle at M ,
(iii) the reflection M′ of M in the line TbTc,
(iv) the circle M′(Tb) to intersect the bisector at I (so that A and I are on opposite
sides of TbTc),
(v) the half line TbI to intersect the half line ATc at B,
(vi) the half line TcI to intersect the half line ATb at C .

ABC is the required triangle with incenter I .

A

B C

Tb

Tc M

M ′

I

Figure 5.
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Three Pappus Chains Inside the Arbelos: Some Identities

Giovanni Lucca

Abstract. We consider the three different Pappus chains that can be constructed
inside the arbelos and we deduce some identities involving the radii of the circles
of n-th order and the incircle radius.

1. Introduction

The Pappus chain [1] is an infinite series of circles constructed starting from the
Archimedean figure named arbelos (also said shoemaker knife) so that the generic
circle Ci, (i = 1, 2, . . . ) of the chain is tangent to the the circlesCi−1 andCi+1

and to two of the three semicirclesCa , Cb andCr forming the arbelos. In a generic
arbelos three different Pappus chains can be drawn (see Figure 1).

C BA

Figure 1.

In Figure 1, the diameterAC of the left semicircleCa is 2a, the diameterCB
of the right semicircleCb is 2b, and the diameterAB of the outer semicircleCr is
2r, r = a + b. The first circleC1 is common to all three chains and is named the
incircle of the arbelos. By applying the circular inversion technique, it is possible
to determine the center coordinates and radius of each chain; the radii are expressed
by the formulas reported in Table I. The chain tending to pointC is namedΓr, the
chain tending to point B is namedΓa and the chain tending to pointA is namedΓb.
As far as chainsΓa andΓb are concerned, the expressions for the radii are given in
[2] while for Γr, we give an inductive proof below.

Publication Date: June 4, 2007. Communicating Editor: Floor van Lamoen.
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Table I: Radii of the circles forming the three Pappus chains

Chain Γr Γa Γb

Radius ofn-th circle ρrn = rab
n2r2−ab

ρan = rab
n2a2+rb

ρbn = rab
n2b2+ra

For integersn ≥ 1, consider the statement

P (n) ρrn =
rab

n2r2 − ab
.

P (1) is true since the first circle of the chain is the arbelos incircle having radius
given by formula (3).

We show thatP (n) ⇒ P (n + 1).
Let us consider the circlesCrn and Crn+1 in the chainΓr, together the inner

semicirclesCa andCb inside the arbelos. Applying Descartes’ theorem we have

2(ε2
rn + ε2

rn+1 + ε2
a + ε2

b) = (εrn + εrn+1 + εa + εb)2, (1)

whereεrn, εrn+1, εa andεb are the curvatures,i.e., reciprocals of the radii of the
circles. Rewriting this as

ε2
rn+1 − 2εrn+1(εrn + εa + εb) + ε2

rn + ε2
a + ε2

b − 2(εrnεa + εaεb + εbεrn) = 0,

we have
εrn+1 = εrn + εa + εb ± 2

√
εrnεa + εaεb + εbεrn. (2)

Substituting into (2)εa = 1
a , εb = 1

b andεrn = rab
n2r2−ab

, we obtain, after a few
steps of simple algebraic calculations,

ρrn+1 =
1

εrn+1
=

rab

(n + 1)2r2 − ab
.

This proves thatP (n) ⇒ P (n+1), and by induction,P (n) is true for every integer
n ≥ 1.

2. Relationships among the n-th circles radii and incircle radius

For the following, it is useful to write explicitly the incircle radiusρinc that is
given by:

ρinc =
rab

a2 + ab + b2
(3)

Formula (3) is directly obtained by each one of the three formulas for the radius
in Table I forn = 1. It is useful too to write the square of the incircle radius that
is:

ρ2
inc =

r2a2b2

a4 + 2a3b + 2a2b2 + 2ab3 + b4
. (4)

We enunciate now the following proposition related to three different identities
among the circles chains radii and the incircle radius.
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Proposition. Given a generic arbelos with its three Pappus chains, the following
identities hold for each integer n:

ρinc

(
1

ρrn
+

1
ρan

+
1

ρbn

)
= 2n2 + 1, (5)

ρ2
inc

(
1

ρ2
rn

+
1

ρ2
an

+
1

ρ2
bn

)
= 2n4 + 1, (6)

ρ2
inc

(
1

ρrn
· 1
ρan

+
1

ρan
· 1
ρbn

+
1

ρbn
· 1
ρrn

)
= n4 + 2n2. (7)

Proof. To demonstrate (5), one has to substitute in it the expression for the radius
incircle given by (3) and the expressions for the radii ofn-th circles chain given in
Table I. Using the fact thatr = a + b, one obtains

rab

a2 + ab + b2

(
n2r2 − ab

rab
+

n2a2 + rb

rab
+

n2b2 + ra

rab

)
= 2n2 + 1.

For (6), one has to substitute in it the expression for the square of the radius
incircle given by (4) and to take the squares of the radii ofn-th circles chain given
in Table I. Using the fact thatr = a + b, one obtains

r2a2b2

(a2 + ab + b2)2

((
n2r2 − ab

rab

)2

+
(

n2a2 + rb

rab

)2

+
(

n2b2 + ra

rab

)2
)

= 2n4+1.

For (7), one has to substitute in it the expression for the square of the incircle
radius given by (4) and the expressions for the radii of then-th circles given in
Table I. This leads to r2a2b2

(a2+ab+b2)2
· D

r2a2b2
, where

D =(n2r2 − ab)(n2a2 + rb) + (n2a2 + rb)(n2b2 + ra) + (n2b2 + ra)(n2r2 − ab)

=(n4 + 2n2)(a2 + ab + b2)2,

by using the fact thatr = a + b. Finally, this leads to (7). �

3. Conclusion

Considering the three Pappus chains that can be drawn inside a generic arbelos,
some identities involving the incircle radius and then-th circles chain radii have
been shown. All these identities generate sequences of integers.
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Some Powerian Pairs in the Arbelos

Floor van Lamoen

Abstract. Frank Power has presented two pairs of Archimedean circles in the
arbelos. In each case the two Archimedean circles are tangent to each other and
tangent to a given circle. We give some more of these Powerian pairs.

1. Introduction

We consider an arbelos with greater semicircle(O) of radiusr and smaller semi-
circle (O1) and(O2) of radii r1 andr2 respectively. The semicircles(O1) and(O)
meet inA, (O2) and(O) in B, (O1) and(O2) in C and the line throughC per-
pendicular toAB meets(O) in D. Beginning with Leon Bankoff [1], a number
of interesting circles congruent to the Archimedean twin circles has been found
associated with the arbelos. These have radiir1r2

r . See [2]. Frank Power [5] has
presented two pairs of Archimedean circles in the Arbelos with a definition unlike
the other known ones given for instance in [2, 3, 4].1

A BOO1 O2C

M1

M2

D

Figure 1

Proposition 1 (Power [5]). Let M1 and M2 be the ’highest’ points of (O1) and
(O2) respectively. Then the pairs of congruent circles tangent to (O) and tangent
to each other at M1 and M2 respectively, are pairs of Archimedean circles.

To pairs of Archimedean circles tangent to a given circle and to each other at a
given point we will give the namePowerian pairs.

Publication Date: June 12, 2007. Communicating Editor: Paul Yiu.
1The pair of Archimedean circles(A5a) and(A5b), with numbering as in [4], qualifies for what

we will later in the paper refer to asPowerian pair, as they are tangent to each other atC and to the
circular hull of Archimedes’ twin circles. This however is not how they were originally defined.
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2. Three double Powerian pairs

2.1. Let M be the midpoint ofCD. Consider the endpointsU1 andU2 of the
diameter of(CD) perpendicular toOM .

U1

U2

D

M

A BOO1 O2C

M1

M2

Figure 2

Note thatOC2 = (r1 − r2)2 and asCD = 2
√

r1r2 thatOD2 = r2
1 − r1r2 + r2

2

andOU2
1 = r2

1 + r2
2.

Now consider the pairs of congruent circles tangent to each other atU1 andU2

and tangent to(O). The radiiρ of these circles satisfy

(r1 + r2 − ρ)2 = OU2
1 + ρ2

from which we see thatρ = r1r2
r . This pair is thus Powerian. By symmetry the

other pair is Powerian as well.

2.2. Let T1 andT2 be the points of tangency of the common tangent of(O1) and
(O2) not throughC. Now consider the midpointO′ of O1O2, also the center of the
semicircle(O1O2), which is tangent to segmentT1T2 at its midpoint.

T1

T2

D

M

O′A BOO1 O2C

Figure 3

As T1T2 = 2
√

r1r2 we see thatO′T 2
1 =

(
r1+r2

2

)2 + r1r2. Now consider the
pairs of congruent circles tangent to each other atT1 and tangent to(O1O2). The
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radii ρ of these circles satisfy(
r1 + r2

2

)
+ ρ)2 − ρ2 = O′T 2

1

from which we see thatρ = r1r2
r and this pair is Powerian. By symmetry the pair

of congruent circles tangent to each other atT2 and to(O1O2) is Powerian.
Remark: These pairs are also tangent to the circle with centerO′ through the

point where the Schoch line meets(O).

2.3. Note thatAD = 2
√

rr1, hence

AT1 =
r1

r
AD =

2r1
√

r1√
r

.

Now consider the pair of congruent circles tangent to each other atT1 and to the
circle with centerA throughC. The radii of these circles satisfy

AT 2
1 + ρ2 = (2r1 − ρ)2

from which we see thatρ = r1r2
r and this pair is Powerian. In the same way the

pair of congruent circles tangent to each other atT2 and to the circle with centerB
throughC is Powerian.

T1

T2

D

M

A BOO1 O2C

Figure 4
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The Arbelos and Nine-Point Circles

Quang Tuan Bui

Abstract. We construct some new Archimedean circles in an arbelos in connec-
tion with the nine-point circles of some appropriate triangles. We also construct
two new pairs of Archimedes circles analogous to those of Frank Power, and one
pair of Archimedean circles related to the tangents of the arbelos.

1. Introduction

We consider an arbelos consisting of three semicircles(O1), (O2), (O), with
points of tangencyA, B, P . Denote byr1, r2 the radii of(O1), (O2) respectively.
Archimedes has shown that the two circles, each tangent to(O), the common tan-
gentPQ of (O1), (O2), and one of(O1), (O2), have congruent radiusr = r1r2

r1+r2
.

See [1, 2]. LetC be a point on the half linePQ such thatPC = h. We con-
sider the nine-point circle(N) of triangleABC. This clearly passes throughO,
the midpoint ofAB, andP , the altitude foot ofC on AB. Let AC intersect(O1)
again atA′, andBC intersect(O2) again atB′. Let Oe andH be the circumcenter
and orthocenter of triangleABC. Note thatC andH are on opposite sides of the
semicircular arc(O), and the trianglesABC andABH have the same nine-point
circle. We shall therefore assumeC beyond the pointQ on the half linePQ. See
Figure 1. In this paper the labeling of knowing Archimedean circles follows [2].

2. Archimedean circles with centers on the nine-point circle

Let the perpendicular bisector ofAB cut (N) atO andMe, and the altitudeCP
cut (N) atP andMh. See Figure 1.

2.1. It is easy to show thatPOMeMh is a rectangle soMe is the reflection ofP
in N . BecauseOe is also the reflection ofH in N , HPOeMe is a parallelogram,
and we have

OeMe = PH. (1)

Furthermore, from the similarity of trianglesHPB andAPC, we havePH
PB =

PA
PC . Hence,

PH =
4r1r2

h
. (2)
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A BOO1 O2P

Q

C

H

Oe

N

A′

B′

Mh Me

M

Figure 1.

2.2. SinceC is beyondQ on the half linePQ, the intersectionF of A′O1 and
B′O2 is a pointF below the arbelos. Denote by(I) the incircle of triangleFO1O2.
See Figure 2. The lineIO1 bisects both anglesO2O1F and A′O1A. Because
O1A

′ = O1A, IO1 is perpendicular toAC, and therefore is parallel toBH. Sim-
ilarly, IO2 is parallel toAH. From these, two trianglesAHB andO2IO1 are
homothetic with ratio AB

O2O1
= 2. It is easy to show thatO is the touch point of(I)

with AB and that the inradius is

IO =
1
2
· PH. (3)

In fact, if F ′ is the reflection ofF in the midpoint ofO1O2 thenO1FO2F
′

is a parallelogram and the circle(PH) (with PH as diameter) is the incircle of
F ′O1O2. It is the reflection of(I) in midpoint ofO1O2.

2.3. Now we apply these results to the arbelos. From (2),1
2 · PH = 2r1r2

h =
Archimedean radiusr1r2

r1+r2
if and only if

CP = h = 2(r1 + r2) = AB.

In this case, pointC and the orthocenterH of ABC are easy constructed and
the circle with diameterPH is the Bankoff triplet circle(W3). From this we can
also construct also the incircle of the arbelos. In this caseF′ = incenter of the
arbelos. From (3) we can show that whenCP = AB, the incircle ofFO1O2 is
also Archimedean. See Figure 3.

Let M be the intersection ofOOe and the semicircle(O), i.e., the highest point
of (O). WhenCP = h = 2(r1 + r2) = AB,

OOe = MhH = MhC =
h − PH

2
= (r1 + r2) − r1r2

r1 + r2
.
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O1 O2P
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I
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Figure 2.

Therefore,

OeM = (r1 + r2) −
(

r1 + r2 − r1r2

r1 + r2

)
=

r1r2

r1 + r2
.

From (1), OeMe = PH = 2r1r2
r1+r2

. This means thatM is the midpoint of
OeMe, or the two circles centered atOe andMe and touching(O) at M are also
Archimedean circles. See Figure 3.

We summarize the results as follows.

Proposition 1. In the arbelos (O1), (O2), (O), if C is any point on the half line
PQ beyond Q and H is orthocenter of ABC , then the circle (PH) is Archimedean
if and only if CP = AB = 2(r1 + r2). In this case, we have the following results.
(1). The orthocenter H of ABC is the intersection point of Bankoff triplet circle
(W3) with PQ (other than P ).
(2). The incircle of triangle FO1O2 is an Archimedean circle touching AB at O;
it is reflection of (W3) in the midpoint of O1O2.
(3). The circle centered at circumcenter Oe of ABC and touching (O) at its highest
point M is an Archimedean circle. This circle is (W20).
(4). The circle centered on nine point circle of ABC and touching (O) at M is an
Archimedean circle; it is the reflection of (W20) in M .
(5). The reflection F ′ of F in midpoint of O1O2 is the incenter of the arbelos.

Remarks. (a) The Archimedean circles in (2) and (4) above are new.
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Figure 3.

(b) There are two more obvious Archimedean circles with centers on the nine-
point circle. These are(Ma) and(Mb), whereMa andMb are the midpoints of
AH andBH respectively. See Figure 3.

(c) The midpointsMa, Mb of HA, HB are on nine point circle ofABC and
are two vertices of Eulerian triangle ofABC. Two circles centered atMa, Mb

and touchAB at O1, O2 respectively are congruent with(W3) so they are also
Archimedean circles (see [2]).

3. Two new pairs of Archimedean circles

If T is a point such thatOT2 = r2
1 + r2

2, then there is a pair of Archimedean
circles mutually tangent atT , and each tangent internally to(O). Frank Power [5].
constructed two such pairs withT = M1, M2, the highest points of(O1) and(O2)
respectively. Allowing tangency with other circles, Floor van Lamoen [4] called
such a pair Powerian. We construct two new Powerian pairs.
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A BOO1 O2P

M

M1

M2

I

Figure 4.

3.1. The triangleMM1M2 hasMM1 =
√

2 · r2, MM2 =
√

2 · r1, and a right
angle atM . Its incenter is the pointI onOM such that

MI =
√

2 · 1
2
(MM1 + MM2 − M1M2) = (r1 + r2) −

√
r2
1 + r2

2.

Therefore,OI2 = r2
1 + r2

2, and we have a Powerian pair. See Figure 4.

3.2. Consider also the semicircles(T1) and(T2) with diametersAO2 andBO1.
The intersectionJ of (T1) and(T2) satisfies

OJ2 = OP 2 + PJ2 = (r1 − r2)2 + 2r1r2 = r2
1 + r2

2.

Therefore, we have another Powerian pair. See Figure 5.

A BOO1 O2P

Q

T1 T2

J

Figure 5.

4. Two Archimedean circles related to the tangents of the arbelos

We give two more Archimedean circles related to the tangents of the arbelos.
Let L be the tangent of(O) at Q, andQ1, Q2 the orthogonal projections of

O1, O2 onL. The linesO1Q1 andO2Q2 intersect the semicircles(O1) and(O2)
at R1 andR2 respectively. Note thatR1R2 is a common tangent of the semicir-
cles(O1) and(O2). The circles(N1), (N2) with diametersQ1R1 andQ2R2 are
Archimedean. Indeed, if(W6) and(W7) are the two Archimedean circles through
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A BOO1 O2
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Q

M

Figure 6.

P with centers onAB (see [2]), thenN1, N2, W6, W7 lie on the same circle with
center the midpointM of PQ. See Figure 6. We leave the details to the reader.
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Characterizations of an Infinite Set
of Archimedean Circles

Hiroshi Okumura and Masayuki Watanabe

Abstract. For an arbelos with the two inner circles touching at a pointO, we
give necessary and sufficient conditions that a circle passing throughO is Archimedean.

Consider an arbelos with two inner circlesα andβ with radii a andb respec-
tively touching externally at a pointO. A circle of radiusrA = ab/(a+b) is called
Archimedean. In [3], we have constructed three infinite sets of Archimedean cir-
cles. One of these consists of circles passing through the pointO. In this note
we give some characterizations of Archimedean circles passing throughO. We set
up a rectangular coordinate system with originO and the positivex-axis along a
diameterOA of α (see Figure 1).

AB
Oβ OαO

β α

Figure 1

Theorem 1. A circle through O (not tangent internally to β) is Archimedean if and
only if its external common tangents with β intersect at a point on α.

Proof. Consider a circleδ with radiusr �= b and center(r cos θ, r sin θ) for some
real numberθ with cos θ �= −1. The intersection of the common external tangents

Publication Date: July 2, 2007. Communicating Editor: Paul Yiu.
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of β andδ is the external center of similitude of the two circles, which divides the
segment joining their centers externally in the ratiob : r. This is the point(

br(1 + cos θ)
b − r

,
br sin θ

b − r

)
. (1)

The theorem follows from(
br(1 + cos θ)

b − r
− a

)2

+
(

br sin θ

b − r

)2

− a2 =
2br(a + b)(1 + cos θ)

(b − r)2
(r − rA).

�
Let Oα andOβ be the centers of the circlesα andβ respectively.

AB
Oβ OαO

β α
Tα

Tβ

T

Figure 2

Corollary 2. Let δ be an Archimedean circle with a diameter OT , and Tα the
intersection of the external common tangents of the circles δ and β; similarly define
Tβ .

(i) The vectors
−→
OT and

−−−→
OαTα are parallel with the same direction.

(ii) The point T divides the segment TαTβ internally in the ratio a : b.

Proof. We describe the center ofδ by (rA cos θ, rA sin θ) for some real numberθ
(see Figure 2). Then the pointTα is described by(

brA(1 + cos θ)
b − rA

,
brA sin θ

b − rA

)
= (a(1 + cos θ), a sin θ)

by (1). This implies
−−−→
OαTα = a(cos θ, sin θ). (ii) is obtained directly, sinceTβ is

expressed by(b(−1 + cos θ), b sin θ). �
In Theorem 1, we exclude the Archimedean circle which touchesβ internally at

the pointO. But this corollary holds even if the circleδ touchesβ internally. If δ is
the Bankoff circle touching the lineOA at the originO [1], thenTα is the highest
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point onα. If δ is the Archimedean circle touchingβ externally at the pointO,
thenTα obviously coincides with the pointA. This fact is referred in [2] using the
circle labeledW6. Another notable Archimedean circle passing throughO is that
having center on the Schoch linex = b−a

b+arA, which is labeled asU0 in [2]. We
have showed that the intersection of the external common tangents ofβ and this
circle is the intersection of the linex = 2rA and the circleα [3].

By the uniqueness of the figure, we get the following characterizations of the
Archimedean circles passing through the pointO.

Corollary 3. Let δ be a circle with a diameter OT , and let Tα and Tβ be points on

α and β respectively such that
−−−→
OαTα and

−−−→
OβTβ are parallel to

−→
OT with the same

direction. (i) The circle δ is Archimedean if and only if the points T divides the line
segment TαTβ internally in the ratio a : b. (ii) If the center of δ does not lie on the
line OA, then δ is Archimedean if and only if the three points Tα, Tβ and T are
collinear.

The statement (i) in this corollary also holds whenδ touchesβ internally.

References

[1] L. Bankoff, Are the twin circles of Archimedes really twins?, Math. Mag.,47 (1974) 134-137.
[2] C. W. Dodge, T. Schoch, P. Y. Woo, and P. Yiu, Those ubiquitous Archimedean circles, Math.

Mag.,72 (1999) 202-213.
[3] H. Okumura and M. Watanabe, The Archimedean circles of Schoch and Woo, Forum Geom.,4

(2004) 27-34.

Hiroshi Okumura: Department of Life Science and Information, Maebashi Institute of Technol-
ogy, 460-1 Kamisadori Maebashi Gunma 371-0816, Japan

E-mail address: okumura@maebashi-it.ac.jp

Masayuki Watanabe: Department of Integrated Design Engineering, Maebashi Institute of Tech-
nology, 460-1 Kamisadori Maebashi Gunma 371-0816, Japan

E-mail address: watanabe@maebashi-it.ac.jp





Forum Geometricorum
Volume 7 (2007) 125–128. b b

b

b

FORUM GEOM

ISSN 1534-1178

Remarks on Woo’s Archimedean Circles

Hiroshi Okumura and Masayuki Watanabe

Abstract. The property of Woo’s Archimedean circles does not hold only for
Archimedean circles but circles with any radii. The exceptional case of this has
a close connection to Archimedean circles.

1. Introduction

Let A andB be points with coordinates(2a, 0) and(−2b, 0) on thex-axis with
the origin O and positive real numbersa and b. Let α, β andγ be semicircles
forming an arbelos with diametersOA, OB and AB respectively. We follow
the notations in [4]. For a real numbern, let α(n) andβ(n) be the semicircles
in the upper half-plane with centers(n, 0) and (−n, 0) respectively and passing
through the originO. A circle with radiusr = ab

a+b is called an Archimedean cir-
cle. Thomas Schoch has found that the circle touching the circlesα(2a) andβ(2b)
externally andγ internally is Archimedean [2] (see Figure 1). Peter Woo called
the Schoch line the one passing through the center of this circle and perpendicular
to thex-axis, and found that the circleUn touching the circlesα(na) andβ(nb)
externally with center on the Schoch line is Archimedean for a nonnegative real
numbern. In this note we consider the property of Woo’s Archimedean circles in
a general way.

OB A

α

β

γ

α(2a)

β(2b)

U2

Figure 1.
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2. A generalization of Woo’s Archimedean circles

We show that the property of Woo’s Archimedean circles does not only hold for
Archimedean circles. Indeed circles with any radii can be obtained in a similar
way. We say that a circle touchesα(na) appropriately if they touch externally
(respectively internally) for a positive (respectively negative) numbern. If one of
the two circles is a point circle and lies on the other, we also say that the circle
touchesα(na) appropriately. The same notion of appropriate tangency applies to
β(nb).

Theorem 1. Let s and t be nonzero real numbers such that tb ± sa �= 0. If there
is a circle of radius ρ touching the circles α(nsa) and β(ntb) appropriately for a
real number n, then its center lies on the line

x =
tb − sa

tb + sa
ρ. (1)

Proof. Consider the center(x, y) of the circle with radiusρ touchingα(nsa) and
β(ntb) appropriately. The distance between(x, y) and the centers ofα(nsa) and
β(ntb) are |ρ + nsa| and |ρ + ntb| respectively. Therefore by the Pythagorean
theorem,

y2 = (ρ + nsa)2 − (x − nsa)2 = (ρ + ntb)2 − (x + ntb)2.

Solving the equations, we get (1) above. �

For a real numberk different from0 and±ρ, we can choose the real numberss
andt so that (1) expresses the linex = k. Let us assumest > 0. Then the circles
α(nsa) andβ(ntb) lie on opposite sides of they-axis. If sz > 0 andtz > 0, there
is always a circle of radiusρ touchingα(nsa) andβ(ntb) appropriately. Ifns < 0
andnt < 0, such a circle exists when−2n(sa + tb) ≤ 2ρ. Hence in the case
st > 0, the tangent circle exists ifn(sa + tb) + ρ ≥ 0. Now let us assumest < 0.
Then circlesα(nsa) andβ(ntb) lie on the same side of they-axis. The circle of
radiusρ touchingα(nsa) andβ(ntb) appropriately exists if−2n(sa + tb) ≥ 2ρ.
Hence in the casest < 0, the tangent circle exists ifn(sa+tb)+ρ ≤ 0. In any case
the center of the circle with radiusρ touchingα(nsa) andβ(ntb) appropriately is(

tb − sa

tb + sa
ρ, ±2

√
nabst((sa + tb) + ρ)ρ

|sa + tb|

)
.

Therefore, for every pointP not on the linesx = 0,±ρ, we can choose real num-
berss, t andn so that the circle, centerP , radiusρ, is touchingα(nsa) andβ(tzb)
appropriately.

The Schoch line is the linex = b−a
b+ar (see [4]). Therefore Woo’s Archimedean

circles and the Schoch line are obtained whens = t andρ = r in Theorem 1. If
st > 0, then−1 < tb−sa

tb+sa < 1. Hence the line (1) lies in the region−ρ < x < ρ in
this case.
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The external center of similitude ofβ and a circle with radiusρ and center on
the line (1) lies on the line

x =
2tb2ρ

(b − ρ)(sa + tb)
by similarity. In particular, the external centers of similitude of Woo’s Archimedean
circles andβ lie on the linex = 2r. See [4].

3. Circles with centers on the y-axis

We have excluded the casestb ± sa �= 0 in Theorem 1. The casetb + sa = 0
is indeed trivial since the circlesα(nsa) andβ(ntb) coincide. By Theorem 1, for
k �= 0, the circle touchingα(nsa) andβ(ntb) appropriately and with center on the
line x = k has radiustb+sa

tb−sak. On the other hand, iftb = sa, the circlesα(nsa)
andβ(ntb) are congruent and lie on opposite sides of they-axis, and the line (1)
coincides with they-axis. Therefore the radii of circles touching the two circles
appropriately and having the center on this line cannot be determined uniquely.

We show that this exceptional case(tb = sa) has a close connection with
Archimedean circles. Sinceα(nsa) and β(ntb) are congruent, we now define
α[n] = α(n(a + b)) andβ[n] = β(n(a + b)). The circlesα[n] andβ[n] are con-
gruent, and their radii aren times of the radius ofγ. For two circles of radiiρ1, ρ2

and with distanced between their centers, consider their inclination [3] given by

ρ2
1 + ρ2

2 − d2

2ρ1ρ2
.

This is the cosine of the angle between the circles if they intersect, and is0, +1,
−1 according as they are orthogonal or tangent internally or externally.

Theorem 2. If a circle C of radius ρ touches α[n] and β[n] appropriately for a real
number n, then the inclination of C and γ is 2r

ρ − n.

Proof. The square of the distance between the centers of the circlesC andγ is
(ρ + n(a + b))2 − (n(a + b))2 + (a− b)2 by the Pythagorean theorem. Therefore
their inclination is

ρ2 + (a + b)2 − (ρ + n(a + b))2 + (n(a + b))2 − (a − b)2

2ρ(a + b)
=

2r
ρ

− n.

�
Let k be a positive real number. The radius of a circle touchingα[n] andβ[n]

appropriately iskr if and only if the inclination of the circle andγ is 2
k − n for a

real numbern.

Corollary 3. A circle touching α[n] and β[n] appropriately for a real number n is
Archimedean if and only if the inclination of this circle and γ is 2 − n.

This gives an infinite set of Archimedean circlesδn with centers on the positive
y-axis. The circleδn exists ifn ≥ −r

2(a+b) , and the maximal value of the inclination
of γ andδn is 2 + r

2(a+b) . The circleδ1 touchesγ internally, δ2 is orthogonal to
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γ, andδ3 touchesγ externally by the corollary (see Figure 2). The circleδ0 is the
Bankoff circle [1], whose inclination withγ is 2.

OB A

α
β

γ

α[1]β[1]

α[2]β[2]

α[3]β[3]

Figure 2

OB A

α
β

γ

α[1]β[1]

α[2]β[2]

Figure 3

By the remark preceding Corollary 3 we can get circles with various radii and
centers on they-axis tangent or orthogonal toγ. Figure 3 shows some such exam-
ples. The three circles all have radii2r. One touches the degenerate circlesα[0]
andβ[0] (and the lineAB) atO, andγ internally. A second circle touchesα[1] and
β[1] externally and are orthogonal toγ. Finally, a third circle touchesα[2], β[2],
andγ externally.

From [4], the center of the Woo circleUn is the point(
b − a

b + a
r, 2r

√
n +

r

a + b

)
.

The inclination ofUn andγ is 1 + 2(2−n)r
a+b . This depends on the radii ofα andβ

except the casen = 2. In contrast to this, Corollary 3 shows that the inclination of
δn andγ does not depend on the radii ofα andβ.
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Heronian Triangles Whose Areas Are Integer Multiples
of Their Perimeters

Lubomir Markov

Abstract. We present an improved algorithm for finding all solutions to Goehl’s
problemA = mP for triangles,i.e., the problem of finding all Heronian trian-
gles whose area(A) is an integer multiple(m) of the perimeter(P ). The new
algorithm does not involve elimination of extraneous rational triangles, and is a
true extension of Goehl’s original method.

1. Introduction and main result

In a recent paper [3], we presented a solution to the problem of finding all Hero-
nian triangles (triangles with integer sides and area) for which the areaA is a
multiple m of the perimeterP , wherem ∈ N. The problem was introduced by
Goehl [2] and is of interest because although its solution is exceedingly simple in
the special case of right triangles, the general case remained unsolved for about 20
years despite considerable effort. It is also remarkable and somewhat contrary to
intuition that for eachm there are only finitely many triangles with the property
A = mP ; for instance, the triangles(6, 8, 10), (5, 12, 13), (6, 25, 29), (7, 15, 20)
and(9, 10, 17) are the only ones whose area equals their perimeter (the casem =
1). Reproducing Goehl’s solution to the problem in the special case of right tri-
angles is a simple matter: Suppose thata and b are the legs of a right trian-
gle andc =

√
a2 + b2 is the hypotenuse. Setting the area equal to a multi-

ple m of the perimeter and manipulating, one immediately obtains the identities
8m2 = (a − 4m)(b − 4m) andc = a + b − 4m. These allow us to determine
a, b andc after finding all possible factorizations of the left-hand side of the form
8m2 = d1 · d2 and matchingd1 andd2 with (a− 4m) and(b − 4m), respectively;
restrictingd1 to those integers that do not exceed

√
8m2 = 2

√
2m assuresa < b

and avoids repetitions. We state Goehl’s result in the following form:
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Theorem 1. For a given m, the right-triangle solutions (a, b, c) to the problem
A = mP are determined from the relations

8m2 =(a − 4m)(b − 4m), (1)

c =a + b − 4m. (2)

Each factorization
8m2 = d1 · d2, (3)

where
d1 ≤ �2m

√
2�, (4)

generates a solution triangle with sides given by the formulas


a = d1 + 4m,

b = d2 + 4m,

c = d1 + d2 + 4m.

(5)

Our paper [3] extended Goehl’s result to general triangles, but the solution in-
volved extraneous rational triangles, which then had to be eliminated. The aim of
this work is to present a radical simplification of our previous solution, which does
not introduce extraneous triangles and is a direct generalization of Goehl’s method.
Our main goal is to prove the following theorem:

Theorem 2. For a given m, all solutions (a, b, c) to the problem A = mP are
determined as follows: Find all divisors u of 2m; for each u, find all numbers v
relatively prime to u and such that 1 ≤ v ≤ ⌊√

3u
⌋
; to each pair u and v, there

correspond a factorization identity

4m2(u2 + v2) =
[
v
(
a − 2m

u
v
)
− 2mu

][
v
(
b − 2m

u
v
)
− 2mu

]
, (6)

and a relation

c = a + b − 4mv

u
. (7)

Each factorization
4m2(u2 + v2) = δ1 · δ2, (8)

where

δ1 ≤
⌊
2m

√
u2 + v2

⌋
(9)

and only those factors δ1, δ2 for which v
∣∣ δ1 + 2mu and v

∣∣ δ2 + 2mu are consid-
ered, generates a solution triangle with sides given by the formulas


a = δ1+2mu

v + 2mv
u ,

b = δ2+2mu
v + 2mv

u ,

c = δ1+δ2+4mu
v .

(10)

Furthermore, for each fixed u, one concludes from the corresponding v’s that
(1) the obtuse-triangle solutions are obtained exactly when v < u;
(2) the acute-triangle solutions are obtained exactly when u < v ≤ ⌊√

3u
⌋
, with
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the further restriction
2m
u

(v2 − u2) ≤ δ1 ≤
⌊
2m

√
u2 + v2

⌋
;

(3) the right-triangle solutions are obtained exactly when u = v = 1.

Note that Theorem 1 is a special case of Theorem 2 and that the substitution
u = v = 1 transforms relations (6) through (10) into relations (1) through (5),
respectively.

2. Summary of preliminary facts

Let A be the area andP the perimeter of a triangle with sidesa, b, c, with the
agreement thatc shall always denote the largest side. Our problem (we call it
A = mP for short) is to find all Heronian triangles whose area equals an integer
multiple m of the perimeter. We state all preliminaries as a sequence of lemmas
whose proofs can either be easily reproduced by the reader, or can be found (except
for Lemma 5) in [3].

First we note that Heron’s formula

4A =
√

(a + b + c)(a + b − c)(a + c − b)(b + c − a)

and simple trigonometry easily imply the following lemma:

Lemma 3. Assume that the triple (a, b, c) solves the problem A = mP .
(1) a + b − c is an even integer.
(2) a + b − c < 4m

√
3.

(3) The resulting triangle is




obtuse
acute
right


 if and only if a + b − c




< 4m
> 4m
= 4m


.

Next, we need a crucial rearrangement of Heron’s formula:

Lemma 4. The following doubly-Pythagorean form of Heron’s formula holds:[
c2 − (a2 + b2)

]2 + (4A)2 = (2ab)2. (11)

This representation allows the problemA = mP to be reduced to a problem
about Pythagorean triples; for our purposes, a Pythagorean triple(x, y, z) shall
consist of nonnegative integers such thatz (the “hypotenuse”) shall always rep-
resent the largest number, whereasx and y (the “legs”) need not appear in any
particular order. The following parametric representation ofprimitive Pythagorean
triples (i.e., such that the components do not have a common factor greater than 1)
is the only preliminary statement not proved in [3]; a self-contained proof can be
found in [1]:

Lemma 5. Depending on whether the first leg x is odd or even, every primitive
Pythagorean triple (x, y, z) is uniquely expressed as (u2−v2, 2uv, u2 +v2) where

u and v are relatively prime of opposite parity, or
(u2 − v2

2
, uv,

u2 + v2

2

)
where

u and v are relatively prime and odd.

A combination of Lemmas 4 and 5 easily yields
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Lemma 6. For a fixed m, solving the problem A = mP is equivalent to determin-
ing all integer a, b, c that satisfy the equation[

c2 − (a2 + b2)
]2 + [4m(a + b + c)]2 = (2ab)2, (12)

or equivalently, to solving in positive integers the following system of three equa-
tions in six unknowns:


± [

c2 − (a2 + b2)
]

= k(u2 − v2);

4m(a + b + c) = 2kuv;

2ab = k(u2 + v2).

(13)

It is easy to see that the first equation in (13) can be interpreted as follows.

Lemma 7. Assume that, corresponding to certain values of u and v, there is a
triple (a, b, c) which solves the problem A = mP . Then the triangle (a, b, c) is


obtuse
acute
right


 if and only if




u > v
u < v

u = v = 1


.

3. Proof of Theorem 2

Let us first investigate the case of an obtuse triangle (the caseu > v); thus, the
system (13) isc2−(a2 +b2) = k(u2−v2), 4m(a+b+c) = 2kuv, 2ab = k(u2 +
v2). For completeness, we reproduce the crucial proof of the main factorization
identity from [3] (equation (17) below), which in essence solves the problemA =
mP . Indeed, from the first and the third equations in (13) we get(a + b)2 − c2 =
2kv2, and after factoring the left-hand side and using the second equation we get

a + b − c =
4mv

u
. This implies thatu must divide2m becausea + b − c is even,

andu, v are relatively prime. Combining the last relation witha + b + c =
kuv

2m
and solving the resulting system yields

b + a =
ku2v + 8m2v

4mu
, c =

ku2v − 8m2v

4mu
.

Similarly, adding the first and second equations and rearranging terms gives
(a − b)2 = c2 − 2ku2. Let us assume for a moment thatb ≥ a; then we have
b − a =

√
c2 − 2ku2, and it is clear that the radicand must be a square. PutQ =

2m
u

and substitute it in the expressions forc, b + a andb− a. After simplification,
one gets

c =
kv − 2Q2v

2Q
, b + a =

kv + 2Q2v

2Q
, b− a =

1
2Q

√(
kv − 2Q2v

)2 − 32km2,

(14)
where the radicand must be a square. Put

(
kv − 2Q2v

)2 − 32km2 = X2, and get

c =
kv − 2Q2v

2Q
, b + a =

kv + 2Q2v

2Q
, b − a =

1
2Q

X. (15)
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On the other hand, consider
(
kv − 2Q2v

)2 − 32km2 = X2 as an equation in the
variablesX andk. Expanding the square and rearranging yields

k2v2 − 4k(v2Q2 + 8m2) + 4Q4v2 = X2.

The last equation is a Diophantine equation solvable by factoring: subtract the

quantity

(
kv − 2(v2Q2 + 8m2)

v

)2

from both sides, simplify and rearrange terms;

the result is[
2(v2Q2 + 8m2)

]2 − (
2v2Q2

)2 =
(
v2k − 2v2Q2 − 16m2

)2 − (Xv)2. (16)

In (16), factor both sides, substituteQ =
2m
u

and simplify. This gives

(
16m2

u

)2

(u2+v2) =
[
v2(k − 2Q2) − 16m2 − Xv

] [
v2(k − 2Q2) − 16m2 + Xv

]
(17)

which is the main factorization identity mentioned above.
Now, the new idea is to eliminatek andX in (17), using (15) and the crucial

fact thata + b − c =
4mv

u
. Indeed, from (15) we immediately obtain

X = 2Q(b − a), k =
2Qc + 2Q2v

v
, (18)

which we substitute in (17) and simplify to get

16m2(u2 + v2) = [v(c − b + a) − 4mu] [v(c + b − a) − 4mu] . (19)

In the last relation, substitutec = a+ b− 4mv

u
and simplify again. The result is

4m2(u2 + v2) =
[
v
(
a − 2m

u
v
)
− 2mu

][
v
(
b − 2m

u
v
)
− 2mu

]
,

which is exactly (6). This identity allows us to find sidesa andb by directly match-
ing factors of the left-hand side to respective quantities on the right; thenc will be

determined fromc = a + b − 4mv

u
. Suppose4m2(u2 + v2) = δ1 · δ2. Since we

wantδ1 = v
(
a − 2m

u
v
)
− 2mu, it is clear that fora to be an integer, we neces-

sarily must havev
∣∣ δ1 + 2mu. Similarly, the requirementv

∣∣ δ2 + 2mu will ensure
that b is an integer. Imposing these additional restrictions will produceonly the
integer solutions to the problem. Furthermore, choosingδ1 ≤ δ2 (or equivalently,
δ1 ≤ 2m

√
u2 + v2) will guarantee thata ≤ b.

Next, solve

δ1 = v

(
a − 2m

u
v

)
− 2mu, δ2 = v

(
a − 2m

u
v

)
− 2mu

for a andb, expressc in terms of them and thus obtain formulas for the sides:
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


a =
δ1 + 2mu

v
+

2mv

u
,

b =
δ2 + 2mu

v
+

2mv

u
,

c =
δ1 + δ2 + 4mu

v
;

these are exactly the formulas (10). To ensurec ≥ b, we solve the inequality

δ1 + δ2 + 4mu

v
≥ δ2 + 2mu

v
+

2mv

u
and obtain, after simplification,

δ1 ≥ 2m
u

(v2 − u2). (20)

The last relation will always be true ifu > v, and thus the proof of the obtuse-
case part of the theorem is concluded. Now, consider the acute case; i.e., the case
v > u. The first equation in (13) is againc2 − (a2 + b2) = k(u2 − v2) (both
sides are negative), and all the above derivations continue to hold true; it is now
crucial to use the important bounda + b − c < 4m

√
3 which, combined with

a + b − c =
4mv

u
, implies thatu < v <

√
3u. The only difference from the

obtuse case is that the bound (20) does not hold automatically; now it must be
imposed to avoid repetitions and guarantee thatb ≤ c. Since the right-triangle case
is obviously incorporated in the theorem, the proof is complete.

4. An example

We again examine the casem = 2 (cf. [3]). Let m = 2 in the algorithm
suggested by Theorem 2; then2m = 4 and thusu could be 4, 2 or 1. For eachu,
determine the correspondingv’s:

(A) u = 4 ⇒ v = 1, 3; 5
(B) u = 2 ⇒ v = 1; 3
(C) u = 1 ⇒ v = 1.
Now observe how the caseu = 4, v = 5 has to be discarded since we have

4m2(u2 + v2) = 656 = 24 · 41, 9 ≤ δ1 ≤ 25, the only factor in that range is 16,
and it must be thrown out becausev = 5 does not divideδ1 + 2mu = 32. The
working factorizations are shown in the table below.
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u v type of triangle δ1 range 4m2(u2 + v2) δ1 · δ2 (a, b, c)
4 1 obtuse δ1 ≤ 16 272 1 · 272 (18, 289, 305)

2 · 136 (19, 153, 170)
4 · 68 (21, 85, 104)
8 · 34 (25, 51, 74)
16 · 17 (33, 34, 65)

4 3 obtuse δ1 ≤ 20 400 2 · 200 (9, 75, 78)
5 · 80 (10, 35, 39)
8 · 50 (11, 25, 30)
20 · 20 (15, 15, 24)

2 1 obtuse δ1 ≤ 8 80 1 · 80 (11, 90, 97)
2 · 40 (12, 50, 58)
4 · 20 (14, 30, 40)
5 · 16 (15, 26, 37)
8 · 10 (18, 20, 34)

2 3 acute 10 ≤ δ1 ≤ 14 208 13 · 16 (13, 14, 15)
1 1 right δ1 ≤ 5 32 1 · 32 (9, 40, 41)

2 · 16 (10, 24, 26)
4 · 8 (12, 16, 20)
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Coincidence of Centers for Scalene Triangles
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Abstract. A center function is a functionZ that assigns to every triangleT
in a Euclidean planeE a pointZ(T ) in E in a manner that is symmetric and
that respects isometries and dilations. A familyF of center functions is said to
be complete if for every scalene triangleABC and every pointP in its plane,
there isZ ∈ F such thatZ(ABC) = P . It is said to beseparating if no two
center functions inF coincide for any scalene triangle. In this note, we give
simple examples of complete separating families of continuous triangle center
functions. Regarding the impression that no two different center functions can
coincide on a scalene triangle, we show that for every center functionZ and
every scalene triangleT , there is another center functionZ′, of a simple type,
such thatZ(T ) = Z′(T ).

1. Introduction

Exercise 1 of [33, p. 37] states that if any two of the four classical centers coin-
cide for a triangle, then it is equilateral. This can be seen by proving each of the
6 substatements involved, as is done for example in [26, pp. 78–79], and it also
follows from more interesting considerations as described in Remark 5 below. The
statement is still true if one adds the Gergonne, the Nagel, and the Fermat-Torricelli
centers to the list. Here again, one proves each of the relevant 21 substatements;
see [15], where variants of these 21 substatements are proved. If one wishes to
extend the above statement to include the hundreds of centers catalogued in Kim-
berling’s encyclopaedic work [25], then one must be prepared to test the tens of
thousands of relevant substatements. This raises the question whether it is possible
to design a definition of the termtriangle center that encompasses the well-known
centers and that allows one to prove in one stroke that no two centers coincide for
a scalene triangle. We do not attempt to answer this expectedly very difficult ques-
tion. Instead, we adhere to the standard definition of what a center is, and we look
at maximal families of centers within which no two centers coincide for a scalene
triangle.

In Section 2, we review the standard definition of triangle centers and introduce
the necessary terminology pertaining to them. Sections 3 and 4 are independent.
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In Section 3, we examine the family of polynomial centers of degree 1. Noting the
similarity between the line that these centers form and the Euler line, we digress to
discuss issues related to these two lines. In Section 4, we exhibit maximal families
of continuous, in fact polynomial, centers within which no two centers coincide
for a scalene triangle. We also show that for every scalene triangleT and for
every center functionZ, there is another center function of a fairly simple type that
coincides withZ onT .

2. Terminology

By a non-degenerate triangleABC, we mean an ordered triple(A,B,C) of
non-collinear points in a fixed Euclidean planeE. Non-degenerate triangles form a
subset ofE3 that we denote byT. For a subsetU of T, the set of triples(a, b, c) ∈
R3 that occur as the side-lengths of a triangle inU is denoted byU0. Thus

U0 = {(a, b, c) ∈ R3 : a, b, c are the side-lengths of some triangleABC in U},
T0 = {(a, b, c) ∈ R3 : 0 < a < b+ c, 0 < b < c+ a, 0 < c < a+ b}.

In the spirit of [23] – [25], asymmetric triangle center function (or simply, a
center function, or acenter) is defined as a function that assigns to every triangle
in T (or more generally in some subsetU of T) a point in its plane in a manner
that is symmetric and that respects isometries and dilations. WritingZ(A,B,C)
as a barycentric combination of the position vectorsA, B, andC, and lettinga, b,
andc denote the side-lengths ofABC in the standard order, we see that a center
functionZ onU is of the form

Z(A,B,C) = f(a, b, c)A + f(c, a, b)B + f(b, c, a)C, (1)

wheref is a real-valued function onU0 having the following properties:

f(a, b, c) = f(a, c, b), (2)

f(a, b, c) + f(b, c, a) + f(c, a, b) = 1, (3)

f(λa, λb, λc) = f(a, b, c) ∀ λ > 0. (4)

Here, we have treated the points in our planeE as position vectors relative to a
fixed but arbitrary origin. We will refer to the centerZ defined by (1) asthe center
function defined by f without referring explicitly to (1). The functionf may be
an explicit function of other elements of the triangle (such as its angles) that are
themselves functions ofa, b andc.

Also, we will always assume that the domainU of Z is closed under permu-
tations, isometries and dilations, and has non-empty interior. In other words, we
assume thatU0 is closed under permutations and multiplication by a positive num-
ber, and that it has a non-empty interior.

According to this definition of a centerZ, one need only defineZ on the sim-
ilarity classes of triangles. On the other hand, the values thatZ assigns to two
triangles in different similarity classes are completely independent of each other.
To reflect more faithfully our intuitive picture of centers, one must impose the con-
dition that a center function be continuous. Thus a center functionZ onU is called
continuous if it is defined by a functionf that is continuous onU0. If f can be
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chosen to be a rational function, thenZ is called apolynomial center function.
Since two rational functions cannot coincide on a non-empty open set, it follows
that the rational function that defines a polynomial center function is unique. Also,
a rational functionf(x, y, z) that satisfies (4) is necessarily of the formf = g/h,
whereg andh ared-forms, i.e., homogeneous polynomials of the same degreed.
If d = 1, f is called aprojective linear function. Projective quadratic functions
correspond tod = 2, and so on. Thus a polynomial centerZ is a center defined by
a projective function.

A family F of center functions onU is said to beseparating if no two elements
in F coincide on any scalene triangle. It is said to becomplete if for every scalene
triangleT in U, {Z(T ) : Z ∈ F} is all of E. The assumption thatT is scalene
is necessary here. In fact, if a triangleT = ABC is such thatAB = AC, then
{Z(T ) : Z ∈ F} will be contained in the line that bisects angleA, being a line of
symmetry ofABC, and thus cannot coverE.

3. Polynomial centers of degree 1

We start by characterizing the simplest polynomial center functions, i.e., those
defined by projective linear functions. We note the similarity between the line these
centers form and the Euler line and we discuss issues related to these two lines.

Theorem 1. A projective linear function f(x, y, z) satisfies (2), (3), and (4) if and
only if

f(x, y, z) =
(1 − 2t)x+ t(y + z)

x+ y + z
(5)

for some t. If St is the center function defined by (5) (and(1)), then S0, S1/3, S1/2,
and S1 are the incenter, centroid, Spieker center, and Nagel center, respectively.
Also, the centers {St(ABC) : t ∈ R} of a non-equilateral triangle ABC in T
form the straight line whose trilinear equation is

a(b− c)α+ b(c− a)β + c(a− b)γ = 0.

Furthermore, the distance |StSu| between St and Su is given by

|StSu| =
|t− u|

√
H

a+ b+ c
, (6)

where

H = (−a+ b+ c)(a− b+ c)(a+ b− c) + (a+ b)(b+ c)(c+ a) − 9abc

= −(a3 + b3 + c3) + 2(a2b+ b2c+ c2a+ ab2 + bc2 + ca2) − 9abc. (7)

Proof. Let f(x, y, z) = L0/M0, whereL0 andM0 are linear forms inx, y, andz,
and suppose thatf satisfies (2), (3), and (4). Letσ be the cycle(x y z), and let
Li = σi(L0) andMi = σi(M0). Sincef satisfies (3), it follows thatL0M1M2 +
L1M0M2+L2M0M1−M0M1M2 vanishes onU0 and hence vanishes identically.
ThusM0 dividesL0M1M2. If M0 dividesL0, thenf is a constant, and hence of
the desired form, witht = 1/3. If M0 dividesM1, then it follows easily thatM1

is a constant multiple ofM0 and thatM0 is a constant multiple ofx+ y + z. The
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same holds ifM0 dividesM2. Finally, we use (3) and (4) to see thatL0 is of the
desired form.

Let St be as given. The barycentric coordinates ofSt(ABC) are given by

f(a, b, c) : f(b, c, a) : f(c, a, b)

and therefore the trilinear coordinatesα : β : γ of St(ABC) are given by

αa : βb : γc = (1 − 2t)a+ t(b+ c) : (1 − 2t)b+ t(c+ a) : (1 − 2t)c+ t(a+ b)
= a+ t(b+ c− 2a) : b+ t(c+ a− 2b) : c+ t(a+ b− 2c)

Therefore there exists non-zeroλ such that

λαa− a = t(b+ c− 2a), λβb− b = t(c+ a− 2b), λγc− c = t(a+ b− 2c).

It is clear that the valuet = 0 corresponds to the incenter. Thus we assumet 
= 0.
Eliminatingt, we obtain

(λα − 1)a(c + a− 2b) = (λβ − 1)b(b+ c− 2a),
(λβ − 1)b(a + b− 2c) = (λγ − 1)c(c + a− 2b).

Eliminatingλ and simplifying, we obtain

(a− 2b+ c) [a(b− c)α+ b(c− a)β + c(a− b)γ] = 0.

Dividing by a− 2b+ c, we get the desired equation.
Finally, the last statement follows after routine, though tedious, calculations. We

simply note that the actual trilinear coordinates ofSt are given by

2K((1 − 2t)a+ t(b+ c))
a(a+ b+ c)

:
2K((1 − 2t)b+ t(c+ a))

b(a+ b+ c)
:

2K((1 − 2t)c+ t(a+ b))
c(a+ b+ c)

,

whereK is the area of the triangle, and we use the fact that the distance|PP′|
between the pointsP andP ′ whose actual trilinear coordinates areα : β : γ and
α′ : β′ : γ′ is given by

|PP ′| =
1

2K

√
−abc[a(β − β′)(γ − γ′) + b(γ − γ′)(α − α′) + c(α− α′)(β − β′)];

see [25, Theorem 1B, p. 31]. �

4. The Euler-like line L(I,G)

The straight line{St : t ∈ R} in Theorem 1 is the first central line in the list
of [25, p. 128], where it is denoted byL(1, 2, 8, 10). The notationL(1, 2, 8, 10)
reflects the fact that it passes through the centers catalogued in [25] asX1,X2,X8,
andX10. These are the incenter, centroid, Nagel center, and Spieker center, and
they correspond in{St : t ∈ R} to the valuest = 0, 1/3, 1, and1/2, respectively.
We shall denote this line byL(I,G) to indicate that it is the line joining the incenter
I and the centroidG. Letting O be the circumcenter, the lineL(G,O) is then
nothing but the Euler line. In this section, we survey similarities between these
lines. For the third lineL(O,I) and a natural context in which it occurs, we refer
the reader to [17].
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Figure 1

It follows from (6) that the Spieker centerG1 = S1/2 and the centroidG = S1/3

of a triangle are at distances in the ratio 3 : 2 from the incenterI = S0. This
is shown in Figure 1 which is taken from [17]. The collinearity ofG1, I, andG
and the ratio3 : 2 are highlighted in [6, pp. 137–138] and [27], and they also
appear in [22, pp. 225–227] and the first row in [25, Table 5.5, p. 143]. In spite
of this, we feel that these elegant facts and the striking similarity between the line
L(I,G) and the Euler lineL(O,G) deserve to be better known. Unaware of the
aforementioned references, the authors of [3] rediscovered the collinearity of the
incenter, the Spieker center, and the centroid and the ratio 3 : 2, and they proved,
in Theorems 6 and 7, that the same thing holds for any polygon that admits an
incircle, i.e., a circle that touches the sides of the polygon internally. Here, the
centroid of a polygon is the center of mass of a lamina of uniform density that is
laid on the polygon, the Spieker center is the centroid of wires of uniform density
placed on the sides, and the incenter is the center of the incircle. Later, the same
authors, again unaware of [8, p. 69], rediscovered (in [4]) similar properties of
L(I,G) in dimension 3 and made interesting generalizations to solids admitting
inspheres. For a deeper explanation of the similarity between the Euler line and its
rival L(I,G) and for affine and other generalizations, see [29] and [28].

We should also mention that the special case of (6) pertaining to the distance be-
tween the incenter and the centroid appeared in [7]. Also, the fact that the Spieker
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centerG1 is the midpoint of the segment joining the incenterI and the Nagel point
L is the subject matter of [12], [30], and [31]. In each of these references,L
(respectively,G1) is described as the point of intersection of the lines that bisect
the perimeter and that pass through the vertices (respectively, the midpoints of the
sides). It is not apparent that the authors of these references are aware thatL and
G1 are the Nagel and Spieker centers. For the interesting part thatG1 is indeed the
Spieker center, see [5] and [20, pp. 1–14]. One may also expect that the Euler line
and the lineL(I,G) cannot coincide unless the triangle is isosceles. This is indeed
so, as is proved in [21, Problem 4, Section 11, pp. 142–144]. It also follows from
the fact that the area of the triangleGOI is given by the elegant formula

[GOI] =
∣∣
∣∣
s(b− c)(c− a)(a− b)

24K

∣∣
∣∣ ,

wheres is the semiperimeter andK the area ofABC; see [34, Exercise 5.7].
We also note that the Euler line consists of the centersTt defined by the function

g =
(1 − 2t) tanA+ t(tanB + tanC)

tanA+ tanB + tanC
(8)

obtained fromf of (5) by replacinga, b, andc by tanA, tanB, andtanC, re-
spectively. ThenT0, T1/3, T1/2, andT1 are nothing but the circumcenter, centroid,
the center of the nine-point circle, and the orthocenter, respectively. The distance
|TtTu| betweenTt andTu is given by

|TtTu| =
|t− u|

√
H∗

a+ b+ c
,

whereH∗ is obtained fromH in (7) by replacinga, b, andc with tanA, tanB,
andtanC, respectively. LettingK be the area of the triangle with side-lengthsa,
b, andc, and using the identitytanA = 4K/(b2 + c2 − a2) and its iterates,H∗
reduces to a rational function ina, b, andc. In view of the formula144K2r2 = E
given in [32], where

E = a2b2c2 − (b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2), (9)

and wherer is the distance between the circumcenterT0 and the centroidT1/3,H∗
is expected to simplify into

H∗ =
(a+ b+ c)2E

16K2
,

whereE is as given in (9), and where16K2 is given by Heron’s formula

16K2 = 2(a2b2 + b2c2 + c2a2) − (a4 + b4 + c4). (10)

Referring to Figure 1, letX be the point where the linesLO andHI meet,
and letY be the midpoint ofHL. Then the Euler line and the lineL(I,G) are
medians of both trianglesXHL andOIY. The pointsX andY do not seem to be
catalogued in [25]. Also, of the many lines that can be formed in Figure 1, the line
IN is catalogued in [25] as the line joiningI, N , and the Feuerbach point. As for
distances between various points in Figure 1, formulas for the distancesIN , IO,
IH, andOH can be found in [9, pp. 6–7]. The first two are quite well-known and
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they are associated with Euler, Steiner, Chapple and Feuerbach. Also, formulas for
the distancesGI andGO appeared in [7] and [32], as mentioned earlier. These
formulas, as well as other formulas for distances between several other pairs of
centers, had already been found by Euler [35, Section XIB, pp. 88–90].

5. Complete separating families of polynomial centers

In the next theorem, we exhibit a complete separating family of polynomial cen-
ter functions that contains the functions used to define the lineL(I,G) encountered
in Theorem 1.

Theorem 2. Let ABC be a scalene triangle and let V be any point in its plane.
Then there exist unique real numbers t and v such that V is the center ofABC with
respect to the center function Qt,v defined by the projective quadratic function f
given by

f(x, y, z) =
(1 − 2t)x2 + t(y2 + z2) + 2(1 − v)yz + vx(y + z)

(x+ y + z)2
. (11)

Consequently, the family F = {Qt,v : t, v ∈ R} is a complete separating family.
Also, F contains the line L(I,G) described in Theorem 1.

Proof. Clearlyf satisfies the conditions (2), (3), and (4). SinceV is in the plane of
ABC, it follows thatV = ξA+ ηB+ ζC for someξ, η, andζ with ξ+ η+ ζ = 1.
Let a, b, andc be the side-lengths ofABC as usual. The systemf(a, b, c) = ξ,
f(b, c, a) = η, f(c, a, b) = ζ of equations is equivalent to the system

(b2 + c2 − 2a2)t+ (−2bc+ ca+ ab)v = ξ(a+ b+ c)2 − a2 − 2bc,

(a2 + b2 − 2c2)t+ (−2ab+ bc+ ca)v = ζ(a+ b+ c)2 − c2 − 2ab.

The existence of a (unique) solution(t, v) to this system now follows from the fact
that its determinant−3(a− b)(b− c)(c− a)(a+ b+ c) is not zero.

The last statement follows from the observation that ifv = 1 − t, then the
expression off(x, y, z) in (11) reduces to the projective linear functionf(x, y, z)
given in (5). �

Remarks. (1) According to [25, p. 46], the Fermat-Torricelli point is not a polyno-
mial center. Therefore it does not belong to the familyF defined in Theorem 2.
Also, the circumcenter, the orthocenter, and the Gergonne point do not belong to
F, although they are polynomial centers. In fact, these centers are defined by the
functionsf given by

x2(y2 + z2 − x2)
16K2

,
y2 + z2 − x2

x2 + y2 + z2
,

(x− y + z)(x + y − z)
2(xy + yz + zx) − (x2 + y2 + z2)

,

respectively, whereK is the area of the triangle whose side-lengths arex, y, and
z, and is given by Heron’s formula as in (10); see [24, pp. 172–173].

(2) One may replace the denominator off in (11) by an arbitrary symmetric
quadratic form that does not vanish on any point inT0, and obtain a different
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separating complete family of center functions. Thus if we replacef by the similar
function

g(x, y, z) =
(−1 − 2t)x2 + t(y2 + z2) + 2vyz + (1 − v)x(y + z)

2(xy + yz + zx) − (x2 + y2 + z2)
,

then we would obtain a complete separating familyG of center functions that
contains the centroid, the Gergonne center and the Mittenpunkt, but not any of the
other well known traditional centers. Here the Mittenpunkt is the center defined by
the function

g(x, y, z) =
xy + xz − x2

2(xy + yz + zx) − (x2 + y2 + z2)
.

(3) It is clear that complete families are maximal separating families. However,
it is not clear whether the converse is true. It also follows from Zorn’s Lemma
that every separating family of center functions can be imbedded in a maximal
separating family. Thus the seven centers mentioned at the beginning of this note
belong to some maximal separating family of centers. The question is whether
such a family can be defined in a natural way.

The next theorem shows that pairs of center functions that coincide on scalene
triangles exist in abundance. However, it does not answer the question whether
such a pair can be chosen from the hundreds of centers that are catalogued in [25].
In case this is not possible, the question arises whether this is due to certain intrinsic
properties of the centers in [25].

Theorem 3. Let Z be a center function, and let ABC be any scalene triangle
in the domain of Z . Then there exists another center function Z′ defined by a
projective function f such that Z(A,B,C) = Z′(A,B,C).

Moreover, if Z is not the centroid, then f can be chosen to be quadratic. If Z is
the centroid, then f can be chosen to be quartic.

Proof. Let F andG be the families of centers defined in Theorem 2 and in Remark
4. Clearly, the centroid is the only center function that these two families have in
common.

If Z /∈ F, then we use Theorem 2 to produce the centerZ′ = Zt,v for which
Zt,v(A,B,C) = Z(A,B,C), and we takeZ′ = Zt,v. If Z /∈ G, then we argue
similarly as indicated in Remark 2 to produce the desired center function.

It remains to deal with the case whenZ is the centroid. In this case, we let
f(x, y, z) = g(x, y, z)/h(x, y, z), where

h(x, y, z) = (x4 + y4 + z4) + (x3y + y3z + z3x+ x3z + y3x+ z3y)
+(x2y2 + y2z2 + z2x2)

g(x, y, z) = (1 − 2t)x4 + t(y4 + z4) + vx3(y + z) + wx(y3 + z3)

+(1 − v − w)x(y3 + z3) + sx2(y2 + z2) + (1 − 2s)y2z2,
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and we consider the equations

f(a, b, c) = f(b, c, a) = f(c, a, b) =
1
3
.

These are linear equations in the variablest, v, w, and s that have an obvious
solution(t, v, w, s) = (1/3, 1/3, 1/3, 1/3). Hence they have infinitely many other
solutions. Choose any of these solutions and letZ′ be the center defined by the
functionf that corresponds to that choice. Then for the given triangleABC, Z′ is
the centroid, as desired. �
Remarks. (4) The question that underlies this paper is whether two centers can
coincide for a scalene triangle. The analogous question, for higher dimensional
simplices, of how much regularity is implied by the coincidence of two or more
centers has led to various interesting results in [18], [19], [10], [11], and [16].

(5, due to the referee) LetO, G, H, andI be the circumcenter, centroid, ortho-
center, and incenter of a non-equilateral triangle. Euler’s theorem states thatO,
G, andH are collinear withOG : GH = 1 : 2. A theorem of Guinand in [13]
shows thatI ranges freely over the interior of the centroidal disk (with diameter
GH) punctured at the nine-point centerN . It follows that no two of the centersO,
G, H, andI coincide for a non-equilateral triangle, thus providing a proof, other
than case by case chasing, of the very first statement made in the introduction.
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On the Diagonals of a Cyclic Quadrilateral

Claudi Alsina and Roger B. Nelsen

Abstract. We present visual proofs of two lemmas that reduce the proofs of
expressions for the lengths of the diagonals and the area of a cyclic quadrilateral
in terms of the lengths of its sides to elementary algebra.

The purpose of this short note is to give a new proof of the following well-known
results of Brahmagupta and Parameśhvara [4, 5].

Theorem. If a, b, c, d denote the lengths of the sides; p, q the lengths of the
diagonals, R the circumradius, and Q the area of a cyclic quadrilateral, then

a

b

c

d

p

q

Figure 1

p =

√
(ac + bd)(ad + bc)

ab + cd
, q =

√
(ac + bd)(ab + cd)

ad + bc
,

and

Q =
1

4R

√
(ab + cd)(ac + bd)(ad + bc).

We begin with visual proofs of two lemmas, which will reduce the proof of the
theorem to elementary algebra. Lemma 1 is the well-known relationship for the
area of a triangle in terms of its circumradius and three side lengths; and Lemma 2
expresses the ratio of the diagonals of a cyclic quadrilateral in terms of the lengths
of the sides.

Lemma 1. If a, b, c denote the lengths of the sides, R the circumradius, and K the
area of a triangle, then K = abc

4R .
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c

ab

a
2

h

R

R

R

Figure 2

Proof. From Figure 2,

h

b
=

a
2

R
⇒ h =

ab

2R
⇒ K =

1
2
hc =

abc

4R
.

�

Lemma 2 ([2]). Under the hypotheses of the Theorem, p
q = ad+bc

ab+cd .

a

b

c

d

p
K1 K2

Figure 3

a

b

c

d

q
K3 K4

Figure 4

Proof. From Figures 3 and 4 respectively,

Q =K1 + K2 =
pab

4R
+

pcd

4R
=

p(ab + cd)
4R

,

Q =K3 + K4 =
qad

4R
+

qbc

4R
=

q(ad + bc)
4R

.
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Therefore,

p(ab + cd) =q(ad + bc),
p

q
=

ad + bc

ab + cd
.

�
In the proof of our theorem, we use Lemma 2 and Ptolemy’s theorem: Under

the hypotheses of our theorem,

pq = ac + bd.

For proofs of Ptolemy’s theorem, see [1, 3].

Proof of the Theorem.

p2 =pq · p

q
=

(ac + bd)(ad + bc)
ab + cd

,

q2 =pq · q

p
=

(ac + bd)(ab + cd)
ad + bc

;

Q2 =
pq(ab + cd)(ad + bc)

(4R)2
=

(ac + bd)(ab + cd)(ad + bc)
(4R)2

.
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Some Triangle Centers Associated with the Excircles

Tibor Dosa

Abstract. We construct a few new triangle centers associated with the excircles
of a triangle.

1. Introduction

Consider a triangleABC with its excircles. We study a triad of extouch triangles
and construct some new triangle centers associated with them. By theA-extouch
triangle, we mean the triangle with vertices the points of tangency of theA-excircle
with the sidelines ofABC. This is triangleAaBaCa in Figure 1. Similarly, theB-
andC-extouch triangles are respectivelyAbBbCb, andAcBcCc. Consider also the
incircles of these extouch triangles, with centersI1, I2, I3 respectively, and points
of tangencyX of (I1) with BaCa, Y of (I2) with CbAb, andZ of (I3) with AcBc.

Aa

Ba

Ca

Ab

Bb

Cb

Ac

Bc

Cc

A

B C

I1

X

I2

YI3Z

P1
P2

Figure 1.

In this paper, we adopt the usual notations of triangle geometry as in [3] and
work with homogeneous barycentric coordinates with reference to triangleABC.
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Theorem 1. (1) The lines AX, BY , CZ are concurrent at

P1 =
(

cos
A

2
cos2 A

4
: cos

B

2
cos2

B

4
: cos

C

2
cos2 C

4

)
.

(2) The lines I1X, I2Y , I3Z are concurrent at

P2 =
(

a

(
1 − cos

B

2
− cos

C

2

)
+ (b + c) cos

A

2

: b

(
1 − cos

C

2
− cos

A

2

)
+ (c + a) cos

B

2

: c

(
1 − cos

A

2
− cos

B

2

)
+ (a + b) cos

C

2

)
.

2. Some preliminary results

Let s and R be the semiperimeter and circumradius respectively of triangle
ABC. The following homogeneous barycentric coordinates are well known.

Aa = (0 : s − b : s − c), Ba = (−(s − b) : 0 : s), Ca = (−(s − c) : s : 0);
Ab = (0 : −(s − a) : s), Bb = (s − a : 0 : s − c), Cb = (s : −(s − c) : 0);
Ac = (0 : s : −(s − c)), Bc = (s : 0 : −(s − a)), Cc = (s − a : s − b : 0).

The lengths of the sides of theA-extouch triangle are as follows:

BaCa = 2s · sin A

2
, CaAa = 2(s − c) cos

B

2
, AaBa = 2(s − b) cos

C

2
. (1)

Lemma 2.

s = 4R cos
A

2
cos

B

2
cos

C

2
,

s − a = 4R cos
A

2
sin

B

2
sin

C

2
,

s − b = 4R sin
A

2
cos

B

2
sin

C

2
,

s − c = 4R sin
A

2
sin

B

2
cos

C

2
.

We omit the proof of this lemma. It follows easily from, for example, [1,§293].
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3. Proof of Theorem 1

BaX =
1
2
(BaCa − AaCa + AaBa)

=s · sin A

2
− (s − c) cos

B

2
+ (s − b) cos

C

2

=4R sin
A

2
cos

B

2
cos

C

2

(
cos

A

2
− sin

B

2
+ sin

C

2

)

=4R sin
A

2
cos

B

2
cos

C

2

(
sin

B + C

2
− sin

B

2
+ sin

C

2

)

=4R sin
A

2
cos

B

2
cos

C

2

(
2 sin

B + C

4
cos

B + C

4
− 2 sin

B − C

4
cos

B + C

4

)

=16R sin
A

2
cos

B

2
cos

C

2
cos

B + C

4
· cos B

4
sin

C

4
.

Similarly, XCa = 16R sin A
2 cos B

2 cos C
2 cos B+C

4 · sin B
4 cos C

4 . The pointX
therefore dividesBaCa in the ratio

BaX : XCa = cos
B

4
sin

C

4
: sin

B

4
cos

C

4
.

This allows us to compute its absolute barycentric coordinate in terms ofBa and
Ca. Note that

Ba =

(− sin A
2 sin C

2 , 0, cos A
2 cos C

2

)
sin B

2

, Ca =

(− sin A
2 sin B

2 , cos A
2 cos B

2 , 0
)

sin C
2

.

From these we have

X =
sin B

4 cos C
4 · Ba + cos B

4 sin C
4 · Ca

sin B+C
4

=
sin B

4 cos C
4 · (− sin A

2
sin C

2
,0,cos A

2
cos C

2 )
sin B

2

+ cos B
4 sin C

4 · (− sin A
2

sin B
2

,cos A
2

cos B
2

, 0)
sin C

2

sin B+C
4

=
cos C

4 · (− sin A
2

sin C
2

,0,cos A
2

cos C
2 )

2 cos B
4

+ cos B
4 · (− sin A

2
sin B

2
,cos A

2
cos B

2
, 0)

2 cos C
4

sin B+C
4

=
cos2 C

4

(− sin A
2 sin C

2 , 0, cos A
2 cos C

2

)
+ cos2 B

4

(− sin A
2 sin B

2 , cos A
2 cos B

2 , 0
)

2 cos B
4 cos C

4 sin B+C
4

=

(− sin A
2

(
sin B

2 cos2 B
4 + sin C

2 cos2 C
4

)
, cos A

2 cos B
2 cos2 B

4 , cos A
2 cos C

2 cos2 C
4

)
2 cos B

4 cos C
4 sin B+C

4

.

From this we obtain the homogeneous barycentric coordinates ofX, and those of
Y andZ by cyclic permutations ofA, B, C:
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X =

(
− sin

A

2

(
sin

B

2
cos2

B

4
+ sin

C

2
cos2

C

4

)
: cos

A

2
cos

B

2
cos2

B

4
: cos

A

2
cos

C

2
cos2

C

4

)
,

Y =

(
cos

B

2
cos

A

2
cos2

A

4
: − sin

B

2

(
sin

C

2
cos2

C

4
+ sin

A

2
cos2

A

4

)
: cos

B

2
cos

C

2
cos2

C

4

)
,

Z =

(
cos

C

2
cos

A

2
cos2

A

4
: cos

C

2
cos

B

2
cos2

B

4
: − sin

C

2

(
sin

A

2
cos2

A

4
+ sin

B

2
cos2

B

4

))
.

Equivalently,

X =
(
− tan

A

2

(
sin

B

2
cos2

B

4
+ sin

C

2
cos2

C

4

)
: cos

B

2
cos2

B

4
: cos

C

2
cos2

C

4

)
,

Y =
(

cos
A

2
cos2

A

4
: − tan

B

2

(
sin

C

2
cos2

C

4
+ sin

A

2
cos2

A

4

)
: cos

C

2
cos2

C

4

)
,

Z =
(

cos
A

2
cos2

A

4
: cos

B

2
cos2

B

4
: − tan

C

2

(
sin

A

2
cos2

A

4
+ sin

B

2
cos2

B

4

))
.

It is clear that the linesAX, BY , CZ intersect at a pointP1 with coordinates

(
cos

A

2
cos2 A

4
: cos

B

2
cos2

B

4
: cos

C

2
cos2

C

4

)
.

This completes the proof of Theorem 1(1).
For (2), note that the lineI1X is parallel to the bisector of angleA. Its has

barycentric equation

∣∣∣∣∣∣
− sin A

2

(
sin B

2 cos2 B
4 + sin C

2 cos2 C
4

)
cos A

2 cos B
2 cos2 B

4 cos A
2 cos C

2 cos2 C
4−(b + c) b c

x y z

∣∣∣∣∣∣ = 0.

A routine calculation, making use of the fact that the sum of the entries in the first
row is sin C

2 cos2 B
4 + sin B

2 cos2 C
4 , gives

−(x + y + z)
(

b cos
C

2
− c cos

B

2

)
+ bz − cy = 0.

Similarly, the linesI2Y andI3Z have equations

−(x + y + z)
(

c cos
A

2
− a cos

C

2

)
+ cx − az =0,

−(x + y + z)
(

a cos
B

2
− b cos

A

2

)
+ ay − bx =0.
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These three lines intersect at

P2 =
(

a

(
1 − cos

B

2
− cos

C

2

)
+ (b + c) cos

A

2

: b

(
1 − cos

C

2
− cos

A

2

)
+ (c + a) cos

B

2

: c

(
1 − cos

A

2
− cos

B

2

)
+ (a + b) cos

C

2

)
.

This completes the proof of Theorem 1(2).

Remark. The barycentric coordinates of the incenterI1 of theA-extouch triangle
are(

− sin
A

2

(
sin

B

2
+ sin

C

2

)
: cos

B

2

(
sin

C

2
+ cos

A

2

)
: cos

C

2

(
cos

A

2
+ sin

B

2

))
.

4. Some collinearities

The homogeneous barycentric coordinates ofP1 can be rewritten as(
cos2 A

2
+ cos

A

2
: cos2 B

2
+ cos

B

2
: cos2

C

2
+ cos

C

2

)
.

From this it is clear that the pointP1 lies on the line joining the two points with
coordinates

(
cos2 A

2 : cos2 B
2 : cos2 C

2

)
and

(
cos A

2 : cos B
2 : cos C

2

)
. We briefly

recall their definitions.
(i) The pointM =

(
cos2 A

2 : cos2 B
2 : cos2 C

2

)
= (a(s−a) : b(s−b) : c(s−c))

is the Mittenpunkt. It is the perspector of the excentral triangle and the medial
triangle. It is the triangle centerX9 of [2].

(ii) The point Q =
(
cos A

2 : cos B
2 : cos C

2

)
appears asX188 in [2], and is

named the second mid-arc point. Here is an explicit description. Consider the
anticomplementary triangleA′B′C ′ of ABC, with its incircle(I′). If the segments
I ′A′, I ′B′, I ′C ′ intersect the incircle(I′) atA′′, B′′, C ′′, then the linesAA′′, BB′′,
CC ′′ are concurrent atQ. See Figure 2.

Proposition 3. (1) The point P1 lies on the line MQ.
(2) The point P2 lies on the line joining the incenter to Q.

Proof. We need only prove (2). This is clear from

P2 =
(

1 − cos
A

2
− cos

B

2
− cos

C

2

)
I +

(
cos

A

2
+ cos

B

2
+ cos

C

2

)
Q.

In fact,

P2 = I +
(

cos
A

2
+ cos

B

2
+ cos

C

2

)−→
IQ. (2)

�
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A

B C

A′

B′C′

I′

A′′

B′′

C′′

Q

Figure 2.

5. The excircles of the extouch triangles

Consider the excircle of triangleAaBaCa tangent to the sideBaCa at X ′. It is
clear thatX′ andX are symmetric with respect to the midpoint ofBaCa. Since
triangleABaCa is isosceles, the linesAX′ andAX are isogonal with respect to
ABa andACa. As such, they are isogonal with respect toAB andAC. Likewise,
if we consider the excircle ofAbBbCb tangent toCbAb at Y ′, and that ofAcBcCc

tangent toAcBc atZ ′, then the linesAX′, BY ′, CZ ′, being respectively isogonal
to AX, BY , CZ, intersect at the isogonal conjugate ofP1.

Proposition 4. The barycentric coordinates of P∗
1 are(

cos
A

2
sin2 A

4
: cos

B

2
sin2 B

4
: cos

C

2
sin2 C

4

)
.

Proof. This follows from

P ∗
1 =

(
sin2 A

cos A
2 cos2 A

4

:
sin2 B

cos B
2 cos2 B

4

:
sin2 C

cos C
2 cos2 C

4

)

=

(
sin2 A

2 cos A
2

cos2 A
4

:
sin2 B

2 cos B
2

cos2 B
4

:
sin2 C

2 cos C
2

cos2 C
4

)

=
(

cos
A

2
sin2 A

4
: cos

B

2
sin2 B

4
: cos

C

2
sin2 C

4

)
. :

�
Corollary 5. The points P1, P ∗

1 and Q are collinear.
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Aa

Ba

Ca

X′

I

A

B
C

I1

X

P ′
2

P2

Figure 3.

Proposition 6. The perpendiculars to BaCa at X ′, to CbAb at Y ′, and to AcBc at
Z ′ are concurrent at the reflection of P2 in I , which is the point

P ′
2 =a

(
1 + cos

B

2
+ cos

C

2

)
− (b + c) cos

A

2

:b
(

1 + cos
C

2
+ cos

A

2

)
− (c + a) cos

B

2

:c
(

1 + cos
A

2
+ cos

B

2

)
− (a + b) cos

C

2
.

Proof. Let P ′
2 be the reflection ofP2 in I. SinceX andX′ are symmetric in the

midpoint of BaCa, andP2X is perpendicular toBaCa, it follows that P ′
2X

′ is
also perpendicular toBaCa. The same reasoning shows thatP′

2Y
′ andP ′

2Z
′ are

perpendicular toCbAb andAcBc respectively. It follows from (2) that

P ′
2 = I −

(
cos

A

2
+ cos

B

2
+ cos

C

2

)−→
IQ.

From this, we easily obtain the homogeneous barycentric coordinates as given
above. �

We conclude this paper with the construction of another triangle center. It is
known that the perpendiculars fromAa to BaCa, Bb to CbAb, andCc to AcBc
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intersect at

P3 = ((b + c) cos A : (c + a) cos B : (a + b) cos C). (3)

This is the triangle centerX72 in [2].
If we let X0, Y0, Z0 be these pedals, then it is also known thatAX0, BY0, CZ0

intersect at the MittenpunktX9. Now, letX1, Y1, Z1 be the reflections ofX0, Y0,
Z0 in the midpoints ofBaCa, CbAb, AcBc respectively. The linesAX1, BY1, CZ1

clearly intersect at the reflection ofX72 in I. This is the point

P ′
3 = ((b + c) cos A − 2a : (c + a) cos B − 2b : (a + b) cos C − 2c) .

These coordinates are particularly simple since the sum of the coordinates ofP3
given in (3) isa + b + c.

The triangle centersP1, P ∗
1 , P2, P ′

2 andP ′
3 do not appear in [2].
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Fixed Points and Fixed Lines of Ceva Collineations

Clark Kimberling

Abstract. In the plane of a triangleABC, theU -Ceva collineation maps points
to points and lines to lines. IfU is a triangle center other than the incenter, then
theU -Ceva collineation has three distinct fixed pointsF1, F2, F3 and three dis-
tinct fixed linesF2F3, F3F1, F1F2, these being the trilinear polars ofF1, F2, F3.
WhenU is the circumcenter, the fixed points are the symmedian point and the
isogonal conjugates of the points in which the Euler line intersects the circum-
circle.

1. Introduction

This note is a sequel to [3], in which the notion of aU -Ceva collineation is
introduced. In this introduction, we briefly summarize the main results of [3].

We use homogeneous trilinear coordinates and denote the isogonal conjugate of
a pointX byX−1. TheX-Ceva conjugate ofU = u : v : w andX = x : y : z is
given by

X c©U = u(−uyz+ vzx+wxy) : v(uyz− vzx+wxy) : w(uyz+ vzx−wxy),
and ifP = p : q : r is a point, then the equationP = X c©U is equivalent to

X = (ru+ pw)(pv + qu) : (pv + qu)(qw + rv) : (qw + rv)(ru+ pw) (1)

= cevapoint(P,U).

If L1 is a linel1α+m1β+n1γ = 0 andL2 is a linel2α+m2β+n2γ = 0, then there
exists a unique pointU such that ifX ∈ L1, thenX−1 c©U ∈ L2, and the mapping
X → X−1 c©U is surjective. This mapping is written asCU (X) = X−1 c©U , and
CU is called theU -Ceva collineation. Explicitly,

CU (X) = u(−ux+ vy + wz) : v(ux− vy + wz) : w(ux+ vy − wz).
The inverse mapping is given by

C−1
U (X) = wy + vz : uz + wx : vx+ uy

= (cevapoint(X,U))−1.

The collineationCU maps the verticesA,B,C to the vertices of the anticevian
triangle ofU and mapsU−1 to U . The collineationC−1

U mapsA,B,C to the
vertices of the cevian triangle ofU−1 and mapsU toU−1.

Publication Date: October 15, 2007. Communicating Editor: Paul Yiu.
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2. Fixed points

The fixed points of theCU -collineation are also the fixed points of the inverse
collineation,C−1

U . In this section, we seek all pointsX satisfyingC−1
U (X) = X;

i.e., we wish to solve the equation

C−1
U (X) =


 0 w v
w 0 u
v u 0





 x
y
z


 =MX

for the vectorX. Writing (M − tI)X = 0, whereI denotes the3 × 3 identity
matrix, we have the characteristic equation det(M − tI) = 0 of M , which can be
written ∣∣∣∣∣∣

−t w v
w −t u
v u −t

∣∣∣∣∣∣ = 0.

Expanding the determinant gives

t3 − gt− h = 0, (2)

whereg = u2+v2+w2 andh = 2uvw. Now supposet is a root,i.e., an eigenvalue
ofM . The equation(M − tI)X = 0 is equivalent to the system

−tx+ wy + vz = 0
wx− ty + uz = 0
vx+ uy − tz = 0.

For anyz, the first two of the three equations can be written as( −t w
w −t

)(
x
y

)
=

( −vz
−uz

)
,

and if t2 �= w2, then (
x
y

)
=

( −t w
w −t

)−1 ( −vz
−uz

)

=
1

t2 − w2

(
tvz + uwz
tuz + vwz

)
,

Thus, for eachz,

x =
1

t2 − w2
(tvz + uwz) and y =

1
t2 − w2

(tuz + vwz),

so that

x : y = tv + uw : tu+ vw and
y

z
=

1
t2 − w2

(tu+ vw),

andx : y : z is as shown in (6) below.
Continuing with the caset2 �= w2, let f(t) be the polynomial in (2), and let

r =
√

(u2 + v2 +w2)/3,



Fixed points and fixed lines of Ceva collineations 161

so that

f(−r) = − 2uvw +
2
3
(u2 + v2 + w2)r; (3)

f(r) = − 2uvw − 2
3
(u2 + v2 + w2)r.

Clearly, f(r) < 0. To see thatf(−r) ≥ 0, we shall use the inequality of the
geometric and arithmetic means, stated here forx1 ≥ 0, x2 ≥ 0, x3 ≥ 0 :

(x1x2x3)1/3 ≤ x1 + x2 + x3

3
. (4)

Takingx1 = u2, x2 = v2, x3 = w2 gives

27u2v2w2 ≤ (
u2 + v2 +w2

)3
,

or equivalently,
3uvw ≤ (

u2 + v2 + w2
)
r,

so that by (3), we havef(−r) ≥ 0. We consider two cases:f(−r) > 0 and
f(r) = 0. In the first case, there is a roott in the interval(−∞,−r). Since
f(0) < 0, there is a root in(−r, 0), and sincef(r) < 0, there is a root in(r,∞).
For each of the three roots, or eigenvalues, there is an eigenvector, or pointX, such
thatC−1

U (X) = X.
In the second case, thatf(r) = 0, we have(u2 + v2 + w2)r = −3uvw, so that

(u2 + v2 + w2)3 = 27u2v2w2, which implies that equality holds in (4). This is
known to occur if and only if ifx1 = x2 = x3, or equivalently,u2 = v2 = w2,
which is to say thatU is the incenter or one of the excenters;i.e., that U is a
member of the set

{1 : 1 : 1, − 1 : 1 : 1, 1 : −1 : 1, 1 : 1 : −1}. (5)

We consider this case further in Examples 1 and 2 below, and summarize the rest
of this section as a theorem.

Theorem 1. Suppose U is not one of the four points in (4), that t is a root of (2),
and that t2 �= w2. Then the point

X = tv + uw : tu+ vw : t2 − w2 (6)

is a fixed point of C−1
U , hence also a fixed point of CU . There are three distinct

roots t, hence three distinct fixed points X.

3. Examples

As a first example, we address the possibility that the hypothesist2 �= w2 in
Theorem 1 does not hold.

Example 1. U = 1 : 1 : 1. The characteristic polynomial is∣∣∣∣∣∣
−t 1 1
1 −t 1
1 1 −t

∣∣∣∣∣∣ = (2 − t)(t+ 1)2.
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We have two cases:t = 2 andt = −1. For t = 2, we easily find the fixed point
1 : 1 : 1. For t = −1, the method of proof of Theorem 1 does not apply because
t2 = w2. Instead, the system to be solved degenerates to the single equation
z = −x − y. The solutions, all fixed points, are many; for example, letf : g : h
be any point, and let

x = g − h, y = h− f, z = f − g
(e.g.,x : y : z = b − c : c − a : a − b, which is the triangle center1 X512.).
Geometrically,x : y : z are coefficients of the line joining1 : 1 : 1 andf : g : h.

Example 2. U = −1 : 1 : 1, theA-excenter. The characteristic polynomial is∣∣∣∣∣∣
−t 1 1
−1 −t 1
−1 1 −t

∣∣∣∣∣∣ = − (t+ 1)
(
t2 − t+ 2

)
.

For t = −1, we find that every point on the linex+ y + z = 0 is a fixed point. If
t2− t+2 = 0, thent = (1±√−7)/2, and the (nonreal) fixed point is1 : 1 : t−1.
Similar results are obtained forU ∈ {1 : −1 : 1, 1 : 1 : −1}.

Example 3. U = cosA : cosB : cosC. It can be checked using a computer
algebra system thatX6,X2574, andX2575 are fixed points. The first of these
corresponds to the eigenvaluet = 1, as shown here:

x : y : z = tv + uw : tu+ vw : t2 − w2

= cosB + cosA cosC : cosA+ cosB cosC : 1 − cos2C

= sinA sinC : sinB sinC : sinC sinC
= sinA : sinB : sinC
= X6.

See also Example 6.

Example 4. U = a(b2 + c2) : b(c2 + a2) : c(a2 + b2) = X39. The three roots of
t3 − gt− h = 0 are

−2abc, abc−
√

3a2b2c2 + S(2, 4), abc+
√

3a2b2c2 + S(2, 4),

where

S(2, 4) = a2b4 + a4b2 + a2c4 + a4c2 + b2c4 + b4c2.

The solutiont = −2abc easily leads to the fixed point

X512 = (b2 − c2)/a : (c2 − a2)/b : (a2 − b2)/c.

1We use the indexing of triangle centers in theEncyclopedia of Triangle Centers [3].
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Example 5. For arbitrary realn, let u = cosnA, v = cosnB, w = cosnC. A
fixed point isX = sinnA : sinnB : sinnC, as shown here:

C−1
U (X) = sinnB cosnC + sinnC cosnB

: sinnC cosnA+ sinnA cosnC
: sinnA cosnB + sinnB cosnA

= sin(nB + nC) : sin(nC + nA) : sin(nA+ nB)
= sinnA : sinnB : sinnC.

4. Images of lines

Let L be the linelα +mβ + nγ = 0 and letL the point2 l : m : n. We shall
determine coefficients of the lineC−1

U (L). Two points onL are

P = cm− bn : an− cl : bl − am and Q = m− n : n− l : l −m
Their images onC−1

U (L) are given by

P ′ = C−1
U (P ) =


 0 w v
w 0 u
v u 0





 cm− bn

an− cl
bl − am


 ,

Q′ = C−1
U (Q) =


 0 w v
w 0 u
v u 0





 m− n

n− l
l −m


 .

We expand these products and use the resulting trilinears as rows 2 and 3 of the
following determinant:∣∣∣∣∣

α β γ
w(an − cl) + v(bl − am) w(cm− bn) + u(bl − am) v(cm− bn) + u(an− cl)
w(n− l) + v(l −m) w(m − n) + u(l −m) v(m− n) + u(n− l)

∣∣∣∣∣
= − ((b− c)l + (c− a)m+ (a− b)n)

· (u (−ul + vm+wn)α+ b (ul − vm+wn) β + c (ul + vm− wn) γ).
If the first factor is not0, then the required lineC−1

U (L) is given by

u (−ul + vm+ wn)α+ v (ul − vm+ wn)β +w (ul + vm− wn) γ = 0, (7)

of which the coefficients are the trilinears of the point

L−1 c©U = u (−ul+ vm+ wn) : v (ul − vm+ wn) : w (ul + vm−wn) .
Even if the first factor is0, the pointsP′ andQ′ are easily checked to lie on the
line (7).

2Geometrically,L is the trilinear polar ofL−1. However, the methods in this paper are algebraic
rather than geometric, and the results extend beyond the boundaries of euclidean geometry. For
example, in this paper,a, b, c are unrestricted positive real numbers;i.e., they need not be sidelengths
of a triangle.
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The same method shows that the coefficients of the lineCU (L) are the trilinears
of (cevapoint(L,U))−1 ; that is,CU (L) is the line

(wm+ vn)α+ (un+wl) β + w (vl + um) γ = 0.

5. Fixed lines

The lineL is a fixed line ofCU (and ofC−1
U ) if CU (L) = L, that is, if

(cevapoint(U,L))−1 = L,

or, equivalently,


 0 w v
w 0 u
v u 0





 l
m
n


 =


 l
m
n


 .

This is the same equation as already solved (withL in place ofX) in Section 2.
For each of the three roots of (2), there is an eigenvector, or pointL, and hence a
line L, such thatCU (L) = L, and we have the following theorem.

Theorem 2. The mapping CU has three distinct fixed lines, corresponding to the
three distinct real roots of f(t) in (2). For each root t, the corresponding fixed line
lα+mβ + nγ = 0 is given by

l : m : n = tv + uw : tu+ vw : t2 − w2. (8)

6. Iterations and convergence

In this section we examine sequences

X, C−1
U (X), C−1

U (C−1
U (X)), . . . (9)

of iterates. IfX is a fixed point ofC−1
U , then the sequence is simplyX,X,X, ...;

otherwise, with exceptions to be recognized, the sequence converges to a fixed
point. We begin with the case thatX lies on a fixed line, so that all the points in
(9) lie on that same line. Let the two fixed points on the fixed line be

F1 = f1 : g1 : h1 and F2 = f2 : g2 : h2.

Then forX on the lineF1F2, we have

X = f1 + tf2 : g1 + tg2 : h1 + th2

for some functiont homogeneous ina, b, c, and we wish to show that (9) converges
to F1 or F2. As a first step,

C−1
U (X) =


 0 w v
w 0 u
v u 0





 f1 + tf2
g1 + tg2
h1 + th2


 =


 wg1 + vh1 + t(wg2 + vh2)
wf1 + uh1 + t(wf2 + uh2)
vf1 + ug1 + t(vf2 + ug2)


 .
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For i = 1, 2, becausefi : gi : hi is fixed byC−1
U , there exists a homogeneous

functionti such that

wgi + vhi = tifi,
wfi + vhi = tigi,
vfi + ugi = tihi,

so that

C−1
U (X) =


 t1f1 + t2tf2
t1g1 + t2tg2
t1h1 + t2th2


 = t1




f1 +
t2
t1
tf2

g1 +
t2
t1
tg2

h1 +
t2
t1
th2


 .

Applying C−1
U again thus gives

C−2
U (X) =




f1 +
t4
t3

t2
t1
tf2

g1 +
t4
t3

t2
t1
tg2

h1 +
t4
t3

t2
t1
th2


 ,

wheret3 andt4 satisfy


wg1 + vh1 +
t2
t1
t(wg2 + vh2)

wf1 + uh1 +
t2
t1
t(wf2 + uh2)

vf1 + ug1 +
t2
t1
t(vf2 + ug2)


 =




t3f1 + t4
t2
t1
tf2

t3g1 + t4
t2
t1
tf2

t3h1 + t4
t2
t1
tf2


 = t3




f1 +
t4
t3

t2
t1
tf2

g1 +
t4
t3

t2
t1
tg2

h1 +
t4
t3

t2
t1
th2


 .

Now

t1 =
wg1 + vh1

f1
=
wf1 + uh1

g1
=
vf1 + ug1

h1
,

t2 =
wg2 + vh2

f2
=
wf2 + uh2

g2
=
vf2 + ug2

h2
,

t3 =
wg1 + vh1

f1
=
wf1 + uh1

g1
=
vf1 + ug1

h1
= t1,

t4 =
w( t2

t1
)g2 + v( t2

t1
)h2

( t2
t1

)f2
=
w( t2

t1
)f2 + u( t2

t1
)h2

( t2
t1

)g2
=
v( t2

t1
)f2 + u( t2

t1
)g2

( t2
t1

)h2
= t2.

Consequently,

C−2
U (X) =




f1 + (
t2
t1

)2tf2

g1 + (
t2
t1

)2tg2

h1 + (
t2
t1

)2th2


 ,
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and, by induction,

C−n
U (X) =




f1 + (
t2
t1

)ntf2

g1 + (
t2
t1

)ntg2

h1 + (
t2
t1

)nth2


 . (10)

Regarding the quotient
t2
t1

in (10), if
t2
t1

= 1 thenC−n
U (X) is invariant ofn, which

is to say thatX is a fixed point. If
t2
t1

= −1, thenC−2
U (X) = X, which is to say

thatX is a fixed point of the collineationC−2
U . If

∣∣∣∣ t2t1
∣∣∣∣ �= 1, we call the lineF1F2

a regular fixed line, and in this case, by (10),lim
n→∞C−n

U (X) is F1 or F2, according

as

∣∣∣∣t2t1
∣∣∣∣ < 1 or

∣∣∣∣t2t1
∣∣∣∣ > 1. We summarize these findings as Lemma 3.

Lemma 3. If X lies on a regular fixed line of C−1
U (or equivalently, a regular

fixed line of CU ), then the sequence of points C−n
U (X) (or equivalently, the points

Cn
U(X)) converges to a fixed point of C−1

U (and of CU ).

Next, suppose thatP is an arbitrary point in the plane ofABC. We shall show
that C−n

U (P ) converges to a fixed point. LetF1, F2, F3 be distinct fixed points.
Define

P2 = PF2 ∩ F1F3, P3 = PF3 ∩ F1F2 P (0) = C−1
U (P );

P
(n)
2 = C−n(P2) andP (n)

3 = C−n(P3) for n = 1, 2, 3, . . .

The collineationC−1
U maps the lineF2P to the lineF2P

(0), which is also the line

F2P
(1)
2 becauseF2, P, P2 are collinear; likewise,C−1

U maps the lineF3P to the

line F3P
(1)
3 . Consequently,

P (0) = F2P
(1)
2 ∩ F3P

(1)
3 ,

and by induction,

C−n
U (P ) = F2P

(n)
2 ∩ F3P

(n)
3 . (10)

By Lemma 3,
lim

n→∞C−n
U (P2) and lim

n→∞C−n
U (P3)

are fixed points, so that by (10),

lim
n→∞C−n

U (P )

must also be a fixed point. This completes a proof of the following theorem.

Theorem 4. Suppose that the fixed lines of C−1
U (or, equivalently, of CU ) are regu-

lar. Then for every point X, the sequence of points C−n
U (X) (or equivalently, the

sequence Cn
U(X)) converges to a fixed point of C−1

U (and of CU ).
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Example 6. Extending Example 3, the three fixed lines,X6X2574, X6X2575,
X2574X2575 are regular. The pointsX2574 andX2575 are the isogonal conjugates
of the pointsX1113 andX1114 in which the Euler line intersects the circumcircle.
Thus, the lineX2574X2575 is the line at infinity. BecauseX1113 andX1114 are
antipodal points on the circumcircle, the linesX6X2574 areX6X2575 are perpen-
dicular (proof indicated at (x) below).

While visiting the author in February, 2007, Peter Moses analyzed the configu-
ration in Example 6. His findings are given here.

O

A

B C

H

G

1113

1114

125

6

1344

1345

C2

C1
381

Figure 1.
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(i) A point on lineX6X2574 isX1344; a point onX6X2575 isX1345.
(ii) SegmentGH (in Figure 1) is the diameter of the orthocentroidal circle, with

centerX381. The pointsX1344 andX1345 are the internal and external centers of
similitude of the orthocentroidal circle and the circumcircle.

(iii) Line GH, the Euler line, passes through the points

O, X1113, X1114, X1344, X1345.

(iv) X125 is the center of the Jerabek hyperbola, which is the isogonal conjugate
of the Euler line. (As isogonal conjugacy is a function, one may speak of its image
when applied to lines as well as individual points).

(v) The line throughX125 parallel to lineX6X1344 is the Simson line ofX1114,
and the line throughX125 parallel to lineX6X1345 is the Simson line ofX1113.

(vi) HyperbolaABCGX1113, with centerC1, is the isogonal conjugate of the
CU -fixed lineX6X2574, and hyperbolaABCGX1114, with centerC2, is the isogo-
nal conjugate of theCU -fixed lineX6X2575.

(vii) C1 is the barycentric square ofX2575, andC2 is the barycentric square of
X2574.

(viii) The perspectors of the hyperbolasABCGX1113 andABCGX1114 are
X2575 andX2574, respectively. The fact that these perspectors are at infinity implies
that the two conics,ABCGX1113 andABCGX1114, are indeed hyperbolas.

(ix) The midpoint of the pointsC1 andC2 is the pointX3X6 ∩X2X647.
(x) LineX6X2574 is parallel to the Simson line ofX1114, and lineX6X2575 is

parallel to the Simson line ofX1113. The two Simson lines are perpendicular ([1,
p. 207]), so that theCU -fixed linesX6X2574 andX6X2575 are perpendicular.

(xi) The circle that passes through the pointsX6,X1344, andX1345 also passes
through the pointX2453, which is the reflection ofX6 in the Euler line. This circle
is a member of the coaxal family of the circumcircle, the nine-point circle, and the
orthocentroidal circle.
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On a Product of Two Points Induced by
Their Cevian Triangles

Cosmin Pohoata and Paul Yiu

Abstract. The intersections of the corresponding sidelines of the cevian trian-
gles of two pointsP0 andP1 form the anticevian triangle of a pointT (P0, P1).
We prove a number of interesting results relating the pair of inscribed conics with
perspectors (Brianchon points)P0 andP1, in particular, a simple description of
the fourth common tangent of the conics. We also show that the corresponding
sides of the cevian triangles of points are concurrent if and only if the points lie
on a circumconic. A characterization is given of circumconics whose centers
lie on the cevian circumcircles of points on them (Brianchon-Poncelet theorem).
We also construct a number of new triangle centers with very simple coordinates.

1. Introduction

A famous problem in triangle geometry [8] asks to show that the corresponding
sidelines of the orthic triangle, the intouch triangle, and the cevian triangle of the
incenter are concurrent.

I

X1

Y1

Z1

A

B C

H

X0

Y0

Z0

X′

Z′

Y ′

X2

Y2Z2

Figure 1.

Given a triangleABC with orthic triangleX0Y0Z0 and intouch triangleX1Y1Z1,
let

X ′ = Y0Z0 ∩ Y1Z1, Y ′ = Z0X0 ∩ Z1X1, Z ′ = X0Y0 ∩ X1Y1.

Publication Date: November 14, 2007. Communicating Editor: Jean-Pierre Ehrmann.
We thank Jean-Pierre Ehrmann for his excellent comments leading to improvements of this paper,

especially in pointing us to the classic references of Brianchon-Poncelet and Gergonne.
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Emelyanov and Emelyanova [2] have proved the following interesting theorem.
If XY Z is an inscribed triangle (withX, Y , Z on the sidelinesBC, CA, AB
respectively, andY ′ on XZ andZ′ onXY ), then the circle throughX, Y , Z also
passes through the Feuerbach point, the point of tangency of the incircle with the
nine-point circle of triangleABC.

N

F

I

X1

A

B C

H

X0

X′

Z′

Y ′

X

Figure 2.

In this note we study a general situation which reveals more of the nature of
these theorems. By showing that the intersections of the corresponding sidelines
of the cevian triangles of two pointsP0 and P1 form the anticevian triangle of
a pointT (P0, P1), we prove a number of interesting results relating the pair of
inscribed conics with perspectors (Brianchon points)P0 and P1. Proposition 5
below shows that the corresponding sidelines of the cevian triangles of three points
are concurrent if and only if the three points lie on a circumconic. We characterize
such circumconics whose centers lie on the cevian circumcircles of points on them
(Proposition 9).

We shall work with homogeneous barycentric coordinates with reference to tri-
angleABC, and make use of standard notations of triangle geometry. A basic
reference is [10]. Except for the commonest ones, triangle centers are labeled ac-
cording to [7].

2. A product induced by two cevian triangles

Let P0 = (u0 : v0 : w0) andP1 = (u1 : v1 : w1) be two given points, with
cevian trianglesX0Y0Z0 andX1Y1Z1 respectively. The intersections

X ′ = Y0Z0 ∩ Y1Z1, Y ′ = Z0X0 ∩ Z1X1, Z ′ = X0Y0 ∩ X1Y1
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are the vertices of the anticevian triangle of a point with homogeneous barycentric
coordinates (

u0

(
v0

v1
− w0

w1

)
: v0

(
w0

w1
− u0

u1

)
: w0

(
u0

u1
− v0

v1

))
(1)

=
(

u1

(
v1

v0
− w1

w0

)
: v1

(
w1

w0
− u1

u0

)
: w1

(
u1

u0
− v1

v0

))
. (2)

That these two sets of coordinates should represent the same point is quite clear
geometrically. They define a product ofP0 andP1 which clearly lies on the trilinear
polars ofP0 andP1. This product is therefore the intersection of the trilinear polars
of P0 andP1. We denote this product byT (P0, P1).

P1

X1

Y1
Z1

A

B C

P0

X0

Y0

Z0

X′

Y ′

Z′

T (P0, P1)

Figure 3.

The pointT (P0, P1) is also the perspector of the circumconic throughP0 and
P1. In particular, ifP0 andP1 are both on the circumcircle, thenT (P0, P1) = K,
the symmedian point.
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Proposition 1. Triangle X′Y ′Z ′ is perspective to
(i) triangle X0Y0Z0 at the point

P0/(T (P0, P1)) =

(
u0

(
v0

v1
− w0

w1

)2

: v0

(
w0

w1
− u0

u1

)2

: w0

(
u0

u1
− v0

v1

)2
)

,

(ii) triangle X1Y1Z1 at the point

P1/(T (P0, P1)) =

(
u1

(
v1

v0
− w1

w0

)2

: v1

(
w1

w0
− u1

u0

)2

: w1

(
u1

u0
− v1

v0

)2
)

.

Proof. SinceX′Y ′Z ′ is an anticevian triangle, the perspectivity is clear in each
case by the cevian nest theorem (see [10,§8.3] and [4, p.165, Supp. Exercise 7]).
The perspectors are the cevian quotientsP0/(T (P0, P1)) andP1/(T (P0, P1)).
We need only consider the first case.

P0/(T (P0, P1))

=


u0

(
v0

v1
− w0

w1

)−
u0

(
v0
v1

− w0
w1

)
u0

+
v0

(
w0
w1

− u0
u1

)
v0

+
w0

(
u0
u1

− v0
v1

)
w0




: v0

(
w0

w1
− u0

u1

)u0

(
v0
v1

− w0
w1

)
u0

−
v0

(
w0
w1

− u0
u1

)
v0

+
w0

(
u0
u1

− v0
v1

)
w0




: w0

(
u0

u1
− v0

v1

)u0

(
v0
v1

− w0
w1

)
u0

+
v0

(
w0
w1

− u0
u1

)
v0

−
w0

(
u0
u1

− v0
v1

)
w0






=

(
u0

(
v0

v1
− w0

w1

)2

: v0

(
w0

w1
− u0

u1

)2

: w0

(
u0

u1
− v0

v1

)2
)

.

�
Remark. See Proposition 12 for another triangle whose sidelines contain the points
X ′, Y ′, Z ′.

The conic with perspectorP0 has equation

x2

u2
0

+
y2

v2
0

+
z2

w2
0

− 2yz

v0w0
− 2zx

w0u0
− 2xy

u0v0
= 0,

and each point on the conic is of the form(u0p
2 : v0q

2 : w0r
2) for p + q + r = 0.

From this it is clear thatP0/(T (P0, P1)) lies on the inscribed conic with perspector
P0. Similarly, P1/(T (P0, P1)) lies on that with perspectorP1.

Proposition 2. The line joining P0/(T (P0, P1)) and P1/(T (P0, P1)) is the tri-
linear polar of T (P0, P1) with respect to triangle ABC . It is also the (fourth)
common tangent of the two inscribed conics with perspectors P0 and P1. (See
Figure 3).
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Proof. For the first part it is enough to verify thatP0/(T (P0, P1)) lies on the said
trilinear polar:

u0

(
v0
v1

− w0
w1

)2

u0

(
v0
v1

− w0
w1

) +
v0

(
w0
w1

− u0
u1

)2

v0

(
w0
w1

− u0
u1

) +
w0

(
u0
u1

− v0
v1

)2

w0

(
u0
u1

− v0
v1

) = 0.

Note that the coordinates ofT (P0, P1) are given by both (1) and (2). Interchanging
the subscripts0’s and1’s shows that the trilinear polar ofT (P0, P1) also contains
the pointP1/(T (P0, P1)).

The inscribed conic with perspectorP0 is represented by the matrix


1
u2
0

−1
u0v0

−1
u0w0

−1
u0v0

1
v2
0

−1
v0w0

−1
u0w0

−1
v0w0

1
w2

0


 .

The tangent at the pointP0/(T (P0, P1)) has line coordinates




1
u2
0

−1
u0v0

−1
u0w0

−1
u0v0

1
v2
0

−1
v0w0

−1
u0w0

−1
v0w0

1
w2

0






u0

(
v0
v1

− w0
w1

)2

v0

(
w0
w1

− u0
u1

)2

w0

(
u0
u1

− v0
v1

)2


 =




2
u0

(
w0
w1

− u0
u1

)(
u0
u1

− v0
v1

)
2
v0

(
u0
u1

− v0
v1

)(
v0
v1

− w0
w1

)
2

w0

(
v0
v1

− w0
w1

)(
w0
w1

− u0
u1

)
.




This is the line
x

u0

(
v0
v1

− w0
w1

) +
y

v0

(
w0
w1

− u0
u1

) +
z

w0

(
u0
u1

− v0
v1

) = 0,

which is the trilinear polar ofT (P0, P1). Interchanging the subscripts0’s and1’s,
we note that the same line is also the tangent at the pointP1/(T (P0, P1))of the
inscribed conics with perspectorP1. It is therefore the common tangent of the two
conics. �
Proposition 3. The triangle X′Y ′Z ′ is self polar with respect to each of the in-
scribed conics with perspectors P0 and P1.

Proof. SinceX1Y1Z1 is a cevian triangle andX′Y ′Z ′ is an anticevian triangle
with respect toABC, we have

(Y ′Z0, Y
′A,Y ′Y0, Y

′C) = (Y ′Z0, Y
′A,Y ′Y0, Y

′X ′) = −1.

Therefore,Y ′ lies on the polar ofX′ with respect to the inscribed conic with per-
spectorP0. Similarly, Z ′ also lies on the polar ofX′. It follows thatY ′Z ′ is the
polar of X′. For the same reason,Z′X ′ andX′Y ′ are the polars ofY ′ andZ′
respectively. This shows that triangleX′Y ′Z ′ is self-polar with respect to the in-
scribed conic with perspectorP0. The same is true with respect to the inscribed
conic with perspectorP1. �

In the case of the incircle (withP0 = X7), we have the following interesting
result.
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Corollary 4. For an arbitrary point Q, the anticevian triangle X7 ∗ Q has ortho-
center I .

We present some examples ofT (P0, P1).

G O H K Ge Na E
I X513 X652 X650 X649 X650 X650 X2245

G X520 X523 X512 X514 X522 X511

O X647 X647

H X647 X650 X650 X3003

K X665 X187

Ge X650 X3002

Remarks. (1) X3002 is the intersection of the Brocard axis and the trilinear polar of
the Gergonne point. It has coordinates

(a2(a3(b2+c2)−a2(b+c)(b−c)2−a(b4+c4)+(b+c)(b−c)2(b2+c2)) : · · · : · · · ).
(2) X3003 is the intersection of the orthic and Brocard axes. It has coordinates

(a2(a4(b2 + c2) − 2a2(b4 − b2c2 + c4) + (b2 − c2)2(b2 + c2)) : · · · : · · · ).
The center of the rectangular hyperbola throughE is X113, the inferior ofX74 on
the the circumcircle.

Here are some examples of cevian products with very simple coordinates. They
do not appear in the current edition of [7].

P0 P1 first barycentric coordinate ofT (P0, P1)
G X9 (a(b − c)(b + c − a)2

G X56 (a2(b − c)(a(b + c) + b2 + c2)
O X21 (a3(b − c)(b + c − a)(b2 + c2 − a2)2

O X55 (a3(b − c)(b + c − a)2(b2 + c2 − a2)
O X56 (a3(b − c)(b2 + c2 − a2)
K Na (a(b − c)(b + c − a)(a(b + c) + b2 + c2)
K X99 (a2(a2(b2 + c2) − 2b2c2)
Ge X56

a2(b2−c2)
b+c−a

Ge X57
a(b−c)
b+c−a

Na X55 (a2(b2 − c2)(b + c − a)
X21 X55 (a3(b − c)(b + c − a)
X56 X57

a2(b−c)
b+c−a

Remark. T (X21, X55) = T (X21, X56) = T (X55, X56).

3. Inscribed triangles which circumscribe a given anticevian triangle

Proposition 5. Let P be a given point with anticevian triangle X′Y ′Z ′. If XY Z
is an inscribed triangle of ABC (with X, Y , Z on the sidelines BC , CA, AB
respectively) such that X′, Y ′, Z ′ lie on the lines Y Z , ZX, XY respectively, i.e.,
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X ′Y ′Z ′ is an inscribed triangle of XY Z , then XY Z is the cevian triangle of a
point on the circumconic with perspector P .

A

B C

P

Q

Figure 4.

Proof. Let P = (u : v : w) so that

X ′ = (−u : v : w), Y ′ = (u : −v : w), Z ′ = (u : v : −w).

SinceXY Z is an inscribed triangle ofABC,

X = (0 : t1 : 1), Y = (1 : 0 : t2), Z = (t3 : 1 : 0),

for real numberst1, t2, t3. Here we assume thatX, Y , Z do not coincide with the
vertices ofABC. Since the linesY Z, ZX, XY contain the points respectively,
we have

t2u + t2t3v + w = 0,
u + t3v + t3t1w = 0,
t1t2u + v + t1w = 0.

From these,

0 =

∣∣∣∣∣∣
t2 t2t3 1
1 t3 t3t1

t1t2 1 t1

∣∣∣∣∣∣ = (t1t2t3 − 1)2.

It follows from the Ceva theorem that the linesAX, BY , CZ are concurrent.
The inscribed triangleXY Z is the cevian triangle of a point(p : q : r). The three
collinearity conditions all reduce to

uqr + vrp + wpq = 0.

This means that(p : q : r) lies on the circumconic with perspector(u : v : w). �
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Proposition 6. The locus of the perspector of the anticevian triangle of P and the
cevian triangle of a point Q on the circumconic with perspector P is the trilinear
polar of P .

Proof. Let Q = (u : v : w) be a point on the circumconic. The perspector is the
cevian quotient(

p
(
−p

u
+

q

v
+

r

w

)
: q
(p

u
− q

v
+

r

w

)
: r
(p

u
+

q

v
− r

w

))
= (p(−pvw + qwu + ruv) : q(pvw − qwu + ruv) : r(pvw + qwu − ruv)) .

Sincepvw + qwu + ruv = 0, this simplifies into(p2vw : q2wu : r2uv), which
clearly lies on the linexp + y

q + z
r = 0, the trilinear polar ofP . �

4. Brianchon-Poncelet theorem

For P0 = H, the orthocenter, andP1 = X7, the Gergonne point, we have
T (P0, P1) = X650. The circumconic throughP0 andP1 is

a(b − c)(b + c − a)yz + b(c − a)(c + a − b)zx + c(a − b)(a + b − c)xy = 0,

the Feuerbach conic, which is the isogonal conjugate of the lineOI, and has center
at the Feuerbach point

X11 = ((b − c)2(b + c − a) : (c − a)2(c + a − b) : (a − b)2(a + b − c)).

N

F

I

X1

A

B C

H

X0

X′

Z′

Y ′

Figure 5.

The theorem of Emelyanov and Emelyanova therefore can be generalized as
follows: the the cevian circumcircle of a point on the Feuerbach hyperbola con-
tains the Feuerbach point. This in turn is a special case of a celebrated theorem of
Brianchon and Poncelet in 1821.
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Theorem 7 (Brianchon-Poncelet [1]). Given a point P , the cevian circumcircle
of an arbitrary point on the rectangular circum-hyperbola through P (and the
orthocenter H) contains the center of the hyperbola which is on the nine-point
circle of the reference triangle.

At the end of their paper Brianchon and Poncelet made a remarkable conjec-
ture about the locus of the centers of conics through four given points. This was
subsequently proved by J. D. Gergonne [6].

Theorem 8 (Brianchon-Poncelet-Gergonne). The locus of the centers of conics
through four given points in general positions in a plane is a conic through
(i) the midpoints of the six segments joining them and
(ii) the intersections of the three pairs of lines joining them two by two.

Proposition 9. The cevian circumcircle of a point on a nondegenerate circumconic
contains the center of the conic if and only if the conic is a rectangular hyperbola.

Proof. (a) The sufficiency part follows from Theorem 7.
(b) For the converse, consider a nondegenerate conic throughA, B, C, P whose

centerW lies on the cevian circumcircle ofP . The locus of centers of conics
throughA, B, C, P is, by Theorem 8, a conicC through the traces ofP on the
sidelines of triangleABC. The four common points ofC and the cevian circumcir-
cle of P are the traces ofP andW . By (a), the cevian circumcircle ofP contains
the center of the rectangular circum-hyperbola throughP , which must coincide
with W . Therefore the conic in question in rectangular. �

Since the Feuerbach hyperbola contain the incenterI, we have the following
result. See Figure 5.

Corollary 10. The cevian circumcircle of the incenter contains the Feuerbach
point.

Applying Brianchon-Poncelet theorem to the Kiepert perspectors, we obtain the
following interesting result.

Corollary 11. Given triangle ABC , construct on the sides similar isosceles trian-
gles BCX′, CAY ′, and ABZ ′. Let AX ′, BY ′, CZ ′ intersect BC , CA, AB at
X, Y , Z respectively. The circle through X, Y , Z also contains the center X115 of
the Kiepert hyperbola, which is also the midpoint between the two Fermat points.

5. Second tangents to an inscribed conic from the traces of a point

Consider an inscribed conicC0 with Brianchon pointP0 = (u0 : v0 : w0), so
that its equation is(

x

u0

)2

+
(

y

v0

)2

+
(

z

w0

)2

− 2yz

v0w0
− 2zx

w0u0
− 2xy

u0v0
= 0.

Let P1 = (u1 : v1 : w1) be a given point with cevian triangleX1Y1Z1. The
sidelines of triangleABC are tangents fromX1, Y1, Z1 to the conicC0. From
each of these points there is a second tangent to the conic. J.-P. Ehrmann [5] has
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computed the second points of tangencyX2, Y2, Z2, and concluded that the triangle
X2Y2Z2 is perspective withABC at the point(

u2
1

u0
:

v2
1

v0
:

w2
1

w0

)
.

A

B C

P0

Z0

X0

Y0

P1

X1

Y1

Z1

Y2

X2

Z2

Figure 6.

More precisely, the coordinates ofX2, Y2, Z2 are as follows.

X2 =

(
u0

(
v1

v0
− w1

w0

)2

:
v2
1

v0
:
w1

2

w0

)
,

Y2 =

(
u2

1

u0
: v0

(
w1

w0
− v1

v0

)2

:
w1

2

w0

)
,

Z2 =

(
u2

1

u0
:

v2
1

v0
: w0

(
u1

u0
− v1

v0

)2
)

.

Proposition 12. The lines Y0Z0, Y1Z1, Y2Z2 are concurrent; similarly for the
triples Z0X0, Z1X1, Z2X2 and X0Y0, X1Y1, X2Y2.

Proof. The lineY2Z2 has equation

u1

(
x

u0

(
−u1

u0
+

v1

v0
+

w1

w0

)
+

y

v0

(
u1

u0
− v1

v0
+

w1

w0

)
+

z

w0

(
u1

u0
+

v1

v0
− w1

w0

))

− 2v1w1x

v0w0
= 0.

With

(x : y : z) =
(
−u1

(
v1

v0
− w1

w0

)
: v1

(
w1

w0
− u1

u0

)
: w1

(
u1

u0
− v1

v0

))
,

we have, apart from a factoru1,
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A

B C

Z0

X0

Y0

X1

Y1

Z1

Y2

X2

Z2

Z′

X′

Y ′

Figure 7.

− u1

u0

(
v1

v0
− w1

w0

)(
−u1

u0
+

v1

v0
+

w1

w0

)
+

v1

v0

(
w1

w0
− u1

u0

)(
u1

u0
− v1

v0
+

w1

w0

)

+
w1

w0

(
u1

u0
− v1

v0

)(
u1

u0
+

v1

v0
− w1

w0

)
+

2v1w1

v0w0

(
v1

v0
− w1

w0

)

= − 2v1w1

v0w0

(
v1

v0
− w1

w0

)
+

2v1w1

v0w0

(
v1

v0
− w1

w0

)
= 0.

This shows that the lineY2Z2 contains the pointX′ = Y0Z0 ∩ Y1Z1. �

We conclude with some examples of the triangle centers from the inscribed con-
ics with given perspectorsP0 andP1. In the table below,

Q0,1 =
(

u2
0

u1
:
v2
0

v1
:

w2
0

w1

)
and Q1,0 =

(
u2

1

u0
:
v2
1

v0
:

w2
1

w0

)
.

P0 P1 T (P0, P1) P0/(T (P0, P1)) P1/(T (P0, P1)) Q0,1 Q1,0

G H X523 X125 X115 X69 X393

G K X512 Q1 X1084 X76 X32

G Ge X514 X11 X1086 X8 X279

G Na X522 X11 X1146 X7 X346

H K X647 Q2 Q3 X2052 X184

H Ge X650 X3022 Q4 X1857 Q5

H Na X650 Q6 Q4 X1118 X1265

K Ge X665 Q7 Q8 X2175 Q9

Ge Na X650 Q6 X3022 X479 Q10

The new triangle centersQi have simple coordinates given below.
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Q1 a2(b2 − c2)2

Q2 a2(b2 − c2)2(b2 + c2 − a2)2

Q3 a4(b2 − c2)2(b2 + c2 − a2)3

Q4 a2(b − c)2(b + c − a)2(b2 + c2 − a2)
Q5

b2+c2−a2

(b+c−a)2

Q6 a2(b − c)2(b + c − a)
Q7 a4(b − c)2(b + c − a)(a(b + c) − (b2 + c2))2

Q8 a2(b − c)2(a(b + c) − (b2 + c2))2

Q9
1

a2(b+c−a)2

Q10 (b + c − a)3
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Steinhaus’ Problem on Partition of a Triangle

Apoloniusz Tyszka

Abstract. H. Steinhaus has asked whether inside each acute triangle there is a
point from which perpendiculars to the sides divide the triangle into three parts
of equal areas. We present two solutions of Steinhaus’ problem.

Then-dimensional case of Theorem 1 below was proved in [6], see also [2] and
[4, Theorem 2.1, p. 152]. For an earlier mass-partition version of Theorem 1, for
bounded convex masses inR

n andr1 = r2 = ... = rn+1, see [7].

Theorem 1 (Kuratowski-Steinhaus). Let T ⊆ R
2 be a bounded measurable set,

and let |T| be the measure of T. Let α1, α2, α3 be the angles determined by three
rays emanating from a point, and let α1 < π, α2 < π, α3 < π. Let r1, r2, r3 be
nonnegative numbers such that r1 + r2 + r3 = |T|. Then there exists a translation
λ : R

2 → R
2 such that |λ(T) ∩ α1| = r1, |λ(T) ∩ α2| = r2, |λ(T) ∩ α3| = r3.

H. Steinhaus asked ([10], [11]) whetherinside each acute triangle there is a
point from which perpendiculars to the sides divide the triangle into three parts
with equal areas. Long and elementary solutions of Steinhaus’ problem appeared
in [8, pp. 101–104], [9, pp. 103–105], [12, pp. 133–138] and [13]. For some acute
triangles with rational coordinates of vertices, the point solving Steinhaus’ problem
is not constructible with ruler and compass alone, see [15]. Following article [14],
we will present two solutions of Steinhaus’ problem.

C

A B

X

P (A, X) P (B, X)

P (C, X)

Figure 1

For X ∈ �ABC, we denote byP (A,X), P (B,X), P (C,X) the areas of the
quadrangles containing verticesA, B, C respectively (see Figure 1). The areas

Publication Date: November 19, 2007. Communicating Editor: Paul Yiu.
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P (A,X), P (B,X), P (C,X) are continuous functions ofX in the triangleABC.
The function

f(X) = min{P (A,X), P (B,X), P (C,X)}
is also continuous. By Weierstrass’ theoremf attains a maximum in triangleABC,
i.e., there existsX0 ∈ �ABC such thatf(X) ≤ f(X0) for all X ∈ �ABC.

Lemma 2. For a point X lying on a side of an acute triangle, the area at the
opposite vertex is greater than one of the remaining two areas.

C

A BX

X′

Figure 2

Proof. Without loss of generality, we may assume thatX ∈ AB and |AX| ≤
|BX|, see Figure 2. Straight lineXX′ parallel to straight lineBC cuts the triangle
AXX ′ greater thanP (A,X) (as the angleACB is acute), but not greater than the
triangleCXX′ because|AX′| < |AC|

2 < |X ′C|. HenceP (A,X) < |�AXX ′| ≤
|�CXX ′| < P (C,X). �
Theorem 3. If a triangle ABC is acute and f attains a maximum at X0, then
P (A,X0) = P (B,X0) = P (C,X0) = |�ABC|

3 .

Proof. f(A) = f(B) = f(C) = 0, and0 is not a maximum off . ThereforeX0

is not a vertex of the triangleABC. Let us assume thatf(X0) = P (A,X0). By
Lemma 2,X0 
∈ BC. Suppose, on the contrary, that some of the other areas, let’s
sayP (C,X0), is greater thanP (A,X0).

Case 1:X0 
∈ AC. When shiftingX0 from the segmentAB by appropri-
ately smallε and perpendicularly to the segmentAB (see Figure 3), we receive
P (C,X) further greater thanf(X0) and at the same timeP (A,X) > P (A,X0)
andP (B,X) > P (B,X0). Hencef(X) > f(X0), a contradiction.

Case 2:X0 ∈ AC \ {A,C}. By Lemma 2,

P (B,X0) > min{P (A,X0), P (C,X0)}
≥ min{P (A,X0), P (B,X0), P (C,X0)}
= f(X0).

When shiftingX0 from the segmentAC by appropriately smallε and perpendic-
ularly to the segmentAC (see Figure 4), we receiveP (B,X) further greater than
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ε

C

A B

X

X0

Figure 3

ε

C

A B

XX0

Figure 4

f(X0) and at the same timeP (A,X) > P (A,X0) andP (C,X) > P (C,X0).
Hencef(X) > f(X0), a contradiction. �

For each acute triangleABC there is a uniqueX0 ∈ �ABC such thatP (A,X0)
= P (B,X0) = P (C,X0) = |�ABC|

3 . Indeed, ifX 
= X0 thenX lies in some of
the quadrangles determined byX0. Let us say thatX lies in the quadrangle with
vertexA (see Figure 5). ThenP (A,X) < P (A,X0) = |�ABC|

3 .

C

A B

X

X0

Figure 5.

The setsRA = {X ∈ �ABC : P (A,X) = f(X)}, RB = {X ∈ �ABC :
P (B,X) = f(X)} andRC = {X ∈ �ABC : P (C,X) = f(X)} are closed and
cover the triangleABC. Assume that the triangleABC is acute. By Lemma 2,
RA ∩ BC = ∅, RB ∩ AC = ∅, andRC ∩ AB = ∅. The theorem proved in [5]
guarantees thatRA∩RB ∩RC 
= ∅, see also [4, item D4, p. 101] and [1, item 2.23,
p. 162]. Any point belonging toRA ∩ RB ∩ RC lies inside the triangleABC and
determines the partition of the triangleABC into three parts with equal areas.
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The above proof remains valid for all right triangles, because the hypothesis of
Lemma 2 holds for all right triangles. For each triangle the following statements
are true.

(1) There is a unique point in the plane which determines the partition of the
triangle into three equal areas.

(2) The point of partition into three equal areas lies inside the triangle if and
only if the hypothesis of Lemma 2 holds for the triangle.

(3) The point of partition into three equal areas lies inside the triangle if and
only if the maximum off on the boundary of the triangle is smaller than
the maximum off on the whole triangle. For each acute or right triangle
ABC, the maximum off on the boundary does not exceed|�ABC|

4 .
(4) The point of partition into three equal areas lies inside the triangle, if the

triangle has two angles in the interval
(

arctan 1√
2
, π

2

]
. This condition

holds for each acute or right triangle.
(5) If the point of partition into three equal areas lies inside the triangle, then

it is a partition into quadrangles.

Assume nowC > π
2 . The point of partition into three equal areas lies inside the

triangle if and only if√
(1 + tan2 A) tan B +

√
(1 + tan2 B) tan A >

√
3(tan A + tan B).

If, on the other hand,√
(1 + tan2 A) tan B +

√
(1 + tan2 B) tan A =

√
3(tan A + tan B),

then the uniqueX0 ∈ AB such that

|AX0| =

√
(1 + tan2 A) tan B

3(tan A + tan B)
|AB|, |BX0| =

√
(1 + tan2 B) tan A

3(tan A + tan B)
|AB|

determines the partition of the triangleABC into three equal areas. It is a parti-
tion into a triangle with vertexA, and a triangle with vertexB, and a quadrangle.
Finally, when√

(1 + tan2 A) tan B +
√

(1 + tan2 B) tan A <
√

3(tan A + tan B), (∗)

there is a straight linea perpendicular to the segmentAC which cuts from the
triangleABC a figure with the area|�ABC|

3 (see Figure 6). There is a straight
line b perpendicular to the segmentBC which cuts from the triangleABC a figure
with the area|�ABC|

3 . By (∗), the intersection point of the straight linesa andb
lies outside the triangleABC. This point determines the partition of the triangle
ABC into three equal areas.

J.-P. Ehrmann [3] has subsequently found a constructive solution of a general-
ization of Steinhaus’ problem of partitioning a given triangle into three quadrangles
with prescribed proportions.
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C

A

B

ba

Figure 6.
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[11] H. Steinhaus, Problem No. 779 (in Polish),Matematyka, 19 (1966) 92.
[12] H. Steinhaus,Problems and Reflections (in Russian), Mir, Moscow, 1974.
[13] W. Stojda, A solution of Problem No. 779 (in Polish),Matematyka, 21 (1968) 267–273.
[14] A. Tyszka, A solution of a problem of Steinhaus (in Polish),Matematyka, 49 (1996) 3–5.
[15] A. Tyszka, Steinhaus’ problem cannot be solved with ruler and compass alone (in Polish),

Matematyka 49 (1996) 238–240.

Apoloniusz Tyszka: Technical Faculty, Hugo Kołł ˛ataj University, Balicka 116B, 30-149 Kraków,
Poland

E-mail address: rttyszka@cyf-kr.edu.pl





Forum Geometricorum
Volume 7 (2007) 187–190. b b

b

b

FORUM GEOM

ISSN 1534-1178

Constructive Solution of a Generalization of
Steinhaus’ Problem on Partition of a Triangle

Jean-Pierre Ehrmann

Abstract. We present a constructive solution to a generalization of Hugo Stein-
haus’ problem of partitioning a given triangle, by dropping perpendiculars from
an interior point, into three quadrilaterals whose areas are in prescribed propor-
tions.

1. Generalized Steinhaus problem

Given an acute angled triangleABC, Steinhaus’ problem asks a pointP in
its interior with pedalsPa, Pb, Pc on BC, CA, AB such that the quadrilaterals
APbPPc, BPcPa, andCPaPPb have equal areas. See [3] and the bibliographic
information therein. A. Tyszka [2] has also shown that Steinhaus’ problem is in
general not soluble by ruler-and-compass. We present a simple constructive solu-
tion (using conics) of a generalization of Steinhaus’ problem. In this note, the area
of a polygonP will be denoted by∆(P). In particular,∆ = ∆(ABC). Thus,
given three positive real numbersu, v, w, we look for the point(s)P such that
(1) P is insideABC andPa, Pb, Pc lie respectively in the segmentsBC, CA, AB,
(2) ∆(APbPPc) : ∆(BPcPPa) : ∆(CPaPPb) = u : v : w.

We do not require the triangle to be acute-angled.

Lemma 1. Consider a point P inside the angular sector bounded by the half-
lines AB and AC , with projections Pb and Pc on AC and AB respectively. For
a positive real number k, ∆(APbPPc) = k · ∆(ABC) if and only if P lies on
the rectangular hyperbola with center A, focal axis the internal bisector AI , and
semi-major axis

√
kbc.

Proof. We takeA for pole and the bisectorAI for polar axis; let(ρ, θ) be the polar
coordinates ofP . As APb = ρ cos

(
A
2 − θ

)
andPPb = ρ sin

(
A
2 − θ

)
, we have

∆(APPb) = 1
2ρ2 sin(A − 2θ). Similarly, ∆(APcP ) = 1

2ρ2 sin(A + 2θ). Hence
the quadrilateralAPbPPc has area12ρ2 sin A cos 2θ. Therefore,

∆(APbPPc) = k · ∆(ABC) ⇐⇒ ρ2 cos 2θ =
2k · ∆(ABC)

sin A
= kbc.

�
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Theorem 2. Let U be the point with barycentric coordinates (u : v : w) and M1,
M2, M3 be the antipodes on the circumcircle Γ of ABC of the points whose Simson
lines pass through U and P the incenter of the triangle M1M2M3. If P verifies (1),
then P is the unique solution of our problem. Otherwise, the generalized Steinhaus
problem has no solution.

Remarks. (a) Of course, ifABC is acute angled, andP insideABC, then (1) will
be verified.

(b) As U lies inside the Steiner deltoid, there exist three real Simson lines
throughU ; soM1, M2, M3 are real and distinct.

(c) LethA be the rectangular hyperbola with centerA, focal axisAI, and semi-

major axis
√

u

u + v + w
· bc, and define rectangular hyperbolashB andhC analo-

gously.
If P verifies (1), it will verify (2) if and only ifP ∈ hA ∩ hB . In this case,

P ∈ hC , and the solutions of our problem are the common points ofhA, hB , hC

verifying (1).
(d) The four common pointsP1, P2, P3, P4 (real or imaginary) of the rectan-

gular hyperbolaehA, hB , hC form an orthocentric system. AshA, hB , hC are
centered respectively atA, B, C, any conic throughP1, P2, P3, P4 is a rectangular
hyperbola with center onΓ. As the vertices of the diagonal triangle of this ortho-
centric system are the centers of the degenerate conics throughP1, P2, P3, P4 ,
they lie onΓ.

(e) We will see later thatP1, P2, P3, P4 are always real.

2. Proof of Theorem 2

If P has homogeneous barycentric coordinates(x : y : z) with reference to
triangleABC, then

(x + y + z)2∆(APPb) = y

(
z +

b2 + c2 − a2

2b2
y

)
∆,

(x + y + z)2∆(APcP ) = z

(
y +

b2 + c2 − a2

2c2
z

)
∆,

where∆ = ∆(ABC). Hence the barycentric equation ofhA is

hA(x, y, z) :=
b2 + c2 − a2

2

(
y2

b2
+

z2

c2

)
+2 y z− u

u + v + w
(x + y + z)2 = 0.

We gethB andhC by cyclically permutinga, b, c; u, v, w; x, y, z.
If M = (x : y : z) is a vertex of the diagonal triangle ofP1P2P3P4, it has the

same polar line (the opposite side) with respect to the three conicshA, hB , hC .
Hence,
∂hB

∂y

∂hC

∂z
− ∂hB

∂z

∂hC

∂y
=

∂hC

∂z

∂hA

∂x
− ∂hC

∂x

∂hA

∂z
=

∂hA

∂x

∂hB

∂y
− ∂hA

∂y

∂hB

∂x
= 0.

Let N be the reflection ofM in the circumcenterO; NaNbNc the pedal triangle
of N . Clearly,Na, Nb, Nc are the reflections of the vertices of the pedal triangle
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of M in the midpoints of the corresponding sides ofABC. Now,Nb andNc have
coordinates

(b2 + c2 − a2)y + 2b2z : 0 : (a2 + b2 − c2)y + 2b2x

and
(b2 + c2 − a2)z + 2c2y : (c2 + a2 − b2)z + 2c2x : 0

respectively. A straightforward computation shows that

det[Nb, Nc, U ] = b2c2 (u + v + w)
(

∂hB

∂y

∂hC

∂z
− ∂hB

∂z

∂hC

∂y

)
= 0.

Similarly, det[Nc, Na, U ] = det[Na, Nb, U ] = 0. It follows that N lies on
the circumcircle (we knew that already by Remark (d)), and the Simson line ofN
passes throughU .

Hence,M1M2M3 is the diagonal triangle of the orthocentric systemP1P2P3P4,
which means thatP1P2P3P4 are real and are the incenter and the three excenters
of M1M2M3.

As the three excenters of a triangle lie outside his circumcircle, the incenter of
M1M2M3 is the only common point ofhA, hB , hC insideΓ. This completes the
proof of Theorem 2.

3. Constructions

In [1], the author has given a construction of the points on the circumcircle
whose Simson line pass through a given point. LetU− andU+ be the comple-
ment and the anticomplement ofU , i.e., the images ofU under the homotheties
h

(
G,−1

2

)
andh(G,−2) respectively. Since

(Reflection inO) ◦ (Translation by
−−→
HU) = Reflection inU−,

if h0 is the reflection inU− of the rectangular circumhyperbola throughU , andM4

the antipode ofU+ on h0, thenM1, M2, M3, M4 are the four common points of
h0 and the circumcircle.

In the caseu = v = w = 1, h0 is the reflection in the centroidG of the Kiepert
hyperbola ofABC. It intersects the circumcircleΓ atM1, M2, M3 and the Steiner
point ofABC. See Figure 1.
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The Soddy Circles

Nikolaos Dergiades

Abstract. Given three circles externally tangent to each other, we investigate
the construction of the two so called Soddy circles, that are tangent to the given
three circles. From this construction we get easily the formulas of the radii and
the barycentric coordinates of Soddy centers relative to the triangleABC that
has vertices the centers of the three given circles.

1. Construction of Soddy circles

In the general Apollonius problem it is known that, given three arbitrary circles
with noncollinear centers, there are at most8 circles tangent to each of them. In the
special case when three given circles are tangent externally to each other, there are
only two such circles. These are called the inner and outer Soddy circles respec-
tively of the given circles. Let the mutually externally tangent circles beCa(A, r1),
Cb(B, r2), Cc(C, r3), andA1, B1, C1 be their tangency points (see Figure 1).

A1

B1
C1

A

B C

P3
P2

T3T2

T ′
3T ′

2

K

T ′
1

T1

S

T ′
c

T ′
a

T ′
b

K′

Figure 1.

Consider the inversionτ with poleA1 that mapsCa to Ca. This also maps the
circlesCb, Cc to the two lines perpendicular toBC and tangent toCa at the points
P2, P3 whereP2P3 is parallel fromA to BC. The only circles tangent toCa and
to the above lines are the circlesK(T1), K ′(T ′

1) whereT1, T ′
1 are lying onCa and
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theA-altitude ofABC. These circles are the images, in the above inversion, of the
Soddy circles we are trying to construct. Since the circleK(T1) must be the inverse
of the inner Soddy circle, the linesA1T1, A1T2, A1T3, (P2T2 = P3T3 = P2P3)
meetCa, Cb, Cc at the pointsTa, Tb, Tc respectively, that are the tangency points of
the inner Soddy circle. Hence the linesBTb andCTc give the center S of the inner
Soddy circle. Similarly the linesA1T

′
1, A1T

′
2, A1T

′
3, (P2T

′
2 = P3T

′
3 = P2P3),

meetCa, Cb, Cc at the pointsT ′
a, T ′

b, T ′
c respectively, that are the tangency points

of the outer Soddy circle. TrianglesTaTbTc, T ′
aT

′
bT

′
c are the inner and outer Soddy

triangles. A construction by the so called Soddy hyperbolas can be found in [5,
§12.4.2].

2. The radii of Soddy circles

If the sidelengths ofABC area, b, c, ands = 1
2(a + b + c), then

a = r2 + r3, b = r3 + r1, c = r1 + r2;
r1 = s − a, r2 = s − b, r3 = s − c.

If � is the area ofABC, then� =
√

r1r2r3(r1 + r2 + r3). TheA-altitude of
ABC is AD = ha = 2�

a , and the inradius isr = �
r1+r2+r3

.

I

A1

B1
C1

A

B C

T3T2

P

K

D

T1

S

P3
P2

Q

Figure 2.

The pointsA1, B1, C1 are the points of tangency of the incircleI(r) of ABC
with the sidelines. IfA1P is perpendicular toP2P3 andIB meetsA1C1 atQ, then
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the inversionτ mapsC1 to P2, and the quadrilateralIQP2P is cyclic (see Figure
2). The power of the inversion is

d2 = A1C1 · A1P2 = 2A1Q · A1P2 = 2A1I · A1P = 2rha =
4r1r2r3

r2 + r3
. (1)

2.1. Inner Soddy circle. Since the inner Soddy circle is the inverse of the circle
K(r1), its radius is given by

x =
d2

A1K2 − r2
1

· r1. (2)

In triangleA1AK, A1K
2 − A1A

2 = 2AK · T1D = 4r1(r1 + ha). Hence,

A1K
2 − r2

1 = A1A
2 − r2

1 + 4r1(r1 + ha) = d2 + 4r1(r1 + ha),

and from (1), (2),

x =
r1r2r3

r2r3 + r3r1 + r1r2 + 2� . (3)

Here is an alternative expression forx. If ra, rb, rc are the exradii of triangle
ABC, andR its circumradius, it is well known that

ra + rb + rc = 4R + r.

See, for example, [4,§2.4.1]. Now also thatr1ra = r2rb = r3rc = �. Therefore,

x =
r1r2r3

r2r3 + r3r1 + r1r2 + 2�
=

�
�
r1

+ �
r2

+ �
r3

+ 2 · �2

r1r2r3

=
�

ra + rb + rc + 2(r1 + r2 + r3)

=
�

4R + r + 2s
. (4)

As a special case, ifr1 → ∞, then the circleCa tends to a common tangent of
Cb, Cc, and

1√
x

=
1√
r2

+
1√
r3

. (5)

In this case the outer Soddy circle degenerates into the common tangent ofCb and
Cc.

2.2. Outer Soddy circle. If Ca is the smallest of the three circlesCa, Cb, Cc and is
greater than the circle of (5),i.e., 1√

r1
< 1√

r2
+ 1√

r3
, then the outer Soddy circle

is internally tangent toCa, Cb, Cc. Otherwise, the outer Soddy circle is externally
tangent toCa, Cb, Cc.

Since the outer Soddy circle is the inverse of the circleK′(r1), its radius is given
by

x′ =
d2

A1K ′2 − r2
1

· r1. (6)
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This is a signed radius and is negative whenA1 is inside the circleK′(r1) or when
the outer Soddy circle is tangent internally toCa, Cb, Cc. In triangle A1AK ′,
A1A

2 − A1K
′2 = 2AK ′ · T ′

1D = 4r1(ha − r1), and from (6),

x′ =
r1r2r3

r1r2 + r2r3 + r3r1 − 2� . (7)

Analogous to (4) we also have

x′ =
�

4R + r − 2s
. (8)

Hence this radius is negative, equivalently, the outer Soddy circle is tangent inter-
nally toCa, Cb, Cc, when4R + r < 2s. From (4) and (8), we have

1
x
− 1

x′ =
2s
� =

4
r
.

If 4R + r = 2s, thenx = r
4 .

3. The barycentric coordinates of Soddy centers

3.1. The Inner Soddy center. If d1 is the distance of the inner Soddy circle center
S from BC, then sinceA1 is the center of similitute of the inner Soddy circle and
the circleK(r1) we have d1

KD = x
r1

, or

d1 =
x(2r1 + ha)

r1
= 2x

(
1 +

ha

2r1

)
= 2x

(
1 +

�
a(s − a)

)
.

Similarly we obtain the distancesd2, d3 from S to the sidesCA andAB respec-
tively. Hence the homogeneous barycentric coordinates ofS are

(ad1 : bd2 : cd3) =
(

a +
�

s − a
: b +

�
s − b

: c +
�

s − c

)
.

The inner Soddy centerS appears in [3] as the triangle centerX176, also called
the equal detour point. It is obvious that for the Inner Soddy centerS, the “detour”
of triangleSBC is

SB + SC − BC = (x + r2) + (x + r3) − (r2 + r3) = 2x.

Similarly the trianglesSCA and SAB also have detours2x. Hence the three
incircles of trianglesSBC, SCA, SAB are tangent to each other and their three
tangency pointA2, B2, C2 are the pointsTa, Tb, Tc on the inner Soddy circle [1]
sinceSA2 = SB2 = SC2 = x. See Figure 3.

Working with absolute barycentric coordinates, we have

S =

(
a + �

s−a

)
A +

(
b + �

s−b

)
B +

(
c + �

s−c

)
C

a + �
s−a + b + �

s−b + c + �
s−c

=
(a + b + c)I + �

(
1

s−a + 1
s−b + 1

s−c

)
Ge

�
x

, (9)
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whereGe =
(

1
s−a : 1

s−b : 1
s−c

)
is the Gergonne point. Hence, the inner Soddy

centerS lies on the line connecting the incenterI andGe. This explains wheyIGe

is called the Soddy line. Indeed,S dividesIGe in the ratio

IS : SGe = ra + rb + rc : a + b + c = 4R + r : 2s.

3.2. The outer Soddy center. If d′1 is the distance of the outer Soddy circle center
S′ from BC, then sinceA1 is the center of similitute of the outer Soddy circle and
the circleK′(r1), a similar calculation referring to Figure 1 shows that

d′1 = −2x
(

1 − �
a(s − a)

)
.

Similarly, we have the distancesd′2 andd′3 from S′ to CA andAB respectively.
The homogeneous barycentric coordinates ofS′ are

(ad′1 : bd′2 : cd′3) =
(

a − �
s − a

: b − �
s − b

: c − �
s − c

)
.

This is the triangle centerX175 of [3], called the isoperimetric point. It is obvi-
ous that if the outer Soddy circle is tangent internally toCa, Cb, Cc or 4R+r < 2s,
then the perimeter of triangleS′BC is

S′B + S′C + BC = (x′ − r2) + (x′ − r3) + (r2 + r3) = 2x′.

Similarly the perimeters of trianglesS′CA and S′AB are also2x′. Therefore
theS′-excircles of trianglesS′BC, S′CA, S′AB are tangent to each other at the
tangency pointsT ′

a, T ′
b, T ′

c of the outer Soddy circle withCa, Cb, Cc.
If the outer Soddy circle is tangent externally toCa, Cb, Cc, equivalently,4R +

r > 2s, then the trianglesS′BC, S′CA, S′AB have equal detours2x′ because for
triangleS′BC,

S′B + S′C − BC = (x′ + r2) + (x′ + r3) − (r2 + r3) = 2x′,
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and similarly for the other two triangles. In this case,S′ is second equal detour
point. Analogous to (9), we have

S′ =
(a + b + c)I −�

(
1

s−a + 1
s−b + 1

s−c

)
Ge

�
x′

. (10)

A comparison of (9) and (10) shows thatS andS′ are harmonic conjugates with
respect toIGe.

4. The barycentric equations of Soddy circles

We find the barycentric equation of the inner Soddy circle in the form

a2yz + b2zx + c2xy − (x + y + z)(p1x + p2y + p3z) = 0,

wherep1, p2, p3 are the powers ofA, B, C with respect to the circle. See [5,
Proposition 7.2.3]. It is easy to see that

p1 =r1(r1 + 2x) = (s − a)(s − a + 2x),

p2 =r2(r2 + 2x) = (s − b)(s − b + 2x),

p3 =r3(r3 + 2x) = (s − c)(s − c + 2x).

Similarly, the barycentric equation of the outer Soddy circle is

a2yz + b2zx + c2xy − (x + y + z)(q1x + q2y + q3z) = 0,

where

q1 =(s − a)(s − a + 2x′),

q2 =(s − b)(s − b + 2x′),

q3 =(s − c)(s − c + 2x′),

wherex′ is thesigned radius of the circle given by (8), treated as negative when
2s > 4R + r.

5. The Soddy triangles and the Eppstein points

The incenterI of ABC is the radical center of the circlesCa, Cb, Cc. The inver-
sion with respect to the incircle leaves each ofCa, Cb, Cc invariant and swaps the
inner and outer Soddy circles. In particular, it interchanges the points of tangency
Ta andT ′

a; similarly,Tb andT ′
b, Tc andT ′

c. The Soddy trianglesTaTbTc andT ′
aT

′
bT

′
c

are clearly perspective at the incenterI. They are also perspective withABC, at
S andS′ respectively. SinceATa : TaS = r1 : x, we have,Ta = xA+r1S

x+r1
. In

homogeneous barycentric coordinates,

Ta =
(

a +
2�
r1

: b +
�
r2

: c +
�
r3

)
.
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Since the intouch pointA1 has coordinates
(
0 : 1

r2
: 1

r3

)
, the lineTaA1 clearly

contains the point

E =
(

a +
2�
r1

: b +
2�
r2

: c +
2�
r3

)
.

Similarly, the linesTbB1 andTcC1 also contain the same pointE, which is there-
fore the perspector of the trianglesTaTbTc and the intouch triangle. This is the
Eppstein pontX481 in [3]. See also [2]. It is clear thatE also lies on the Soddy
line. See Figure 4.

I
Ge

A

B C

S

A1

Tc

Tb

B1

TaC1

E

Figure 4.

The triangleT ′
aT

′
bT

′
c is also perspective with the intouch triangle, at a point

E′ =
(

a − 2�
r1

: b − 2�
r2

: c − 2�
r3

)
,

on the Soddy line, dividing withE the segmentIGe harmonically. This is the
second Eppstein pointX482 of [3].
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Cyclic Quadrilaterals with Prescribed Varignon
Parallelogram

Michel Bataille

Abstract. We prove that the vertices of a given parallelogramP are the mid-
points of the sides of infinitely manycyclic quadrilaterals and show how to con-
struct such quadrilaterals. Then we discuss some of their properties and identify
related loci. Lastly, the cases whenP is a rectangle or a rhombus are examined.

1. Introduction

The following well-known theorem of elementary geometry, attributed to the
French mathematician Pierre Varignon (1654-1722), was published in 1731: ifA,
B, C, D are four points in the plane, the respective midpointsP , Q, R, S of AB,
BC, CD, DA are the vertices of a parallelogram. We will say thatPQRS is the
Varignon parallelogram ofABCD, in shortPQRS = V(ABCD). In a converse
way, given a parallelogramP, there exist infinitely many quadrilateralsABCD
such thatP = V(ABCD). In §2, we offer a quick review of this general result, in-
troducing the diagonal midpoints ofABCD which are of constant use afterwards.
The primary result of this paper, namely that infinitely manyof these quadrilaterals
ABCD are cyclic, is proved in§3 and the proof leads naturally to a construction
of such quadrilaterals. Further results, including a simpler construction, are estab-
lished in§4, all centering on a rectangular hyperbola determined byP. Finally, §5
is devoted to particular results that hold ifP is either a rectangle or a rhombus.

In what follows,P = PQRS denotes a parallelogram whose vertices are not
collinear. The whole work takes place in the plane ofP.

2. Quadrilaterals ABCD with P = V(ABCD)

The construction of a quadrilateralABCD satisfyingP = V(ABCD) is usu-
ally presented as follows: start with an arbitrary pointA and construct successively
the symmetricB of A aboutP , the symmetricC of B aboutQ and the symmetric
D of C aboutR (see Figure 1). BecauseP is a parallelogram,A is automatically
the symmetric ofD aboutS andABCD is a solution (see [1, 2]).

Let M , M ′ be the midpoints of the diagonals ofABCD (in brief, the diagonal
midpoints ofABCD) and letO be the center ofP. Since4O = 2P + 2R = A +
B+C+D = 2M +2M ′, the midpoint ofMM ′ is O. This simple property allows
another construction ofABCD from P that will be preferred in the next sections:
start with two pointsM,M ′ symmetric aboutO; then obtainA,C such that

−−→
AM =

−−→
PQ =

−−→
MC andB,D such that

−−−→
BM ′ =

−−→
QR =

−−−→
M ′D. Exchanging the roles ofM ,

M ′ provides another solutionA′B′C ′D′ with the same set{M,M ′} of diagonal

Publication Date: December 3, 2007. Communicating Editor:Paul Yiu.
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Figure 1

midpoints (see Figure 2). Clearly,ABCD andA′B′C ′D′ are symmetrical about
O.
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P
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A′

B′

C′D′

Figure 2

3. Cyclic quadrilaterals ABCD with P = V(ABCD)

The previous section has brought out the role of diagonal midpoints when look-
ing for quadrilateralsABCD such thatP = V(ABCD). We characterize the
diagonal midpoints ofcyclic solutions and show how to construct them fromP,
obtaining the following theorem.

Theorem 1. GivenP, there exist infinitely many cyclic quadrilateralsABCD
such thatP = V(ABCD). Such quadrilaterals can be constructed fromP by
ruler and compass.
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Proof. Consider a Cartesian system with origin atO and x-axis parallel toPQ
(see Figure 3). The affix of a pointZ is denoted byz. For example,q − p is a real
number.

Q

S

P

R

D

A

B

C

O

Figure 3

Let ABCD be such thatP = V(ABCD). ThenA 6= C, B 6= D and the
quadrilateralABCD is cyclic if and only if the cross-ratioρ = d−a

d−b
· c−b

c−a
is a real

number. Withb = 2p − a, c = 2q − 2p + a, d = −2q − a and allowing for
q − p ∈ R, the calculation ofρ yields the condition:

(q − p + a)2 = p2 + λ(p + q)

for some real numberλ. Thus,ABCD is cyclic if and only if the affixesm, m′ =
−m of its diagonal midpointsM,M ′ are the square roots of a complex number of
the formp2 + λ(p + q), whereλ ∈ R. Clearly, distinct valuesλ1, λ2 for λ lead to
corresponding disjoint sets{M1,M

′

1}, {M2,M
′

2} of diagonal midpoints, hence to
distinct solutions for cyclic quadrilaterals. It follows that our problem has infinitely
many solutions.

ConsiderP2 with affix p2 and choose a pointK on the line throughP2 parallel to
QR. The affixk of K is of the formp2 +λ(p+q) with λ ∈ R. The construction of
the corresponding pairM,M ′ is straightforward and achieved in Figure 4 where
for the sake of simplification we takeOP as the unit of length:M,M ′ are on
the angle bisector of∠xOK andOM = OM ′ =

√
OK (we skip the classical

construction of the square root of a given length). �

Exchanging the roles ofM andM ′ (as in§2) evidently gives a solution inscribed
in the symmetric of the circle(ABCD) aboutO. In §4, we will indicate a different
construction of suitable diagonal midpointsM , M ′.

4. The rectangular hyperbola H(P)

With the aim of obtaining the diagonal midpointsM,M ′ more directly, it seems
interesting to identify their locus as the real numberλ varies. This brings to light
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an unexpected hyperbola which will also provide more results about our quadrilat-
erals.

Theorem 2. Consider the cyclic quadrilateralsABCD such thatP = V(ABCD).
If P is not a rhombus, the locus of their diagonal midpoints is therectangu-
lar hyperbolaH(P) with the same centerO asP, passing through the vertices
P,Q,R, S ofP. If P is a rhombus, the locus is the pair of diagonals ofP.

Proof. We use the same system of axes as in the preceding section and continue
to suppose thatOP = 1. We denote byθ the directed angle∠(

−→
SR,

−→
SP ) that is,

θ = arg(p + q). Note thatsin θ 6= 0. Let m = x + iy with x, y ∈ R. From
m2 = p2 + λ(p + q), we obtain(x + iy)2 = e2it + λµeiθ wheret = arg(p) and
µ = |p + q| and we readily deduce:

x2 − y2 = cos 2t + λµ cos θ, 2xy = sin 2t + λµ sin θ.

The elimination ofλ shows that the locus ofM (and ofM ′ as well) is the curve
C with equation

x2 − y2 − 2(cot θ)xy + ν = 0, (1)

whereν = cot θ sin 2t − cos 2t = sin(2t−θ)
sin θ

. Thus, whenν 6= 0, C is a rectangular
hyperbola centered atO with asymptotes

(ℓ) y = x tan(θ/2),

and

(ℓ′) y = −x cot(θ/2),

andC degenerates into these two lines ifν = 0 (we shall soon see that the lat-
ter occurs if and only ifP is a rhombus). Note that(ℓ) and (ℓ′) are the axes of
symmetry of the medians ofP. An easy calculation shows that the coordinates
xP = cos t, yP = sin t of P satisfy (1), meaning thatP ∈ C. As for Q, the
coordinates arexQ = µ cos θ − cos t, yQ = µ sin θ − sin t, but observing that
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yQ = yP , we findxQ = 2 sin t cot θ − cos t, yQ = sin t. Again, xQ, yQ satisfy
(1) andQ is a point ofC as well. Thus, the parallelogramP is inscribed inC. It
follows thatν = 0 if and only if (ℓ) and(ℓ′) are the diagonals ofP. Since(ℓ) and
(ℓ′) are perpendicular, the situation occurs ifP is a rhombus and only in that case.
Otherwise,C is the rectangular hyperbolaH(P), as defined in the statement of the
theorem (see Figure 5). �

R

P
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Q

D

A B

C

O

M

M ′

U

Figure 5

Figure 5 shows the centerU of the circle throughA, B, C, D as a point of
H(P). This is no coincidence! Being the circumcenter of∆ABC, U is also the
orthocenter of its median triangleMPQ. Since the latter is inscribed inH(P), a
well-known property of the rectangular hyperbola ensures that its orthocenter is on
H(P) as well. Conversely, any pointU of H(P) can be obtained in this way by
taking forM the orthocenter of∆UPQ. We have proved:

Theorem 3. If P is not a rhombus,H(P) is the locus of the circumcenter of a
cyclic quadrilateralABCD such thatP = V(ABCD).

Of course, ifP is a rhombus, the locus is the pair of diagonals ofP.
As another consequence of Theorem 2, we give a construction of a pairM,M ′

of diagonal midpoints simpler than the one in§3: through a vertex ofP, sayQ,
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draw a line intersecting(ℓ) and(ℓ′) atW andW ′. As is well-known, the symmetric
M of Q about the midpoint ofWW ′ is onH(P). This pointM and its symmetric
M ′ aboutO provide a suitable pair. In addition, the orthocenter of∆MPQ is the
centerU of the circumcircle ofABCD (see Figure 6).

Q

S

P

R

D

B

C
A

O

W

W ′

M

M ′

U

U ′

Figure 6

We shall end this section with a remark about the circumcenter U ′ of the quadri-
lateralA′B′C ′D′ which shares the diagonal midpointsM , M ′ of ABCD (as seen
in §2). Clearly,UMU ′M ′ is a parallelogram with centerO, inscribed inH(P)
(Figure 6). SinceUM andUM ′ are respectively perpendicular toPQ andPS,
the directed angles of lines∠(UM,UM ′) and∠(PQ,PS) are equal (moduloπ).
Thus,UMU ′M ′ andP are equiangular.

5. Special cases

First, suppose thatP is a rectangle and consider a cyclic quadrilateralABCD
such thatP = V(ABCD). From the final remark of the previous section,UMU ′M ′

is a rectangle and sinceUM is perpendicular toPQ, the sides ofUMU ′M ′ are
parallel to those ofP. Recalling thatM is onAC andM ′ onBD, we conclude that
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U ′ is the point of intersection of the (perpendicular) diagonals of ABCD. Now,
suppose thatAC intersectsPS atA1, QR atC1 and thatBD intersectsPQ atB1,
RS atD1 (see Figure 7). Obviously,A1, B1, C1 andD1 are the midpoints ofU ′A,
U ′B, U ′C andU ′D, so thatA1, B1, C1, D1 are on the circle image of(ABCD)

under the homothety with centerU ′ and ratio1
2 . Since

−−→
U ′O = 1

2

−−→
U ′U, the center of

this circle(A1B1C1D1) is just the centerO of P.

Q

S

P

R

D

A C

B

O

M

M ′

U ′

U

Figure 7

Conversely, draw any circle with centerO intersecting the linesSP at A1, A′

1,
PQ at B1, B′

1, QR at C1, C ′

1 and RS at D1, D′

1, the notations being chosen
so thatA1C1, A′

1C
′

1 are parallel toPQ andB1D1, B′

1D
′

1 are parallel toQR. If
U ′ = A1C1 ∩ B1D1, then the imageABCD of A1B1C1D1 under the homothety
with centerU ′ and ratio2 is cyclic and satisfiesP = V(ABCD). For instance,
becauseU ′A1PB1 is a rectangle,P is the image of the midpoint ofA1B1 and
as such, is the midpoint ofAB. The companion solutionA′B′C ′D′ is similarly
obtained fromA′

1B
′

1C
′

1D
′

1.
Thus, in the case whenP is a rectangle, a very quick construction provides

suitable quadrilateralsABCD. As a corollary of the analysis above, we have the
following property that can also be proved directly:

Theorem 4. If A, B, C, D are on a circle with centerU andAC is perpendicular
to BD at U ′, then the midpoint ofUU ′ is the center of the rectangleV(ABCD).
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We conclude with a brief comment on the case whenP is a rhombus. Remarking
that if P = V(ABCD), thenAC = 2PQ = 2QR = BD, we see that any cyclic
solution forABCD must be an isosceles trapezoid (possibly a self-crossing one).
Conversely, ifABCD is an isosceles trapezoid, then it is cyclic andV(ABCD) is
a rhombus. The construction of a solutionABCD fromP simply follows from the
choice of two pointsM,M ′ as diagonal midpoints ofABCD on either diagonal
of P (see Figure 8).

QS

P

R

B A

D C

O

MM ′

U

Figure 8
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Another Verification of Fagnano’s Theorem

Finbarr Holland

Abstract. We present a trigonometrical proof of Fagnano’s theorem which states
that, among all inscribed triangles in a given acute-angledtriangle, the feet of its
altitudes are the vertices of the one with the least perimeter.

1. Introduction

At the outset, and to avoid ambiguity, we fix the following terminology. Let
ABC be any triangle. The feet of its altitudes are the vertices ofwhat we call its
orthic triangle, and, ifX,Y , andZ, respectively, are interior points of the sides
AB,BC, andCA, respectively, we call the triangleXY Z an inscribed triangle
of ABC.

In 1775, Fagnano proved the following theorem.

Theorem 1. Suppose ABC is an acute-angled triangle. Of all inscribed triangles
in ABC , its orthic triangle has the smallest perimeter.

Not surprisingly, over the years this beautiful result has attracted the attentions
of many mathematicians, and there are several proofs known of it [1]. Fagnano
himself apparently used differential calculus to prove it,though, by modern stan-
dards, it seems to me that this is far from being a routine exercise. Perhaps the
most appealing proofs of the theorem are those based on the Reflection Principle,
and two of these, in particular, due independently to L. Fej´er and H. A. Schwarz,
have made their appearance in several books aimed at generalaudiences [2], [3],
[4], [6]. A proof based on vector calculus appeared recently[5]. The purpose of
this note is to offer one based on trigonometry.

Theorem 2. Let ABC be any triangle, with a = |BC|, b = |CA|, c = |AB|, and
area ∆. If XY Z is inscribed in ABC , then

|XY | + |Y Z| + |ZX| ≥
8∆2

abc
. (1)

Equality holds in (1) if and only if ABC is acute-angled; and then only if XY Z

is its orthic triangle. If ABC is right-angled (respectively, obtuse-angled), and C

Publication Date: December 5, 2007. Communicating Editor:Paul Yiu.
The author is grateful to the referee for his helpful remarks.
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is the right-angle (respectively, the obtuse-angle), then an inequality stronger than
(1) holds, viz.,

|XY | + |Y Z| + |ZX| > 2hc, (2)

where hc denotes the length of the altitude from C; and, in either case, this estimate
is best possible.

2. Proof of Theorem 2

LetXY Z be a triangle inscribed inABC. Letx = |BX|, y = |CY |, z = |AZ|.
Then0 < x < a, 0 < y < b, 0 < z < c. By applying the Cosine Rule in the
triangleZBX we have

|ZX|2 = (c − z)2 + x2 − 2x(c − z) cos B

= (c − z)2 + x2 + 2x(c − z) cos(A + C)

= (x cos A + (c − z) cos C)2 + (x sin A − (c − z) sin C)2.

Hence,

|ZX| ≥ |x cos A + (c − z) cos C| ,

with equality if and only ifx sinA = (c − z) sin C, i.e., if and only if

ax + cz = c2, (3)

by the Sine Rule. Similarly,

|XY | ≥ |y cos B + (a − x) cos A| ,

with equality if and only if

ax + by = a2. (4)

And

|Y Z| ≥ |z cos C + (b − y) cos B| ,

with equality if and only if

by + cz = b2. (5)

Thus, by the triangle inequality for real numbers,

|XY | + |Y Z| + |ZX|

≥ |y cos B + (a − x) cos A| + |z cos C + (b − y) cos B| + |x cos A + (c − z) cos C|

≥ |y cos B + (a − x) cos A + z cos C + (b − y) cos B + x cos A + (c − z) cos C|

= |a cos A + b cos B + c cos C|

=
|a2(b2 + c2 − a2) + b2(c2 + a2 − b2) + c2(a2 + b2 − c2)|

2abc

=
8∆2

abc
.
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This proves (1). Moreover, there is equality here if and onlyif equations (3), (4),
and (5) hold, and the expressions

u = x cos A + (c − z) cos C,

v = y cos B + (a − x) cos A,

w = z cos C + (b − y) cos B,

are either all non-negative or all non-positive. Now it is easy to verify that the
system of equations (3), (4), and (5), has a unique solution given by

x = c cos B, y = a cos C, z = b cos A,

in which case
u = b cos B, v = c cos C, w = a cos A.

Thus, in this case, at most one ofu, v,w can be non-positive. But, if one ofu, v,w

is zero, then one ofx, y, z must be zero, which is not possible. It follows that

|XY | + |Y Z| + |ZX| >
8∆2

abc
,

unlessABC is acute-angled, andXY Z is its orthic triangle. IfABC is acute-
angled, then8∆2

abc
is the perimeter of its orthic triangle, in which case we recover

Fagnano’s theorem, equality being attained in (1) when and only whenXY Z is
the orthic triangle.

Turning now to the case whenABC is not acute-angled, suppose first thatC is
a right-angle. Then

|XY | + |Y Z| + |ZX| >
8∆2

abc
=

4∆

c
= 2hc,

and so (2) holds in this case. Next, ifC is an obtuse-angle, denote byD andE,
respectively, the points of intersection of the sideAB and the lines throughC that
are perpendicular to the sidesBC andCA, respectively. ThenZ is an interior
point of one of the line segments[B,D] and[E,A]. Suppose, for definiteness, that
Z is an interior point of[B,D]. If Y ′ is the point of intersection of[X,Y ] and
[C,D], then

|XY | + |Y Z| + |ZX| = |XY ′| + |Y ′Y | + |Y Z| + |ZX|

> |XY ′| + |Y ′Z| + |ZX|

> 2hc,

since the triangleXY ′Z is inscribed in the right-angled triangleBCD. A similar
argument works ifZ is an interior point of[E,A]. Hence, (2) also holds ifC is
obtuse.

That (2) is stronger than (1), for a non acute-angled triangle, follows from the
fact that, in any triangleABC,

4∆2

abc
=

2∆ sin C

c
= a sin B sin C ≤ a sin B = hc.

It remains to prove that inequality (2) cannot be improved when the angleC is
right or obtuse. To see this, letZ be the foot of the perpendicular fromC to AB,
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and0 < ε < 1. ChooseY onCA so that|CY | = εb, andX onBC so thatXY is
parallel toAB. Then, asε → 0+, bothX andY converge toC, and so

lim
ε→0+

(|XY | + |Y Z| + |ZX|) = |CC| + |CZ| + |ZC| = 2|CZ| = 2hc.

This finishes the proof.
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How Pivotal Isocubics Intersect the Circumcircle

Bernard Gibert

Abstract. Given the pivotal isocubicK = pK(Ω, P ), we seek its common
points with the circumcircle and we also study the tangents at these points.

1. Introduction

A pivotal cubicK = pK(Ω, P ) with poleΩ, pivot P , is the locus of pointM
such thatP , M and itsΩ-isoconjugateM∗ are collinear. It is also the locus of
pointM such thatP ∗ (the isopivot or secondary pivot),M and the cevian quotient
P/M are collinear. See [2] for more information.1 The isocubicK meets the cir-
cumcircle(O) of the reference triangleABC at its vertices and three other points
Q1, Q2, Q3, one of them being always real. This paper is devoted to a study of
these points and special emphasis on their tangents.

2. Isogonal pivotal cubics

We first consider the case where the pivotal isocubicK = pK(X6, P ) is isogonal
with pole the Lemoine pointK.

2.1. Circular isogonal cubics.When the pivotP lies at infinity,K contains the
two circular points at infinity. Hence it is a circular cubic of the classCL035 in
[3], and has only one real intersection with(O). This is the isogonal conjugateP ∗

of the pivot.
The tangent atP is the real asymptotePP ∗ of the cubic and the isotropic tan-

gents meet at the singular focusF of the circular cubic.F is the antipode ofP ∗ on
(O).

The pairP andP ∗ are the foci of an inscribed conic, which is a parabola with
focal axisPP ∗. WhenP traverses the line at infinity, this axis envelopes the deltoid
H3 tritangent to(O) at the vertices of the circumtangential triangle. The contact of
the deltoid with this axis is the reflection inP ∗ of the second intersection ofPP ∗

with the circumcircle. See Figure 1 with the Neuberg cubicK001 and the Brocard
cubicK021. For example, with the Neuberg cubic,P ∗ = X74, the second point on
the axis isX476, the contact is the reflection ofX476 in X74.

Publication Date: December 10, 2007. Communicating Editor: Paul Yiu.
The author thanks Paul Yiu for his help in the preparation of this paper.
1Most of the cubics cited here are now available on the web-site

http://perso.orange.fr/bernard.gibert/index.html, where they are referenced under a catalogue
number of the formKnnn.
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A

B
C

K021

X99

X74

X805

X476

Neuberg

  cubic

X805’

X476’

Figure 1. Isogonal circular cubic with pivot at infinity

2.2. Isogonal cubics with pivot on the circumcircle.WhenP lies on(O), the re-
maining two intersectionsQ1, Q2 are antipodes on(O). They lie on the perpendic-
ular atO to the linePP ∗ or the parallel atO to the Simson line ofP . The isocubic
K has three real asymptotes:
(i) One is the parallel atP/P ∗ (cevian quotient) to the linePP ∗.
(ii) The two others are perpendicular and can be obtained as follows. ReflectP
in Q1, Q2 to getS1, S2 and draw the parallels atS∗

1 , S∗

2 to the linesPQ1, PQ2.
These asymptotes meet atX on the lineOP . Note that the tangent to the cubic at
Q1, Q2 are the linesQ1S

∗

1 , Q2S
∗

2 . See Figure 2.

2.3. The general case.In both cases above, the orthocenter of the triangle formed
by the pointsQ1, Q2, Q3 is the pivotP of the cubic, although this triangle is not
a proper triangle in the former case and a right triangle in the latter case. More
generally, we have the following

Theorem 1. For any pointP , the isogonal cubicK = pK(X6, P ) meets the cir-
cumcircle atA, B, C and three other pointsQ1, Q2, Q3 such thatP is the ortho-
center of the triangleQ1Q2Q3.
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A

B C

X

P

O

S1

S2

P/P*

Q1

Q2

S1*

S2*

P*

Figure 2. Isogonal cubic with pivot on the circumcircle

Proof. The linesQ1Q
∗

1, Q2Q
∗

2, Q3Q
∗

3 pass through the pivotP and are parallel to
the asymptotes of the cubic. Since they are the axes of three inscribed parabolas,
they must be tangent to the deltoidH3, the anticomplement of the Steiner deltoid.
This deltoid is a bicircular quartic of class3. Hence, for a givenP , there are only
three tangents (at least one of which is real) to the deltoid passing throughP .

According to a known result,Q1 must be the antipode on(O) of Q′

1, the isogo-
nal conjugate of the infinite point of the lineQ2Q3. The Simson lines ofQ′

1, Q2,
Q3 are concurrent. Hence, the axes are also concurrent atP . But the Simson line
of Q1 is parallel toQ2Q3. HenceQ1Q

∗

1 is an altitude ofQ1Q2Q3. This completes
the proof. See Figure 3. �

Remark.These pointsQ1, Q2, Q3 are not necessarily all real nor distinct. In [1],
H. M. Cundy and C. F. Parry have shown that this depends of the position of P
with respect toH3. More precisely, these points are all real if and only ifP lies
strictly insideH3. One only is real whenP lies outsideH3. This leaves a special
case whenP lies onH3. See§2.4.

Recall that the contacts of the deltoidH3 with the linePQ1Q
∗

1 is the reflection
in Q1 of the second intersection of the circumcircle and the linePQ1Q

∗

1. Conse-
quently, every conic passing throughP , Q1, Q2, Q3 is a rectangular hyperbola and
all these hyperbolas form a pencilF of rectangular hyperbolas.
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Figure 3. The deltoidH3 and the pointsQ1, Q2, Q3

LetD be the diagonal rectangular hyperbola which contains the four in/excenters
of ABC, P ∗, andP/P ∗. Its center isΩD. Note that the tangent atP ∗ to D con-
tainsP and the tangent atP/P ∗ toD containsP . In other words, the polar line of
P in D is the line throughP ∗ andP/P ∗.

The pencilF contains the hyperbolaH passing throughP , P ∗, P/P ∗ andΩD

having the same asymptotic directions asD. The center ofH is the midpoint of
P andΩD. This gives an easy conic construction of the pointsQ1, Q2, Q3 when
P is given. See Figure 4. The pencilF contains another very simple rectangular
hyperbolaH′, which is the homothetic of the polar conic ofP inK underh

(

P, 1
2

)

.
Since this polar conic is the diagonal conic passing throughthe in/excenters andP ,
H′ containsP and the four midpoints of the segments joiningP to the in/excenters.

Corollary 2. The isocubicK contains the projectionsR1, R2, R3 of P ∗ on the
sidelines ofQ1Q2Q3. These three points lie on the bicevian conicC(G,P ). 2

Proof. Let R1 be the third point ofK on the lineQ2Q3. The following table shows
the collinearity relations of nine points onK and proves thatP ∗, R1 andQ∗

1 are
collinear.

2This is the conic through the vertices of the cevian triangles of G andP . This is theP -Ceva
conjugate of the line at infinity.
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P*

P/P*
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Ic
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ΩD

R2

R1

R3

Figure 4. The hyperbolasH andD

P P P ∗ ← P ∗ is the tangential ofP
Q2 Q3 R1 ← definition ofR1

Q∗

2 Q∗

3 Q∗

1 ← these three points lie at infinity

This shows that, fori = 1, 2, 3, the pointsP ∗, Ri andQ∗

i are collinear and, since
P , Qi andQ∗

i are also collinear, the linesPQi andP ∗Ri are parallel. It follows
from Theorem 1 thatRi is the projection ofP ∗ onto the lineRjRk.

Recall thatP ∗ is the secondary pivot ofK hence, for any pointM on K, the
pointsP ∗, M andP/M (cevian quotient) are three collinear points onK. Conse-
quently,Ri = P/Q∗

i and, sinceQ∗

i lies at infinity,Ri is a point onC(G,P ). �

Corollary 3. The linesQiR
∗

i , i = 1, 2, 3, pass through the cevian quotientP/P ∗.

Proof. This is obvious from the following table.

P ∗ P ∗ P ← P/P ∗ is the tangential ofP ∗

P Q∗

1 Q1 ← Q1Q
∗

1 must contain the pivotP
P R1 R∗

1 ← R1R
∗

1 must contain the pivotP
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Recall thatP ∗ is the tangential ofP (first column). The second column is the
corollary above. �

Corollary 4. LetS1, S2, S3 be the reflections ofP in Q1, Q2, Q3 respectively. The
asymptotes ofK are the parallel atS∗

i to the linesPQi or P ∗Ri.

Proof. These pointsSi lie on the polar conic of the pivotP since they are the har-
monic conjugate ofP with respect toQi andQ∗

i . The construction of the asymp-
totes derives from [2,§1.4.4]. �

Theorem 5. The inconicI(P ) concentric withC(G,P ) 3 is also inscribed in the
triangle Q1Q2Q3 and in the triangle formed by the Simson lines ofQ1, Q2, Q3.

Proof. Since the trianglesABC andQ1Q2Q3 are inscribed in the circumcircle,
there must be a conic inscribed in both triangles. The rest ismere calculation. �

In [4, §29, p.88], A. Haarbleicher remarks that the triangleABC and the re-
flection of Q1Q2Q3 in O circumscribe the same parabola. These two parabolas
are obviously symmetric aboutO. Their directrices are the line throughH and the
reflectionP ′ of P in O in the former case, and its reflection inO in the latter case.
The foci are the isogonal conjugates of the infinite points ofthese directrices and
its reflection aboutO.

A

B C

G

K

Q1

H

O

Thomson 

    cubic

Q2

Q3

H’

R1

R2
R3

X99

X110

Figure 5. Thomson cubic

3This center is the complement of the complement ofP , i.e., the homothetic ofP underh(G, 1

4
).

Note that these two conicsI(P ) andC(G, P ) are bitangent at two points on the lineGP . When
P = G, they coincide since they both are the Steiner in-ellipse.
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For example, Figures 5 and 6 show the caseP = G. Note, in particular,
–K is the Thomson cubic,
–D is the Steiner (or Don Wallace) hyperbola,
–H containsX2, X3, X6, X110, X154, X354, X392, X1201, X2574, X2575,
–H′ containsX2, X99, X376, X551,
– the inconicI(P ) and the bicevian conicC(G,P ) are the Steiner in-ellipse,
– the two parabolas are the Kiepert parabola and its reflection in O.

A

B C

Q1

G

X74

X110
Q2

Q3

O

Kiepert

parabola

reflection of

 the Kiepert

  parabola in O

Figure 6. The Thomson cubic and the two parabolas

More generally, anypK(X6, P ) with pivot P on the Euler line is obviously
associated to the same two parabolas. In other words, any cubic of the Euler pencil
meets the circumcircle at three (not always real) pointsQ1, Q2, Q3 such that the
reflection of the Kiepert parabola inO is inscribed in the triangleQ1Q2Q3 and in
the circumcevian triangle ofO.

In particular, takingP = O, we obtain the McCay cubic and this shows that the
reflection of the Kiepert parabola inO is inscribed in the circumnormal triangle.

Another interesting case ispK(X6,X145) in Figure 7 since the incircle is in-
scribed in the triangleQ1Q2Q3.
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Figure 7. pK(X6, X145)

2.4. Isogonal pivotal cubics tangent to the circumcircle.In this section, we takeP
onH3 so thatK has a multiple point at infinity.

Here is a special case.H3 is tangent to the six bisectors ofABC. If we take the
bisectorAI, the contactP is the reflection ofA in the second intersectionAi of
AI with the circumcircle. The corresponding cubicK is the union of the bisector
AI and the conic passing throughB, C, the excentersIb andIc, Ai, the antipode
of A on the circumcircle.

Let us now takeM on the circleCH with centerH, radius2R and let us de-
note byTM the tangent atM to CH . The orthopoleP of TM with respect to the
antimedial triangle is a point onH3.

The corresponding cubicK meets(O) at P1 (double) andP3. The common
tangent atP1 toK and(O) is parallel toTM . Note thatP1 lies on the Simson line
SP of P with respect to the antimedial triangle.

The perpendicular atP1 to SP meets(O) again atP3 which is the antipode on
(O) of the second intersectionQ3 of SP and(O). The Simson line ofP3 is parallel
to TM .

It follows thatK has a triple common point with(O) if and only ifP1 andQ3 are
antipodes on(O) i.e. if and only ifSP passes throughO. This gives the following
theorem.
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Theorem 6. There are exactly three isogonal pivotal cubics which are tridents.

Their pivots are the cusps of the deltoidH3. The triple contacts with(O) are
the vertices of the circumnormal triangle.4 These points are obviously inflexion
points and the inflexional tangent is parallel to a sideline of the Morley triangle.
See Figure 8.

A

B C

H3

P

Ia

I
O

P1

McCay

cubic

Ib

Ic

Figure 8. Isogonal pivotal trident

2.5. Tangents atQ1, Q2, Q3. We know that the tangents atA, B, C to any pivotal
cubic concur atP ∗. This is not necessarily true for those atQ1, Q2, Q3.

Theorem 7. The tangents atQ1, Q2, Q3 to the isogonal cubicpK(X6, P ) concur
if and only ifP lies on the quinticQ063 with equation

∑

cyclic

a2y2z2 (SC(x + y)− SB(x + z)) = 0.

Q063 is a circular quintic with singular focusX376, the reflection ofG in O. It
has three real asymptotes parallel to those of the Thomson cubic and concurrent at
G.

4These three points are the common points of the circumcircleand the McCay cubic apartA, B,
C.
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A, B, C are nodes and the fifth points on the sidelines ofABC are the vertices
A′, B′, C ′ of the pedal triangle ofX20, the de Longchamps point. The tangents at
these points pass throughX20 and meet the corresponding bisectors at six points
on the curve. See Figure 9.

A

B C

G I

X20

A’

H

Ia

X1113

X1114

Ib

Ic

B’
C’

Figure 9. The quinticQ063

Q063 containsI, the excenters,G, H, X20, X1113, X1114. Hence, for the Thom-
son cubic, the orthocubic, and the Darboux cubic, the tangents atQ1, Q2, Q3 con-
cur. The intersection of these tangents areX25 for the orthocubic, andX1498 for
the Darboux cubic. For the Thomson cubic, this is an unknown point5 in the current
edition of ETC on the lineGX1350.

5This has first barycentric coordinate

a
2(3S

2

A + 2a
2
SA + 5b

2
c
2).
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3. Non-isogonal pivotal cubics

We now consider a non-isogonal pivotal cubicK with poleω 6= K and pivotπ.
We recall thatπ∗ is theω−isoconjugate ofπ and thatπ/π∗ is the cevian quotient

of π andπ∗, these three points lying on the cubic.

3.1. Circular cubics. In this special case, two of the points, sayQ2 andQ3, are
the circular points at infinity. This gives already five common points of the cubic
on the circumcircle and the sixth pointQ1 must be real.

The isoconjugation with poleω swaps the pivotπ and the isopivotπ∗ which
must be the inverse (in the circumcircle ofABC) of the isogonal conjugate ofπ.
In this case, the cubic contains the pointT , isogonal conjugate of the complement
of π. This gives the following

Theorem 8. A non isogonal circular pivotal cubicK meets the circumcircle atA,
B, C, the circular points at infinity and another (real) pointQ1 which is the second
intersection of the line throughT andπ/π∗ with the circle passing throughπ, π∗

andπ/π∗.

Example: The Droussent cubicK008. This is the only circular isotomic pivotal
cubic. See Figure 10.

A

B C

π

T

Q1

π∗

π/π∗

Figure 10. The Droussent cubicK008

The pointsπ, π∗, T , Q1 areX316, X67, X671, X2373 respectively. The point
π/π∗ is not mentioned in the current edition of [6].

Note that whenπ = H, there are infinitely many circular pivotal cubics with
pivot H, with isopivotπ∗ at infinity. These cubics are the isogonal circular pivotal
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cubics with respect to the orthic triangle. They have their singular focusF on the
nine point circle and their poleω on the orthic axis. The isoconjugateH∗ of H
is the point at infinity of the cubic. The intersection with their real asymptote is
X, the antipode ofF on the nine point circle and, in this case,X = π/π∗. This
asymptote envelopes the Steiner deltoidH3. The sixth pointQ1 on the circumcircle
is the orthoassociate ofX, i.e. the inverse ofX in the polar circle.

Example: The Neuberg orthic cubicK050. This is the Neuberg cubic of the orthic
triangle. See [3].

3.2. General theorems for non circular cubics.

Theorem 9. K meets the circumcircle atA, B, C and three other pointsQ1, Q2,
Q3 (one at least is real) lying on a same conic passing throughπ, π∗ andπ/π∗.

Note that this conic meets the circumcircle again at the isogonal conjugate of the
infinite point of the trilinear polar of the isoconjugate ofω under the isoconjugation
with fixed pointπ.

With ω = p : q : r andπ = u : v : w, this conic has equation
∑

cyclic

p2v2w2(c2y+b2z)(wy−vz)+qru2x(vw(c2v−b2w)x+u(b2w2y−c2v2z)) = 0,

and the point on the circumcircle is :

a2

u2(rv2 − qw2)
:

b2

v2(pw2 − ru2)
:

c2

w2(qu2 − pv2)

Theorem 10. The conic inscribed in trianglesABC and Q1Q2Q3 is that with
perspector the cevian product ofπ andtgω, the isotomic of the isogonal ofω.

3.3. Relation with isogonal pivotal cubics.

Theorem 11. K meets the circumcircle at the same points as the isogonal pivotal
cubic with pivotP = u : v : w if and only if its poleω lie on the cubicKpole with
equation

∑

cyclic

(v + w)(c4y − b4z)
x2

a2
−





∑

cyclic

(b2 − c2)u



 xyz = 0

⇐⇒
∑

cyclic

a2u(c2y − b2z)(−a4yz + b4zx + c4xy) = 0.

In other words, for any pointω onKpole, there is a pivotal cubic with poleω
meeting the circumcircle at the same points as the isogonal pivotal cubic with pivot
P = u : v : w.
Kpole is a circum-cubic passing throughK, the vertices of the cevian triangle of

gcP , the isogonal conjugate of the complement ofP . The tangents atA, B, C are
the cevians ofX32.

The second equation above clearly shows that all these cubics belong to a same
net of circum-cubics passing throughK having the same tangents atA, B, C.
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This net can be generated by three decomposed cubics, one of them being the
union of the symmedianAK and the circum-conic with perspector theA-harmonic
associate ofX32.

For example, withP = H, Kpole is a nodal cubic with nodeK and nodal
tangents parallel to the asymptotes of the Jerabek hyperbola. It containsX6, X66,
X193, X393, X571, X608, X1974, X2911 which are the poles of cubics meeting the
circumcircle at the same points as the orthocubicK006.

Theorem 12. K meets the circumcircle at the same points as the isogonal pivotal
cubic with pivotP = u : v : w if and only if its pivotπ lie on the cubicKpivot with
equation

∑

cyclic

(v + w)(c4y − b4z) x2 +





∑

cyclic

(b2 − c2)u



 xyz = 0.

In other words, for any pointπ onKpivot, there is a pivotal cubic with pivotπ
meeting the circumcircle at the same points as the isogonal pivotal cubic with pivot
P = u : v : w.
Kpivot is a circum-cubic tangent atA, B, C to the symmedians. It passes through

P , the points on the circumcircle and on the isogonal pivotal cubic with pivotP ,
the infinite points of the isogonal pivotal cubic with pivot the complement ofP , the
vertices of the cevian triangle of tcP , the isotomic conjugate of the complement of
P .

Following the example above, withP = H, Kpivot is also a nodal cubic with
nodeH and nodal tangents parallel to the asymptotes of the Jerabekhyperbola. It
containsX3, X4, X8, X76, X847 which are the pivots of cubics meeting the cir-
cumcircle at the same points as the orthocubic, three of thembeingpK(X193,X76),
pK(X571,X3) andpK(X2911,X8).

Remark.Adding up the equations ofKpole andKpivot shows that these two cubics
generate a pencil containing thepK with pole theX32-isoconjugate of cP , pivot
theX39-isoconjugate of cP and isopivotX251.

For example, withP = X69, this cubic ispK(X6,X141). The nine common
points of all the cubics of the pencil areA, B, C, K, X1169 and the four foci of the
inscribed ellipse with centerX141, perspectorX76.

3.4. PivotalKpole andKpivot. The equations ofKpole andKpivot clearly show that
these two cubics are pivotal cubics if and only ifP lies on the lineGK. This gives
the two following corollaries.

Corollary 13. WhenP lies on the lineGK, Kpole is a pivotal cubic and contains
K, X25, X32. Its pivot is gcP (on the circum-conic throughG and K) and its
isopivot isX32. Its pole is the barycentric product ofX32 and gcP . It lies on the
circum-conic throughX32 andX251.

All these cubics belong to a same pencil of pivotal cubics. Furthermore,Kpole

contains the cevian quotients of the pivot gcP andK, X25, X32. Each of these



224 B. Gibert

points is the third point of the cubic on the corresponding sideline of the triangle
with verticesK, X25, X32. In particular,X25 gives the point gtP .

Table 1 shows a selection of these cubics.

P Kpole containsK, X25, X32 and cubic

X2 X31, X41, X184, X604, X2199 K346
X69 X2, X3, X66, X206, X1676, X1677 K177
X81 X1169, X1333, X2194, X2206

X86 X58, X1171

X193 X1974, X3053

X298 X15, X2981

X323 X50, X1495

X325 X511, X2987

X385 X1691, X1976

X394 X154, X577

X491 X372, X589

X492 X371, X588

X524 X111, X187

X1270 X493, X1151

X1271 X494, X1152

X1654 X42, X1918, X2200

X1992 X1383, X1384

X1994 X51, X2965

X2895 X37, X213, X228, X1030

atX1916 X237, X384, X385, X694, X733, X904, X1911, X2076, X3051

Table 1.Kpole with P on the lineGK.

Remark.atX1916 is the anticomplement of the isotomic conjugate ofX1916.

Corollary 14. WhenP lies on the lineGK,Kpivot containsP , G, H, K. Its pole
is gcP (on the cubic) and its pivot is tcP on the Kiepert hyperbola.

All these cubics also belong to a same pencil of pivotal cubics.
Table 2 shows a selection of these cubics.
We remark thatKpole is the isogonal of the isotomic transform ofKpivot but this

correspondence is not generally true for the pivotπ and the poleω. To be more
precise, forπ onKpivot, the poleω onKpole is the Ceva-conjugate of gcP and gtπ.

From the two corollaries above, we see that, given an isogonal pivotal cubicK
with pivot on the lineGK, we can always find two cubics with polesX25, X32 and
three cubics with pivotsG, H, K sharing the same points on the circumcircle as
K. Obviously, there are other such cubics but their pole and pivot both depend of
P . In particular, we havepK(gcP , tcP ) andpK(O× gcP , gcP ).

We illustrate this withP = G (and gcP = K) in which caseKpivot is the
Thomson cubicK002 andKpole is K346. Forπ andω chosen accordingly on these
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P Kpivot containsX2, X4, X6 and cubic

X2 X1, X3, X9, X57, X223, X282, X1073, X1249 K002
X6 X83, X251, X1176

X69 X22, X69, X76, X1670, X1671 K141
X81 X21, X58, X81, X572, X961, X1169, X1220, X1798, X2298 K379
X86 X86, X1126, X1171

X193 X25, X193, X371, X372, X2362 K233
X298 X298, X2981

X323 X30, X323, X2986

X325 X325, X2065, X2987

X385 X98, X237, X248, X385, X1687, X1688, X1976 K380
X394 X20, X394, X801

X491 X491, X589

X492 X492, X588

X524 X23, X111, X524, X671, X895 K273
X1270 X493, X1270

X1271 X494, X1271

X1611 X439, X1611

X1654 X10, X42, X71, X199, X1654

X1992 X598, X1383, X1992, X1995 K283
X1993 X54, X275, X1993

X1994 X5, X1166, X1994

X2287 X1817, X2287

X2895 X37, X72, X321, X2895, X2915

X3051 X384, X3051

atX1916 X39, X256, X291, X511, X694, X1432, X1916 K354

Table 2.Kpivot with P on the lineGK

cubics, we obtain a family of pivotal cubics meeting the circumcircle at the same
points as the Thomson cubic. See Table 3 and Figure 11.

With P = X69 (isotomic conjugate ofH), we obtain several interesting cubics
related to the centroidG=gcP , the circumcenterO=gtP . Kpole is K177, Kpivot is
K141 and the cubicspK(X2,X76) = K141, pK(X3,X2) = K168, pK(X6,X69)
= K169, pK(X32,X22) = K174, pK(X206,X6) have the same common points on
the circumcircle.
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π ω (Xi or SEARCH) cubic orXi on the cubic

X1 X41 X1, X6, X9, X55, X259

X2 X6 K002
X3 X32 K172
X4 0.1732184721703 X4, X6, X20, X25, X154, X1249

X6 X184 K167
X9 X31 X1, X6, X9, X56, X84, X165, X198, X365

X57 X2199 X6, X40, X56, X57, X198, X223

X223 X604 X6, X57, X223, X266, X1035, X1436

X282 0.3666241407629 X6, X282, X1035, X1436, X1490

X1073 0.6990940852287 X6, X64, X1033, X1073, X1498

X1249 X25 X4, X6, X64, X1033, X1249

Table 3. Thomson cubicK002 and some related cubics

A

B C

pK(X41,X1)

K

K002

K172

K167

pK(X31,X9)

pK(X604,X223)

Figure 11. Thomson cubicK002 and some related cubics

4. Non isogonal pivotal cubics and concurrent tangents

We now generalize Theorem 7 for any pivotal cubic with poleΩ = p : q : r and
pivot P = u : v : w, meeting the circumcircle atA, B, C and three other points
Q1, Q2, Q3. We obtain the two following theorems.
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Theorem 15. For a given poleΩ, the tangents atQ1, Q2, Q3 to the pivotal cubic
with poleΩ are concurrent if and only if its pivotP lies on the quinticQ(Ω).

Remark.Q(Ω) contains the following points:
– A, B, C which are nodes,
– the square roots ofΩ,
– tgΩ, theΩ-isoconjugate ofK,

– the vertices of the cevian triangle ofZ =
(

(c4pq+b4rp−a4qr)p
a2 : · · · : · · ·

)

, the

isoconjugate of the crossconjugate ofK and tgΩ in the isoconjugation with fixed
point tgΩ,
– the common points of the circumcircle and the trilinear polar ∆1 of tgΩ,
– the common points of the circumcircle and the line∆2 passing through tgΩ and
the cross-conjugate ofK and tgΩ.

Theorem 16. For a given pivotP , the tangents atQ1, Q2, Q3 to the pivotal cubic
with pivotP are concurrent if and only if its poleΩ lies on the quinticQ′(P ).

Remark.Q′(P ) contains the following points:
– the barycentric productP ×K,
– A, B, C which are nodes, the tangents being the cevian lines ofX32 and the
sidelines of the anticevian triangle ofP ×K,
– the barycentric squareP 2 of P and the vertices of its cevian triangle, the tangent
atP 2 passing throughP ×K.

5. Equilateral triangles

The McCay cubic meets the circumcircle atA, B, C and three other points
Na, Nb, Nc which are the vertices of an equilateral triangle. In this section, we
characterize all the pivotal cubicsK = pK(Ω, P ) having the same property.

We know that the isogonal conjugates of three such pointsNa, Nb, Nc are the in-
finite points of an equilateral cubic (aK60, see [2]) and that the isogonal transform
of K is another pivotal cubicK′ = pK(Ω′, P ′) with pole Ω′ the X32-isocongate
of Ω, with pivot P ′ the barycentric product ofP and the isogonal conjugate ofΩ.
HenceKmeets the circumcircle at the vertices of an equilateral triangle if and only
if K′ is apK60.

Following [2,§6.2], we obtain the following theorem.

Theorem 17. For a given poleΩ or a given pivotP , there is one and only one piv-
otal cubicK = pK(Ω, P ) meeting the circumcircle at the vertices of an equilateral
triangle.

With Ω = K (or P = O) we obviously obtain the McCay cubic and the equilat-
eral triangle is the circumnormal triangle. More generally, apK meets the circum-
circle at the vertices of circumnormal triangle if and only if its poleΩ lies on the
circum-cubicK378 passing throughK, the vertices of the cevian triangle of the
Kosnita pointX54, the isogonal conjugates ofX324, X343. The tangents atA, B,
C are the cevians ofX32. The cubic is tangent atK to the Brocard axis andK is a
flex on the cubic. See [3] and Figure 12.

The locus of pivots of these same cubics isK361. See [3] and Figure 13.
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Figure 12. K378, the locus of poles of circumnormalpKs
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Figure 13. K361, the locus of pivots of circumnormalpKs
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On a Construction of Hagge

Christopher J. Bradley and Geoff C. Smith

Abstract. In 1907 Hagge constructed a circle associated with each cevian point
P of triangle ABC. If P is on the circumcircle this circle degenerates to a
straight line through the orthocenter which is parallel to the Wallace-Simson line
of P . We give a new proof of Hagge’s result by a method based on reflections.
We introduce an axis associated with the construction, and (via an areal anal-
ysis) a conic which generalizes the nine-point circle. The precise locus of the
orthocenter in a Brocard porism is identified by using Hagge’s theorem as a tool.
Other natural loci associated with Hagge’s construction are discussed.

1. Introduction

One hundred years ago, Karl Hagge wrote an article inZeitschrift f̈ur Mathema-
tischen und Naturwissenschaftliche Unterrichtentitled (in loose translation) “The
Fuhrmann and Brocard circles as special cases of a general circle construction”
[5]. In this paper he managed to find an elegant extension of the Wallace-Simson
theorem when the generating point is not on the circumcircle. Instead of creating a
line, one makes a circle through seven important points. In§2 we give a new proof
of the correctness of Hagge’s construction, extend and apply the idea in various
ways. As a tribute to Hagge’s beautiful insight, we present this work as a cente-
nary celebration. Note that the name Hagge is also associated with other circles
[6], but here we refer only to the construction just described. Here we present new
synthetic arguments to justify Hagge’s construction, but the first author has also
performed detailed areal calculations which provide an algebraic alternative in [2].

The triangleABC has circumcircleΓ, circumcenterO and orthocenterH. See
Figure 1. ChooseP a point in the plane ofABC. The cevian linesAP , BP , CP
meetΓ again atD, E andF respectively. ReflectD in BC to a pointU , E in CA
to a pointV andF in AB to a pointW . Let UP meetAH at X, V P meetBH
at Y andWP meetCH at Z. Hagge proved that there is a circle passing through
X, Y , Z, U , V , W andH [5, 7]. See Figure 1. Our purpose is to amplify this
observation.

Hagge explicitly notes [5] the similarities betweenABC andXY Z, between
DEF andUV W , and the fact that both pairs of trianglesABC, DEF andXY Z,
UV W are in perspective throughP . There is an indirect similarity which carries
the pointsABCDEFP to XY ZUV WP .

Peiser [8] later proved that the centerh(P ) of this Hagge circle is the rotation
throughπ about the nine-point center ofABC of the isogonal conjugateP ∗ of P .
His proof was by complex numbers, but we have found a direct proof by classical

Publication Date: December 18, 2007. Communicating Editor: Paul Yiu.
We thank the editor Paul Yiu for very helpful suggestions which improved the development of

Section 5.
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Figure 1. The Hagge construction

means [4]. In our proof of the validity of Hagge’s construction we work directly
with the center of the circle, whereas Hagge worked with the point at the far end
of the diameter throughH. This gives us the advantage of being able to study the
distribution of points on a Hagge circle by means of reflections in lines through its
center, a device which was not available with the original approach.

The pointP ∗ is collinear withG andT , the far end of the diameter fromH. The
vector argument which justifies this is given at the start of§5.1. Indeed, we show
thatP ∗G : GT = 1 : 2.

There are many important special cases. Here are some examples, but Hagge
[5] listed even more.

(i) WhenP = K, the symmedian point, the Hagge circle is the orthocentroidal
circle. 1

(ii) WhenP = I, the incenter, the Hagge circle is the Fuhrmann circle.
(iii) When P = O, the circumcenter, the Hagge circle and the circumcircle are

concentric.

1In [5] Hagge associates the name Böklen with the study of this circle (there were two geometers
with this name active at around that time), and refers the reader to a work of Prof Dr Lieber, possibly
H. Lieber who wrote extensively on advanced elementary mathematics in thefin de siècle.
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(iv) WhenP = H, the orthocenter, the Hagge circle degenerates to the pointH.
(v) The circumcenter is the orthocenter of the medial triangle, and the Brocard

circle on diameterOK arises as a Hagge circle of the medial triangle with respect
to the centroidG of ABC.

Note thatUH is the doubled Wallace-Simson line ofD, by which we mean the
enlargement of the Wallace-Simson line with scale factor2 from centerD. Sim-
ilarly V H andWH are the doubled Wallace-Simson lines ofE andF . Now it
is well known that the angle between two Wallace-Simson lines is half the angle
subtended atO by the generating points. This applies equally well to doubled
Wallace-Simson lines. A careful analysis (taking care to distinguish between an-
gles and their supplements) will yield the angles betweenUH, V H andWH, from
which it can be deduced thatUV W is indirectly similar toDEF . We will not ex-
plain the details but rather we present a robust argument forProposition 2 which
does not rely on scrupulous bookkeeping.

Incidentally, if P is on Γ, then the Hagge circle degenerates to the doubled
Wallace-Simson line ofP . For the rest of this paper, we make the explicit assump-
tion thatP is not onΓ. The work described in the rest of this introduction is not
foreshadowed in [5]. SinceABCDEFP is similar toXY ZUV WP , it follows
thatABC is indirectly similar toXY Z and the similarity sendsDEF to UV W .
The pointP turns out to be the unique fixed point of this similarity. Thissimilarity
must carry a distinguished pointH+ on Γ to H. We will give a geometric recipe
for locatingH+ in Proposition 3.

This process admits of extension both inwards and outwards.One may construct
the Hagge circle ofXY Z with respect toP , or find the triangleRST so that the
Hagge circle ofRST with respect toP is Γ (with ABC playing the former role
of XY Z). The composition of two of these indirect similarities is an enlargement
with positive scale factor fromP .

Proposition 2 sheds light on some of our earlier work [3]. LetG be the centroid,
K the symmedian point, andω the Brocard angle of triangleABC. Also, letJ be
the center of the orthocentroidal circle (the circle on diameterGH). We have long

been intrigued by the fact that
OK2

R2
=

JK2

JG2
since areal algebra can be used to

show that each quantity is1−3 tan2 ω. In §3.3 we will explain how the similarity is
a geometric explanation of this suggestive algebraic coincidence. In [3] we showed
how to construct the sides of (non-equilateral) triangleABC given only the data
O, G, K. The method was based on finding a cubic which hada2, b2, c2 as roots.
We will present an improved algebraic explanation in§3.2.

We show in Proposition 4 that there is a pointF which when used as a cevian
point, generates the same Hagge circle for every triangle ina Brocard porism. Thus
the locus of the orthocenter in a Brocard porism must be confined to a circle. We
describe its center and radius. We also exhibit a point whichgives rise to a fixed
Hagge circle with respect to the medial triangles, as the reference triangle ranges
over a Brocard porism.
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We make more observations about Hagge’s configuration. Given the large num-
ber of points lying on conics (circles), it is not surprisingthat Pascal’s hexagon
theorem comes into play. LetV W meetAH at L, WU meetBH at M , andUV
meetsCH at N . In §4 we will show thatLMNP are collinear, and we introduce
the term Hagge axis for this line.

In §5 we will exhibit amidpoint conicwhich passes through six points associated
with the Hagge construction. In special case (iv), whenP = H, this conic is the
nine-point circle ofABC. Drawings lead us to conjecture that the center of the
midpoint conic isN .

In §6 we study some natural loci associated with Hagge’s construction.

2. The Hagge Similarity

We first locate the center of the Hagge circle, but not, as Peiser [8] did, by using
complex numbers. A more leisurely exposition of the next result appears in [4].

Proposition 1. Given a pointP in the plane of triangleABC, the centerh(P ) of
the Hagge circle associated withP is the point such the nine-point centerN is the
midpoint ofh(P )P ∗ whereP ∗ denotes the isogonal conjugate ofP .

Proof. Let AP meet the circumcircle atD, and reflectD in BC to the pointU .
The lineUH is the doubled Simson line ofD, and the reflections ofD in the other
two sides are also on this line. The isogonal conjugate ofD is well known to be
the point at infinity in the direction parallel toAP ∗ . (This is the degenerate case
of the result that ifD′ is not on the circumcircle, then the isogonal conjugate ofD′

is the center of the circumcircle of the triangle with vertices the reflections ofD′

in the sides ofABC).
ThusUH ⊥ AP ∗. To finish the proof it suffices to show that ifOU ′ is the

rotation throughπ of UH aboutN , thenAP ∗ is the perpendicular bisector of
OU ′. However,AO = R so it is enough to show thatAU ′ = R. Let A′ denote
the rotation throughπ of A aboutN . From the theory of the nine-point circle it
follows thatA′ is also the reflection ofO in BC. ThereforeOUDA′ is an isosceles
trapezium withOA′//UD. ThereforeAU ′ = A′U = OD = R. �

We are now in a position to prove what we call the Hagge similarity which is
the essence of the construction [5].

Proposition 2. The triangleABC has circumcircleΓ, circumcenterO and ortho-
centerH. Choose a pointP in the plane ofABC other thanA, B, C. The cevian
linesAP , BP , CP meetΓ again atD, E, F respectively. ReflectD in BC to a
pointU , E in CA to a pointV andF in AB to a pointW . LetUP meetAH at X,
V P meetBH at Y andWP meetCH at Z. The pointsXY ZUV WH are con-
cyclic, and there is an indirect similarity carryingABCDEFP to XY ZUV WP .

Discussion.The strategy of the proof is as follows. We consider six linesmeeting
at a point. Any point of the plane will have reflections in the six lines which are
concyclic. The angles between the lines will be arranged so that there is an indirect
similarity carryingABCDEF to the reflections ofH in the six lines. The location
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of the point of concurrency of the six lines will be chosen so that the relevant six
reflections ofH areUV WX1Y1Z1 whereX1, Y1 andZ1 are to be determined,
but are placed on the appropriate altitudes so that they are candidates to become
X, Y andZ respectively. The similarity then ensures thatUV W andX1Y1Z1

are in perspective from a pointP ′. Finally we show thatP = P ′, and it follows
immediately thatX = X1, Y = Y1 andZ = Z1. We rely on the fact that we know
where to make the six lines cross, thanks to Proposition 1. This is not the proof
given in [5].

Proof of Proposition 2.Let ∠DAC = a1 and∠BAD = a2. Similarly we define
b1, b2, c1 andc2. We deduce that the angles subtended byA, F , B, D, D andE at
O as shown in Figure 2.

O

A

B C

D

E

F

2a2

2b1

2b22c1

2c2

2a1

Figure 2. Angles subtended at the circumcenter ofABC

By Proposition 1,h(P ) is on the perpendicular bisector ofUH which is parallel
to AP ∗ (and similar results by cyclic change).

Draw three lines throughh(P ) which are parallel to the sides ofABC and three
more lines which are parallel toAP ∗ , BP ∗ andCP ∗ . See Figure 3.

Let X1, Y1 andZ1 be the reflections ofH in the lines parallel toBC, CA and
AB respectively. AlsoU , V andW are the reflections ofH in the lines parallel to
AP ∗, BP ∗ andCP ∗. ThusX1Y1Z1UV W are all points on the Hagge circle. The
angles between the lines are as shown, and the consequences for the six reflections
of H are thatX1Y1Z1UV W is a collection of points which are indirectly similar
to ABCDEF . It is not necessary to know the location ofH in Figure 3 to deduce
this result. Just compare Figures 2 and 4. The point is that∠X1h(P )V = ∠EOA.

A similar argument works for each adjacent pair of vertices in the cyclic list
X1V Z1UY1W and an indirect similarity is established. Let this similarity carrying
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Figure 3. Reflections of the orthocenter

ABCDEF to X1Y1Z1UV W beκ. It remains to show thatκ(P ) = P (for then it
will follow immediately thatX1 = X, Y1 = Y andZ1 = Z).

V

H

h(P )

X1

α

2b1

α

β

β

b1

Figure 4. Two reflections ofH

NowX1Y1Z1 is similar toABC, and the vertices ofX1Y1Z1 are on the altitudes
of ABC. Also UV W is similar toDEF , and the linesX1U , Y1V andZ1W are
concurrent at a pointP1. Consider the directed line segmentsAD andX1U which
meet atQ. The linesAX1 andUD are parallel soAX1Q andDUQ are similar
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triangles, so in terms of lengths,AQ : QD = X1Q : QU . Sinceκ carriesAD
to X1U , it follows thatQ is a fixed point ofκ. Now if κ had at least two fixed
points, then it would have a line of fixed points, and would be areflection in that
line. Howeverκ takesDEF to UV W , to this line would have to beBC, CA and
AB. This is absurd, soQ is the unique fixed point ofκ. By cyclic changeQ is on
AD, BE andCF soQ = P . Also Q is onX1U , Y1V andZ1W soQ = P1. Thus
X1U , Y1V andZ1W concur atP . ThereforeX1 = X, Y1 = Y andZ1 = Z. �

Proposition 3. The similarity of Proposition 2 applied toABC, P carries a point
H+ on Γ to H. The same result applied toXY Z, P carriesH to the orthocenter
H− of XY Z. We may constructH+ by drawing the rayPH− to meetΓ at H+.

Proof. The similarity associated withABC andP is expressible as: reflect inPA,
scale by a factor ofλ from P , and rotate aboutP through a certain angle. Note that
if we repeat the process, constructing a similarity using the XY Z as the reference
triangle, but still with cevian pointP , the resulting similarity will be expressible
as: reflect inXP , scale by a factor ofλ from P , and rotate aboutP through a
certain angle. SinceXY ZP is indirectly similar toABCP , the angles through
which the rotation takes place are equal and opposite. The effect of composing the
two similarities will be an enlargement with centerP and (positive) scale factor
λ2. �

Thus in a natural example one would expect the pointH+ to be a natural point.
Drawings indicate that when we consider the Brocard circle,H+ is the Tarry point.

3. Implications for the Symmedian Point and Brocard geometry

3.1. Standard formulas.We first give a summary of useful formulas which can
be found or derived from many sources, including Wolfram Mathworld [11]. The
variables have their usual meanings.

abc = 4R△, (1)

a2 + b2 + c2 = 4△ cot ω, (2)

a2b2 + b2c2 + c2a2 = 4△2 csc2 ω, (3)

a4 + b4 + c4 = 8△2(csc2 ω − 2), (4)

where (3) can be derived from the formula

RB =
abc

√
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

4(a2 + b2 + c2)△

=
R

√

1 − 4 sin2 ω

2 cos ω

for the radiusRB of the Brocard circle given in [11]. The square of the distance
between the Brocard points was determined by Shail [9]:

ΩΩ′2 = 4R2 sin2 ω(1 − 4 sin2 ω) (5)
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which in turn is an economical way of expressing

a2b2c2(a4 + b4 + c4 − a2b2 − b2c2 − c2a2)

(a2b2 + b2c2 + c2a2)2
.

We will use these formulas in impending algebraic manipulations.

3.2. The symmedian point.Let G be the centroid,K the symmedian point, andω
be the Brocard angle of triangleABC. Also let J be the center of the orthocen-
troidal circle (the circle on diameterGH). It is an intriguing fact that

OK2

R2
=

JK2

JG2
(6)

since one can calculate that each quantity is1− 3 tan2 ω. The similarity of Propo-
sition 2 explains this suggestive algebraic coincidence via the following paragraph.

We first elaborate on Remark (v) of§1. Let hmed denote the function which
assigns to a pointP the centerhmed(P ) of the Hagge circle associated withP
when the triangle of reference is the medial triangle. The medial triangle is the
enlargement ofABC from G with scale factor−1

2
. Let Kmed be the symmedian

point of the medial triangle. NowKmed, G, K are collinear andKmedG : GK =
1 : 2 = QG : GN , whereQ is the midpoint ofON . Thus, triangleGNK and
GQKmed are similar andQ is the nine-point center of the medial triangle. By [8],
hmed(G) is the reflection inQ of Kmed. But the lineQhmed(G) is parallel toNK
andQ is the midpoint ofON . Therefore,hmed(G) is the midpoint ofOK, and so
is the center of the Brocard circle ofABC. The similarity of Proposition 2 and the
one between the reference and medial triangle, serve to explain (6).

3.3. The Brocard porism.A Brocard porism is obtained in the following way. Take
a triangleABC and its circumcircle. Draw cevian lines through the symmedian
point. There is a unique conic (the Brocard ellipse) which istangent to the sides
where the cevians cuts the sides. The Brocard points are the foci of the ellipse.
There are infinitely many triangle with this circumcircle and this inconic. Indeed,
every point of the circumcircle arises as a vertex of a uniquesuch triangle.

These poristic triangles have the same circumcenter, symmedian point, Brocard
points and Brocard angle. For each of them, the inconic is their Brocard ellipse.
Any geometrical feature of the triangle which can be expressed exclusively in terms
of R, ω and the locations ofO andK will give rise to a conserved quantity among
the poristic triangles.

This point of view also allows an improved version of the algebraic proof thata,
b andc are determined byO, G andK [3]. Because of the ratios on the Euler line,
the orthocenter H and the orthocentroidal center are determined. Now Equation (6)
determinesR and angleω. However,9R2− (a2 + b2 + c2) = OH2 soa2 + b2 + c2

is determined. Also the area△ of ABC is determined by (2). Now (1) means
abc and soa2b2c2 is determined. Also, (3) determinesa2b2 + b2c2 + c2a2. Thus
the polynomial(X − a2)(X − b2)(X − c2) is determined and so the sides of the
triangle can be deduced.
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As we move through triangles in a Brocard porism using a fixed cevian pointP ,
the Hagge circles of the triangles vary in general, but ifP is chosen appropriately,
the Hagge circle if each triangle in the porism is the same.

Proposition 4. LetF be the fourth power point2 of a triangle in a Brocard porism,
so that it has areal coordinates(a4, b4, c4). The fourth power pointF is the same
point for all triangles in the porism. Moreover, whenP = F , the Hagge circle of
each triangle is the same.

Proof. Our plan is to show that the pointh(F ) is the same for all triangles in the
porism, and then to show that the distanceh(F )H is also constant (though the
orthocentersH vary). Recall that the nine-point center is the midpoint ofO and
H, and ofF ∗ and h(P ). Thus there is a (variable) parallelogramOh(F )HF ∗

which will prove very useful.
The fourth power pointF is well known to lie on the Brocard axis where the

tangents to the Brocard circle atΩ and Ω′ meet. ThusF is the same point for
all triangles in the Brocard porism. The isogonal conjugateof F (incidentally the
isotomic conjugate of the symmedian point) isF ∗ = Kt =

(

1
a2 , 1

b2
, 1

c2

)

.
In any triangleOK is parallel toF ∗H. To see this, note thatOK has equation

b2c2(b2 − c2)x + c2a2(c2 − a2)y + a2b2(a2 − b2)z = 0.

Also F ∗H has equation
∑

cyclic

b2c2(b2 − c2)(b2 + c2 − a2)x = 0.

These equations are linearly dependent withx + y + z = 0 and hence the lines are
parallel. (DERIVE confirms that the3×3 determinant vanishes). In a Hagge circle
with P = F , P ∗ = F ∗ andF ∗Hh(F )O is a parallelogram. ThusOK is parallel
to F ∗H and because of the parallelogram,h(F ) is a (possibly variable) point on
the Brocard axisOK.

Next we show that the pointh(F ) us a common point for the poristic triangles.
The first component of the normalized coordinates ofF ∗ andH are

F ∗
x =

b2c2

a2b2 + b2c2 + c2a2

and

Hx =
(a2 + b2 − c2)(c2 + a2 − b2)

16△2

where△ is the area of the triangle in question. The components of thedisplace-
mentF ∗H are therefore

a2 + b2 + c2

16△2
(a2b2 + b2c2 + c2a2)(x, y, z)

2Geometers who speak trilinear rather than areal are apt to call F the third power point for obvious
reasons.



240 C. J. Bradley and G. C. Smith

wherex = a2(a2b2 + a2c2 − b4 − c4), with y andz found by cyclic change ofa,
b, c. Using the areal distance formula this provides

F ∗H2 =
a2b2c2(a2 + b2 + c2)2(a4 + b4 + c4 − a2b2 − b2c2 − c2a2)

16△2(a2b2 + b2c2 + c2a2)2
.

Using the formulas of§3.1 we see that

Oh(F ) = F ∗H = 2R cos ω
√

1 − 4 sin2 ω

is constant for the poristic triangles. The pointO is fixed so there are just two
candidates for the location ofh(F ) on the common Brocard axis. By continuity
h(F ) cannot move between these places and soh(F ) is a fixed point.

To finish this analysis we must show that the distanceh(F )H is constant for the
poristic triangles. This distance is the same asF ∗O by the parallelogram. If a point
X has good areal coordinates, it is often easy to find a formula for OX2 using the
generalized parallel axis theorem [10] becauseOX2 = R2 − σ2

X andσ2
X denotes

the mean square distance of the triangle vertices from themselves, given that they
carry weights which are the corresponding areal coordinates ofX.

In our caseF ∗ = (a−2, b−2, c−2), so

σ2
F ∗ =

1

(a−2 + b−2 + c−2)2
(a2b−2c−2 + a−2b2c−2 + a−2b−2c2)

=
a2b2c2

a2b2 + b2c2 + c2a2
(a4 + b4 + c4).

This can be tidied using the standard formulas to show thatF ∗O = R(1−4 sin2 ω).
The distanceHh(F ) = F ∗O is constant for the poristic triangles andh(F ) is a
fixed point, so the Hagge circle associated withF is the same for all the poristic
triangles. �

Corollary 5. In a Brocard porism, as the poristic triangles vary, the locus of their
orthocenters is contained in a circle with their common center h(F ) on the Brocard
axis, whereF is the(areal)fourth power point of the triangles. The radius of this
circle isR(1 − 4 sin2 ω).

In fact there is a direct method to show that the locus ofH in the Brocard porism
is a subset of a circle, but this approach reveals neither center nor radius. We have

already observed that
JK2

JG2
= 1 − 3 tan2 ω so for triangles in a Brocard porism

(with commonO andK) we have
JK2

JO2
=

1 − 3 tan2 ω

4
is constant. So as you

consider the various triangle in the porism,J is constrained to move on a circle of
Apollonius with center some point on the fixed lineOK. Now the vectorOH is
2
3
OJ, soH is constrained to move on a circle with its centerM on the lineOK. In

factH can occupy any position on this circle but we do not need this result (which
follows from K ranging over a circle centerJ for triangles in a Brocard porism
[3]).

There is a point which, when used asP for the Hagge construction using medial
triangles, gives rise to a common Hagge circle as we range over reference triangles
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in a Brocard porism. We use dashes to indicate the names of points with respect to
the medial triangleA′B′C ′ of a poristic triangleABC. We now know thatF is a
common point for the porism, so the distanceOF is fixed. SinceO is fixed in the
Brocard porism and the locus ofH is a circle, it follows that the locus ofN is a
circle with center half way betweenO and the center of the locus ofH.

Proposition 6. Let P be the center of the Brocard ellipse (the midpoint of the
segment joining the Brocard points ofABC). When the Hagge construction is
made for the medial triangleA′B′C ′ using this pointP , then for eachABC in the
porism, the Hagge circle is the same.

Proof. If the areal coordinates of a point are(l,m, n) with respect toABC, then
the areal coordinates of this point with respect to the medial triangle are(m + n−
l, n + l − m, l + n − m). The reference areals ofP are (a2(b2 + c2), b2(c2 +
a2), c2(a2 + b2)) so the medial areals are(b2c2, c2a2, a2b2). The medial areals of
the medial isogonal conjugateP † of P are(a4, b4, c4). Now the similarity carrying
ABC to A′B′C ′ takesO to N andF to P †. Thus in terms of distanceOF =
2P †N and moreoverOF is parallel toP †N . Now,OP †Nh′(P ) is a parallelogram
with center the nine-point center of the medial triangle andh′(P ) is the center of
the medial Hagge circle. It follows thath′(P ) lies onOK at the midpoint ofOF .
Therefore all triangles in the Brocard porism give rise to a Hagge circle ofP (with
respect to the medial triangle) which is the circle diameterOF . �

Incidentally,P is the center of the locus ofN in the Brocard porism. To see this,
note thatN is the midpoint ofOH, so it suffices to show thatOP = PX whereX
is the center of the locus ofH in the Brocard cycle (given thatP is on the Brocard
axis of ABC). However, it is well known thatOP = R

√

1 − 4 sin2 ω and in
Proposition 4 we showed thatOX = 2R cos ω

√

1 − 4 sin2 ω. We must eliminate
the possibility thatX andP are on different sides ofO. If this happened, there
would be at least one triangle for which∠HOK = π. However,K is confined to
the orthocentroidal disk [3] so this is impossible.

4. The Hagge axis

Proposition 7. In the Hagge configuration, letV W meetAH at L, WU meetBH
at M andUV meetCH andN . Then the pointsL, M , N andP are collinear.

We prove the following more general result. In order to applyit, the letters
should be interpreted in the usual manner for the Hagge configuration, andΣ
should be taken as the Hagge circle.

Proposition 8. Let three pointsX, Y andZ lie on a conicΣ and letl1, l2, l3 be
three chordsXH, Y H, ZH all passing through a pointH onΣ. Suppose further
thatP is any point in the plane ofΣ, and letXP , Y P , ZP meetΣ again atU , V
andW respectively. Now, letV W meetl1 at L, WU meetl2 at M , UV meetl3 at
N . ThenLMN is a straight line passing throughP .
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Figure 5. The Hagge axisLMN

Proof. Consider the hexagonHY V UWZ inscribed inΣ. Apply Pascal’s hexagon
theorem. It follows thatM , P , N are collinear. By taking another hexagonN , P ,
L are collinear. �

5. The Hagge configuration and associated Conics

In this section we give an analysis of the Hagge configurationusing barycentric
(areal) coordinates. This is both an enterprise in its own right, serving to confirm
the earlier synthetic work, but also reveals the existence of an interesting sequence
of conics. In what followsABC is the reference triangle and we takeP to have
homogeneous barycentric coordinates(u, v,w). The algebra computer package
DERIVE is used throughout the calculations.

5.1. The Hagge circle and the Hagge axis .The equation ofAP is wy = vz. This
meets the circumcircle, with equationa2yz+b2zx+c2xy = 0, at the pointD with
coordinates(−a2vw, v(b2w + c2v), w(b2w + c2v)). Note that the sum of these
coordinates is−a2vw + v(b2w + c2v) + w(b2w + c2v)). We now want to find the
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coordinates ofU(l,m, n), the reflection ofD in the sideBC. It is convenient to
take the normalization ofD to be the same as that ofU so that

l + m + n = −a2vw + v(b2w + c2v) + w(b2w + c2v)). (7)

In order that the midpoint ofUD lies onBC the requirement is thatl = a2vw.
There is also the condition that the displacementsBC(0,−1, 1) andUD(−a2vw−
l, v(b2w+c2v)−m,w(b2w+c2v)−n) should be at right angles. The condition for
perpendicular displacements may be found in [1, p.180]. When these conditions
are taken into account we find the coordinates ofU are

(l,m, n) = (a2vw, v(c2(v + w) − a2w), w(b2(v + w) − a2v)). (8)

The coordinates ofE, F , V , W can be obtained from those ofD, U by cyclic
permutations ofa, b, c andu, v, w.

The Hagge circle is the circle throughU, V,W and its equation, which may be
obtained by standard means, is

(a2vw + b2wu + c2uv)(a2yz + b2zx + c2xy)

−(x + y + z)(a2(b2 + c2 − a2)vwx + b2(c2 + a2 − b2)wuy + c2(a2 + b2 − c2)uvz)

=0. (9)

It may now be checked that this circle has the characteristicproperty of a Hagge
circle that it passes throughH, whose coordinates are

(

1

b2 + c2 − a2
,

1

c2 + a2 − b2
,

1

a2 + b2 − c2

)

.

Now the equation ofAH is (c2 + a2 − b2)y = (a2 + b2 − c2)z and this meets the
Hagge circle with Equation (9) again at the pointX with coordinates(−a2vw +
b2wu + c2uv, (a2 + b2 − c2)vw, (c2 + a2 − b2)vw). The coordinates ofY,Z can
be obtained from those ofX by cyclic permutations ofa, b, c andu, v,w.

Proposition 9. XU , Y V , ZW are concurrent atP .

This has already been proved in Proposition 2, but may be verified by checking
that when the coordinates ofX,U,P are placed as entries in the rows of a3 × 3
determinant, then this determinant vanishes. This shows thatX, U , P are collinear
as areY , V , P andZ, W , P .

If the equation of a conic islx2 + my2 + nz2 + 2fyz + 2gzx+ 2hxy = 0, then
the first coordinate of its center is(mn − gm − hn − f2 + fg + hf) and other
coordinates are obtained by cyclic change of letters. This is because it is the pole
of the line at infinity. Thex-coordinate of the centerh(P ) of the Hagge circle is
therefore−a4(b2 + c2 − a2)vw + (a2(b2 + c2) − (b2 − c2)2)(b2wu + c2uv) with
y- andz-coordinates following by cyclic permutations ofa, b, c andu, v, w.
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In §4 we introduced the Hagge axis and we now deduce its equation.The lines
V W andAH meet at the pointL with coordinates

(u(a2(b2w(u + v)(w + u − v) + c2v(w + u)(u + v − w)) + b4w(u + v)(v + w − u)

− b2c2(u2(v + w) + u(v2 + w2) + 2vw(v + w)) + c4v(w + u)(v + w − u)),

vw(a2 + b2 − c2)(a2(u + v)(w + u) − u(b2(u + v) + c2(w + u))),

vw(c2 + a2 − b2)(a2(u + v)(w + u) − u(b2(u + v) + c2(w + u)))).

The coordinates ofM andN follow by cyclic permutations ofa, b, c andu, v,w.
From these we obtain the equation of the Hagge axisLMN as
∑

cyclic

vw(a2(u+v)(w+u)−u(b2(u+v)+c2(w+u)))(a2(v−w)−(b2−c2)(v+w))x = 0.

(10)
It may now be verified that this line passes throughP .

5.2. The midpoint Hagge conic .We now obtain a dividend from the areal analysis
in §5.1. The midpoints in question are those ofAX, BY , CZ, DU , EV , FW and
in Figure 6 these points are labeledX1, Y1, Z1, U1, V1, W1. This notation is not to
be confused with the now discarded notationX1, Y1 andZ1 of Proposition 2. We
now show these six points lie on a conic.

Proposition 10. The pointsX1, Y1, Z1, U1, V1, W1 lie on a conic (the Hagge
midpoint conic).

Their coordinates are easily obtained and are

X1 (2u(b2w + c2v), vw(a2 + b2 − c2), vw(c2 + a2 − b2)),

U1 (0, v(2c2v + w(b2 + c2 − a2)), w(2b2w + v(b2 + c2 − a2))),

with coordinates ofY1, Z1, V1, W1 following by cyclic change of letters. It may
now be checked that these six points lie on the conic with equation

4(a2vw + b2wu + c2uv)





∑

cyclic

u2(−a2vw + b2(v + w)w + c2v(v + w))yz





− (x + y + z)





∑

cyclic

v2w2((a2 + b2 − c2)u + 2a2v)((c2 + a2 − b2)u + 2a2w)x



 = 0.

(11)

Following the same method as before for the center, we find that its coordinates
are(u(b2w + c2v), v(c2u + a2w), w(a2v + b2u)).

Proposition 11. U1, X1, P are collinear.

This is proved by checking that when the coordinates ofX1, U1, P are placed
as entries in the rows of a3 × 3 determinant, then this determinant vanishes. This
shows thatX1, U1, P are collinear as areY1, V1, P andZ1, W1, P .

Proposition 12. The center of the Hagge midpoint conic is the midpoint ofOh(P ).
It dividesP ∗G in the ratio3 : −1.
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The proof is straightforward and is left to the reader.
In similar fashion to above we define the six pointsXk, Yk, Zk, Uk, Vk, Wk that

divide the six linesAX, BY , CZ, DU , EV , FW respectively in the ratiok : 1 (k
real and6= 1).

Proposition 13. The six pointsXk, Yk, Zk, Uk, Vk, Wk lie on a conic and the
centers of these conics, for all values ofk, lie on the lineOh(P ) and divide it in
the ratiok : 1.

This proposition was originally conjectured by us on the basis of drawings by the
geometry software package CABRI and we are grateful to the Editor for confirming
the conjecture to be correct. We have rechecked his calculation and for the record
the coordinates ofXk andUk are

((1 − k)a2vw + (1 + k)u(b2w + c2v), k(a2 + b2 − c2)vw, k(c2 + a2 − b2)vw),

and

(−a2(1−k)vw, v((1+k)c2v+(b2+kc2−ka2)w), w((1+k)b2w+(c2+kb2−ka2)v)),



246 C. J. Bradley and G. C. Smith

respectively. The conic involved has center with coordinates

((a2(b2 + c2 − a2)(a2vw + b2wu + c2uv)

+ k(−a4(b2 + c2 − a2)vw + (a2(b2 + c2) − (b2 − c2)2)(u(b2w + c2v)),

· · · , · · · ).

Proposition 14. Uk, Xk, P are collinear.

The proof is by the same method as for Proposition 11.

6. Loci of Haggi circle centers

The Macbeath conic ofABC is the inconic with foci at the circumcenterO and
the orthocenterH. The center of this conic isN , the nine-point center.

Proposition 15. The locus of centers of those Hagge circles which are tangentto
the circumcircle is the Macbeath conic.

Proof. We address the elliptical case (see Figure 7) whenABC is acute andH is
inside the circumcircle of radiusR. The major axis of the Macbeath ellipseΣ is
well known to have lengthR. Suppose thatP is a point of the plane. Nowh(P ) is
on Σ if and only if Oh(P ) + h(P )H = R, buth(P )H is the radius of the Hagge
circle, so this condition holds if and only if the Hagge circle is internally tangent
to the circumcircle. Note thath(P ) is on Σ if and only if P ∗ is on Σ, and as
P ∗ moves continuously roundΣ, the Hagge circle moves around the inside of the
circumcircle. The pointP moved around the ‘deltoid’ shape as shown in Figure 7.

The case whereABC is obtuse and the Macbeath conic is a hyperbola is very
similar. The associated Hagge circles are externally tangent to the circumcircle.

�

Proposition 16. The locus of centers of those Hagge circles which cut the circum-
circle at diametrically opposite points is a straight line perpendicular to the Euler
line.

Proof. Let ABC have circumcenterO and orthocenterH. ChooseH ′ on HO
produced so thatHO · OH ′ = R2 whereR is the circumradius ofABC. Now if
X, Y are diametrically opposite points onS (but not on the Euler line), then the
circumcircleS′ of XY H is of interest. By the converse of the power of a point
theorem,H ′ lies on eachS′. These circlesS′ form an intersecting coaxal system
throughH andH ′ and their centers lie on the perpendicular bisector ofHH ′. �
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