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Angles, Area, and Perimeter Caught in a Cubic

George Baloglou and Michel Helfgott

Abstract. The main goal of this paper is to establish sharp bounds for the angles
and for the side ratios of any triangle of known area and perimeter. Our work is
also related to the well known isoperimetric inequality.

1. Isosceles triangles sharing area and perimeter

Suppose we wish to determine all isosceles triangles, if any, of area3 and
perimeter10 – a problem that is a bit harder than the corresponding well known
problem for rectangles!

Let x be the length of the base andy the length of the two equal sides,x <

2y. Then the height of the isosceles triangles we wish to determine is equal to
√

y2 − x2

4 . Thusx+2y = 10 while x
2

√

y2 − x2

4 = 3. Hencex
2

√

(

5 − x
2

)2 − x2

4 =

3, which leads to5x3 − 25x2 + 36 = 0. The positive roots of this cubic are
x1 ≈ 1.4177 andx2 ≈ 4.6698, so thaty1 ≈ 4.2911 andy2 ≈ 2.6651. Thus there
are just two isosceles triangles of area3 and perimeter10 (see Figure 1).

x ≈ 1.4177

z ≈ 4.2911y ≈ 4.2911

x ≈ 4.6698

z ≈ 2.6651y ≈ 2.6651

Figure 1. The two isosceles triangles of area3 and perimeter10

Are there always isosceles triangles of areaA and perimeterP? A complete
answer is provided by the following lemma and theorem.

Lemma 1. Letx be the base of an isosceles triangle with given areaA and perime-
ter P . Then

2Px3 − P 2x2 + 16A2 = 0. (1)
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Proof. Working as in the above special case, we obtainy = P−x
2 andx

2

√

y2 − x2

4 =

A; substituting the former condition into the latter, we arrive at (1). �

Theorem 2. There are exactly two distinct isosceles triangles of area Aand perime-
ter P if and only ifP 2 > 12

√
3A. There is exactly one if and only ifP 2 = 12

√
3A

and the triangle is equilateral. The vertex anglesφ1 < φ2 of these two isosceles
triangles also satisfyφ1 <

π
3 < φ2.

Proof. Let f(x) be the cubic in (1). We first show that it has at most two distinct
positive roots. Indeed the existence of three distinct positive roots would yield, by
Rolle’s theorem, two distinct positive roots forf ′(x) = 6Px2 − 2P 2x; but the
roots off ′(x) arex = P

3 andx = 0.
Notice now thatf ′′(x) = 12Px−2P 2, hencef ′′(0) = −2P 2 < 0 andf ′′(P

3 ) =

2P 2 > 0. So f has a positive local maximum of16A2 at x = 0 and a local
minimum atx = P

3 (Figure 2). It is clear thatf has two distinct positive roots

x1 <
P
3 < x2 if and only if f(P

3 ) < 0; but f(P
3 ) = −P 4

27 + 16A2, sof(P
3 ) < 0 is

equivalent toP 2 > 12
√

3A.
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Figure 2. 2Px3
− P 2x2 + 16A2 for A = 3 andP = 10

Moreover,f(P
3 ) = 0 if and only if P 2 = 12

√
3A, implying thatf(x) = 0 has

precisely one (‘tangential’) positive solution if and onlyif P 2 = 12
√

3A. As it
turns out, the cubic is then equivalent to(3x − P )2(6x + P ) = 0, and its unique
positive solution corresponds to the equilateral triangleof side P

3 .
As also noticed in [1], the vertex anglesφ1 andφ2 of the two isosceles triangles

of areaA and perimeterP (that correspond to the positive rootsx1 and x2 of
(1)) do satisfy the inequalitiesφ1 < π

3 < φ2. These inequalities follow from
x1 <

P
3 < x2 since, in every triangle, the greater angle is opposite the greater side:

indeed in every isosceles triangle of perimeterP , basex, vertex angleφ, and sides
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y = z, the inequalityx < P
3 implies y = z > P

3 , so thaty = z > x; therefore
π−φ

2 > φ, thusφ < π
3 . In a similar fashion one can prove thatx > P

3 implies
φ > π

3 . �

Remark.That the cubic in (1) can have at most two distinct positive roots may
also be derived algebraically. Indeed, the existence of three distinct positive roots
x1, x2, x3 would imply that the cubic may be written asc(x−x1)(x−x2)(x−x3),
with c(x1x2 + x2x3 + x3x1) being thepositivecoefficient of the first power of
x. That would contradict the fact that the cubic being analyzed has zero as the
coefficient of the first power ofx.

2. The isoperimetric inequality for arbitrary triangles

We have just seen that the inequalityP 2 ≥ 12
√

3A holds for every isosceles
triangle, with equality precisely when the triangle is equilateral. We will prove
next that thisisoperimetricinequality ([5, p.85], [3, p.42]) holds for every triangle.

First we notice that for every scalene triangleBCD, there exists an isosceles
triangleECD with BE parallel toCD (see Figure 3). Letℓ be the line through
B parallel toCD andF be the symmetric reflection of D with respect toℓ. Let
E andG be the points ofℓ onCF andDF , respectively. Clearly,EG‖CD and
|FG| = |DG| imply |FE| = |CE|. Moreover, trianglesFGE andDGE are
congruent by symmetry, therefore|FE| = |DE|. We conclude that triangleECD
is isosceles with|CE| = |DE|.

GB E

F

H DC

ℓ

Figure 3. Reduction to the case of an isosceles triangle

It follows immediately fromBE‖CD that ∆ECD and ∆BCD have equal
areas. Less obviously, the perimeter of∆ECD is smaller than that of∆BCD :
|CD|+ |DE|+ |EC| = |CD|+ |FE|+ |EC| = |CD|+ |FC| < |CD|+ |FB|+
|BC| = |CD| + |DB| + |BC|, with the last equality following from symmetry
and the congruency of∆FGB and∆DGB.

So, given an arbitrary scalene triangleBCD of areaA and perimeterP , there
exists an isosceles triangleECD of areaA and perimeterQ < P . SinceQ2 ≥
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12
√

3A, it follows thatP 2 > 12
√

3A, so the isoperimetric inequality for triangles
has been proven.

We invite the reader to use this geometrical technique to derive the isoperimetric
inequality for quadrilaterals(P 2 ≥ 16A for every quadrilateral of areaA and
perimeterP ), and possibly for othern-gons as well.

It should be mentioned here that the standard proof of the isoperimetric inequal-
ity for triangles (see for example [2, p.88]) relies on Heron’s area formula (which
we essentially derive later through a generalization of (1)for arbitrary triangles)
and the arithmetic-geometric-mean inequalilty.

3. Newton’s parametrization

Turning now to our main goal, namely the relations among a triangle’s area,
perimeter, and angles, we first find an expression for the sides of a triangle in
terms of its area, perimeter, andoneangle. To achieve this, we simply generalize
Newton’s derivation of the formulax = P

2 − 2A
P

, expressing a right triangle’s
hypotenuse in terms of its area and perimeter; this work appeared in Newton’s
Universal Arithmetick, Resolution of Geometrical Questions, Problem III, p. 57
([6, p.103]).

x

zy

φ

Figure 4. Toward ‘Newton’s parametrization’

Observe (as in Figure 4) thatA = 1
2zy sinφ, soy2 = Py−xy− 2A

sinφ
; moreover,

the law of cosines yieldsy2 = Px+ Py − xy + 2A cos φ
sinφ

− P 2

2 . It follows that

x = x(φ) =
P

2
− 2A

P

(

1 + cosφ

sinφ

)

, (2)

extending Newton’s formula for0 < φ < π. Of course we need to haveP
2

A
>

4
(

1+cos φ
sin φ

)

for x to be positive, so we need the conditions(φ) > 0, where

s(φ) =
P 2 sinφ

4(1 + cosφ)
−A. (3)
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Oncex is determined,y andz are easily determined viayz = 2A
sinφ

andy + z =

P
2 + 2A

P

(

1+cos φ
sinφ

)

: they are the roots of the quadratict2−
(

P
2 + 2A

P

(

1+cos φ
sin φ

))

t+
2A

sinφ
= 0, provided thath(φ) ≥ 0, where

h(φ) =

(

P

2
+

2A

P

(

1 + cosφ

sinφ

))2

− 8A

sinφ
(4)

is the discriminant; that is,y = y(φ) andz = z(φ) are given by

z, y =

(

P

4
+
A

P

(

1 + cosφ

sinφ

))

± 1

2

√

(

P

2
+

2A

P

(

1 + cosφ

sinφ

))2

− 8A

sinφ
.

(5)

Putting everything together, and observing thatx, y, z as defined in (2) and (5)
above do satisfy the triangle inequality and are the sides ofa triangle of areaA and
perimeterP , we arrive at the following result.

Theorem 3. The pair of conditionss(φ) > 0 and h(φ) ≥ 0, wheres(φ) =
P 2 sin φ

4(1+cos φ) − A and h(φ) =
(

P
2 + 2A

P

(

1+cos φ
sinφ

))2
− 8A

sinφ
, is equivalent to the

existence of a triangle of area A, perimeter P, sidesx(φ), y(φ), z(φ) as given in
(2), (5) above, and angleφ between the sidesy, z; that triangle is isosceles with
vertex angleφ if and only ifh(φ) = 0.

Figures 5 and 6 below offer visualizations of the three sides’ parametrizations
by the angleφ and of the two functions essential for the ‘triangle conditions’ of
Theorem 3, respectively.

The ‘vertical’ intersections ofy(φ) andz(φ) with each other in Figure 5 occur
at φ ≈ 0.33166 ≈ 19.003◦ andφ ≈ 2.13543 ≈ 122.351◦ : those are the pos-
itive roots ofh(φ) = 0, which are none other than the vertex angles of the two
isosceles triangles in Figure 1. There are also intersections ofx(φ) with z(φ) at
φ ≈ 1.40485 ≈ 80.492◦ and ofx(φ) with y(φ) atφ ≈ 0.50305 ≈ 28.822◦; which
are again associated, via side renaming as needed and withφ being abaseangle,
with the isosceles triangles of Figure 1.

As we see in Figure 6,s andh cannot be simultaneously positive outside the
interval defined by the two largest roots ofh (φ ≈ 0.33166 andφ ≈ 2.13543): this
fact remains true for arbitraryA andP and is going to be of central importance in
what follows.

4. Angles ‘bounded’ by area and perimeter

We are ready to state and prove our first main result.

Theorem 4. In every non-equilateral triangle of area A and perimeterP every
angleφ must satisfy the inequalityφ1 ≤ φ ≤ φ2, whereφ1 <

π
3 < φ2 are the

vertex angles of the two isosceles triangles of area A and perimeter P; specifically,

arccos

(

P 2 − 2Px1 − x2
1

P 2 − 2Px1 + x2
1

)

≤ φ ≤ arccos

(

P 2 − 2Px2 − x2
2

P 2 − 2Px2 + x2
2

)

,
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Figure 5. The triangle’s three sides parametrized byφ for 19.003◦ =
0.33166 ≤ φ ≤ 2.13543 = 122.351◦ atA = 3, P = 10
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Figure 6. s(φ) andh(φ) for 0.1 ≤ φ ≤ 2.3 atA = 3, P = 10
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wherex1 <
P
3 < x2 are the positive roots of2Px3 − P 2x2 + 16A2 = 0.

Proof. As we have seen in Lemma 1, the cubic (1) yields the basex of each of the
two isosceles triangles of areaA and perimeterP ; and the formula above for the
vertex angleφ of an isosceles triangle follows fromx2 = 2y2 − 2y2 cosφ (law of
cosines) andy = P−x

2 .
So it suffices to show that the inequalityφ1 ≤ φ ≤ φ2 is equivalent to the pair of

conditionss(φ) > 0 andh(φ) ≥ 0, wheres(φ) andh(φ) are defined as in Theorem
3; for this, we need four lemmas.

Lemma 5. For someψ in (0, φ1), s(ψ) = 0.

Proof. Notice thatlimφ→0+ s(φ) = −A < 0. On the other hand, the existence of
an isosceles triangle with vertex angleφ1 guarantees thats(φ1) > 0 (Theorem 3).
By the continuity ofs on (0, π), there must existψ such that0 < ψ < φ1 and
s(ψ) = 0. �

Lemma 6. The functions is strictly increasing on(0, π) and, forφ ≥ φ1, s(φ) >
0.

Proof. Since the derivatives′(φ) = P 2

4(1+cos φ) is positive on(0, π), s is strictly
increasing; it follows thats(φ) ≥ s(φ1) > 0 for φ ≥ φ1. �

Lemma 7. For φ > φ2, h(φ) < 0.

Proof. Recall thath(φ) =
(

P
2 + 2A

P

(

1+cos φ
sin φ

))2
− 8A

sin φ
. By L’Hospital’s rule,

we havelimφ→π
1+cos φ

sin φ
= limφ→π

− sinφ
cos φ

= 0; it follows that limφ→π− h(φ) =
P 2

4 − limφ→π−

8A
sin φ

= −∞. Supposeh(φ) ≥ 0 for someφ > φ2. Thenh(φ3) = 0

for someφ3 > φ2 becauseh is continuous on(0, π) and limφ→π− h(φ) = −∞.
At the same time,s(φ3) > 0 (Lemma 6). Then by Theorem 3, there exists a third
isosceles triangle of areaA and perimeterP , which is impossible. �

Lemma 8. There is noφ in (0, π) for whichh(φ) = h′(φ) = 0.

Proof. Supposeh(φ) = h′(φ) = 0 for someφ in (0, π). It follows that
(

P

2
+

2A

P

(

1 + cosφ

sinφ

))2

=
8A

sinφ
and

P

2
+

2A

P

(

1 + cosφ

sinφ

)

=
2P cosφ

1 + cosφ
.

Squaring the latter and dividing it by the former expressionwe getP 2 = 2A(1+cos φ)2

sinφ cos2 φ
.

Substituting this expression forP 2 into
(

P
2 + 2A

P

(

1+cos φ
sinφ

))2
= 8A

sin φ
we arrive

at the equationA(1+cos φ)2

2 sinφ cos2 φ
+ 2A(1+cos φ)

sinφ
+ 2A cos2 φ

sinφ
= 8A

sin φ
, which reduces to

(cosφ− 1)(2 cos φ− 1)(2 cos2 φ+ 5cosφ+ 1) = 0. The only roots in(0, π) are

given byφ = π
3 andφ = arccos

(

−5+
√

17
4

)

. It is easy to see thath′(φ) < 0 for

φ > π
2 , soarccos

(

−5+
√

17
4

)

is an extraneous solution. Moreover,φ = π
3 turns
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P 2 = 2A(1+cos φ)2

sinφ cos2 φ
into P 2 = 12

√
3A, contradicting the fact that the given trian-

gle was assumed to be non-equilateral. We conclude thath(φ) = h′(φ) = 0 is
impossible. �

Completing the proof of Theorem 4.
Claim(a) For φ1 ≤ φ ≤ φ2, s(φ) > 0 andh(φ) ≥ 0, withh(φ) > 0 for φ1 < φ <

φ2.
Recall from Lemma 6 thats(φ) > 0 for φ ≥ φ1. So it remains to establish

h(φ) ≥ 0 for φ1 ≤ φ ≤ φ2. We will argue by contradiction.
Of courseh(φ1) = h(φ2) = 0. Notice thath(φ) = 0 for φ1 < φ < φ2 is

impossible for this would imply (by Theorem 3) the existenceof a third isosceles
triangle of areaA and perimeterP . If h(φ3) < 0 for someφ3 strictly between
φ1 andφ2 then continuity ofh, together with the impossibility ofh(φ) = 0 for
φ1 < φ < φ2, impliesh(φ) < 0 for all angles strictly betweenφ1 andφ2. But
we already know from Lemma 7 thath(φ) < 0 for all angles greater thanφ2. It
follows thath has a local maximum atφ = φ2, so thath(φ2) = h′(φ2) = 0,
contradicting Lemma 8.

Recalling the statement immediately before Lemma 5, we see that the proof of
Theorem 4 will be completed by establishing
Claim(b) At least one of the conditionss(φ) > 0 andh(φ) ≥ 0 fails when either
φ < φ1 or φ > φ2.

Of course the failure ofh(φ) ≥ 0 for φ > φ2 has been established in Lemma 7,
so we only need to show eithers(φ) ≤ 0 or h(φ) < 0 for φ < φ1.

Lemma 5 asserts that there existsψ in (0, π) such thatψ < φ1 ands(ψ) = 0.
Consider now an arbitraryφ < φ1 . If φ ≤ ψ then by Lemma 6s(φ) ≤ s(ψ) = 0,
so we only need to pay attention to the possibilityφ1 > φ > ψ ands(φ) > 0. In
that case we show below thath(φ) < 0, arguing by contradiction.

The failure ofh(φ) < 0 implies, in the presence ofs(φ) > 0, thath(φ) > 0:
indeedh(φ) = 0 ands(φ) > 0 would yield a third isosceles triangle of areaA and
perimeterP , again by Theorem 3. The same argument applies in fact to all angles
betweenψ andφ1. But we have already established through Claim(a) the strict
positivity of h for all angles betweenφ1 andφ2. We conclude thath has a local
minimum atφ = φ1, so thath(φ1) = h′(φ1) = 0, contradicting Lemma 8. This
completes the proof of Theorem 4.

Having completed the proof of Theorem 4, let us provide an example: the bases
of the two isosceles triangles of area3 and perimeter10 (Figure 1) have already
been computed as the positive roots of the cubic5x3 − 25x2 + 36 = 0; it follows
then thatall angles ofeverytriangle of area3 and perimeter10 must be between
about19.003◦ and122.351◦, the angles shown in Figure 5.

Remark.It can be shown thatφ1 andφ2 are the two largest roots of

(P 2 sinφ+ 4A+ 4A cos φ)2 − 32P 2A sinφ = 0
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in (0, π), and that they also satisfy the equation

sinφ2

(

1 + sin
φ1

2

)2

= sinφ1

(

1 + sin
φ2

2

)2

.

5. Heron’s curve

Theorem 4 establishes bounds for the angles of every triangle of given area and
perimeter; appealing to the law of sines, we see that it also yields bounds for the
ratio of any two sides. Determiningsharpbounds for side ratios relies on some
machinery we develop next.

Instead of looking for isosceles triangles(z = y) of areaA and perimeterP ,
let us now look for triangles of areaA and perimeterP where two sides have ratio
r ( z

y
= r); without loss of generality, we may assumer > 1. (Observe here - as

in fact noticed through Figure 5 and related discussion - that r > 1 does not rule
out the possibilitiesx = z (with r ≈ 3.0268 atA = 3, P = 10) or x = y (with
r ≈ 1.7522 atA = 3, P = 10).) Extending the procedure of Lemma 1 to arbitrary
triangles, fromy2 − x2

1 = r2y2 − x2
2 andx = x2 ± x1 (Figure 7) we find that

x1 x

z = ry
y

x2 x

z = ry
y

x1 x2

Figure 7. The case of an arbitrary triangle

x1 = ± (1−r2)y2+x2

2x
. In view of x

2

√

y2 − x2
1 = A andy = P−x

r+1 , further algebraic
manipulation leads to an equation that generalizes the isosceles triangle’s cubic (1):

8rPx3+4(r2−3r+1)P 2x2−4(1−r)2P 3x+(1−r)2P 4+16(1+r)2A2 = 0. (6)

Appealing to Rolle’s theorem as in the case of the isosceles triangle, we see that
this cubic cannot have more than two positive roots. Indeed one of the derivative’s

roots,
(

−(r2−3r+1)−
√

r4−r2+1
6r

)

P, is negative since|r2 − 3r+ 1| <
√
r4 − r2 + 1

for r > 1.
Unlike the case of the isosceles triangle, however, the isoperimetric inequality

P 2 > 12
√

3A does not guarantee the existence of two positive roots. So there
can beat mosttwo triangles of areaA and perimeterP satisfying the condition
z
y

= r > 1.
Settingx = P − y − z andr = z

y
in the cubic (6) leads to

P 4 − 4P 3(y + z) + 4P 2(y2 + 3yz + z2) − 8Pyz(y + z) + 16A2 = 0, (7)
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which can be shown to be equivalent to Heron’s area formula. The graph of this
curve forA = 3 andP = 10 (Figure 8) illustrates the fact established above by
(6): for every pair ofA andP , there can be at most two triangles of areaA and
perimeterP satisfying z

y
= r > 1. Indeed, the three unbounded regions shown

in Figure 8 correspond tox < 0 (first quadrant),y < 0 (second quadrant), and
z < 0 (fourth quadrant), hence it is only the boundary of the bounded region that
corresponds to triangles of area3 and perimeter10; clearly, this boundary that we
call Heron’s curve(Figure 9) may be intersected by any line at most twice.

5

−5

5−5

y

z

Figure 8. Graph of (7) forA = 3 andP = 10

Rather predictably, in view of its symmetry aboutz = y, the triangles corre-
sponding to Heron’s curve’s intersections with (for example) z = 2y andz = y

2
(see Figure 9) are mirror images of each other (about the third sidex’s perpendic-
ular bisector); so it suffices to restrict our computations to r > 1, sticking to our
initial assumption. These triangles are found by first solving the cubic (6) whenr =
2 and are approximately{3.0077, 2.3307, 4.6615} and{4.5977, 1.8007, 3.6015};
they are associated with parametrizing angles of about33.529◦ and112.315◦ , re-
spectively.

6. Side ratios ‘bounded’ by area and perimeter

We present now the following companion to Theorem 4.

Theorem 9. In every non-equilateral triangle of areaA and perimeterP , the ratio
r of any two sides must satisfy the inequalityr1 ≤ r ≤ r2, wherer1 < 1 < r2,
r1r2 = 1 are the positive roots of the sextic

32P 4A2(2r6 − 3r4 − 3r2 + 2) − P 8r2(r − 1)2 + 6912A4r2(r + 1)2 = 0. (8)

Proof. Figures 8 and 9 (and the discussion preceding them) make it clear that not
all linesz = ry intersect Heron’s curve: such intersections (corresponding to trian-
gles of areaA and perimeterP satisfyingz

y
= r) occur only atr = 1 and a varying
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Figure 9. Heron’s curve forA = 3 andP = 10

interval around it depending onA andP by way of (6). To establish sharp bounds
for such ‘intersecting’r, we observe that these bounds are none other than the
slopes of the linestangentto Heron’s curve; in the familiar caseA = 3, P = 10,
these tangent lines are shown in Figure 8. But a linez = ry is tangent to Heron’s
curve if and only if there is precisely one triangle of areaA and perimeterP satis-
fying z

y
= r; that is, if and only if the cubic (6) has a double root.

It is well known (see for example [4, p.91]) that the cubicax3 + bx2 + cx + d

has a double root if and only if

b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd = 0.

(The reader may arrive at this ‘tangential’ condition independently, arguing as in
the proof of Theorem 2.) So we may conclude that the slopes of the two lines tan-
gent to Heron’s curve and passing through the origin are the positive roots of the
polynomialS(r) = −64P 2(r + 1)2Q(r), whereQ(r) is the sixth degree polyno-
mial in (8).

It may not be obvious butQ, and thereforeS as well, must have precisely two
positive roots, as they ought to. This relies on the following facts (which imply
a total of four real roots forQ): the leading coefficient ofQ is positive and its
highest power is even, solimr→±∞Q(r) = +∞;Q(−1) = −4P 8−64P 4A2 < 0;
Q(0) = 64P 4A2 > 0; Q(1) = −64A2(P 4 − (12

√
3)2A2) < 0; Q(1

r
) = Q(r)

r6 for
r 6= 0, so thatr is a root ofQ if and only if 1

r
is. �

In the familiar example ofA = 3 andP = 10, the two positive roots ofS are
r1 ≈ 0.3273 andr2 ≈ 3.0551. As pointed out above, these two roots are inverses
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Figure 10. Graph of (6) forA = 3, P = 10, andr ≈ 3.0551

of each other: this is geometrically justified by the fact that the two roots are the
slopes of the two tangent lines in Figure 8, which are of course mirror images of
each other about the diagonalz = y. Moreover,r1 andr2 lead to thesame(modulo
a factor) cubic in (6).

We conclude that the side ratios of every triangle of area3 and perimeter10
must be between approximately0.3273 and3.0551. To obtain the unique (modulo
reflection) triangle of area3 and perimeter10 where these ratios are realized, we
need to determine its third sidex. It is the double root of the cubic (6) forr equal to
approximately3.0551 (Figure 10). It turns out thatx equals approximately4.2048.

The triangle is now fully determined throughy ≈ 10−4.2048
3.0551+1 ≈ 1.4291 and

z ≈ 3.0551 × 1.4291 ≈ 4.366 (upper ‘corner’ in Figure 9). The angle-parameter

(between sidesy andz) at that ‘corner’ is now easy to find asarccos
(

y2+z2−x2

2yz

)

≈
74.079◦. The triangle obtained, approximately{4.2048, 4.3661, 1.4291} (see Fig-
ure 11), is the furthest possible from being isosceles - or rather the furthest possible
from being equilateral! - among all triangles of area3 and perimeter10.

x ≈ 4.2048

z ≈ 4.3661

y ≈ 1.4291

A

B C

Figure 11. The unique extreme-side-ratio triangle of area3 and perimeter10

Our findings are confirmed in Figure 12 by a graph ofz(φ)
y(φ) , wherez(φ) and

y(φ) are the Newton parametrizations of sidesz andy in (5). That graph shows
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a maximum value of about3.055 for z(φ)
y(φ) with φ approximately equal to1.293 ≈

74.08◦:

2

3

1 2

φ

Figure 12. z(φ)
y(φ)

for 19.003◦

≈ 0.33166 ≤ φ ≤ 2.13543 ≈ 122.351◦ , A = 3

andP = 10
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