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On the Parry Reflection Point

Cosmin Pohoata

Abstract. We give a synthetic proof of C. F. Parry’s theorem that tlilections
in the sidelines of a triangle of three parallel lines throtilge vertices are con-
current if and only if they are parallel to the Euler line, fi@nt of concurrency
being the Parry reflection point. We also show that the Pafigction point is
common to a triad of circles associated with the tangenti@hgle and the tri-
angle of reflections (of the vertices in their opposite sidésdual result is also
given.

1. The Parry reflection point

Theorem 1 (Parry) Suppose triangled BC has circumcentet) and orthocenter
H. Parallel linesa, g, ~ are drawn through the verticed, B, C, respectively.
Leto/, 3/, 7/ be the reflections af, 3, « in the sidesBC, C A, AB, respectively.
These reflections are concurrent if and onlyjf3, v are parallel to the Euler line
OH. Inthis case, their point of concurrengyis the reflection o® in £, the Euler
reflection point.

Figure 1.

We give a synthetic proof of this beautiful theorem belowFCParry proposed
this as a problem in the MERICAN MATHEMATICAL MONTHLY, which was sub-
sequently solved by R. L. Young using complex coordinatégs The point P in
question is called the Parry reflection point. It appeardiagriangle centeXsg9
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in [5]. The Euler reflection poink, on the other hand, is the point on the circum-
circle which is the point of concurrency of the reflectiongtwg Euler line in the
sidelines. See Figure 1. It appearsXs, in [5]. The existence ofF is justified

by another elegant result on reflections of lines, which wetasleduce Theorem
1.

Theorem 2(Collings) Let? be a line in the plane of a triangld BC'. Its reflec-
tions in the sideline8BC, C A, AB are concurrent if and only if passes through
the orthocenterH of ABC'. In this case, their point of concurrency lies on the
circumcircle.

Synthetic proofs of Theorem 2 can be found in [1] and [3].
We denote byd’, B/, C’ the reflections ofd, B, C in their opposite sides, and
by A, B;C the tangential triangle ol BC.

Theorem 3. The circumcircles of triangled B'C’, B;C’ A’ andC; A’ B’ are con-
current at Parry’s reflection poinP. See Figure 2

Figure 2 Figure 3

Theorem 4. The circumcircles of trianglesl’ B;C;, B'C; A, andC’ A; B; have a
common point). See Figure 3

2. Proof of Theorem 1

Let A; B;C, be the image ofA BC under the homothetly(O, 2). The orthocen-
ter H, of A; B, is the reflection oD in H, and is on the Euler line of triangle
ABC.

Consider the lin¢ through H parallel to the given lineg, G, v. Let M be the
midpoint of BC', andM; = h(O, 2)(M) on the lineB;C;. The lineAH intersects
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Figure 4.

BC and B, (7 at X and X, respectively. Note that the reflection Bfin B, is
the reflectionD of A in BC sinceAH =2 - OM and

HA =AA' — AH = 2(AX — OM) = 2(AH + HX — OM)
=2(HX +OM) = 2(HX + XX;) = 2HX,.

Therefore,o’ coincides with the reflection of in the sidesB;C;. Similarly,
3 and~’ coincide with the reflections of in C; A; and A B;. By Theorem 2,
the lineso/, 3, +/ are concurrent if and only if passes through the orthocenter
H,. SinceH also lies o/, this is the case whebhis the Euler line of triangle
ABC, which is also the Euler line of triangld; B;C;. In this case, the point
of concurrency is the Euler reflection point 4f B;C4, which is the image of¢
under the homothetly(O, 2).

3. Proof of Theorem 3

We shall make use of the notion of directed andlgs ¢2) between two lines
¢1 and ¢, as the angle of rotation (defined modutd that will bring ¢; to ¢5 in
the same orientation a4BC'. For the basic properties of directed angles, see [4,
§816-19].

Let «, 3, v be lines through the verticed, B, C, respectively parallel to the
Euler line. By Theorem 1, their reflections, 3, ' in the sidesBC, CA, AB
pass through the Parry reflection pofit
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Figure 5

Now, sincex, 3, v are parallel,
(PB', PC") = (8',7)

= (8, BC) +(BC,Y)
= —(B',B'C) — (BC',+) because of symmetry inC
= (B'C, B) + (v, BC")
= (B'C, B)+ (8, BC")
= (B'C, BC")
= (B'C, AC) + (AC, BC")
= (AC, BC) + (AC, BC") because of symmetry inC
= (AC, AB) + (AB, BC) + (AC, AB) + (AB, BC")
=2(AC, AB) because of symmetry iAB
= (0C, OB)
= (AC, A¢B).

Since AtB = A;C and BC' = BC = B'C, we conclude that the triangles
AyBC" andA;C B’ are directly congruent. Hence4; B’, A.C’) = (A.C, A¢B).
This gives(PB’, PC’) = (AB’, A,C"), and the points?, A;, B’, C’ are con-
cyclic. The circleA;B’'C’ contains the Parry reflection point, so do the circles
BtC/A/ andCtA/B/.
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4. Proof of Theorem 4

Invert with respect to the Parry poii?. By Theorem 3, the circlesl; B'C’,
BC'A', C{A’B’ are inverted into the three lines bounding triangl& B*C"*.
Here, A, B’™*, C'* are the inversive images of’, B’, C’ respectively. Since
the pointsAf, Bf, Cf lie on the linesB™*C"*, C"™* A", A" B"*, respectively, by
Miquel's theorem, the circumcircles of triangldg B'*C"*, BfC"* A", C¢ A B™*
have a common point; so do their inversive images, the sitdles’C’, B;C'A’,
Cy A’ B'. This completes the proof of Theorem 4.

The homogenous barycentric coordinates of their point ataaencyQ were
computed by Javier Francisco Garcia Capitan [2] with tlleoAiMathematica.

Added in proof.After the completion of this paper, we have found that the{soi
P and(@ are concyclic with the circumcentér and the orthocenteil. See Figure
6. Paul Yiu has confirmed this by computing the coordinatethefcenter of the
circle of these four points:
(@®(b* — ¢*)(a® (D + ¢®) — a®(4b* + 3b%c? + 4c?) + 2a* (b* + ¢2)(3b* — 2b%c + 3c*)
—a?(4b® — b8 + b2t — V2B 4 4c8) + (02 — A2 (0 + A) (bt + )
Do),

where the second and third coordinates are obtained bycqyetimutations ofi,
b, c.

Figure 6.
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For completeness, we record the coordinated given by Garcia Capitan:

10 10
= (a2 Zaz(lo_k)f%a(b, c) : b Zb (10— k)ka b(c,a) : ¢ Zcz(lo k)f% c(a,b)),
k=0 k=0 k=0
where
fO a(b C)
fo.a(byc) = —6(b2+c )
fra(b,c) = 2(7b* + 12b%c* + 7c*),
fo.a(byc) = —2(b* + ) (Tb* 4 10b%c* 4 7ct),
fs.a(b, c) = b2 (18b* + 25b%c? + 18¢%),
fro.a(b, ) = (b* + ) (14b% — 1565¢% 4 8b*c* — 15b%c5 + 14c),
frz.a(b,c) = — 146" 4 b10¢2 4 568 — 205¢° 4 5bc® 4 b?c!0 — 1412,
fra.a(b,c) = (0% — )2 (b? + c)(60° + 205¢2 + 5b*ct + 20%c5 + 6¢8),
fi6.a(bc) = — (b2 — )2 (b +c)?(b'? — 2b19¢% — b¥ct — 60°c0 — bie® — 20210 + ¢12),
fig.a(b,c) = b2 2(b2 A + ) (30T + b2 4 3¢,
f20,a(b, c) = b2 (b? — )5 (b + %)%
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