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On the Parry Reflection Point

Cosmin Pohoata

Abstract. We give a synthetic proof of C. F. Parry’s theorem that the reflections
in the sidelines of a triangle of three parallel lines through the vertices are con-
current if and only if they are parallel to the Euler line, thepoint of concurrency
being the Parry reflection point. We also show that the Parry reflection point is
common to a triad of circles associated with the tangential triangle and the tri-
angle of reflections (of the vertices in their opposite sides). A dual result is also
given.

1. The Parry reflection point

Theorem 1 (Parry). Suppose triangleABC has circumcenterO and orthocenter
H. Parallel linesα, β, γ are drawn through the verticesA, B, C, respectively.
Let α′, β′, γ′ be the reflections ofα, β, γ in the sidesBC, CA, AB, respectively.
These reflections are concurrent if and only ifα, β, γ are parallel to the Euler line
OH. In this case, their point of concurrencyP is the reflection ofO in E, the Euler
reflection point.
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Figure 1.

We give a synthetic proof of this beautiful theorem below. C.F. Parry proposed
this as a problem in the AMERICAN MATHEMATICAL MONTHLY, which was sub-
sequently solved by R. L. Young using complex coordinates [6]. The pointP in
question is called the Parry reflection point. It appears as the triangle centerX399
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in [5]. The Euler reflection pointE, on the other hand, is the point on the circum-
circle which is the point of concurrency of the reflections ofthe Euler line in the
sidelines. See Figure 1. It appears asX110 in [5]. The existence ofE is justified
by another elegant result on reflections of lines, which we use to deduce Theorem
1.

Theorem 2 (Collings). Let ℓ be a line in the plane of a triangleABC. Its reflec-
tions in the sidelinesBC, CA, AB are concurrent if and only ifℓ passes through
the orthocenterH of ABC. In this case, their point of concurrency lies on the
circumcircle.

Synthetic proofs of Theorem 2 can be found in [1] and [3].
We denote byA′, B′, C ′ the reflections ofA, B, C in their opposite sides, and

by AtBtCt the tangential triangle ofABC.

Theorem 3. The circumcircles of trianglesAtB
′C ′, BtC

′A′ andCtA
′B′ are con-

current at Parry’s reflection pointP . See Figure 2.
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Theorem 4. The circumcircles of trianglesA′BtCt, B′CtAt andC ′AtBt have a
common pointQ. See Figure 3.

2. Proof of Theorem 1

Let A1B1C1 be the image ofABC under the homothetyh(O, 2). The orthocen-
ter H1 of A1B1C1 is the reflection ofO in H, and is on the Euler line of triangle
ABC.

Consider the lineℓ throughH parallel to the given linesα, β, γ. Let M be the
midpoint ofBC, andM1 = h(O, 2)(M) on the lineB1C1. The lineAH intersects
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BC andB1C1 atX andX1 respectively. Note that the reflection ofH in B1C1 is
the reflectionD of A in BC sinceAH = 2 · OM and

HA′ =AA′ − AH = 2(AX − OM) = 2(AH + HX − OM)

=2(HX + OM) = 2(HX + XX1) = 2HX1.

Therefore,α′ coincides with the reflection ofℓ in the sidesB1C1. Similarly,
β′ andγ′ coincide with the reflections ofℓ in C1A1 andA1B1. By Theorem 2,
the linesα′, β′, γ′ are concurrent if and only ifℓ passes through the orthocenter
H1. SinceH also lies onℓ, this is the case whenℓ is the Euler line of triangle
ABC, which is also the Euler line of triangleA1B1C1. In this case, the point
of concurrency is the Euler reflection point ofA1B1C1, which is the image ofE
under the homothetyh(O, 2).

3. Proof of Theorem 3

We shall make use of the notion of directed angles(ℓ1, ℓ2) between two lines
ℓ1 and ℓ2 as the angle of rotation (defined moduloπ) that will bring ℓ1 to ℓ2 in
the same orientation asABC. For the basic properties of directed angles, see [4,
§§16–19].

Let α, β, γ be lines through the verticesA, B, C, respectively parallel to the
Euler line. By Theorem 1, their reflectionsα′, β′, γ′ in the sidesBC, CA, AB

pass through the Parry reflection pointP .
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Figure 5

Now, sinceα, β, γ are parallel,

(PB′, PC ′) = (β′, γ′)

= (β′, BC) + (BC, γ′)

= − (β′, B′C) − (BC ′, γ′) because of symmetry inAC

= (B′C, β) + (γ, BC ′)

= (B′C, β) + (β, BC ′)

= (B′C, BC ′)

= (B′C, AC) + (AC, BC ′)

= (AC, BC) + (AC, BC ′) because of symmetry inAC

= (AC, AB) + (AB, BC) + (AC, AB) + (AB, BC ′)

= 2(AC, AB) because of symmetry inAB

= (OC, OB)

= (AtC, AtB).

SinceAtB = AtC andBC ′ = BC = B′C, we conclude that the triangles
AtBC ′ andAtCB′ are directly congruent. Hence,(AtB

′, AtC
′) = (AtC, AtB).

This gives(PB′, PC ′) = (AtB
′, AtC

′), and the pointsP , At, B′, C ′ are con-
cyclic. The circleAtB

′C ′ contains the Parry reflection point, so do the circles
BtC

′A′ andCtA
′B′.
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4. Proof of Theorem 4

Invert with respect to the Parry pointP . By Theorem 3, the circlesAtB
′C ′,

BtC
′A′, CtA

′B′ are inverted into the three lines bounding triangleA′∗B′∗C ′∗.
Here, A′∗, B′∗, C ′∗ are the inversive images ofA′, B′, C ′ respectively. Since
the pointsA∗

t , B∗

t , C∗

t lie on the linesB′∗C ′∗, C ′∗A′∗, A′∗B′∗, respectively, by
Miquel’s theorem, the circumcircles of trianglesA∗

tB
′∗C ′∗, B∗

t C ′∗A′∗, C∗

t A′∗B′∗

have a common point; so do their inversive images, the circles AtB
′C ′, BtC

′A′,
CtA

′B′. This completes the proof of Theorem 4.
The homogenous barycentric coordinates of their point of concurrencyQ were

computed by Javier Francisco Garcia Capitán [2] with the aid of Mathematica.

Added in proof.After the completion of this paper, we have found that the points
P andQ are concyclic with the circumcenterO and the orthocenterH. See Figure
6. Paul Yiu has confirmed this by computing the coordinates ofthe center of the
circle of these four points:

(a2(b2 − c2)(a8(b2 + c2) − a6(4b4 + 3b2c2 + 4c4) + 2a4(b2 + c2)(3b4 − 2b2c2 + 3c4)

− a2(4b8 − b6c2 + b4c4 − b2c6 + 4c8) + (b2 − c2)2(b2 + c2)(b4 + c4)))

: · · · : · · · ),

where the second and third coordinates are obtained by cyclic permutations ofa,
b, c.
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For completeness, we record the coordinates ofQ given by Garcia Capitán:

Q = (a2
10∑

k=0

a2(10−k)f2k,a(b, c) : b2
10∑

k=0

b2(10−k)f2k,b(c, a) : c2
10∑

k=0

c2(10−k)f2k,c(a, b)),

where

f0,a(b, c) = 1,

f2,a(b, c) = − 6(b2 + c2)

f4,a(b, c) = 2(7b4 + 12b2c2 + 7c4),

f6,a(b, c) = − 2(b2 + c2)(7b4 + 10b2c2 + 7c4),

f8,a(b, c) = b2c2(18b4 + 25b2c2 + 18c4),

f10,a(b, c) = (b2 + c2)(14b8 − 15b6c2 + 8b4c4 − 15b2c6 + 14c8),

f12,a(b, c) = − 14b12 + b10c2 + 5b8c4 − 2b6c6 + 5b4c8 + b2c10 − 14c12,

f14,a(b, c) = (b2 − c2)2(b2 + c2)(6b8 + 2b6c2 + 5b4c4 + 2b2c6 + 6c8),

f16,a(b, c) = − (b2 − c2)2(b + c)2(b12 − 2b10c2 − b8c4 − 6b6c6 − b4c8 − 2b2c10 + c12),

f18,a(b, c) = − b2c2(b2 − c2)4(b2 + c2)(3b4 + b2c2 + 3c4),

f20,a(b, c) = b2c2(b2 − c2)6(b2 + c2)2.
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