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Cubics Related to Coaxial Circles

Bernard Gibert

Abstract. This note generalizes a result of Paul Yiu on a locus asksatigith
a triad of coaxial circles. We present an interesting faroflgubics with many
properties similar to those of pivotal cubics. It is also @partunity to show
how different ways of writing the equation of a cubic lead &vigus geometric
properties of the curve.

1. Introduction

In his Hyacinthos message [7], Paul Yiu encountered thecckiB60 as the
locus of pointP (in the plane of a given trianglaB C ) with cevian trianglexXyY Z
such that the three circleSA% , BB %, CC%Z are coaxial. Herd®B %COis the
circumcevian triangle oX sg, the external center of similitude of the circumcircle
and incircle. See Figure 1. Itis natural to study the cod@yialf the circles when
A®B s the circumcevian triangle of a given poidt

Figure 1. K360 and coaxial circles

Throughout this note, we work with homogeneous barycentrardinates with
reference to triangl&dBC , and adopt the following notations:
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gX theisogonal conjugate of

tX  the isotomic conjugate of

cX  the complement oK

axX the anticomplement of

tgX the isotomic conjugate of the isogonal conjugateof

2. Preliminaries

LetQ = p: g:r bea xed point with circumcevian triangla® C°and P
a variable point with cevian triangle;PyP.. Denote byGy the circumcircle of
triangleAA %P, and de neGs, Cc in the same way.

Lemma 1. The radical center of the circleG, Gs, G is the pointQ.

Proof. The radical center of the circumcirc@of triangleABC andGs, Cc must
be Q. Indeed, it must be the intersection BB ° (the radical axis ofc andGs)
andCCO(the radical axis o andC:). Hence the radical axis @k , G contains

Q.

These three radical axes are in general distinct lines. &meschoices oP,
however, these circles are coaxial. For exampl®, i Q, then the three circles
degenerate into the cevian lines@fand we regard these as in nite circles with
radical axis the line at in nity. Another trivial case is wh@ is one of the vertices
A, B, C, since two circles coincide wit@ and the third circle is not de ned.

Lemma 2. LetH be the orthocenter of trianglaBC . For any pointQ 6 H and
P = H, the circlesGy, Gs, G are coaxial with radical axisHQ.

Proof. WhenP = H, the cevian triangle oP is the orthic triangleH ;HpH .
The inversion with respect to the polar circle swapsB, C andH,, Hy, He
respectively. Hence the products of signed distatdds HH,, HB HHy,

HC HH . are equal but, since they represent the powet afith respect to the
circlesGy, G, G, H must be on their radical axes which turns out to be the line
HQ. If Q = H, the property is a simple consequence of the lemma above.

3. The cubicK(Q) and its construction

Theorem 3. In general, the locus @ for which the circlesa , Gs , Cc are coaxial
is a circumcubidK (Q) passing throughd , Q and several other remarkable points.
This cubic is tangent &, B, C to the symmedians of trianghBC .

This is obtained through direct and easy calculation. lufgnt to write that
the radical circle ofGy, Gs, G degenerates into the line at in nity and another
line which is obviously the common radical axis of the cisclélhis calculation
gives several equivalent forms of the barycentric equatibK (Q). In xx4 — 9
below, we explore these various forms, deriving essenéiahetric properties and
identifying interesting points of the cubic. For now we exaethe simplest of all
these:

X
Fepx(yr Ay ad=0 o H YL s0n

cyclic cyclic
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It is clear thatK (Q) containsA, B, C, Q and the vertice®\;, B1, C; of the
cevian triangle ofg Q = a% : % : Cr_2 Indeed, when we take = 0 in equation (1)

we obtain(b’ry  c?qz)yz = 0.
2

K(Q) also containggQ. Indeed, if we writeagQ = u : v : wthenv+ w = a_,

etc, since this isxthe complementadQ i.e. gQ. The second form of equation (1)

obviously gives @ vow =0

. q r
cyclic
Finally, it is easy to verify thaK(Q) is tangent aiA, B, C to the symmedians
of triangle ABC . Indeed, whert?z is replaced byc?y in (1), the polynomial
factorizes byy?.

3.1 Construction.Given Q, denote byS be the second intersection of the Euler
line with the rectangular circumhyperbdtsg throughQ.

Let Hg be the rectangular hyperbola passing throGgl®Q, S and with asymp-
totes parallel to those ¢ q.

A variable linelL g throughQ meetsH at a pointQ°®,

L o meets the rectangular circumhyperbola throg@? (the isogonal transform
of the lineOQ?Y at two pointsM , M %of K(Q) collinear withQ.

Note thatQ is the coresidual oA, B, C, H in K(Q) and thatagQ is the
coresidual oA, B, C, Q in K(Q). Thus, the line throughgQ andM meets again
the circumconic througld andM at another point oK (Q).

Figure 2. Construction df(Q)
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4. Intersections with the circumcircle and the pivotal isognal cubic pK g (Q)

Proposition 4. K(Q) intersects the circumcircle at the same points as the pivota
isogonal cubiqK g (Q) with pivotagQ.

Proof. The equation oK (Q) can be written in the form

( a’qr+ brp + ¢?pg) x (Py?  bPZ?)

cyclic

X
+(a’yz + BPzx + cxy) p(c’q br)x=0:

cyclic

()

Any point common tdK (Q) and the circumcircle also lies on the cubic
( a’qr+ BPpr+ 2po) x (y? bPz?)=0; (3)
cyclic
which is the pivotal isogonal circumcubiK ¢jrc (Q).
The two cubicK(Q) andpKj:(Q) must have three other common points on

the line passing througB andagQ. One of them iagQ and the two other points
E1, E» are not always real points. Indeed, the equation of thisisine

p(c?q br)x =0:

cyclic

K (Xs5)/| pKcirc = pK (X6, X144)

Figure 3. K(Q) andpKcirc (Q) whenQ = Xss



Cubics related to coaxial circles 81

These point€E 4, E» are the intersections of the line passing throaghgQ,
agQ with the circumconicABCKQ which is its isogonal conjugate. It follows
that these points are the last common points @) and the Thomson cubik002.

Figure 3 shows these cubics whén = Xss, the isogonal conjugate of the
Gergonne poinK 7. Here, the point& 1, E; areX g, X57 andagQ is X 144.

Thus,K(Q) meets the circumcircle &, B, C with concurrent tangents &t
and three other poin®1, Q2, Q3 (one of them is always real). Following [4gQ
must be the orthocenter of triangly Q2Qs.

4.1 Construction of the point®1, Q2, Q3. The construction of these points again
follows a construction of [4] : the rectangular hyperbolaihg the same asymp-
totic directions as those #BCHQ and passing throug®, agQ, the antipode
Z on the circumcircle of the isogonal conjuga@€&of the in nite point of the line
OgQ meets the circumcircle & andQq, Q», Q3. Note thatZ °is the fourth point
of ABCHQ on the circumcircle. The sixth common point of the hyperkea
K(Q) is the second intersectidR° of the lineH agQ with both hyperbolas. It is
the tangential o) in K(Q). It is also the second intersection of the B %with
both hyperbolas. See Figure 4.

Figure 4. Construction of the poin®;:, Qz, Q3

These point)1, Q2, Q3 have several properties related with Simson lines ob-
tained by manipulation of third degree polynomials. Theyw#efrom classical
properties of triples of points on the circumcircleABC having concurring Sim-
son lines.
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Theorem 5. The pointsQ1, Q2, Q3 are the antipodes on the circumcircle of the
three pointsQ?, QY, Q% whose Simson lines pass throug®.

It follows that Q1, Q2, Q3 are three real distinct points if and onlyg® lies
inside the Steiner deltoid 3.

Theorem 6. The Simson lines @1, Q», Q3 are tangent to the inconic(Q) with
perspectoitg Q and centercgQ. They form a triangleS; S,S3 perspective atgQ

t0 Q1Q2Qs3.

S, is the common point of the Simson lines @F, Q2, Q3. These pointsS,,
Sy, S3 are the re ections o)1, Q2, Q3 in cgQ. See Figure 5.

Figure 5. K(Q) and Simson lines

Another computation involving symmetric functions of tleots of a third de-
gree polynomial gives

Theorem 7. K(Q) meets the circumcircle a, B, C with tangents concurring
at the Lemoine poinK of ABC and three other point€)1, Q2, Q3 where the
tangents are also concurrent at the Lemoine poime0-,Qs3.

This generalizes the property already encountered in dyfahpivotal cubics
seen in [4,x4]. Since the two triangleaBC andQ1Q,Q3 are inscribed in the
circumcircle, there must be a conic inscribed in both triasgThis gives

Theorem 8. The inconicl (Q) with perspectoitg Q is inscribed in the two trian-
glesABC andQ1Q2Qs. Itis also inscribed in the triangle formed by the Simson

lines ofQq, Q2, Qs.
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K(Q) meetd (Q) at six points which are the contactsldiQ) with the sidelines
of the two triangles. Three of them are the vertides B1, C1 of the cevian
triangle oftg Q in ABC . The other pointRR1, Ry, Rz are the intersections of
the sidelines 0f)1Q,Q3 with the cevian lines oH in S$;S,S3. In other words,
R1 = HS1\ Q2Qs3, etc. See Figure 5. Note that the re ectionsRof, R,, R3 in
the centecgQ of | (Q) are the contact$y, T,, T3 of the Simson lines of1, Q»,

Qs with | (Q).
5. In nite points on K(Q) and intersection with pKins (Q)

Proposition 9. K(Q) meets the line at in nity at the same points as the pivotal
isogonal cubigKin (Q) with pivotgQ.

Proof. This follows by writing the equation df(Q) in the form
a?qrx (?y? Bz2)+ (x+y+ 2) a’p(c®q Kr)yz=0: (4)

cyclic cyclic
Any in nite point on K(Q) is also a point on the cubic
X X x y2 z2
aZqrx (c?y?> z%)=0 | = L 2 =-o; (5)
. p P2
cyclic cyclic

which is the pivotal isogonal cubjaKin (Q) with pivot gQ.

The six other common points &f(Q) andpKin (Q) lie on the circumhyperbola
throughQ andK . They areA, B, C, Q and the two point& 1, E». Figure 6 shows
these cubics whe®® = Xs5 thusgQ is the Gergonne poink ;. Recall that the
pointskEq, E; areXg, X57.

JpKint = pK(Xs, X7)

Figure 6. K(Q) andpKins (Q) whenQ = Xss
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6. K(Q) and the inconic with center c@Q

Proposition 10. The cubicK(Q) contains the four foci of the inconic with center
cgQ and perspectotg Q.

Proof. This follows by writing the equation 8{(Q) in the form

X
px(c?q Kr)(c?y?+ BPz?) 2@ 2%  A)qrA xyz
cyclic cyclic (6)
px(c?q+ Br)(c?y?> ©z?) =0:
cyclic
Indeed
ndeed, 0 1
X
px(cq BPr)(Py?+ BPz?) 2@  a2(F A)qrA xyz=0  (7)
cyclic cyclic
is the equation of the non-pivotal isogonal circular cublg(Q) which is the
locus of foci of inconics with center on the line throu@h cgQ and

px(c*q+ br)(c’y? KPz%) =0 (8)
cyclic
is the equation of the pivotal isogonal culp&g(Q) with pivot cgQ. The two
cubicsK (Q) andpKg(Q) obviously contain the above mentioned foci.

K (Xss)| |pKs = K351

Figure 7. K(Q) and the related cubiasks(Q), pKe(Q) whenQ = Xss

These two cubics generate a pencil of cubics contaiKif@). Note thapKg(Q)
is a member of the pencil of isogonal pivotal cubics gendrétepKins (Q) and
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pPKcirc(Q). The root ofnKg(Q) is the in nite point of the trilinear polar ofg Q.
Figure 7 shows these cubics whé&n= Xs5. The inscribed conic is the Mandart
ellipse.

In the example above (Q) contains the centesgQ of the inconicl (Q) but
this is not generally true. We have

Theorem 11. K(Q) contains the centecgQ of | (Q) if and only ifQ lies on the
cubicK172 = pK(X 32; X 3).

Since we know that (Q) contains the perspecttgQ of this same inconic when
it is a pivotal cubic, it follows that there are only two cubl(Q) passing through
the foci, the center, the perspectorldfQ) and its contacts with the sidelines of
ABC . These cubics are obtained when
() Q = Xg: K(X5p) is the Thomson cubik002 andl (Q) is the Steiner inscribed
ellipse,

(i) Q = X5 : K(X25) is K233 = p K(X 25; X 4).

In the latter case;gQ = X, tgQ = X4, agQ = X103, | (Q) is the K-ellipse}
the in nite points are those d{169 = pK(Xg; X g9), the points on the circumcircle
are those opK (X g; X 193). See Figure 8.

Figure 8. K(X 25) and the related K-ellipse

Thek ellipse is actually an ellipse only when triangd&C is acute angled.
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7. K(Q) and the Steiner ellipse

Proposition 12. The cubicK(Q) meets the Steiner ellipse at the same points as
pK(tg Q; Q).
Prg(of. This follows by writing the equation d{(()g() in the form

a?px(BPry? 2qd)+(xy + yz+ zx) a(t® Aaqrx=0: (9)

cyclic cyclic
Indeed,
X X 2 2
a’px(Kry? q2)=0 ( X yT % =0 (10)
cyclic cyclic q

is the equation of the pivotal cubpK (tg Q; Q).
X
Notethat  a?(b® ) qgrx =0 is the equation of the lin®tg Q. This will

cyclic
be construed in the next paragraph.

8. K(Q) and rectangular hyperbolas

LetP = u:v:wbe agiven point and leéd (P), H(gP) be the two rectangular
circum-hyperbolas passing through gP respectively. These have equations

X X IS S,
u(Sgv Scw)yz=0 and BTW ikl yz=0:

: _ 2
cyclic cyclic
P must not lie on the McCay cubic in order to have two distincpémpolas.
Indeed,gP lies onH (P) if and only if P lies on the lineOgP i.e. P andgP are
two isogonal conjugate points collinear with
LetL(Q) andLOS?) be the two lines passing throughwith equations

a(vr(gx py) wq(rx pz)=0
cyclic
and
BPpu(v+ w)(ry qz)=0:
cyclic

These linesL (Q) andLYQ) can be construed as the trilinear polars of the
Q isoconjugates of the in nite points of the polars®fandgP in the circumcir-
cle.

The equation oK (Q) can be written in the form

0 10 1
X X
@ u(Ssv Sw)yzA @ a?(vr(gx py) wg(rx pz)A

cyclic cyclic

0 10 1 (11

X X
_ @ SE_ZW % yzZA @ BPpu(v+ w)(ry q2A

cyclic cyclic
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which will be loosely written under the form :

H(P) L(Q)= H(gP) LYQ):

If we recall thatk (Q) andH (P) have already four common points hamaly
B, C,H and thatk (Q), L (Q) andL{Q) all containQ, then we have

Corollary 13. K(Q) meetsH(P) again at two points on the line {Q) and
H (gP) again at two points on the line(Q).

For example, wittP = G, H(P) is the Kiepert hyperbola and{Q) is the line
QgtQ, H(gP) is the Jerabek hyperbola ahqQ) is the lineQtg Q.

9. Further representations ofK(Q)

Proposition 14. For varying Q, the cubicK (Q) form a net of cubics.

Proof. This follows by writing the equation df (Q) in the form

X
a’qrx cfy(x+z) Pz(x+y) =0
ﬁydm (12)
0 a’qrx x(c?y Kz) (¥ Ayz =0:
cyclic

The equatiore®y(x + z) ©Pz(x + y) = 0 is that of the rectangular circumhy-
perbolaH o tangent aiA to the symmedia\K . Its center is the midpoint &C.
Its sixth common point withK (Q) is the intersection of the linesQ andA1agQ.
Thus the net is generated by the three decomposed cubichk agi¢he union of a
sideline ofABC and the corresponding hyperbola suchHas

Proposition 15. K(Q) is a pivotal cubicpK(Q) if and only ifQ lies on the cir-
cumhyperbolad passing througls andK .

Proof. We write the equation dk (Q) in the form
0 1

X
BPpx(ry? qA)+ @ &% A)grA xyz =0: (13)
cyclic cyclic
Recall thatk (Q) meets the sidelines of triangkeBC again at the vertices of

the cevian triangle dig Q. Thus, the cubic is a pivotal cubic is and only if the term
in xyz,vanishes. It is now suf cient to observe that the equatiotthefhyperbola

H is a’(¥ Ayz=0.

cyclic
See a more detailed study of thga€(Q) in x10.1.

Proposition 16. The cubicK (Q) belongs to another pencil of similar cubics gen-
erated by another pivotal cubic and another isogonal noretal cubic.
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Proof.
0 1
X
px(c?q Br)(Py?+ KPz?) @  a2(?  A)grA xyz
cyclic cgglic (14)
+ a*qr(y 2)yz=0:
cyclic
Indeed,
0 1
X
px(c2q Pr)(Py?+ KPz?) @ a2 AgrAxyz=0  (15)
cyclic cyclic

is the equation of the non-pivotal isogonal cubik7(Q) with root the in nite
point of the trilinear polar ofg Q again and

a'qry z)yz=0 (16)

cyclic

is the equation of the pivotal cubpK 7(Q) with pivot the centroids and pole the
X 32 isoconjugate of) i.e. the pointgtgQ.

The cubicsnKg(Q) and nK7(Q) obviously coincide wher@ lies on the cir-
cumhyperbolaH passing througlc andK . Figure 9 shows these cubics when

Q = Xss.

Figure 9. K(Q) and the related cubiask7(Q), pK7(Q) whenQ = Xss
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10. Special cubicK(Q)

10.1 Pivotal cubicspK(Q). Recall that for any poin@Q on the circumhyperbola
H passing througic andK the cubicK (Q) becomes a pivotal cubic with po(@
and pivottg Q on the Kiepert hyperbola. In this cas€(Q) has equation :
X 2 2
PP px(ry?2 qA)=0 X ¥y z

2 q 1 =0 (17)

cyclic cyclic

The isopivot (secondary pivot) is clearly the Lemoine péinsince the tangents
atA, B, C are the symmedians. The poig® andagQ lie on the lineGK namely
the tangent af to the Kiepert hyperbola.

These cubics form a pencil of pivotal cubics passing throdigB, C, G, H, K
and tangent to the symmedians. Recall that they have therkabia property to
intersect the circumcircle at three other poiQts Q», Q3 with concurrent tangents
such thatagQ is the orthocenter a@1Q2Q3. See [4] for further informations.

This pencil is generated by the Thomson cuk@d2 (the only isogonal cubic)
and byK141 (the only isotomic cubic). Se€L043 in [2] for a selection of other
cubics of the pencil among theK273, the only circular cubic, an&233 seen
above.

10.2 Circular cubicsK(Q). We have seen thdf (Q) meets the line at in nity
at the same points as the pivotal isogonal cydig.; (Q) with pivot gQ. It easily
follows thatK (Q) is a circular cubic if and only ipK s (Q) is itself a circular cubic
therefore if and only igQ lies at in nity henceQ must lie on the circumcircl€.
Thus, we have :

Theorem 17. For any pointQ on the circumcircleK(Q) is a circular cubic with
singular focus on the circle with centé and radius2R. The tangent af always
passes through.

The real asymptote envelopes a deltoid, the homotheticeoSteiner deltoid
underh(G; 4). See Figure 10.

For example K273 (obtained forQ = X111, the Parry point) an&306 (ob-
tained forQ = X 59) are two cubics of this type in [2]. See also the bottom of the
pageCL035in [2].

10.3 Lemoine generalized cubit§(Q). A necessary (but not suf cient) condi-
tion to obtain a Lemoine generalized cuBi¢Q) is that the cevian triangle of Q
must be a pedal triangle. Hendg,Q must be a point on the Lucas cub{®©07
thereforeQ must be on its isogonal transforidil72.

The only identi ed points that give a Lemoine generalizetiictareH andX sg.
K(H) is K028, the third Musselman cubic. Itis also the only cubic withrapy
totes makinge0 angles with one another i.e. the only equilateral cubic &f th

type.

K(Xsg) is K360, at the origin of this note. See Figure 11.

The conic inscribed in the triangldsBC andQ1Q»Q3 is the incircle ofABC
sincetgX sg is the Gergonne poir 7. Q1Q2Q3 is a poristic triangle.
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“asymptot

Figure 10. Circular cubicK (Q) and deltoid

PK(X6, X145Y

Figure 11. The Lemoine generalized cuki¢X s¢) = K360

10.4 K(X32). K(X32) has the remarkable property to have its six tangents at its
common points with the circumcircle concurrent at the LemegbointK . It fol-

lows that the trianglesABC andQ;Q»Q3 have the same Lemoine point and the
same Brocard axis. The polar conickfis therefore the circumcircle.
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The satellite conic of the circumcircle is the Brocard elé#pvhose real foci 1,
2 (Brocard points) lie on the cubic. See Figure 12.

Figure 12. The cubi& (X 32)

Remark.K (X 32) belongs to a pencil of circum-cubics having the same prgpert
meet the circumcircle at six poins, B, C, Q1, Q2, Q3 with tangents concurring
atK hence the polar conic d&f is always the circumcircle.
The cubic of the pencil passing through the given p&int u : v : w has an

equation of the form

X

atvwyz (v Pw)x (u(dy Kz) =0;

cyclic
which shows that the pencil is generated by three decompngads, one of them
being the union of the sidelingsB , AC and the line joiningP to the feetk 5 of
the A symmedian, the other two similarly. Each cubic meets thee&mb ellipse
at six points which are the tangentials of the six points abovhree of them are
Ka, Ky, K¢ and the other points are the contacts of the Brocard elligte the

sidelines 0fQ10Q2Qs3.

10.5 K(Xs4). K(Xs4) = K361 is the only cubic of the family meeting the cir-
cumcircle at the vertices of an equilateral trian@eQ,Q3 namely the circum-
normal triangle. The tangents at these points conc@.akK361 is the isogonal
transform ofK026, the ( rst) Musselman cubic and the locus of pivots of pivota
cubics that pass through the vertices of the circumnormeaidte. See Figure 13
and further details in [2].
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McCay cubic ~~_

Figure 13. The cubi& (Xss) = K361

10.6 K(Q) with concurring asymptotesK (Q) has three (not necessarily all real)
concurring asymptotes if and only @ lies on a circumcubic passing throu@h
H, X140. This latter cubic is &¢, i.e. it has three real concurring asymptotes
making60 angles with one another. These are the paralleissat (the midpoint
of X»; X5) to those of the McCay cubik003. The cubic meets the cirumcircle
at the same points gK (X g; X 140) WhereX 149 is the midpoint ofX 3; X5. See
Figure 14.

The two cubicsK(H) = K028 andK (X 1409) have concurring asymptotes but
their common point is not on the curve. These léfecubics.

On the contraryK (X 3) is a central cubic and the asymptotes meéd ain the
curve. It is said to be K** cubic. See Figure 15.

11. Isogonal transform ofK (Q)

Under isogonal conjugation with respectABC , K(Q) is transformed into
another circum-cubigK (Q) meetingK (Q) again at the four foci of (Q) and at
the two pointsE 1, E» intersections of the lin&agQ with the conicABCKQ .

Thus,K(Q) andgK(Q) have nine known common points. When they are dis-
tincti.e. whenQ is notK i.e. whenkK(Q) is not the Thomson cubic, they generate
a pencil of cubics which contaipK (X g; cgQ).

It is easy to verify thagK (Q)
(i) contains the circumcent€, gQ, the midpoints oABC ,
(ii) is tangent atA, B, C to the cevian lines of th&¥ 3, isoconjugate of) i.e. the

pointgtgQ,
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Figure 14. The cubi&g,

Figure 15. The cubi&(X3)

(iif) meets the circumcircle at the same point#y X s; gQ) hence the orthocen-
ter of the triangleD1 0,03 formed by these points gQ); following a result of [4],
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the inconic with perspectdcgQ is inscribed inABC and010,03,
(iv) has the same asymptotic directiongo&&(X ; agQ).

Except the cas® = K, gK(Q) cannot be a cubic of typ€(Q).

The tangents t@gK(Q) at A, B, C are still concurrent (ayjtgQ) but in gen-
eral, the tangents at the other intersectiongkofQ) with the circumcircle are not
now concurrent unles® lies on a circular circum-quartic which is the isogonal
transform ofQ063 This quartic containX 1, X3, Xg, X4, X 2574, X 2575, the
excenters.

Figure 16.K(X3), gK(X3) andK003

Figure 16 presentkK(X3) andgK(X3). These two cubics generate a pencil
which contains the McCay cubi003 and the Euler isogonal focal cubicl87.
The nine common points of these four cubics Até8, C, O, H and the four foci
of the inscribed conic with cent@.

gK (X 3) meets the circumcircle at the same poidts O,, O3 as the Orthocubic
K006 and the triangleaBC , 010,03 share the same orthocentdrtherefore the
same Euler line. The tangents@i, O,, O3 concur atO and those a#\, B, C
concur atX o5. The MacBeath inconic (with centéts, foci O andH ) is inscribed
in ABC andO;0,0s.

gK (X 3) meets the line at in nity at the same points as the Darbouxackib04.
Hence, its three asymptotes are parallel to the altitud&d3d .
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