A Condition for a Circumscriptible Quadrilateral to be Cyclic

Mowaffaq Hajja

Abstract

We give a short proof of a characterization, given by M. Radić et al, of convex quadrilaterals that admit both an incircle and a circumcircle.

A convex quadrilateral is said to be cyclic if it admits a circumcircle (i.e., a circle that passes through the vertices); it is said to be circumscriptible if it admits an incircle (i.e., a circle that touches the sides internally). A quadrilateral is bicentric if it is both cyclic and circumscriptible. For basic properties of these quadrilaterals, see [7, Chapter 10, pp. 146-170]. One of the two main theorems in [5], namely Theorem 1 (p.35), can be stated as follows:

Theorem. Let $A B C D$ be a circumscriptible quadrilateral with diagonals $A C$ and $B D$ of lengths u and v respectively. Let a, b, c, and d be the lengths of the tangents from the vertices A, B, C, and D (see Figure 1). The quadrilateral $A B C D$ is cyclic if and only if $\frac{u}{v}=\frac{a+c}{b+d}$.

Figure 1

Figure 2

In this note, we give a proof that is much simpler than the one given in [5]. Our proof actually follows immediately from the three very simple lemmas below, all under the same hypothesis of the Theorem. Lemma 1 appeared as a problem in the MONTHLY [6] and Lemma 2 appeared in the solution of a quickie in the MAGAZINE [3], but we give proofs for the reader's convenience. Lemma 3 uses Lemma 2 and gives formulas for the lengths of the diagonals of a circumscriptible quadrilateral counterpart to those for cyclic quadrilaterals as given in [1], [7, $\S 10.2$, p. 148], and other standard textbooks.

[^0]Lemma 1. $A B C D$ is cyclic if and only if $a c=b d$.
Proof. Let $A B C D$ be any convex quadrilateral, not necessarily admitting an incircle, and let its vertex angles be $2 A, 2 B, 2 C$, and $2 D$. Then A, B, C, and D are acute, and $A+B+C+D=180^{\circ}$. We shall show that

$$
\begin{equation*}
A B C D \text { is cyclic } \Leftrightarrow \tan A \tan C=\tan B \tan D \tag{1}
\end{equation*}
$$

If $A B C D$ is cyclic, then $A+C=B+D=90^{\circ}$, and $\tan A \tan C=\tan B \tan D$, each being equal to 1 . Conversely, if $A B C D$ is not cyclic, then one may assume that $A+C>90^{\circ}$ and $B+D<90^{\circ}$. From

$$
0>\tan (A+C)=\frac{\tan A+\tan C}{1-\tan A \tan C}
$$

and the fact that A and C are acute, we conclude that $\tan A \tan C>1$. Similarly $\tan B \tan D<1$, and therefore $\tan A \tan C \neq \tan B \tan D$. This proves (1).

The result follows by applying (1) to the given quadrilateral, and using $\tan A=$ r / a, etc., where r is the radius of the incircle (as shown in Figure 2).

Lemma 2. The radius r of the incircle is given by

$$
\begin{equation*}
r^{2}=\frac{b c d+a c d+a b d+a b c}{a+b+c+d} \tag{2}
\end{equation*}
$$

Proof. Again, let the vertex angles of $A B C D$ be $2 A, 2 B, 2 C$, and $2 D$, and let

$$
\alpha=\tan A, \beta=\tan B, \gamma=\tan C, \delta=\tan D
$$

Let $\varepsilon_{1}=\sum \alpha, \varepsilon_{2}=\sum \alpha \beta, \varepsilon_{3}=\sum \alpha \beta \gamma$, and $\varepsilon_{4}=\alpha \beta \gamma \delta$ be the elementary symmetric polynomials in α, β, γ, and δ. By [4, $\S 125$, p. 132], we have

$$
\tan (A+B+C+D)=\frac{\varepsilon_{1}-\varepsilon_{3}}{1-\varepsilon_{2}+\varepsilon_{4}}
$$

Since $A+B+C+D=180^{\circ}$, it follows that $\tan (A+B+C+D)=0$ and hence $\varepsilon_{1}=\varepsilon_{3}$, i.e.,

$$
\frac{r}{a}+\frac{r}{b}+\frac{r}{c}+\frac{r}{d}=\frac{r^{3}}{b c d}+\frac{r^{3}}{a c d}+\frac{r^{3}}{a b d}+\frac{r^{3}}{a b c}
$$

and (2) follows.

Lemma 3.

$$
u^{2}=\frac{a+c}{b+d}((a+c)(b+d)+4 b d), \quad \text { and } \quad v^{2}=\frac{b+d}{a+c}((a+c)(b+d)+4 a c)
$$

Proof. Again, let the vertex angles of $A B C D$ be $2 A, 2 B, 2 C$, and $2 D$. Then

$$
\begin{aligned}
\cos 2 A & =\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{a^{2}-r^{2}}{a^{2}+r^{2}} \\
& =\frac{a^{2}(a+b+c+d)-(b c d+a c d+a b d+a b c)}{a^{2}(a+b+c+d)+(b c d+a c d+a b d+a b c)}, \text { by }(2) \\
& =\frac{a^{2}(a+b+c+d)-(b c d+a c d+a b d+a b c)}{(a+b)(a+c)(a+d))}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
v^{2} & =(a+b)^{2}+(a+d)^{2}-2(a+b)(a+d) \cos 2 A \\
& =(a+b)^{2}+(a+d)^{2}-2 \frac{a^{2}(a+b+c+d)-(b c d+a c d+a b d+a b c)}{a+c} \\
& =\frac{b+d}{c+a}((a+c)(b+d)+4 a c) .
\end{aligned}
$$

A similar formula holds for u.
Proof of the main theorem. Using Lemmas 1 and 3 we see that

$$
\begin{aligned}
A B C D \text { is cyclic } & \Longleftrightarrow a c=b d, \text { by Lemma } 1 \\
& \Longleftrightarrow(a+c)(b+d)+4 b d=(a+c)(b+d)+4 a c \\
& \Longleftrightarrow \frac{u^{2}}{v^{2}}=\left(\frac{c+a}{b+d}\right)^{2}, \text { by Lemma 3 } \\
& \Longleftrightarrow \frac{u}{v}=\frac{c+a}{b+d},
\end{aligned}
$$

as desired. This completes the proof of the main theorem.
Remarks. (1) As mentioned earlier, Theorem 1 is one of the two main theorems in [5]. The other theorem is similar and deals with those quadrilaterals that admit an excircle. Note that the terms chordal and tangential are used in that paper to describe what we referred to as cyclic and circumscriptible quadrilaterals.
(2) Let $A_{1} \ldots A_{n}$ be circumscriptible n-gon and let B_{1}, \ldots, B_{n} be the points where the incircle touches the sides $A_{1} A_{2}, \ldots, A_{n} A_{1}$. Let $\left|A_{i} B_{i}\right|=a_{i}$ for $i=$ $1, \ldots, n$. Theorem 2 states that if $n=4$, then the polygon is cyclic if and only if $a_{1} a_{3}=a_{2} a_{4}$. One wonders whether a similar criterion holds for $n>4$.
(3) It is proved in [2] that if a_{1}, \ldots, a_{n} are any positive numbers, then there exists a unique circumscriptible n-gon $A_{1} \ldots A_{n}$ such that the points B_{1}, \ldots, B_{n} where the incircle touches the sides $A_{1} A_{2}, \ldots, A_{n} A_{1}$ have the property $\left|A_{i} B_{i}\right|=$ a_{i} for $i=1, \ldots, n$. Thus one can, in principle, express all the elements of the circumscriptible polygon in terms of the parameters a_{1}, \ldots, a_{n}. Instances of this, when $n=4$, are found in Lemms 2 and 3 where the inradius r and the lengths of the diagonals are so expressed. When $n>4$, one can prove that r^{2} is the unique positive zero of the polynomial

$$
\sigma_{n-1}-r^{2} \sigma_{n-3}+r^{4} \sigma_{n-5}-\ldots \cdots=0
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ are the elementary symmetric polynomials in a_{1}, \ldots, a_{n}, and where a_{1}, \ldots, a_{n} are as given in Remark 2. This is obtained in the same way we obtained (2) using the the formula

$$
\tan \left(A_{1}+\cdots+A_{n}\right)=\frac{\varepsilon_{1}-\varepsilon_{3}+\varepsilon_{5}-\ldots}{1-\varepsilon_{2}+\varepsilon_{4}-\ldots}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are the elementary symmetric polynomials in $\tan A_{1}, \ldots, \tan A_{n}$, and where A_{1}, \ldots, A_{n} are half the vertex angles of the polygon.

References

[1] C. Alsina and R. B. Nelson, On the diagonals of a cyclic quadrilateral, Forum Geom., 7 (2007) 147-149.
[2] D. E. Gurarie and R. Holzsager, Problem 10303, Amer. Math. Monthy, 100 (1993) 401; solution, ibid., 101 (1994) 1019-1020.
[3] J. P. Hoyt, Quickie Q 694, Math. Mag., 57 (1984) 239; solution, ibid., 57 (1984) 242.
[4] S. L. Loney, Plane Trigonometry, S. Chand \& Company Ltd, New Delhi, 1996.
[5] M. Radić, Z. Kaliman, and V. Kadum, A condition that a tangential quadrilateral is also a chordal one, Math. Commun., 12 (2007) 33-52.
[6] A. Sinefakupoulos, Problem 10804, Amer. Math. Monthy, 107 (2000) 462; solution, ibid., 108 (2001) 378.
[7] P. Yiu, Euclidean Geometry, Florida Atlantic Univesity Lecture Notes, 1998, available at http://www.math.fau.edu/Yiu/Geometry.html.

Mowaffaq Hajja: Mathematics Department, Yarmouk University, Irbid, Jordan
E-mail address: mhajja@yu.edu.jo, mowhajja@yahoo.com

[^0]: Publication Date: May 1, 2008. Communicating Editor: Paul Yiu.
 The author would like to thank Yarmouk University for supporting this work and Mr. Esam Darabseh for drawing the figures.

