

A Condition for a Circumscriptible Quadrilateral to be Cyclic

Mowaffaq Hajja

Abstract. We give a short proof of a characterization, given by M. Radić et al, of convex quadrilaterals that admit both an incircle and a circumcircle.

A convex quadrilateral is said to be *cyclic* if it admits a circumcircle (*i.e.*, a circle that passes through the vertices); it is said to be *circumscriptible* if it admits an incircle (*i.e.*, a circle that touches the sides internally). A quadrilateral is *bicentric* if it is both cyclic and circumscriptible. For basic properties of these quadrilaterals, see [7, Chapter 10, pp. 146–170]. One of the two main theorems in [5], namely Theorem 1 (p. 35), can be stated as follows:

Theorem. Let ABCD be a circumscriptible quadrilateral with diagonals AC and BD of lengths u and v respectively. Let a, b, c, and d be the lengths of the tangents from the vertices A, B, C, and D (see Figure 1). The quadrilateral ABCD is cyclic if and only if $\frac{u}{v} = \frac{a+c}{b+d}$.

In this note, we give a proof that is much simpler than the one given in [5]. Our proof actually follows immediately from the three very simple lemmas below, all under the same hypothesis of the Theorem. Lemma 1 appeared as a problem in the MONTHLY [6] and Lemma 2 appeared in the solution of a quickie in the MAGAZINE [3], but we give proofs for the reader's convenience. Lemma 3 uses Lemma 2 and gives formulas for the lengths of the diagonals of a circumscriptible quadrilateral counterpart to those for cyclic quadrilaterals as given in [1], [7, \S 10.2, p. 148], and other standard textbooks.

Publication Date: May 1, 2008. Communicating Editor: Paul Yiu.

The author would like to thank Yarmouk University for supporting this work and Mr. Esam Darabseh for drawing the figures.

Lemma 1. ABCD is cyclic if and only if ac = bd.

Proof. Let ABCD be any convex quadrilateral, not necessarily admitting an incircle, and let its vertex angles be 2A, 2B, 2C, and 2D. Then A, B, C, and D are acute, and $A + B + C + D = 180^{\circ}$. We shall show that

$$ABCD \text{ is cyclic } \Leftrightarrow \tan A \tan C = \tan B \tan D. \tag{1}$$

If ABCD is cyclic, then $A+C = B+D = 90^{\circ}$, and $\tan A \tan C = \tan B \tan D$, each being equal to 1. Conversely, if ABCD is not cyclic, then one may assume that $A+C > 90^{\circ}$ and $B+D < 90^{\circ}$. From

$$0 > \tan(A+C) = \frac{\tan A + \tan C}{1 - \tan A \tan C}$$

and the fact that A and C are acute, we conclude that $\tan A \tan C > 1$. Similarly $\tan B \tan D < 1$, and therefore $\tan A \tan C \neq \tan B \tan D$. This proves (1).

The result follows by applying (1) to the given quadrilateral, and using $\tan A = r/a$, etc., where r is the radius of the incircle (as shown in Figure 2).

Lemma 2. The radius r of the incircle is given by

$$r^2 = \frac{bcd + acd + abd + abc}{a + b + c + d}.$$
(2)

Proof. Again, let the vertex angles of ABCD be 2A, 2B, 2C, and 2D, and let

$$\alpha = \tan A, \ \beta = \tan B, \ \gamma = \tan C, \ \delta = \tan D.$$

Let $\varepsilon_1 = \sum \alpha$, $\varepsilon_2 = \sum \alpha \beta$, $\varepsilon_3 = \sum \alpha \beta \gamma$, and $\varepsilon_4 = \alpha \beta \gamma \delta$ be the elementary symmetric polynomials in α , β , γ , and δ . By [4, § 125, p. 132], we have

$$\tan(A + B + C + D) = \frac{\varepsilon_1 - \varepsilon_3}{1 - \varepsilon_2 + \varepsilon_4}$$

Since $A + B + C + D = 180^{\circ}$, it follows that $\tan(A + B + C + D) = 0$ and hence $\varepsilon_1 = \varepsilon_3$, *i.e.*,

$$\frac{r}{a} + \frac{r}{b} + \frac{r}{c} + \frac{r}{d} = \frac{r^3}{bcd} + \frac{r^3}{acd} + \frac{r^3}{abd} + \frac{r^3}{abc},$$

and (2) follows.

Lemma 3.

$$u^{2} = \frac{a+c}{b+d} ((a+c)(b+d) + 4bd), \text{ and } v^{2} = \frac{b+d}{a+c} ((a+c)(b+d) + 4ac).$$

Proof. Again, let the vertex angles of ABCD be 2A, 2B, 2C, and 2D. Then

$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A} = \frac{a^2 - r^2}{a^2 + r^2}$$

= $\frac{a^2(a + b + c + d) - (bcd + acd + abd + abc)}{a^2(a + b + c + d) + (bcd + acd + abd + abc)}$, by (2)
= $\frac{a^2(a + b + c + d) - (bcd + acd + abd + abc)}{(a + b)(a + c)(a + d))}$.

A condition for a circumscriptible quadrilateral to be cyclic

Therefore

$$v^{2} = (a+b)^{2} + (a+d)^{2} - 2(a+b)(a+d)\cos 2A$$

= $(a+b)^{2} + (a+d)^{2} - 2\frac{a^{2}(a+b+c+d) - (bcd+acd+abd+abc)}{a+c}$
= $\frac{b+d}{c+a} ((a+c)(b+d) + 4ac).$

A similar formula holds for u.

Proof of the main theorem. Using Lemmas 1 and 3 we see that

$$\begin{array}{lll} ABCD \text{ is cyclic} & \Longleftrightarrow & ac = bd, \text{ by Lemma 1} \\ & \Longleftrightarrow & (a+c)(b+d) + 4bd = (a+c)(b+d) + 4ac \\ & \Leftrightarrow & \frac{u^2}{v^2} = \left(\frac{c+a}{b+d}\right)^2, \text{ by Lemma 3} \\ & \Leftrightarrow & \frac{u}{v} = \frac{c+a}{b+d}, \end{array}$$

as desired. This completes the proof of the main theorem.

Remarks. (1) As mentioned earlier, Theorem 1 is one of the two main theorems in [5]. The other theorem is similar and deals with those quadrilaterals that admit an *excircle*. Note that the terms *chordal* and *tangential* are used in that paper to describe what we referred to as *cyclic* and *circumscriptible* quadrilaterals.

(2) Let $A_1
dots A_n$ be circumscriptible *n*-gon and let B_1, \dots, B_n be the points where the incircle touches the sides A_1A_2, \dots, A_nA_1 . Let $|A_iB_i| = a_i$ for $i = 1, \dots, n$. Theorem 2 states that if n = 4, then the polygon is cyclic if and only if $a_1a_3 = a_2a_4$. One wonders whether a similar criterion holds for n > 4.

(3) It is proved in [2] that if a_1, \ldots, a_n are any positive numbers, then there exists a unique circumscriptible *n*-gon $A_1 \ldots A_n$ such that the points B_1, \ldots, B_n where the incircle touches the sides A_1A_2, \ldots, A_nA_1 have the property $|A_iB_i| = a_i$ for $i = 1, \ldots, n$. Thus one can, in principle, express all the elements of the circumscriptible polygon in terms of the parameters a_1, \ldots, a_n . Instances of this, when n = 4, are found in Lemms 2 and 3 where the inradius *r* and the lengths of the diagonals are so expressed. When n > 4, one can prove that r^2 is the unique positive zero of the polynomial

$$\sigma_{n-1} - r^2 \sigma_{n-3} + r^4 \sigma_{n-5} - \ldots = 0,$$

where $\sigma_1, \ldots, \sigma_n$ are the elementary symmetric polynomials in a_1, \ldots, a_n , and where a_1, \ldots, a_n are as given in Remark 2. This is obtained in the same way we obtained (2) using the the formula

$$\tan(A_1 + \dots + A_n) = \frac{\varepsilon_1 - \varepsilon_3 + \varepsilon_5 - \dots}{1 - \varepsilon_2 + \varepsilon_4 - \dots},$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are the elementary symmetric polynomials in $\tan A_1, \ldots, \tan A_n$, and where A_1, \ldots, A_n are half the vertex angles of the polygon.

References

- C. Alsina and R. B. Nelson, On the diagonals of a cyclic quadrilateral, *Forum Geom.*, 7 (2007) 147–149.
- [2] D. E. Gurarie and R. Holzsager, Problem 10303, Amer. Math. Monthy, 100 (1993) 401; solution, ibid., 101 (1994) 1019–1020.
- [3] J. P. Hoyt, Quickie Q 694, Math. Mag., 57 (1984) 239; solution, ibid., 57 (1984) 242.
- [4] S. L. Loney, Plane Trigonometry, S. Chand & Company Ltd, New Delhi, 1996.
- [5] M. Radić, Z. Kaliman, and V. Kadum, A condition that a tangential quadrilateral is also a chordal one, *Math. Commun.*, 12 (2007) 33–52.
- [6] A. Sinefakupoulos, Problem 10804, Amer. Math. Monthy, 107 (2000) 462; solution, ibid., 108 (2001) 378.
- [7] P. Yiu, *Euclidean Geometry*, Florida Atlantic Univesity Lecture Notes, 1998, available at http://www.math.fau.edu/Yiu/Geometry.html.

Mowaffaq Hajja: Mathematics Department, Yarmouk University, Irbid, Jordan *E-mail address*: mhajja@yu.edu.jo, mowhajja@yahoo.com