Haruki's Lemma for Conics

Yaroslav Bezverkhnyev

Abstract

We extend Haruki's lemma to conics.

1. Main results

In this paper we continue to explore Haruki's lemma introduced by Ross Honsberger in [2, 3]. In [1], we gave an extension of Haruki's lemma (Theorem 1 below) and studied a related locus problem, leading to certain interesting conics. ${ }^{1}$

Theorem 1 ([1, Lemma 2]). Given two nonintersecting chords $A B$ and $C D$ in a circle and a variable point P on the arc $A B$ remote from points C and D, let E and F be the intersections of chords $P C, A B$, and of $P D, A B$ respectively. The following equalities hold:

$$
\begin{align*}
& \frac{A E \cdot B F}{E F}=\frac{A C \cdot B D}{C D}, \tag{1}\\
& \frac{A F \cdot B E}{E F}=\frac{A D \cdot B C}{C D} \tag{2}
\end{align*}
$$

In this paper we generalize this result to conics.

Figure 1.

Theorem 2. Given a nondegenerate conic \mathcal{C} with fixed points A, B, C, D on it, let P be a variable point distinct from A and B. Let E and F be the intersections of the lines $P C, A B$, and of $P D, A B$ respectively. Then the ratios $\frac{A E \cdot B F}{E F}$ and $\frac{A F \cdot B E}{F E}$ are independent of the choice of P.

[^0]It turns out that this result still holds when the points A and B coincide. In this case, we replace the line $A B$ by the tangent to the conic at A. With a minor change of notations, we have the following result.

Theorem 3. Given a nondegenerate conic \mathcal{C} with fixed points A, B, C on it, let P be a variable point distinct from A. Let E and F be the intersections of the lines $P B, P C$ with the tangent to the conic at A. Then the ratio $\frac{A E \cdot A F}{E F}$ is independent of the choice of P.

Figure 2

2. Proof of Theorem 2

We choose $A B C$ as reference triangle. The nondegenerate conic \mathcal{C} has equation of the form

$$
\begin{equation*}
f y z+g z x+h x y=0 \tag{3}
\end{equation*}
$$

for nonzero constants f, g, h. See Figure 1. Suppose D has homogeneous barycentric coordinates $(u: v: w)$, i.e.,

$$
\begin{equation*}
f v w+g w u+h u v=0 . \tag{4}
\end{equation*}
$$

Clearly, u, v, w are all nonzero. For an arbitrary point P with barycentric coordinates $(x: y: z)$, the coordinates of the intersections $E=A B \cap D C$ and $F=A B \cap P D$ can be easily determined:

$$
E=(x: y: 0), \quad F=(u z-w x: v z-w y: 0) .
$$

See $[1, \S 6]$. From these, we have the signed lengths of the various relevant segments:

$$
\begin{array}{ll}
A E=\frac{y}{x+y} \cdot c, & E B=\frac{x}{x+y} \cdot c, \\
A F=\frac{v z-w y}{z(u+v)-w(x+y)} \cdot c, & F B=\frac{u z-w x}{z(u+v)-w(x+y)} \cdot c, \\
E F=\frac{z(v-u y)}{(x+y)(z(u+v)-w(x+y))} \cdot c, &
\end{array}
$$

where $c=A B$. It follows that $\frac{A E \cdot B F}{E F}=\frac{y(w x-u z)}{z(v x-u y)} \cdot c$. To calculate this fraction, note that from (4), we have $\frac{f w}{h}=-u(1+k)$ for $k=\frac{g w}{h v}$. Now, from (3),
we have

$$
\begin{aligned}
& \frac{f w}{h} \cdot y z+\frac{g w}{h} \cdot z x+w \cdot x y=0 \\
& -u(1+k) y z+k v z x+w x y=0 \\
& y(w x-u z)+k z(v x-u y)=0
\end{aligned}
$$

Hence, $\frac{A E \cdot B F}{E F}=\frac{y(w x-u z)}{z(v x-u y)} \cdot c=-k c$, a constant.
A similar calculation gives $\frac{A F \cdot B E}{F E}=(1+k) c$, a constant. This completes the proof of the theorem.

Remark. Note that we have actually proved that

$$
\frac{A E \cdot B F}{E F}=-\frac{g w}{h v} \cdot c \quad \text { and } \quad \frac{A F \cdot B E}{F E}=-\frac{f w}{h u} \cdot c .
$$

In [1, Theorem 6], we have solved two loci problems in connection with Haruki's lemma. Denote, in Figure 1, $B C=a, C A=b, A B=c$, and $A D=a^{\prime}, B D=b^{\prime}$, $C D=c^{\prime}$. The locus of points P satisfying (1) is the union of the two circumconics of $A B C D$

$$
\left(c c^{\prime}+\varepsilon b b^{\prime}\right) u y z-\varepsilon b b^{\prime} v z x-c c^{\prime} w x y=0, \quad \varepsilon= \pm 1
$$

Now, with

$$
f=\left(c c^{\prime}+\varepsilon b b^{\prime}\right) u, \quad g=-\varepsilon b b^{\prime} v, \quad h=-c c^{\prime} w
$$

we have

$$
\frac{A E \cdot B F}{E F}=-\frac{-\varepsilon b b^{\prime} v w}{-c c^{\prime} w v} \cdot c=-\varepsilon \cdot \frac{b b^{\prime}}{c^{\prime}}=\varepsilon \cdot \frac{A C \cdot B D}{C D} .
$$

Similarly, the locus of points P satisfying (2) is the union of the two circumconics of $A B C D$

$$
\varepsilon a a^{\prime} u y z+\left(c c^{\prime}-\varepsilon a a^{\prime}\right) v z x-c c^{\prime} w x y=0, \quad \varepsilon= \pm 1 .
$$

Now, with

$$
f=\varepsilon a a^{\prime} u, \quad g=\left(c c^{\prime}-\varepsilon a a^{\prime}\right) v, \quad h=-c c^{\prime} w,
$$

we have

$$
\frac{A F \cdot B E}{F E}=-\frac{f w}{h u} \cdot c=-\frac{\varepsilon a a^{\prime} u w}{-c c^{\prime} w u} \cdot c=\varepsilon \cdot \frac{a a^{\prime}}{c^{\prime}}=-\varepsilon \cdot \frac{A D \cdot B C}{D C} .
$$

These confirm that Theorem 2 is consistent with Theorem 6 of [1].

3. Proof of Theorem 3

Again, we choose $A B C$ as the reference triangle, and write the equation of the nondegenerate conic \mathcal{C} in the form (3) with $f g h \neq 0$. The tangent at A is the line
t_{A} :

$$
h y+g z=0 .
$$

For an arbitrary point P with homogeneous barycentric coordinates $(x: y: z)$, the lines $P B$ and $P C$ intersect t_{A} respectively at

$$
\begin{aligned}
& E=(h x:-g z: h z), \\
& F=(g x: g y:-h y) .
\end{aligned}
$$

Figure 3
On the tangent line there is the point $T=(0:-g: h)$, the intersection with the line $B C$. It is clearly possible to express the points E and F in terms of A and T. In fact, from

$$
\begin{aligned}
(h x,-g z, h z) & =h x(1,0,0)-z(0, g,-h), \\
(g x, g y,-h y) & =g x(1,0,0)+y(0, g,-h),
\end{aligned}
$$

we have, in absolute barycentric coordinates,

$$
\begin{aligned}
& E=\frac{h x}{h x-(g-h) z} \cdot A+\frac{-(g-h) z}{h x-(g-h) z} \cdot T, \\
& F=\frac{g x}{g x+(g-h) y} \cdot A+\frac{(g-h) y}{g x+(g-h) y} \cdot T .
\end{aligned}
$$

From these,

$$
\frac{A E}{A T}=\frac{-(g-h) z}{h x-(g-h) z}, \quad \frac{A F}{A T}=\frac{(g-h) y}{g x+(g-h) y}
$$

It follows that

$$
\begin{aligned}
\frac{E F}{A T} & =\frac{A F-A E}{A T}=\frac{(g-h) y}{g x+(g-h) y}+\frac{(g-h) z}{h x-(g-h) z} \\
& =\frac{(g-h) x(h y+g z)}{(g x+(g-h) y)(h x-(g-h) z)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{A E \cdot A F}{E F} & =\frac{-(g-h) z \cdot(g-h) y}{(g-h) x(h y+g z)} \cdot A T=\frac{-(g-h) y z}{g z x+h x y} \cdot A T \\
& =\frac{-(g-h) y z}{-f y z} \cdot A T=\frac{g-h}{f} \cdot A T
\end{aligned}
$$

This is independent of the choice of the point $P(x: y: z)$ on the conic. This completes the proof of Theorem 3.

References

[1] Y. Bezverkhynev, Haruki's lemma and a related locus problem, Forum Geom., 8 (2008) 63-72.
[2] R. Honsberger, The Butterfly Problem and Other Delicacies from the Noble Art of Euclidean Geometry I, TYCMJ, 14 (1983) $2-7$.
[3] R. Honsberger, Mathematical Diamonds, Dolciani Math. Expositions No. 26, Math. Assoc. Amer., 2003.

Yaroslav Bezverkhnyev: Main Post Office, P/O Box 29A, 88000 Uzhgorod, Transcarpathia, Ukraine

E-mail address: slavab59@yahoo.ca

[^0]: Publication Date: June 23, 2008. Communicating Editor: Paul Yiu.
 The author wishes to thank Paul Yiu for his invaluable additions and help with the preparation of the article.
 ${ }^{1}$ See Remark following the proof of Theorem 2 below.

