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Haruki’s Lemma for Conics

Yaroslav Bezverkhnyev

Abstract. We extend Haruki’s lemma to conics.

1. Main results

In this paper we continue to explore Haruki’s lemma introduced by Ross Hons-
berger in [2, 3]. In [1], we gave an extension of Haruki’s lemma (Theorem 1 below)
and studied a related locus problem, leading to certain interesting conics.1

Theorem 1 ([1, Lemma 2]). Given two nonintersecting chordsAB andCD in a
circle and a variable pointP on the arcAB remote from pointsC andD, let E

andF be the intersections of chordsPC, AB, and ofPD, AB respectively. The
following equalities hold:

AE · BF

EF
=

AC · BD

CD
, (1)

AF · BE

EF
=

AD · BC

CD
. (2)

In this paper we generalize this result to conics.
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Figure 1.

Theorem 2. Given a nondegenerate conicC with fixed pointsA, B, C, D on it,
let P be a variable point distinct fromA andB. LetE andF be the intersections

of the linesPC, AB, and ofPD, AB respectively. Then the ratios
AE · BF

EF
and

AF · BE

FE
are independent of the choice ofP .
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1See Remark following the proof of Theorem 2 below.
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It turns out that this result still holds when the pointsA andB coincide. In this
case, we replace the lineAB by the tangent to the conic atA. With a minor change
of notations, we have the following result.

Theorem 3. Given a nondegenerate conicC with fixed pointsA, B, C on it, let
P be a variable point distinct fromA. Let E and F be the intersections of the

lines PB, PC with the tangent to the conic atA. Then the ratio
AE · AF

EF
is

independent of the choice ofP .

A

B

C

P

E

F
tA

Figure 2

2. Proof of Theorem 2

We chooseABC as reference triangle. The nondegenerate conicC has equation
of the form

fyz + gzx + hxy = 0 (3)

for nonzero constantsf , g, h. See Figure 1. SupposeD has homogeneous barycen-
tric coordinates(u : v : w), i.e.,

fvw + gwu + huv = 0. (4)

Clearly, u, v, w are all nonzero. For an arbitrary pointP with barycentric co-
ordinates(x : y : z), the coordinates of the intersectionsE = AB ∩ DC and
F = AB ∩ PD can be easily determined:

E = (x : y : 0), F = (uz − wx : vz − wy : 0).

See [1,§6]. From these, we have the signed lengths of the various relevant seg-
ments:

AE = y
x+y

· c, EB = x
x+y

· c,

AF = vz−wy
z(u+v)−w(x+y) · c, FB = uz−wx

z(u+v)−w(x+y) · c,

EF = z(vx−uy)
(x+y)(z(u+v)−w(x+y)) · c,

wherec = AB. It follows that
AE · BF

EF
=

y(wx − uz)

z(vx − uy)
· c. To calculate this

fraction, note that from (4), we havefw
h

= −u(1 + k) for k = gw
hv

. Now, from (3),
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we have

fw

h
· yz +

gw

h
· zx + w · xy = 0,

− u(1 + k)yz + kvzx + wxy = 0,

y(wx − uz) + kz(vx − uy) = 0.

Hence,
AE · BF

EF
=

y(wx − uz)

z(vx − uy)
· c = −kc, a constant.

A similar calculation gives
AF · BE

FE
= (1 + k)c, a constant. This completes

the proof of the theorem.

Remark.Note that we have actually proved that

AE · BF

EF
= −

gw

hv
· c and

AF · BE

FE
= −

fw

hu
· c.

In [1, Theorem 6], we have solved two loci problems in connection with Haruki’s
lemma. Denote, in Figure 1,BC = a, CA = b, AB = c, andAD = a′, BD = b′,
CD = c′. The locus of pointsP satisfying (1) is the union of the two circumconics
of ABCD

(cc′ + εbb′)uyz − εbb′vzx − cc′wxy = 0, ε = ±1.

Now, with

f = (cc′ + εbb′)u, g = −εbb′v, h = −cc′w,

we have

AE · BF

EF
= −

−εbb′vw

−cc′wv
· c = −ε ·

bb′

c′
= ε ·

AC · BD

CD
.

Similarly, the locus of pointsP satisfying (2) is the union of the two circumcon-
ics ofABCD

εaa′uyz + (cc′ − εaa′)vzx − cc′wxy = 0, ε = ±1.

Now, with

f = εaa′u, g = (cc′ − εaa′)v, h = −cc′w,

we have

AF · BE

FE
= −

fw

hu
· c = −

εaa′uw

−cc′wu
· c = ε ·

aa′

c′
= −ε ·

AD · BC

DC
.

These confirm that Theorem 2 is consistent with Theorem 6 of [1].
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3. Proof of Theorem 3

Again, we chooseABC as the reference triangle, and write the equation of the
nondegenerate conicC in the form (3) withfgh 6= 0. The tangent atA is the line

tA : hy + gz = 0.

For an arbitrary pointP with homogeneous barycentric coordinates(x : y : z), the
linesPB andPC intersecttA respectively at

E =(hx : −gz : hz),

F =(gx : gy : −hy).
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Figure 3

On the tangent line there is the pointT = (0 : −g : h), the intersection with the
line BC. It is clearly possible to express the pointsE andF in terms ofA andT .
In fact, from

(hx,−gz, hz) =hx(1, 0, 0) − z(0, g,−h),

(gx, gy,−hy) =gx(1, 0, 0) + y(0, g,−h),

we have, in absolute barycentric coordinates,

E =
hx

hx − (g − h)z
· A +

−(g − h)z

hx − (g − h)z
· T,

F =
gx

gx + (g − h)y
· A +

(g − h)y

gx + (g − h)y
· T.

From these,

AE

AT
=

−(g − h)z

hx − (g − h)z
,

AF

AT
=

(g − h)y

gx + (g − h)y
.

It follows that

EF

AT
=

AF − AE

AT
=

(g − h)y

gx + (g − h)y
+

(g − h)z

hx − (g − h)z

=
(g − h)x(hy + gz)

(gx + (g − h)y)(hx − (g − h)z)
.
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Therefore,

AE · AF

EF
=

−(g − h)z · (g − h)y

(g − h)x(hy + gz)
· AT =

−(g − h)yz

gzx + hxy
· AT

=
−(g − h)yz

−fyz
· AT =

g − h

f
· AT.

This is independent of the choice of the pointP (x : y : z) on the conic. This
completes the proof of Theorem 3.
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