Characterizations of a Tangential Quadrilateral

Nicuşor Minculete

Abstract

In this paper we will present several relations about the tangential quadrilaterals; among these, we have that the quadrilateral $A B C D$ is tangential if and only if the following equality $$
\frac{1}{d(O, A B)}+\frac{1}{d(O, C D)}=\frac{1}{d(O, B C)}+\frac{1}{d(O, D A)}
$$ holds, where O is the point where the diagonals of convex quadrilateral $A B C D$ meet. This is equivalent to Wu's Theorem.

A tangential quadrilateral is a convex quadrilateral whose sides all tangent to a circle inscribed in the quadrilateral. ${ }^{1}$ In a tangential quadrilateral, the four angle bisectors meet at the center of the inscribed circle. Conversely, a convex quadrilateral in which the four angle bisectors meet at a point must be tangential. A necessary and sufficient condition for a convex quadrilateral to be tangential is that its two pairs of opposite sides have equal sums (see [1, 2, 4]). In [5], Marius Iosifescu proved that a convex quadrilateral $A B C D$ is tangential if and only if

$$
\tan \frac{x}{2} \cdot \tan \frac{z}{2}=\tan \frac{y}{2} \cdot \tan \frac{w}{2},
$$

where x, y, z, w are the measures of the angles $A B D, A D B, B D C$, and $D B C$ respectively (see Figure 1). In [3], Wu Wei Chao gave another characterization of tangential quadrilaterals. The two diagonals of any convex quadrilateral divide the quadrilateral into four triangles. Let $r_{1}, r_{2}, r_{3}, r_{4}$, in cyclic order, denote the radii of the circles inscribed in each of these triangles (see Figure 2). Wu found that the quadrilateral is tangential if and only if

$$
\frac{1}{r_{1}}+\frac{1}{r_{3}}=\frac{1}{r_{2}}+\frac{1}{r_{4}} .
$$

In this paper we find another characterization (Theorem 1 below) of tangential quadrilaterals. This new characterization is shown to be equivalent to Wu's condition and others (Proposition 2).

Consider a convex quadrilateral $A B C D$ with diagonals $A C$ and $B D$ intersecting at O. Denote the lengths of the sides $A B, B C, C D, D A$ by a, b, c, d respectively.

[^0]

Figure 1

Figure 2

Theorem 1. A convex quadrilateral $A B C D$ with diagonals intersecting at O is tangential if and only if

$$
\begin{equation*}
\frac{1}{d(O, A B)}+\frac{1}{d(O, C D)}=\frac{1}{d(O, B C)}+\frac{1}{d(O, D A)}, \tag{1}
\end{equation*}
$$

where $d(O, A B)$ is the distance from O to the line $A B$ etc.
Proof. We first express (1) is an alternative form. Consider the projections M, N, P and Q of O on the sides $A B, B C, C D, D A$ respectively.

Figure 3

Let $A B=a, B C=b, C D=c, D A=d$. It is easy to see

$$
\begin{aligned}
& \frac{O M}{d(C, A B)}=\frac{A O}{A C}=\frac{O Q}{d(C, A D)}, \\
& \frac{O M}{d(D, A B)}=\frac{B O}{B D}=\frac{O N}{d(D, B C)}, \\
& \frac{O N}{d(A, B C)}=\frac{O C}{A C}=\frac{O P}{d(A, D C)} .
\end{aligned}
$$

This means

$$
\frac{O M}{b \sin B}=\frac{O Q}{c \sin D}, \quad \frac{O M}{d \sin A}=\frac{O N}{c \sin C}, \quad \frac{O N}{a \sin B}=\frac{O P}{d \sin D} .
$$

The relation (1) becomes

$$
\frac{1}{O M}+\frac{1}{O P}=\frac{1}{O N}+\frac{1}{O Q},
$$

which is equivalent to

$$
1+\frac{O M}{O P}=\frac{O M}{O N}+\frac{O M}{O Q}
$$

or

$$
1+\frac{a \sin A \sin B}{c \sin C \sin D}=\frac{d \sin A}{c \sin C}+\frac{b \sin B}{c \sin D} .
$$

Therefore (1) is equivalent to

$$
\begin{equation*}
a \sin A \sin B+c \sin C \sin D=b \sin B \sin C+d \sin D \sin A . \tag{2}
\end{equation*}
$$

Now we show that $A B C D$ is tangential if and only if (2) holds.
(\Rightarrow) If the quadrilateral $A B C D$ is tangential, then there is a circle inscribed in the quadrilateral. Let r be the radius of this circle. Then

$$
\begin{array}{ll}
a=r\left(\cot \frac{A}{2}+\cot \frac{B}{2}\right), & b=r\left(\cot \frac{B}{2}+\cot \frac{C}{2}\right), \\
c & =r\left(\cot \frac{C}{2}+\cot \frac{D}{2}\right),
\end{array} \quad d=r\left(\cot \frac{D}{2}+\cot \frac{A}{2}\right) . ~ .
$$

Hence,

$$
\begin{aligned}
a \sin A \sin B & =r\left(\cot \frac{A}{2}+\cot \frac{B}{2}\right) \cdot 4 \sin \frac{A}{2} \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{B}{2} \\
& =4 r\left(\cos \frac{A}{2} \sin \frac{B}{2}+\cos \frac{B}{2} \sin \frac{A}{2}\right) \cos \frac{A}{2} \cos \frac{B}{2} \\
& =4 r \sin \frac{A+B}{2} \cos \frac{A}{2} \cos \frac{B}{2} \\
& =4 r \sin \frac{C+D}{2} \cos \frac{A}{2} \cos \frac{B}{2} \\
& =4 r\left(\cos \frac{D}{2} \sin \frac{C}{2}+\cos \frac{C}{2} \sin \frac{D}{2}\right) \cos \frac{A}{2} \cos \frac{B}{2} \\
& =4 r\left(\tan \frac{C}{2}+\tan \frac{D}{2}\right) \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{D}{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& b \sin B \sin C=4 r\left(\tan \frac{D}{2}+\tan \frac{A}{2}\right) \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{D}{2}, \\
& c \sin C \sin D=4 r\left(\tan \frac{A}{2}+\tan \frac{B}{2}\right) \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{D}{2}, \\
& d \sin D \sin A=4 r\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right) \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{D}{2} .
\end{aligned}
$$

From these relations it is clear that (2) holds.
(\Leftarrow) We assume (2) and $A B C D$ not tangential. From these we shall deduce a contradiction.

Figure 4.

Case 1. Suppose the opposite sides of $A B C D$ are not parallel.
Let T be the intersection of the lines $A D$ and $B C$. Consider the incircle of triangle $A B T$ (see Figure 4). Construct a parallel to the side $D C$ which is tangent to the circle, meeting the sides $B C$ and $D A$ at C^{\prime} and D^{\prime} respectively. Let $B C^{\prime}=$
$b^{\prime}, C^{\prime} D^{\prime}=c^{\prime}, D^{\prime} A=d^{\prime}, C^{\prime} C=x, D^{\prime \prime} D^{\prime}=y$, and $D^{\prime} D=z$, and where $D^{\prime \prime}$ is the point on $C^{\prime} D^{\prime}$ such that $C^{\prime} C D D^{\prime \prime}$ is a parallelogram. Note that

$$
b=b^{\prime}+x, \quad c=c^{\prime}-y, \quad d=d^{\prime}+z .
$$

Since the quadrilateral $A B C^{\prime} D^{\prime}$ is tangential, we have

$$
\begin{equation*}
a \sin A \sin B+c^{\prime} \sin C \sin D=b^{\prime} \sin B \sin C+d^{\prime} \sin D \sin A . \tag{3}
\end{equation*}
$$

Comparison of (2) and (3) gives

$$
a \sin A \sin B+c \sin C \sin D=b \sin B \sin C+d \sin D \sin A,
$$

we have

$$
-y \sin C \sin D=x \sin B \sin C+z \sin D \sin A .
$$

This is a contradiction since x, y, z all have the same sign, ${ }^{2}$ and the trigonometric ratios are all positive.

Case 2. Now suppose $A B C D$ has a pair of parallel sides, say $A D$ and $B C$. Consider the circle tangent to the sides $A B, B C$ and $D A$ (see Figure 5).

Figure 5.
Construct a parallel to $D C$, tangent to the circle, and intersecting $B C, D A$ at C^{\prime} and D^{\prime} respectively. Let $C^{\prime} C=D^{\prime} D=x, B C^{\prime}=b^{\prime}$, and $D^{\prime} A=d^{\prime} .{ }^{3}$ Clearly, $b^{\prime}=b-x, d=d^{\prime}+x$, and $C^{\prime} D^{\prime}=C D=c$. Since the quadrilateral $A B C^{\prime} D^{\prime}$ is tangential, we have

$$
\begin{equation*}
a \sin A \sin B+c \sin C \sin D=b^{\prime} \sin B \sin C+d^{\prime} \sin D \sin A . \tag{4}
\end{equation*}
$$

Comparing this with (2), we have $x(\sin B \sin C+\sin D \sin A)=0$. Since $x \neq 0$, $\sin A=\sin B$ and $\sin C=\sin D$, this reduces to $2 \sin A \sin C=0$, a contradiction.

Proposition 2. Let O be the point where the diagonals of the convex quadrilateral $A B C D$ meet and r_{1}, r_{2}, r_{3}, and r_{4} respectively the radii of the circles inscribed in the triangles $A O B, B O C, C O D$ and $D O A$ respectively. The following statements are equivalent:

[^1](a) $\frac{1}{r_{1}}+\frac{1}{r_{3}}=\frac{1}{r_{2}}+\frac{1}{r_{4}}$.
(b) $\frac{1}{d(O, A B)}+\frac{1}{d(O, C D)}=\frac{1}{d(O, B C)}+\frac{1}{d(O, D A)}$.
(c) $\frac{a}{\triangle A O B}+\frac{c}{\triangle C O D}=\frac{b}{\Delta B O C}+\frac{d}{\triangle D O A}$.
(d) $a \cdot \Delta C O D+c \cdot \Delta A O B=b \cdot \Delta D O A+d \cdot \Delta B O C$.
(e) $a \cdot O C \cdot O D+c \cdot O A \cdot O B=b \cdot O A \cdot O D+d \cdot O B \cdot O C$.

Proof. (a) \Leftrightarrow (b). The inradius of a triangle is related to the altitudes by the simple relation

$$
\frac{1}{r}=\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}
$$

Applying this to the four triangles $A O B, B O C, C O D$, and $D O A$, we have

$$
\begin{aligned}
\frac{1}{r_{1}} & =\frac{1}{d(O, A B)}+\frac{1}{d(A, B D)}+\frac{1}{d(B, A C)} \\
\frac{1}{r_{2}} & =\frac{1}{d(O, B C)}+\frac{1}{d(C, B D)}+\frac{1}{d(B, A C)} \\
\frac{1}{r_{3}} & =\frac{1}{d(O, C D)}+\frac{1}{d(C, B D)}+\frac{1}{d(D, A C)} \\
\frac{1}{r_{4}} & =\frac{1}{d(O, D A)}+\frac{1}{d(A, B D)}+\frac{1}{d(D, A C)}
\end{aligned}
$$

From these the equivalence of (a) and (b) is clear.
(b) \Leftrightarrow (c) is clear from the fact that $\frac{1}{d(O, A B)}=\frac{a}{a \cdot d(O, A B)}=\frac{a}{2 \Delta A O B}$ etc.

The equivalence of (c), (d) and (e) follows from follows from

$$
\Delta A O B=\frac{1}{2} \cdot O A \cdot O B \cdot \sin \varphi
$$

etc., where φ is the angle between the diagonals. Note that

$$
\Delta A O B \cdot \Delta C O D=\Delta B O C \cdot \Delta D O A=\frac{1}{4} \cdot O A \cdot O B \cdot O C \cdot O D \cdot \sin ^{2} \varphi
$$

References

[1] T. Andreescu and B. Enescu, Mathematical Olympiad Treasures, Birkhäuser, Boston, 2004.
[2] N. Altshiller-Court, College Geometry, second edition, Barnes and Noble, 1952; Dover reprint, 2007.
[3] W. C. Wu and P. Simeonov, Problem 10698, Amer. Math. Monthly, 105 (1998) 995; solution, 107 (2000) 657-658.
[4] P. Yiu, Euclidean Geometry, Florida Atlantic University Lecture Notes, 1998, available at http://math.fau.edu/Yiu/Geometry.html.
[5] M. Iosifescu, Problem 1421, The Mathematical Gazette, (in Romanian) no.11, 1954.
Nicuşor Minculete: "Dimitrie Cantemir" University of Braşov, Department of REI, Str. Bisericii Române nr. 107, Braşov, Romania

E-mail address: minculeten@yahoo.com

[^0]: Publication Date: May 26, 2009. Communicating Editor: Paul Yiu.
 The author thanks an anonymous referee for his opinions leading to an improvement of a prior verions of this paper.
 ${ }^{1}$ Tangential quadrilateral are also known as circumscriptible quadrilaterals, see [2, p.135].

[^1]: ${ }^{2}$ In Figure 4, the circle does not intersect the side $C D$. In case it does, we treat x, y, z as negative.
 ${ }^{3}$ Again, if the circle intersects $C D$, then x is regarded as negative.

