FORUM GEOMETRICORUM

A Journal on Classical Euclidean Geometry and Related Areas

published by

Department of Mathematical Sciences
Florida Atlantic University

\Volume 9
2009

http://forumgeom.fau.edu

ISSN 1534-1178



Editorial Board

Advisors:

John H. Conway Princeton, New Jersey, USA
Julio Gonzalez Cabillon Montevideo, Uruguay

Richard Guy Calgary, Alberta, Canada

Clark Kimberling Evansville, Indiana, USA

Kee Yuen Lam Vancouver, British Columbia, Canada
Tsit Yuen Lam Berkeley, California, USA

Fred Richman Boca Raton, Florida, USA
Editor-in-chief:

Paul Yiu Boca Raton, Florida, USA
Editors:

Nikolaos Dergiades Thessaloniki, Greece

Clayton Dodge Orono, Maine, USA

Roland Eddy St. John’s, Newfoundland, Canada
Jean-Pierre Ehrmann Paris, France

Chris Fisher Regina, Saskatchewan, Canada
Rudolf Fritsch Munich, Germany

Bernard Gibert St Etiene, France

Antreas P. Hatzipolakis  Athens, Greece

Michael Lambrou Crete, Greece

Floor van Lamoen Goes, Netherlands

Fred Pui Fai Leung Singapore, Singapore

Daniel B. Shapiro Columbus, Ohio, USA

Man Keung Siu Hong Kong, China

Peter Woo La Mirada, California, USA

Li Zhou Winter Haven, Florida, USA

Technical Editors:

Yuandan Lin Boca Raton, Florida, USA
Aaron Meyerowitz Boca Raton, Florida, USA
Xiao-Dong Zhang Boca Raton, Florida, USA
Consultants:

Frederick Hoffman Boca Raton, Floirda, USA
Stephen Locke Boca Raton, Florida, USA

Heinrich Niederhausen Boca Raton, Florida, USA



Table of Contents

Eisso J. AtzemaDn n-sections and reciprocal quadrilateralg

Steve Butler,The lost daughters of Gergonnkd

Clark Kimberling,Mappings associated with vertex triangl@y

Allan J. MacLeodOn integer relations between the area and perimeter of Heron
triangles 41

Jan Vonk,The Feuerbach point and reflections of the Euler |ihé

Zvonko Cerin, Rings of squares around orthologic trianglés

Paris PamfilosQn the Newton line of a quadrilateraBl

Cristinel Mortici, Folding a square to identify two adjacent sid@9

Harold ConnellyAn extension of triangle constructions from located pQih@9

Nicusor Minculete Characterizations of a tangential quadrilaterdl13

Cosmin Pohoat& note on the anticomplements of the Fermat poihi®

Paul Yiu,Heptagonal triangles and their companigri25

Shao-Cheng LiuThe symmedian point and concurrent antiparallel imade®

Robert Olah-Gal and Jozsef Sandon trigonometric proofs of the Steiner-Lehmus
theorem 155

Harold Connelly and Beata Randrianantoanifya,angle bisector parallel applied
to triangle construction161

Peter Yff, A family of quartics associated with a triangl&65

Giovanni LuccagCircle chains inside a circular segmerit73

David Graham Searb@®n three circles181

Dan Ismailescu and Adam Vojdan@|ass preserving dissections of convex
quadrilaterals 195

Dimitris Vartziotis and Joachim Wippe©n the construction of regular polygons
and generalized Napoleon verticed 3

Nikolaos Dergiadesi simple barycentric coordinates formul225

Paris PamfilosConic homographies and bitangent penci?29

Nikolas Dergiades and Juan Carlos Sala3ame triangle centers associated with
the tritangent circles259

Nikolai Ivanov Beluhov,Ten concurrent Euler line71

Jason ZimbaQn the possibility of trigonometric proofs of the Pythagoréheorem
275

Alexey V. Ustinov,0n the construction of a triangle from the feet of its angle
bisectors 279

John F. Goehl, JRythagorean triangles with square of perimeter equal tordager
multiple of area 281



Shao-Cheng LiuTrilinear polars and antiparallels283

Dan Marinescu, Mihai Monea, Mihai Opincariu, and Mariarno8tA sequence of
triangles and geometric inequalitie291

Francisco Javier Garcia Capitdmilinear polars of Brocardians297

Antreas P. Hatzipolakis and Paul YiReflections in triangle geome{rg01

Author Index 351



Forum Geometricorum
Volume 9 (2009) 1-17.

FORUM GEOM
ISSN 1534-1178

On n-Sections and Reciprocal Quadrilaterals

Eisso J. Atzema

Abstract. We introduce the notion of am-section and reformulate a number of
standard Euclidean results regarding angles in tern2ssafictions (with proof).
Using6-sections, we define the notion of reciprocal (completepcaragles and
derive some properties of such quadrangles.

1. Introduction

While classical geometry is still admired as a model for raathtical reasoning,
it is only fair to admit that following through an argumentBuclidean geometry
in its full generality can be rather cumbersome. More ofteantnot, a discussion
of all manner of special cases is required. Specificallylifamotion of an angle
is highly unsatisfactory. With the rise of projective gedmeén the 19th century,
some of these issues (such as the role of points at infinityg wddressed. The
need to resolve any of the difficulties connected with theomobf an angle was
simply obviated by (largely) avoiding any direct appeal he toncept. By the
end of the 19th century, as projective geometry and metoongdry aligned again
and vectorial methods became commonplace, classical ggosav the formal
introduction of the notion obrientation In the case of the concept of an angle,
this led to the notion of airected (oriented, sensedhgle. In France, the (elite)
high school teacher and textbook author Louis Gérard wasaay champion of
this notion, as was Jacques Hadamard (1865-1963); in the, B84er Arthur
Johnson (1890-1954) called for the use of such angles isicdgieometry in two
papers published in 1917Today, while the notion of a directed angle certainly
has found its place in classical geometry research anditggébhas by no means
supplanted the traditional notion of an angle. Many collggemetry textbooks
still ignore the notion of orientation altogether.

In this paper we will use a notion very closely related to tfah directed an-
gle. This notion was introduced by the Australian matheomati David Kennedy
Picken (1879-1956) as tlmmplete anglén 1922. Five years later and again in
1947, the New Zealand mathematician Henry George Ford@9¢1881) picked
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This paper is an extended version of a presentation withettme ditle at the Invited Paper Session:
Classical Euclidean Geometry in MathFest, July 31-Augug028 Madison, Wisconsin, USA.

sSee [5], as well as [6] and [7]; Johnson also consistently dected angles in his textbook [8].



2 E. J. Atzema

up on the idea, preferring the teranoss® Essentially, where we can look upon
an angle as the configuration of two rays departing from theesaoint, the cross
is the configuration of two intersecting lines. Here, we wdlfer to acrossas a
2-section and consider it a special case of the more genetiahraf ann-section.

We first define these-sections and establish ground rules for their manipula-
tion. Using these rules, we derive a number of classicaltsesn angles in terms
of 2-sections. In the process, to overcome some of the diffexulthat Picken
and Forder ran into, we will also bring the theory of circulaversion into the
mix. After that, we will focus or6-sections formed by the six sides of a complete
quadrangle. This will lead us to the introduction of the peccal to a complete
quadrangle as first introduced by James Clerk Maxwell (1B829). We conclude
this paper by studying some of the properties of reciproualdgangles.

2. Thenotion of an n-section

In the Euclidean plane, I€t} denote the equivalence class of all lines parallel
to the linel. We will refer to{l} as thedirection of [. Now consider the ordered
set of directions of a set of linds, ..., 1, (n > 2). We refer to such a set as an
n-section (of lines), which we will write a$(;, ...,én}.3. Clearly, anyn-section
is an equivalence class of all lines,, ..., m,, each parallel to the corresponding
of [y, ...,1,. Therefore, we can think of amy-section as represented hyines all
meeting in one point. Also note that anysection corresponds to a configuration
of points on the line at infinity.

We say that twow-sections{ly, ..., l,,} and{m, ..., m,,} are directly congruent
if for any representation of the two sections by means of goeat lines there is a
rotation combined with a translation that maps each lindnefane representation
onto the corresponding line of the other. We wite, ..., 1, } =p {m1,...,m,}.

If in addition a reflection is required/s, ..., 1, } is said to banverselycongruent
to {mi, ..., m, }, which we write agly, ..., l,,} =7 {mq,...,mp, }.

Generally, no twon-sections can be both directly and inversely congruent to
each other. Particularly, as a rule, sasection is not inversely congruent to itself.
A notable exception is formed by tlesections. Clearly, &-section formed by
two parallel lines is inversely as well as directly congruenitself. We will refer
to such &-section as trivial. Any non-trivial-section that is inversely congruent
to itself is calledperpendicularand its two directions are said to be perpendicular
to each other. We will just assume here that for every dimacthere always is
exactly one direction perpendicular tdit.

No othern-sections can be both directly and inversely congruentemxtor
suchn-sections which only consist of pairs of lines that eithémalallel or are
perpendicular. We will generally ignore such sections.

2See [3] (pp.120-121+151-154), [4], [16], and [17]. The tesrossseems to have been coined
by Edward Hope Neville in [14]. Forder may actually have alsed crosses in his two geometry
textbooks from 1930 and 1931, but we have not been able ttelaopies of these.

Swe adapt this notation from [15].

'y proof using SAS is fairly straightforward.
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The following basic principles for the manipulation nfsections apply. We
would like to insist here that these principles are just wuagkrules and not ax-
ioms (in particular they are not independent) and serve tinggse of providing a
shorthand for frequent arguments more than anything else.

Principle 1 (Congruency) Twon-sections are congruent if and only if all corre-
sponding sub-sections are congruent, where the congregrze either all direct
or all inverse.

Principle 2 (Transfer) For any three directionga}, {b}, and{c}, there is exactly
one direction{d} such that{a, b} =p {c,d}.

Principle 3 (Chain Rule) If {a,b} = {d/,b'} and {b,c} = {¥','} then{a,c} =
{d’, '}, where the congruencies are either all direct or all inverse

Principle 4 (Rotation) Two n-sections{as, ...,a,} and{b1,...,b,} are directly
congruent if and only if alfa;, b;} (1 < i < n) are directly congruent.

Principle5 (Reflection) Twon-sections{ay, ..., a, } and{b, ..., b, } are inversely
congruent if and only if there is a directioft} such that{a;, c} = {b;, ¢} for all
1< <n.

Most of the usual triangle similarity tests are still valgp(to orientation) if
we replace the notion of an angle by that of a crosg-section, except for Side-
Cross-Side (SCS). Since we cannot make any assumptionstabarientation on
an arbitrary line, SCS is ambiguous in terms of sections a #2-section with
a length on each of its legs, (generally) determines two cagruent triangles.
The only situation in which SCS holds true (up to orientatisrfor perpendicular
sections. Since we are in the Euclidean plane[ifetion Principle applies to any
2-section as well: For any triangl@ ABC with P onC' A andQ onCB, APQC
is directly similar toAABC if and only if CP/CA = CQ/CB, whereC' A and
so on denotelirectedlengths.

Once again, note that we do not propose to usentisections to completely
replace the notion of an angle. The notionrefections just provides a uni-
form way to discuss the large number of problems in geomdiay are really
about configurations of lines rather than configurationsaykr Starting from
our definition of a perpendicular section, for instance, lilasic principles suf-
fice to give a formal proof that all perpendicular sections emngruent. In other
words, they suffice to prove that all perpendicular linesraegle equal. Essen-
tially this proof streamlines the standard proof (first givey Hilbert). Let{a,a’}
be a perpendicular section and lgt} be arbitrary direction. Now, left'} be
such that (i){a,b} =p {da’,'} (BP 2). Then, sincda,a’} =p {d’,a}, also
{d',b} =p {a,b'} or (i) {V/,a} =p {b,a’} (BP 3). Combining (i) and (ii), it
follows that{b,b'} =p {¥, b} (BP 3). In other words{b'} is perpendicular tqb}.
Finally, by BP 4,{b,b'} =p {a,d’}.

The same rules also naturally allow for the introduction ahbangle bisectors
to an angle and do not distinguish the two. Indeed, note tiggtstymmetry” direc-
tion {c} in BP 5 is not unique. Ifa;,c} = {b;, c}, then the same is true for the
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direction{c’'} perpendicular t¢c} by BP 3. Conversely, for any directiga/} such
that{a;,d} = {b;,d}, it follows that{d,c} =p {c,d} by BP 3. In other words,
{¢,d} is a perpendicular section. We will refer to the perpendicskction{c, ¢’}
as thesymmetry sectionf the inversely congruent-sections{a,...,a,} and
{b1,...,b,}. In the case of the inversely congruent systdims a2} and{as, a1 },
we speak of the symmetry section of theection. Obviously, the directions of the
latter section are those of the angle bisectors of the aoghedd by any two rays
on any two lines representing, as }.

Using the notion of a symmetry section, we can now easily @fvales’ The-
orem (as it is known in the Anglo-Saxon world).

Theorem 6 (Thales) For any three distinct pointsi, B and C, the line AC' is
perpendicular toBC' if and only ifC lies on the unique circle with diametetB.

Proof. Let O be the center of the circle with diametdiB. Since bothAAOC
andABOC are isosceles, the two line of the symmetry sectiofi4B, OC'} are
each perpendicular to one &fC and BC. Consequently, by BP 4 (Rotation),
{AC, BC'} is congruent to the symmetry sectior., AC' and BC are perpendic-
ular. Conversely, led’, B, C' be the midpoints oBC, C A, AB, respectively.
Then, by dilation,C’ A’ andC’ B’ are parallel ta”’ A andC B, respectively. It fol-
lows thatC’A’C'B’ is a rectangle and therefo{&’ A’| = |C’C|, but by dilation
|B'A'| = |AC'| = |BC'|,i.e,, C lies on the unique circle with diamet&rB. [

3. Circular inversion

To allow further comparison ai-sections, we need the equivalent of a number
of the circle theorems from Book Il of EuclidElementslt is easy to see how to
state any of these theorems in term22efections. As Picken remarks, however,
really satisfactory proofs (in terms @fsections) are not so obvious and probably
impossible if we do not want to use rays and angles at all. Beathit may, we can
still largely avoid directly using angleslin this paper we will have recourse to the
notion ofcircular inversion which allows for reasonably smooth derivations. This
transformation of (most of) the affine plane is defined wispest to a given circle
with radiusr and centelO. For any pointP of the plane other tha®, its image
under inversion with respect t@ and the circle of radius is defined as the unique
point P’ such thalDP - OP’ = r? (whereOP and so on denoteirectedlengths).
Note that by construction circular inversion is a closedd(hijective) operation
on the affine plane (excluding). Also, if A’ and B’ are the images afl and B
under a circular inversion with respect to a pdihtthen by constructiod\ A’ B’O
is inversely similar to\ ABO. The following fundamental lemma applies.

Lemma7. LetO be the center of a circular inversion. Then, under this isi@n
(i) any circle not passing througty is mapped onto a circle not passing through
O, (ii) any line not passing througty is mapped onto a circle passing through
and vice versa (with the point at infinity of the line corresgimg toO), (iii) any

Ssee [16], p-190 and [4], p.231. Forder is right to claim thatdifficulty lies with the lack of an
ordering for crosses and that directed angles need to beatisedhe point.
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Figure 1. Circular Inversion of a Circle

line passing througlD is mapped onto itself (with the point at infinity of the line
again corresponding t@).

Proof. Starting with (i), draw the line connecting with the center of the circle
not passing througly and let the points of intersection of this line with the latte
circle be A and B (see Figure 1). Then, by Theorem 6 (Thales), the lidésand
BC are perpendicular. Let/, B andC’ be the images ofi, B, andC under
the inversion. By the previous lemm@ A, AC, CO} is indirectly congruent to
{0C",C"A’, A'O}. Likewise{OB, BC,CO} =, {OC",C'B’, B'O}. SinceOA,
OB, 0A’, andOB’ coincide, it follows tha{ OB, BC,C A, CO} is inversely con-
gruent to{OC’,C'B’,C'A’, B'O}. Therefore{ BC, C A} is indirectly congruent
to {C'B’',C'A’}. ConsequentlyC’A’ andC’B’ are perpendicular as well. This
means that”’ lies on the circle that has the segmetitB’ for a diameter. The
second statement is proved in a similar way, while the thiatesent is immedi-
ate. O

We can now prove the following theorem, which is essentialigwording in the
language of sections of Propositions 21 and 22 from BookflHwxlid’'s Elements
(with a trivial extension).

Theorem 8 (Equal Angle) For four points on either a circle or a straight line, let
X,Y, Z, W be any permutation oft, B, C, D. Then, any 2-sectioX{Y, Z}

is directly congruent to the 2-sectidi {Y, Z} and the sections are either trivial
(in case the points are collinear) or non-trivial (in caseethoints are co-cyclic).

Conversely, any four (distinct) points, B, C, D for which there is a permutation
X,Y, Z, W such thatX{Y, Z} and W{Y, Z} are directly congruent either are
co-cyclic (in case the sections are non-trivial) or collimgin case the two sections
are trivial).

Proof. It suffices to prove both statements for one permutatiod o3, C, D.

Assume that4, B, C, D are co-cyclic or collinear. LeB’, C’ and D’ denote the
images ofB, C' and D, respectively, under circular inversion with respect4o
Then,{DA,DC} = {C'A,D'C'} and{BA, BC} = {C'A,B'C"}. Since by
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Lemma 7,B’C’ coincides withD'C", it follows that{ DA, DC} =~ {BA, BC'}.
Conversely, assume thaD A, DC'} ~p {BA,BC}. Then,{C'A,D'C'} =p
{C'A,B'C"}, i.e, B, C' and D' are collinear. By Lemma 7 again, if the two
2-sections are non-triviald, B, C, D are co-cyclic. If not, the four points are
collinear. O

Corollary 9. Let A4, B, C, D be any four co-cyclic points with' = AC N BD.
Then the product of directed lengtds” - C'E equals the producBE - DE.

Proof. Let A’ and B’ be the images under inversion dfand B with respect to
E (and a circle of radius). ThenAA’B’E and AC DE are directly similar with
two legs in common. Therefo€E/A'E = DE/B'E or CE - AE/r? = DE -
BE/r?. O

For the sake of completeness, although we will not use itisghper, we end
with a sometimes quite useful reformulation of Proposgi@d and 32 from Book
[l of Euclid’s Elements

L emma 10 (Bow, String and Arrow) For any triangle A ABC, let C' be the mid-
point of AB and letO be the circumcenter of the triangle and {5 ¢ denote the
tangent line to the circumcircle dk ABC at C. ThenC{B, A} is directly congru-
ent to (i) bOthO{C,, A} andO{B, C,} and (ii) {BA, TCB,A} and {TCA,Ba AB}

Proof. It suffices to prove the first statements of (i) and (ii). e the midpoint
of BC. SinceOC" is perpendicular tedB and O A’ is perpendicular taBC, it
follows thatJC'O A’ B is cyclic and therefore that’{ B, C'} ~p O{B,C"}. But
A'C" is parallel toC A and therefored’{B,C'} ~p C{B, A} as well, which
proves the first statement of (i). As for (ii), siné2A is perpendicular t@C’ and
TcB, 4 is perpendicular t@ 4, it follows that{ BA, T 4 } is directly congruent to
0O{C', A} by BP 4 (Rotation). Sinc&{C’, A} is directly congruent t@’{ B, A},
the first statement of (ii) follows. O

The preceding results provide a workable framework for ihyieation ofn-
sections to a great many problems in plane geometry invgleonfigurations of
circles and lines (as opposed to rays). The well-known gfugircle theorems
usually attributed to Steiner and Miquel as well as most s associated with
the Wallace line are particularly amenable to the use-séctions. Examples can
be found in [16], [17], and [5].

4. 6-sections and complete quadrangles

So far we have essentially only uséections and-sections. Note how any
3-section (with distinct directions) always corresponda tmique class of directly
similar triangles. Clearly, there is no such corresponddoc4-sections. To deter-
mine a quadrilateral, we need the direction of at least ornits afiagonals as well.
Therefore, it makes sense to considergfs=ctions and their connection to the so-
calledcomplete quadrangld’® ABC D, i.e., all configurations of four points (with
no three collinear) and the six lines passing through eaotofithem. Clearly any
KABC D defines &-section. Conversely, not eveéysection can be represented
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by the six sides of a complete quadrangle. In order to seerumitigt condition a
6-section originates from a complete quadrangle, we nedtlebit of projective
geometry.

Any two n-sections are said to e perspectiver to form aperspectivityif for a
representation of each of the sections by concurrent Imepaoints of intersection
of the corresponding lines are collinear. Two sections aie t® beprojectiveif a
representation by concurrent lines of the one section caitagned from a similar
representation of the other as a sequence of perspediviti€an be shown that
any two sections that are congruent are also projectivdnelndse of 2-sections and
3-sections all are actually projective. As fbsections, the projectivity of two sec-
tions is determined by their so-calletbss ratio Every 4-section{¢y, ..., ¢4} has
an associated cross rafig, ..., 44]. If A denotes the pencil of lines passing through
A, represent the lines of any section by lifes A. If ¢; has an equatiof; = 0,
we can writeLs asA31 L1 + A3eLo and Ly as 1 L1 + Ao Ls. We now (unam-
biguously) define the cross rafify, . . . , £4] as the quotienfAs; /As2) : (A41/A42).
From this definition of a cross ratio it follows that its valdees not change when
the first pair of elements and the second pair are switchedhenwhe elements
within each pair are swapped. Note that for any B8veections{l;, 2,3} and
{my,ma,ms} (with {l1,1s,13} and{my, my, ms} each formed by three distinct
directions), the cross ratio defines a bijective mapetween any two pencild
and B, by choosing thé; in A and them,; in B and defining the image(!) of
any linel € A as the line ofB such thatliy, l5;3,1] equals[m, ma; ms, o(1)].
The mapy is called a projective map (of the pencil). It can be shown Hry
projective map can be obtained as a projectivity and vicsaceiT herefore, two
4-sections are projective if and only if their correspondangss ratios are equal.
By the duality of projective geometry, all of the precedimpkes to the points of
a line instead of the lines of a pencil as well. Moreover, foy four pointsLq,
Lo, Ls, Ly on aline? and a pointZ outside/, the cross ratidLy, Lo; L3, Ly4] is
equal to[LoL1, LoLo; LoLs, LoL4]. By the latter property, we can associate any
projective map defined by two sections of lines with a projeanap from the line
at infinity to itself.

The notion of a projective map can be extended to the pregptan where any
such mapy maps any line to a straight line and the restrictionodb a line and
its image line is a projective map. Where a projective magveeh two lines is
defined by two triples of (non-coinciding) points, a projeetmap between two
planes requires two sets of four points, no three of which lmarcollinear. In
other words, any two quadrilaterals define a projective niapally, we define an
involutionas a projective map which is its own inverse. In the case ofeslution
of a line or pencil, any two distinct pairs of elements (witle telements within
each pair possibly coinciding) fully determine the map.

We can now formulate the following result.

Theorem 11. An arbitrary 6-section{l;, 5, m1, m2,n1,n2} can be formed from
the sides of a complete quadrangted BC' D (such thatl;, I> and so on are pairs



8 E. J. Atzema

of opposite sides) if and only if the three pairs of oppodidescan be rearranged
such that{l, [} is non-trivial and[l;, l2; m1, no| equals(ly, l2; ny, ma].

Proof. Since any two quadrilaterals determine a projective mapryegomplete
guadrangle is projective to the configuration of a rectaagkkits diagonals. There-
fore the diagonal points of a complete quadrangle are nedén&ar and every
guadrangle in the affine plane has at least one pair of ogpsisies which are not
parallel. Without loss of generality, we may assume fiatl»} corresponds to
this pair of opposite sides. Let, B denote the pencils of lines throughand B
respectively. Now define a mapfrom A to B by assigning the lined X to BX
for all X on a line? not passing throught or B. It is easily verified thaty is a
projectivity, which assignsi B to itself and the line ofd parallel toL to the cor-
responding parallel line oB. Therefore, ifC and D are distinct points o, the
cross ratio AB, C'D; AC, AD] equals the cross rati)\B,CD, BC, BD]. Con-
versely, for any6-section{ly, lo, m1,ma2,n1,n2} such thatly, lo; my, ns] equals
[l1,12;n1, mso], we can choosel and B such thatA B is parallel tol; and letD be
the point of intersection of the line of parallel tom, and the line ofB parallel to
ni. Likewise, letC be the point of intersection of the line df parallel toms and
the line throughD parallel tol,. Then, since{l;, 5} is non-trivial, the lineBC
has to be parallel ta,. O

Note that the previous theorem is a projective version ofa@eVheorem de-
termining the concurrency of transversals in a triangle thiedusual expression of
that theorem can be readily derived from the condition ab&ve now have the
following corollary.

Corollary 12. For any complete quadrangl®ABC D, there is an involution that
pairs the points of intersection of its opposite sides withline at infinity.

Proof. Without loss of generality, we may assume thatB, C D} is non-trivial.
Let L; = ABN{y and soon. ThefLy, Ly, My, N3] = [Ly, Lo, N1, Ms]. Now
let ¢ be the involution of., determined by pairind.; with Lo and My with M.
Then[Ly, Lo, My, N3] equals[Lq, L1, My, p(N2)]. Since the former expression
is also equal tdLo, L1, Ms, N1| (and Ly, Lo and M, are distinct), it follows that
©(N2) = Nj. In other words, the involution pait¥; and N, as well. O

In caseX ABC' D is a trapezoid, the point on the line at infinity correspogdin
the parallel sides is a fixed point of the involution; in cas® ¢omplete quadrangle
is a parallelogram, the two points corresponding to the taiospof parallel sides
both are fixed points.

In the language of classical projective geometry, we salyahissection formed
by the sides of any complete quadrangle defines an involutiaix lines pair-
ing the opposite sides of the quadrangle. Note that thierstt implies what is
known as Desargues’ Theorem, which states that any comqpletdrangle defines
an involution (of points) on any line not passing through afyts vertices that
pairs the points of intersection of that line with the opposiides of the quad-
rangle. For this reason, we will say that adwgection satisfying the condition of
Theorem 11 iDesarguesian
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Corollary 13. Any Desarguesiaf-section is associated with two similarity classes
of quadrilaterals (which may coincide).

Proof. Let the 6-section be denoted b{iy, I, m1,m2,n1,n2}. If the cross ra-

tio [ll, lg; my, ng] equals[ll, lg; ni, mg], then the cross rati¢i2, ll; ma, ’I’Ll] also
equalsls, l1;n2, m1]. Whereas the quadrilateral constructed from the first equal
ity contains a triangle formed by the lings ms, no, while i1, m1, ny meetin one
point, this is reversed for the quadrilateral formed from second equality. Since
{l1,m1,n1} and{lz, m2, no} are not necessarily congruent, the two quadrilaterals
will be different (but may coincide in some cases). O

A B = D* T=C*
Figure 2. Constructin@dA*B*C* D*

If the complete quadrangi®@ABC D is one of the two quadrangles forming a
given 6-section, we can easily construct the other quadrabilé B*C*D*. In-
deed, letXABCD be as in Figure 2. Then, draw the line throughparallel to
AC, meetingCD in S. Likewise, draw the line througt' parallel to BD meet-
ing AB in T. Then, by constructiob7" is a parallel toAD and all the opposite
sides ofXABC D are parallel to a pair of opposite sideslkBCST. The two
guadrangles, however, are generally not similar. Altévebt we can consider the
guadrangle formed by the circumcenters of the four cirdlesimscribing the four
triangle formed byA, B, C, D. For this quadrangle, all three pairs of opposite
sides are parallel to a pair of opposite sides of the originaldrangle. Again, it is
easy to see that this quadrilateral is generally not sinidahe original one. The
latter construction was first systematically studied by tab in [10] and [11],
in which he referred to the quadrilateral of circle centessaareciprocal figure.
For this reason, we will refer to the two complete quadramglesociated with a
Desarguesiafi-section aseciprocal quadrangles.

Relabeling the vertices of the preceding quadrangles asaitedl in Figure 2,
we will formally define two complete quadrilaterdi$A BC D andXA*B*C* D*
as directly/inversely reciprocal if and only if

{AB,CD, AC,BD,DA, BC} = {C*D*, A*B*, B*D*, A*C*, B*C*, D* A*},
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where the congruence is either direct or inverse. From fimition, we immedi-
ately derive the following two corollaries.

Corollary 14. A complete quadrangle is directly reciprocal to itself ifdaanly if
it is orthocentric.

Proof. Since for any complete quadrangle directly reciprocal gelftall three2-
sections of opposite sides have to be both directly and seWeicongruent, it fol-
lows that all opposite sides are perpendicular to each.othather words, every
vertex is the orthocenter of the triangle formed by the othexe vertices, which is
what orthocentric means. O

Corollary 15. A complete quadrangle is inversely reciprocal to itselfriflaonly if
it is cyclic.

Proof. Let KABC D denote the complete quadrangle. Therikid BC D is in-
versely reciprocal to itself, AB, AC'} has to be inversely congruent{6'D, BD}
or A{B,C} =p D{B,C}. But this means thak ABC'D is cyclic. The converse
readily follows. a

Because of the preceding corollaries, when studying tlatioals between recip-
rocal quadrangles, we can often just assume that a complatirangle is neither
orthocentric nor cyclic. Also, as a special case, note thatdomplete quadran-
gle KABCD has a pair of parallel opposite sides, then its reciprocdirictly
congruent ta&XBADC'. For this reason, it is usually fine to assume tRatBC D
does not have any parallel sides either.

Maxwell’'s application of his reciprocal figures to the stuafystatics contributed
to the development of a heavily geometrical approach tdigldt(know aggrapho-
staticg which ultimately made projective geometry a required sewat many en-
gineering schools until well into the 20th century. At thengatime, the idea of
“reciprocation” was largely ignored within the classicabgnetry community. This
only changed in the 1890s, when (probably not entirely iedelently of Maxwell)
Joseph Jean Baptiste Neuberg (1840-1826) reintroducembiiuept of reciproca-
tion under the name ahetapolarity This notion, however, seems to have been
quickly eclipsed by the related notion ofthologythat was introduced bfmile
Michel Hyacinthe Lemoine (1840-1912) and others as a tostudy triangles. In
this context, consider a triangle ABC' and a pointP in the plane of the triangle.
Now, construct a new triangl& A’ B’C’ such that each of its sides is perpendic-
ular to the corresponding side ¢€' P, AP, BP}. In this new triangle, construct
transversals each perpendicular to the correspondingfiieA BC'. Then, these
three transversals will meet in a new paifit The trianglesA\ ABC andA A’ B'C’
are said to berthologic with polesP and P’. Clearly, for any two orthologic tri-
anglesA ABC andA A’ B'C’ with polesP andP’, KABC P andX A’ B'C' P’ are
reciprocal quadrangles. Conversely, for any two recigrquadrangle<ABC D
andXA*B*C*D*, AABC and A A*B*C* are orthologic with pole and D*
(up to a rotation), and similarly for the three other pairgr@ngles contained in
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the two quadrangles. Itis in the form of some variation ofioldgy that the notion
of reciprocation is best known tod4y.

A nice illustration of the use of reciprocal quadrangles ¢ahology, in this
case) i7$ the following problem from a recent InternationatiMOlympiad Training
Camp:

Figure 3. XABC D with Hg andHp

Problem (IMOTC 2005) Let ABC D be a quadrilateral, anéf, the orthocen-

ter of triangle AABC'. The parallels to the lined D and C' D through the point

Hp meet the linesAB and BC at the pointsCp and Ap, respectively. Prove
that the perpendicular to the liéz A through the poinf{, passes through the
orthocentetH i of triangle AACD.

Solution. The proposition still has to be true if we switch the role®fand D.
Now note that the complete quadrangl€é/ sCpDAp andXBCpHpAp have
five parallel corresponding sides. Therefore, they arelainiVioreover, five of the
sides of the complete quadrang&dzC Hp A are perpendicular to the opposite
of the corresponding sides BfHpCpDAp andXBCpHpB. We conclude that
XHpCHpA is directly reciprocal tocXHzCpDAp andXBCpHpAp. Conse-
quently, its sixth sidéd g Hp is perpendicular toA\pCp and ApCp.

5. Somerelations between reciprocal quadrangles

In order to study the relations between reciprocal quadeangve note yet
another way to generate a reciprocal to a given completergogke. In fact,

6on metapolar quadrangles, see e.g. [12] and [13] or (moresaitdy) Neuberg’s notes to [18]
(p-458). On orthology, see [9]. In 1827, well before Lemo{aed Maxwell), Steiner had also
outlined the idea of orthology (see [19], p.287, Problem 5d) nobody seems to have picked up on
the idea at the time. Around 1900, the Spanish mathematician Jacobo Duran Loriga (1854-1911)
extended the notion of orthology to thatisbgonology which concept was completely equivalent to
reciprocation. Duran-Loriga’s work, however, met witle ttame fate as Neuberg’s metapolarity.

’see [2] and the references there.
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let XABCD be a complete quadrangle with diagonal poiats= AC N BD,
F=BCNDA, G =ABNnCD,with A, B, C, D, and, I in the affine plane.
Now let A* be the image of) under circular inversion with respect fo(see Fig-
ure 4). Likewise letD* be the image ofd under the same inversion. Similary*

is the image of” andC* is the image of3. Then, using the properties of inversion
it is easily verified thalk A* B*C* D* is inversely reciprocal ttdABC D. We can
use this construction to derive the following two lemmata.

Figure 4. Constructin A*B*C* D™ by Inversion

Lemma 16 (Invariance of Ratios)LetKABC D andXA*B*C*D* be a pair of
(affine) reciprocal quadrangles and diagonal poifis F, G and E*, F*, G*,
respectively. Moreover, leX, Y, and Z be any collinear triple of two vertices
and a diagonal point o XABC D with X*, Y*, Z* the corresponding triple of
XA*B*C*D*. Then

XYy X

YZ Y*Z*
whereXY denotes the directed length of the line segnm€ht and so on.

Proof. The statement is trivial for any diagonal point 6. Without loss of gen-
erality, let us assume that the diagonal pditis in the affine plane. It now suffices
to prove the statement fd, C andF'. Under inversion with respect #® and a cir-
cle of radiusr, we find thatB* = = 2 /CF andC*F* = r?/BF. The statement
of the lemma now immediately follows. d
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Lemma 17 (Maxwell). LetXABCD and XA*B*C*D* be a pair of reciprocal
guadrangles. Then

|AB||CD|  |AC||BD| |ADI||CB]|
where|AB| denotes the absolute length of the segmeBtand so on.

Proof. Assume again that the poiit is in the affine plane. Under inversion with
respect toF’ and a circle of radius, we find|A*D*| = |r2/|FD| — r?/|FA|| =
r?|AD|/(|[FA||FD|) and|B*C*| = |[r*/|FC|~r/|FB|| = *|BC|/(|FB||FD)).
Similarly, |A*B*| = r?|AB|/(|FA||/FB|) and|C*D*| = ?|CD|/(|FC||F D)),
while |[A*C*| = r?|AC|/(|F A||FC|) and| B* D*| = r?|BD|/(|F B||F D|). Com-
bining these expressions shows the equality of the threessions. O

Note that for any three collinear points, the ratiC|/|BC| equals the cross
ratio [A, B, C, 145], wherel 4 denotes the point at infinity of the linéB. Now,
for any pair of reciprocal quadrangléABC D andXA* B*C*D*, let ¢ be the
unique projective map sendimfyto A* and so on. Theny maps the lined B to the
line A*B* and[A, B, G, 4] = [A*, B*,G*, p(Iap)] (WhereG = AB N CD).
By Lemma 16]A, B, G, 1 45] also equal$A*, B*, G*, 1 4« g+]. Therefore, sincé&r
is distinct fromA and B, ¢ mapslap to I 4+ p+. Likewise, the points at infinity of
BC andC A are mapped to the points at infinity 8fC* andC* A*, respectively.
But then, must map the whole line at infinity onto itself. Thereforey anap
defined by “reciprocation” of a complete quadrangle iffimemap. Conversely,
any affine map can be modeled by a reciprocation of a completdrgngle (which
we may assume not to have any parallel sides). To see thisyst@adied another
lemma.

Lemma 18. For a given triangleA ABC and any non-trivial3-section{l, m,n}
not inversely congruent thBC, C' A, AB} there is exactly one poird? in the plane
of AABC (and not on the sides @k ABC') such that{ AD, BD,C D} is directly
congruent tof{l,m,n}. In case{BC,CA, AB} =1 {l,m,n}, {AD,BD,CD}
will be directly congruent to{l, m,n} for any point D on the circumcircle of
NABC.

Proof. Without loss of generality, we may assume that,, andn are concurrent
at a pointQ). Let a point L be a fixed point ohand let) be a variable point om.
Now construct a trianglé\ LM N directly similar toAABC'. Then, the locus oV
asM moves alongn is a straight line a®v is obtained from\/ by a fixed dilation
followed by a rotation over a fixed angle. Therefore, thisubwill intersectn in
exactly one point as long AC, AB} is not directly congruent t¢n, m}. The
point D we are looking for now has the same position with respect thBC' as
has( with respect toA LM N. If the two2-sections are directly congruent, we can
repeat the process starting with or V. This means that we cannot find a point
D as stated in the lemma using the procedure above onlyABC is inversely
congruent to{/, m, n}. Butif the latter is the case, we can take any pdnbn the
circumcircle of AABC by Cor. 15. O
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As an aside, note that fdi, m, n} directly congruent to eithefAB, BC,C A}
or {C' A, AB, BC'}, this construction also guarantees the existence of theséwo
called Brocard point§2™ andQ~ of AABC. Moreover, it is easily checked that
XABCQT andXBCAQ™ are reciprocal quadrangles. This explains the congru-
ence of the two Brocard angles. We are now ready to prove tlosviag theorem.

Theorem 19. A projective map of the plane is affine if and only if it can b&aoted
by reciprocation of a complete quadrangi&A BC' D with no parallel sides. Any
such map reverses orientationlXfA BC'D is convex and retains orientation when
not. The map is Euclidean if and onlytfA BC D is orthocentric (in which case
the map retains orientation) or cyclic (in which case the magerses orientation).

Proof. We already proved the if-part above. For an affine map, censdrian-
gle AABC and its imageA A*B*C*. By the previous lemma there is at least
one pointD (not on the sides oA ABC) such that{ AD, BD,CD} is directly
congruent to{ B*C*, C*A*, A*B*}. The reciprocation o0KABC'D that A maps

to AABC maps toAA*B*C*, then, must be the affine map. The connection
between convexity oKABC D follows from the various constructions (and re-
labeling) of a reciprocal quadrangle. The last statemdidvis immediately. In
caseXABC D has parallel opposite sides, note that the affine map (aftgation
aligning one pair of parallel sides with their images) inelsi@ map on the line at
infinity with either one or two fixed points (if not just a trdaon combined with

a dilation), corresponding to a glide or a dilation in twofeliént directions. This
means that if we choose the sides/ofi BC' such that they are not parallel to the
directions represented by the fixed points on the line atitgfino opposite sides
of XKABC D will be parallel. d

Finally, note that if a complete quadran@®&A BC D is cyclic, then its recipro-
calXA*B*C*D* is as well. Likewise, by Lemma 17, if for a complete quadrangl
the product of the lengths of a pair of opposite sides eqhalsdf the lengths of
another pair, the same is true for the corresponding pairts oéciprocal. More
surprisingly perhaps, reciprocation also retains ingdyility, i.e., if JABCD has
an incircle, then so hdsA*B*C*D*. To see this, we can use the following gen-
eralization of a standard result.

Lemma 20 (Generalized Ptolemy)For any six points4, B, C, D, P, and(Q in
the (affine) plane
|APAB||AQCD| + |APCD||AQAB|
+ |APADI||AQBC| + |APBC||AQAD|
= |APAC||AQBD| + |APBD||AQAC.

Proof. We represent the pointd, B, C, D, P, and@ by vectorsad = (ay,as9, 1)
and so on. Now consider the vectdiss @)7, ..., (d @ d)T, as well as the vectors
(p @ ip)T and (i ® §)T. Then clearly, thes x 6-determinant formed by these
six vectors equals zero. If we now evaluate this determiaanthe sum of the
signed product of every x 3-determinant contained in the three first rows and its
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complementary x 3-determinant in the three bottom rows, we obtain exactly the
identity of the lemma. a

Note that the imaginary numbers are necessary to ensurex¢h@avo of the
products automatically cancel against each other. Als tiat this result really
is about octahedrons Brspace and can immediately be extended to their analogs
in any dimension. Ptolemy’s Theorem follows by lettifjand ) coincide and
assuming this point is on the circumcircleldA BC'D.

Corollary 21. For any complete quadranglABC' D andE = ACNBD and a
point P both in the (affine) plane of the quadrangle,
|APDA| - |AEBC|+ |APBC|-|AEDA|
= |APCD|-|AEAB| + |APAB| - |AECD],
whereF is the point of intersection ol C with BD.
Proof. Let () coincide withFE. O

Now, let IABCD be convex. TherE = AC N BD is in the affine plane
and we can obtailk A* B*C* D* by circular inversion with respect t&. Also,
OA*B*C*D* is convex by Theorem 19. Therefore, the equality| 4f B*| +
|C*D*| and|D*A*| 4+ |B*C*| is both necessary and sufficient for the quadrangle
to be inscribable. By the properties of inversion, this éton is equivalent to the
condition

|AB| ICD|  |DA| |BC|
|EA||EB| ' |EC||[ED| |ED||EA| = |EB||EC|’

or
DA-|AEBC|+ BC -|AEDA| =CD-|AEAB|+ BA-|AECD,|.

If OABCD is inscribable, this condition can also be written in tharfor
IANIDA||AEBC|+|AIBC|-|AEDA| = |AICD|-|AEAB|+|AIAB|-|AECD|.
But this equality is true by Cor. 21. We conclude thaflil BC D is inscribable,
then so i91A*B*C*D*.

Alternatively, we can use a curious result that receivedesomiline attention in
recent years, but which is probably considerably older.

Theorem 22. For any convex quadrilaterdlABC D with E = AC N BD, let
I, bethe incenter o EAB and so on. ThelWI glgcloplp 4 is cyclic if and
only if DABC D is inscribable.

Proof. See [1] and the references there. The convexity requiremegiit not be
necessary. O

Let us assume again thetABC'D is inscribable. This means that the quad-
rangle is convex and that = AC N BD is in the affine plane. Also, note
that £ = Islo N Iglp. Therefore, El4p - Elcop equaIsEIBc - FElpg by
Theorem 22. Now, leKA*B*C*D* be a reciprocal oikABC D obtained by
circular inversion with respect t& and a circle with radiug. As we assumed
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thatWABCD is convex, so iXA*B*C*D* by Theorem 19. Sincé&\EA*B*
is inversely similar toAECD while |A*B*| = r?|BD|/(|EB||ED]|), it fol-
lows thatEl 4« = r?Elcp/(|EC||ED|) and so on. Consequentiy; /g~ -
Elo«p« = Elg«c+ - Elp+ g«. ThereforeXi s« g« I g«c« Io« p« I p* 4+ 1S cyclic and
OA*B*C*Dx* is inscribable by Theorem 22 again.

As a third proof, it is relatively straightforward to actlyatonstruct a reciprocal
XA*B*C*D* with its sides tangent to the incircle 6fABC D. More gener-
ally, this approach proves that the existence of any tangerie to a quadrangle
implies the existence of one for its reciprocal. This camdfon can actually be
looked upon as a special case of yet another way to cons#cigrocal quadran-
gles. The proof of the validity of this more general condiarg however, seems to
require a property of reciprocal quadrangles that we havéoonched upon in this
paper. We plan to discuss this property (and the specificizartion of reciprocal
guadrangles that follows from it) in a future paper.

6. Conclusions

In this paper we outlined how in many cases the concept of gtearan be
replaced by the more rigorous notion of arsection. Other than the increased
rigor, one advantage of-sections over angles is that reasoning with the former is
somewhat more similar to the kind of reasoning one might seather parts of
mathematics, particularly in algebra. Although perhapgtla bit of an overstate-
ment, Picken did have a point when he claimed that his pagenali have dia-
grams because they were “quite unneces$ailo, the formalism ofi-sections
provides a natural framework in which to study geometricalbems involving
multiple lines and their respective inclinations. As suthpoth provides a clearer
description of known procedures and is bound to lead to tpresthat the use of
the notion of angles would not naturally give rise to. As aecagpoint, we showed
how the notion ofrn-section suggests both a natural description of the proeedu
involving orthologic triangles in the form of the notion &aiprocal quadrangles
and give rise to the question what properties of a compledelgungle are retained
under the “reciprocation” of quadrangles.

At the same time, the fact that the “reciprocation” of quadtas does not favor
any of the vertices of the figures involved comes at a cosedddits use does not
naturally give rise to certain types of questions that theafworthologic triangles
does lead to. For instance, it is hard to see how an exclusighasis on the
notion of reciprocal quadrangles could ever lead to theystidintipedal triangles
and similar constructions. In short, the notion of reciploguadrangles should
be seen as a general notion underlying the use of ortholagitgtes and not as a
replacement of the latter.

8See [16], p.188.
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The L ost Daughters of Gergonne

Steve Butler

Abstract. Given a triangle center we can draw line segments from eadhw
through the triangle center to the opposite side, thissfi¢ triangle into six
smaller triangles called daughters. Consider the follgapnoblem: Given a
triangle.S and a rule for finding a center find a triangleif possible, so that one
of the daughters df’, when using the rule i§. We look at this problem for the
incenter, median and Gergonne point.

1. Introduction

Joseph-Diaz Gergonne (1771-1859) was a famous French tgromi® founded
the Annales de Gergonnehe first purely mathematical journal. He served for a
time in the army, was the chair of astronomy at the Universitilontpellier, and
to the best of our knowledge never misplaced a single daufite

The “daughters” that we will be looking at come from trianglebdivision.
Namely, for any well defined triangle center in the interibthee triangle one can
draw line segments (or Cevians) connecting each vertexdgtrthe triangle center
to the opposite edge. These line segments then subdividwitheal triangle into
six daughter triangles.

Given a triangle and a point it is easy to find the daughtengles. We are
interested in going the opposite direction.

Problem. Given a triangleS and a well defined rule for finding a triangle center;
construct, if possible, a trianglg so thatS is a daughter triangle &f for the given
triangle center.

For instance suppose that we useitieenteras our triangle center (which can
be found by taking the intersection of the angle bisectof$)en if we represent
the angles of the triangl€ by the triple(A, B, C) it easy to see that one daughter
will have angles(4, 4 + £, 2 1 ), all the other daughter triangles are found
by permuting4, B andC. Since this is a linear transformation this can be easily
inverted. So ifS has angles:, b andc then the possible candidates forare
(2a,2b—2a,c—b+a), along with any permutation ef, b andc. It is easy to show
that if the triangleS is not equilateral or an isoceles triangle with largest angl
> 90° then there is at least one non-degenefater S.

Publication Date: February 9, 2009. Communicating Edigaul Yiu.
This work was done with support of an NSF Mathematical SasrRostdoctoral Fellowship.
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We could also use theentroid which for a triangle in the complex plane with

vertices at), Z andW is Z£. In particular if [0, Z, W] is the location of the

vertices ofT" then [0, 2, Z£W] is the location of the vertices of a daughter of
T. This map is easily inverted, lef be [0, z, w] then we can choos& to be
[0,2z,3w — 2z]. So, for example, ifS is an equilateral triangle then we should
choose€T" to be a triangle similar to one with side lengths,/7 and+/13.

In this note we will be focusing on the case when our triangater is the
Gergonne pointwhich is found by the intersection of the line segments eating
the vertices of the triangle to the point of tangency of therode on the opposite
edges (see Figures 2-5 for examples).

Unlike centroids where every triangle is a possible daugbtancenters where
all but (60°,60°,60°), (45°,45°,90°) and obtuse isoceles are daughters, there are
many triangles which cannot be a Gergonne daughter. Wewdil tsiangleshe
lost daughters of Gergonne

To see this pictorially if we again represent triangles guets (A, B, C') of the
angles, then each “oriented” triangle (up to similarityy@presented by a point in
P, whereP is the intersection of the plané + B + C' = 180° with the positive
orthant (see[1, 2, 5, 6] for previous applicationg)f Note thatP is an equilateral
triangle where the points on the edges are degeneratel&gsawih an angle of°
and the vertices argl80°,0°,0°), (0°,180°,0°), (0°,0°,180°); the center of the
triangle is(60°,60°,60°). In Figure 1 we have plotted the location of the possible
Gergonne daughters iR, the large white regions are the lost daughters.

Figure 1. The possible Gergonne daughter®in

2. Constructing T

We start by putting the triangl€ into a standard position by putting one vertex
at(—1,0) (with associated angle), another vertex a0, 0) (with associated angle
) and the final vertex in the upper half plane. We now want to fihpossible) a
triangle 7" which produces this Gergonne daughter in such a way(that0) is a
vertex and(0, 0) is on an edge df’ (see Figure 2). Sinc@, 0) will correspond to
a point of tangency of the incircle we see that the incirclestine centered 40, ¢)
with radiust for some positive. Our method will be to solve for in terms ofa
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and . We will see that some values afand 3 have no validt, while others can
have one or two.

N
« ~_B

(=1,0) (0,0)

Figure 2. A triangle in standard position.

Since the point of tangency of the incircle to the edge oppdsi1,0) must
occur in the first quadrant, we immediately have that theeangs acute and we
will implicitly assume that in our calculations.

2.1 The case = 90°. We begin by considering the special case- 90°. In this
setting it is easy to see th@t must be an isosceles triangle of the form shown in
Figure 3.

2t2 2t
1+¢27 142

(-1,0) (0,0) (1,0)
Figure 3. The3 = 90° case.

The important part of Figure 3 is the location of the pdi Jf;, li—ttg) There
are several ways to find this point. Ours will be to find the slopthe tangent line,
then once this is found the point of tangency can easily bedoT he key tool is

the following lemma.

Lemma 1. The slopem of the lines that pass through the poifit, ¢) and are
tangent to the circlec? + (y — t)? = ¢2 satisfy

p(t—q) ¢ —2qt
2

=0. 1
m+p2_t2m P2 — 12 1)
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Proof. In order for the liney = m(z — p) + ¢ to be tangent to the circle? + (y —
t)? = 2 the minimum distance between the line gdt) must bet. Since the
minimum distance betweg#, ¢t) and the liney = mx + (¢ — pm) is given by the

[t+pm—q]
formulaﬁ, we must have
2 (!Hpm - fﬂ)z.
m?+1
Simplifying this relationship gives (1). O

Applying this with (p, ¢) = (1,0) we have that the slopes must satisfy,

m? + m = 0.

1—¢t2
We already know the solutiom = 0, so the slope of the tangent line;is. Some

simple algebra now gives us the point of tangency. We alse tiat the top vertex

is located at(O, ﬁ—tﬁ)

Using the newly found point we must have

2t
i+ 2t

%Jrl: 1+ 3¢2

tan o =

which rearranges to

14++v1—3tan?

3(tan a)t? — 2t + tana = 0, so thatt =
Jtan

There are two restrictions. Firgstmust be real, and so we haye< tan o < @
or0 < a < 30°. Secondt < 1 (if ¢t > 1 then the triangle cannot close up), and so
we need

1++v1—3tan?«

dtan «
so for this root oft we need to have: > arctan(1/2) ~ 26.565°.

: 1
< 1 which reduces tgan o > 3

Theorem 2. For 8 = 90° and« given for a triangleS in standard position then
(i) if & > 30° there is ndl" which producess;

(i) if « = 30° then theT" which produces is an equilateral triangle;

(iii) if arctan% < a < 30° then there are two triangle® which produceS, these

2
correspond to the two roots= 1£v!=3tan"a.

3tan a
(iv) if o < arctan% then there is one triangl@ which producesS, this corre-
sponds to the roat = 1=Vl-3tan’a
An example of the case when there can be fivés shown in Figure 4 for
a = 29.85°.
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Figure 4. An example of a fixefl in standard position with two possihfe

2.2 The casej # 90°. Our approach is the same as in the previous case where
we find the point of tangency opposite the verteX-at, 0) and then use a slope
condition to restrict. The only difference now is that finding the point takes a few
more steps.

To start we can apply Lemma 1 with, ¢) = (—1,0) and see that the slope of
the line tangent to the circle lisfitg The top vertex off" is then the intersection of
the lines

2t
y= m(m + 1) andy = —(tan §)z.
Solving for the point of intersection the top vertex is lazhat

o —9t 2t tan 3
("a") = <2t—|—(1—t2)tanﬂ’2t+(1—t2)tanﬂ>.

We can again apply Lemma 1 with*, ¢*) from (2), along with the fact that one
of the two slopes iqf—tt2 to see that the slope of the edge oppoéité, 0) is

. 2tan f(ttan 5 — 2)
© 2tan? 3 —4ttan B+ 4 —tan? 8’
It now is a simple matter to check that the point of tangency is

(2)

m

Y= (m* )2 + 1 T m)2 41
We can also find that the-intercept of the line, which will correspond to the final

vertex of the triangle, is located &ttan 3/ (¢ tan 8 — 2),0).
So as before we must have

y* (m*)2t _ p*m* + q*
tana = =
2t tan? 3

3t2tan? 3 — Sttan B+ tan? S + 4’
Which can be rearranged to give

(3tan atan® 3)t? — (2tan” B + Stan avtan 3)t + (tan a tan® 8 + 4 tan o) = 0.



24 S. Butler

Finally giving

L tan 0 + 4tan o + \/tan26+8tanatanﬂ+4tan2a — 3tan? atan? 8
N 3tan o tan 3 '

3)
Theorem 3. For 8 # 90° and« given there are at most two triangl&swhich can
producesS in standard position. These triangl@shave vertices located at
—2t 2t tan 3 ttan 8
—1,0 and| —————,0
(=1,0), <2t+ (1—t2)tanp’ 2t + (1 — tz)tanﬂ>’ <ttanﬂ— 2’ >’
wheret satisfieq3). Further, we must have thats positive and satisfies
2 1+ sec
— << —.
tan 3 tan 3
Proof. The only thing left to prove are the bounds. For the upper dpwe must
have that the second vertex is in the top half plane and so e ne
2t tan G
> 0.
2t + (1 —t?) tan

If tan 8 > 0 then we need
2t + (1 — %) tan 3 > 0 or (tan B3)t* — 2t — tan 3 < 0.

This is an upward facing parabola with negatiyntercept and so we need that
is less than the largest root, i.e.,

< 2+ /4 +4tan? 3 1 +secp

2tan 3 - tanf

The case fortan 8 < 0 is handled similarly.

For the lower bound we must have that theoordinate of the third vertex is
positive. Iftan 5 < 0 this is trivially satisfied. Itan 5 > 0 then we needtan 3 —
2 > 0 giving the bound. O

t

As an example, if we letv = 3 = 45°, then (3) gives = &3—@ ~ 0.6125,
or 2.7207. But neither of these satisfy < t < 1 + v/2, so there is nd’ for this
S. Combined with Theorem 2 this shows th{a5°, 45°,90°) is a lost daughter of
Gergonne.

On the other hand if we let = 3 = 60° then (3) gives = %2, 7¥3_ The value

@ falls outside the range of allowabtebut the other one does fall in the range.
The resulting triangle is shown in Figure 5 and has side tesw, 8 and%2.

3. Concluding comments

We now have a way given a triangke to construct, if possible, a trianglg
so thatS is a Gergonne daughter @f. Using this it is possible to characterize
triangles which are not Gergonne daughters. One can thémaloahat triangles
are not Gergonne granddaughters (i.e., triangles whictvedarmed by repeating
the subdivision rule on the daughters). Figure 6 shows ttegilon of the Gergonne
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Figure 5. The unique triangle which has an equilateral ¢limas a Gergonne daughter.

granddaughters . It can be shown the triangle in Figure 5 is not a Gergonne
daughter, so that the equilateral triangle is not a Gerggnareddaughter.

Figure 6. The possible Gergonne granddaughtef?.in

One interesting problem is to find what triangles (up to snity) can occur
if we repeat the subdivision rule arbitrarily many timese($2])? One example
of this would be any triangle which is similar to one of its Gamne daughters.
Do any such triangles exist? (For the incenter there are twidysuch triangles,
(36°,72°,72°) and(40°,60°,80°); for the centroid there is none.)

Besides the incenter, centroid and Gergonne point thenmang other possible
center points to consider (see the Encyclopedia of TriaGgleters [4] for a com-
plete listing of well known center points, along with manherts). One interesting
point would be the Lemoine point, which can have uphceetrianglesT for a
triangle.S in standard position (as comparedtéor the Gergonne point antfor
the centroid).
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Mappings Associated with Vertex Triangles

Clark Kimberling

Abstract. Methods of linear algebra are applied to triangle geomdthe ver-
tex triangle of distinct circumcevian triangles is provedoe perspective to the
reference triangled BC, and similar results hold for three other classes of ver-
tex triangles. Homogeneous coordinates of the perspedtfise four map-
pings M, on pairs of pointU, X). Many triangles homothetic td BC are
examined, and properties of the four mappings are presenitecarticular,
M; (U, X) = M(X,U) fori = 1,2,3,4, and M (U, M1(U, X)) = X;

for this reasonM; (U, X) is given the namé/-vertex conjugate ofX. In the
introduction of this workpointis defined algebraically as a homogeneous func-
tion of three variables. Subsequent definitions and methuzsde symbolic
substitutions, which are strictly algebraic rather thaargetric, but which have
far-reaching geometric implications.

1. Introduction

In [1], H. S. M. Coxeter proved a humber of geometric resultimg methods
of linear algebra and homogenous trilinear coordinatesveéyer, the fundamental
notions of triangle geometry, such as point and line in [H af the traditional
geometric sort. In the present paper, we begin with an agedefinition of point.

Supposes, b, c are variables (or indeterminates) over the field of complaxn
bers and that, y, = are homogeneous algebraic functiongafb, c) :

x =z(a,b,c), y=vylab,c), z=z(ab,c),

all of the same degree of homogeneity and not all identichp. Triplesz, y, z)
and(x1,y1, z1) areequivalentf zy; = yx; andyz; = zy;. The equivalence class
containing any particulafz, y, ) is denoted byt : y : z and is apoint. Let

A=1:0:0, B=0:1:0, C=0:0:1.

These three points define theference triangleA BC'. The set of all points is the
transfigured planeas in [6]. If we assign ta, b, c numerical values which are the
sidelengths of a euclidean triangle, then y : z are homogeneous coordinates
(e.g., trilinear or barycentric) as in traditional georgeind points as defined just
above are then points in the plane of a euclidean triaddgde’.

Possibly the earliest treatment of triangle-related oat® functions rather than
two-dimensional points appears in [3]; in [3]-[9], poirds-functions methods

Publication Date: February 23, 2009. Communicating Ed®aul Yiu.
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lead to problems whose meanings and solutions are nongeomgt which have
geometric consequences. Perhaps the most striking areofignsiibstitutions
[6]-[8], the latter typified by substitutingc, ca, ab for a,b, c respectively. To
see the nongeometric character of this substitution, onesaaily find values of
a, b, c that are sidelengths of a euclidean triangle layta, ab are not — and yet,
this substitution and others have deep geometric consegsgeas they preserve
collinearity, tangency, and algebraic degree of loci. §@nthe symbolic substitu-
tion (a, b, c) — (be, ca, ab) is again considered.)

Having started with an algebraic definition of “point” as 8j,[we now use it as
a basis for defining otheaalgebraicobjects. Aline is a set of pointx : y : z such
thatlz +my +nz = 0 for some point : m : n; in particular, the line of two points
p:q:randu:v: wis given by

T oy z
p qg r |=0.
u v ow

A triangle is a set of three points. Harmonic conjugacy, isogonal gagy, and
classes of curves are likewise defined by algebraic equathat are familiar in
the literature of geometry (e.g. [1], [5], [10], [12], and nyanineteenth-century
works), where they occur as consequences of geometric &iond, not as def-
initions The same is true for other relationships, such agwwence of lines,
collinearity of points, perspectivity of triangles, siamiity, and homothety.

So far in this discussion, coordinates have been generabgeneous. In tra-
ditional triangle geometry, two specific systems of homegeis coordinates are
common: barycentric and trilinear. In order to define sggmts and curves, we
shall use their traditional trilinear representationsstéd here are a few examples:
the centroid ofA BC is definedas the pointl /a : 1/b : 1/¢; the line£> at infinity,
asax + by +cz = 0. The isogonal conjugate of a point: y : z satisfyingzyz £ 0
is defined as the poirit/x : 1/y : 1/z and denoted byX —!, and the circumcircle
I"is defined byayz + bzx + cxy = 0, this being the set of isogonal conjugates of
points onL>. Of course, we may illustrate definitions and relationshipetal-
uating a, b, c numerically—and then all the algebraic objects become g#iden
objects. (On the other hand, if, for example, b, c) = (6, 2, 3), then the algebraic
objects remain intact even though there is no triangle witblengthss, 2, 3.)

Next, we define four classes of triangles. Suppfise- z : y : z is a point not
on a sideline ofABC'; i.e., xyz # 0. Let

Ai=AXNBC=0:y:z
Bi=BXNCA=2z2:0:z
Ci=CXNAB=x:y:0.

The triangleA, B1 (1 is thecevian triangleof X. Let A, be the point, other than,

in which the lineAX meetd’. Define By andCs cyclically. The triangled; BoCo
is thecircumcevian triangleof X, as indicated in Figure 1.
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Figure 1.

Let A3 be the{ A, A, }-harmonic conjugate oX (i.e, A3 = —x : y : 2), and
defineBs and(Cs cyclically. ThenAsBs(Cs is theanticevian triangleof X. Let

A" =BCnN B, B'=CAN C1 Ay, C' = AB N A1 By,

so thatA” = {B, C'}-harmonic conjugate ofi; (i.e, A; =0:y: —2), etc. The
linesAA’, BB',CC" are theanticeviansof X, and the points

Ay = AA'NT, B, =BB'NT, C,=0CC'NT,

as in Figure 2, are the vertices of thiecum-anticevian triangled, B4Cy, of X.

Bs

Figure 2.
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With these four classes of triangles in mind, supp®se- DEF andT’ =
D'E'F' are triangles. Theertex triangleof 7' and 7" is formed by the lines
DD',EFE',FF’ as in Figure 3. Note thal’ and7” are perspective if and only
if their vertex triangle is a single point.

Al

Figure 3.

2. The first mapping M,

Theorem 1. The vertex triangle of distinct circumcevian triangles ergpective
to ABC.

Proof. Let A’ B'C’ be the circumcevian triangle &f = = : y : 2, and letA” B"C”
be the circumcevian triangle &f = v : v : w. The former can be represented as a
matrix (e.g. [5, p.201]), as follows:

Al 1 Y1 2
B'l = |z2 y2 2
c’ T3 Y3 23
—ayz (cy+b2)y (bz+cy)z
= | (cx + az)z —bzx (az +cx)z |,
(bxr + ay)z  (ay + bx)y —cry

and likewise forA” B”C" using vertices; : v; : w; in place ofz; : y; : z;. Lines
A’A"”, B'B",C'C" are given by equations;a + ;8 + z;y = 0 for i = 4,5,6,
where

T4 Ya 24 Yyiwi — 2101 21Ul — w1 1101 — Yiul

Ty Ys 25 | = | Y2W2 — 22V2  22U2 — X2W2 XT2V2 — YaU2 |,

Te Y6 <6 Ysws — 23V3  23U3 — T3W3 T3VU3 — Y3us
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so that the vertex triangle is given by

n

A T7 Y7 27
"

B = |xs ys =28
"

C T9 Y9 29

Y526 — 2546 25T6 — T526  T5Y6 — Y56
= | Y624 — Z6Ya 26T4 — T6Z4 TeY4 — YT | - 1)
YaZs — Z4Y5  Z4T5 — T4Z5  TaYs — Yals

The line AA” thus has equatiofo + 273 — y7v = 0, and equations for the lines
BB" andC'C"" are obtained cyclically. The three lines concur if

0 2z —yr
—Z8 0 xTs = 0,
Y9 —x9 O
and this is found (by computer) to be true. d

In connection with Theorem 1, the perspector is the p&int zgzg : Tgyg :
zgTg. After canceling long common factors, we obtain

P = a/(a®>vwyz — uz(bw + cv)(bz + cy))
b/ (VPwuze — vy(cu + aw)(cx + az))
s e/ (Cuvzy — wz(av 4 bu)(ay + bx)). 2

The right-hand side of (2) defines the first mapping, (U, X). If U and X
are triangle centers (defined algebraically, for exampie[3i, [5], [11]), then
S0 isM; (U, X). It can be easily shown thatt; (U, X) is an involution; that is,
Mi(M;(U, X)) = X. In view of this property, we cal\; (U, X) the U-vertex
conjugateof X. For example, the incenter-vertex conjugate of the circunterds
the isogonal conjugate of the Bevan poirg;, M; (X, X3) = Xs4. The indexing
of named triangle centers, such &g, is given in theEncyclopedia of Triangle
Centerd9].

Vertex-conjugacy shares tlso- property with another kind of conjugacy called
isoconjugacy; viz., thd/-vertex-conjugate ofX is the same as th& -vertex-
conjugate ofU. (The U-isoconjugate ofX is the pointvwyz : wuzx : uvzy;
see the Glossary at [9].)

Other properties oM are given ing9 and in Gibert’s work [2] on cubics asso-
ciated with vertex conjugates.

3. The second mapping\s

Theorem 2. The vertex triangle of distinct circum-anticevian triaaglis perspec-
tive to ABC.
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Figure 4.

Proof. The method of2 applies, starting with

A T Y1 21
B'|=|z2 y2 2
c’ T3 Y3 23

ayz (cy —bz)y (bz —cy)z
= | (cx — az)x bzx (az —cx)z |,
(bx — ay)x (ay — bx)y cry
and likewise forA” B"C". O

The perspector is given by
a ' b . c
f(CL’baC’xy%Z) ' f(b7caa7yazaa) . f(C,CL,b,Z,CL,b))7

P=p:q:r= 3)

where

fla,b,c,s,y,2) = a>vwyz — zu(bw — cv)(bz — cy),

and we defineVy (U, X) = P asin (3).
As this mapping is not involutory, we wish to solve the equiaf® = My (U, X)
for X. The system to be solved, and the solution, are given by

5 5 k) (1) (%)
g2 ha ko Ly | =10b/q
g3 hsy k3 1/z c/r
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1/x g k' [a)p

Vy| =192 ha ko b/q |,

1/z g3 hsy k3 c/r
where

g1 hi ki a’vw —bu(bw — cv)  cu(bw — cv)

g2 hy ko| = av(cu — aw) brwu —cv(cu — aw) | .

g3 hs ks —aw(av —bu)  bw(av — bu) ks = ctuv
Again, long factors cancel, leaving

and

X =z:y:z=g(abe):glbea): gleab),

where
a

adqrv?w? — a2Gy + aG1 + Gy’

g(a,b,c) =
where
Go = u?p (bw — ev)? (br + ¢q)
G1 = wowp (br — cq) (cv — bw)
G = wwrq (bw + cv) .

4. The third mapping M3

Given a pointX = x : y : z, we introduce a trianglel’ B'C’ as follows:
A T Y1 21 ayz (cy+bz)y (bz+cy)z
Bl =22 y2 22| =|(cx+ax)x bzx (az+cx)z |,
C’ T3 Y3 23 (bz + ay)r (ay + bx)y cxy
and likewise forA” B”C" in terms ofu : v : w. The method o%2 shows that
ABC is perspective to the vertex triangle 4fB'C" and A” B”C". The perspector
is given by
M3 (U, X) = a/(a*vwyz + zu(bw + cv)(bz + cy))
b/ (PPwuzz + yv(cu + aw)(cz + az))
s/ (Cuvzy + zw(av + bu)(ay + bx)). 4

A formula for inversion is found as i§8: if M3(U,X) =P =p:q:rthenXis
the pointg(a, b, c) : g(b, ¢, a) : g(c,a,b), where

a
adgrv?w? + a2Gy — aGy — Gy’

g9(a,b,c) =
where
Go = u’p (b2w2 - 021)2) (br —cq),
G1 = uwvwp (br + cq) (bw + cv)
Go = uwvwrq (bw + cv) .

Geometrically,4’ is the{4, A}-harmonic conjugate ofl, where ABC and ABC
are the cocevian and circumcevian trianglexofespectively. (The vertices of the
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cocevian triangle ofX areA=0:z: -, B=2:0: x, C = y:—x:0.The
point A is the{ B, C'}-harmonic conjugate of thd-vertex of the cevian triangle of
U. The triangleA BC is degenerate, as its vertices are collinear.)

5. The fourth mapping M,

For givenX = z : y : 2, define a triangled’ B’C’ by

A 1 Y1 o2 —ayz (cy —bz)y (bz—cy)z
Bl =22 y2 22| =|(cx—a2)x —bzx (az — cx)z
'’ T3 Y3 23 (b — ay)z (ay — bx)y —cxy

Again, ABC'is perspective to the vertex triangle 4fB’C’ and the triangled” B” C"”
similarly defined fromlJ. The perspector is given by

My(U, X) = a/(a*vwyz + zu(bw — cv)(bz — cy))
2 b/ (VPwuzz + yv(cu — aw)(cx — az))
s/ (Cuvzy + zw(av — bu)(ay — bx)). (5)

A formula for inversion is found as fdj3: if My (U, X) =P =p:q:r thenX
is the pointg(a, b, c) : g(b,c,a) : g(c,a,b), where
a

b,c) = .
9la;b,) (avw — buw — cuv) (a?grvw + up (cqg — br) (bw — cv))
Geometrically,4’ is the{ A, A}-harmonic conjugate ofl, whereABC and ABC
are the cevian and circum-anticevian triangles{ofrespectively.

6. Summary and extensions

To summarize§2-5, vertex triangles associated with circumcevian ardigir
anticevian triangles are perspective to the referencagiéad BC, and all four
perspectors, given by (2-5), are representable by theAipform for first trilin-
ear coordinate:

a
T ; ; (6)
wt(GEE) <—i£>
Yy z
here, the three: signs are limited to- + 4+, — — —, + + 4+, and+ — —, which

correspond in order to the four mappings; (U, X).

Regarding each perspectBr= M; (U, X ), formulas for the inverse mapping of
X, for givenU, have been given, and in the case of the first mapping, theftrans
mation is involutory. The representation (6) shows that(U, X) = M;(X,U)
for eachi, which is to say that\(;(U, X) can be viewed as a commutative binary
operation. There are many interesting examples regardafptir mappings; some
of them are given irg9.

For all four configurations, defind1;(U,U) by puttingz : y : z = u : v :

w in (2)—(5), and note that (6) gives the perspector in thesesaln Figure 3,
taking X = U corresponds to moving’, F’, G’ to E, F, G so that in the limit the
lines B'C’,C"A’, A’ B’ are tangent t@". It would be of interest to know the set of
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triangle centersX for which there exists a triangle centérsuch thatM,; (U, U) =
X.
The symbolic substitution

transforms the transfigured plane onto itself, as (7) mapls paintX = x : y :
z=ux(a,b,c) : y(a,b,c) : z(a,b,c) to the point
X' =o'y 2 = x(be, ca, ab) : y(be, ca,ab) : z(ca,ab,be).

The circumcircle, as the locus of satisfyingayz + bzz 4+ czy = 0, maps to the
Steiner circumellipse [10], which is the locus©f: 3/ : 2’ satisfying

bey' 2 + caz'x’ + abx'y’ = 0.
Circumcevian triangles map to perspective triangles a@ofem 1, and perspec-
tors are given by applying (7) to (2). The substitution (KeWise applies to the
developments ir§53-5. Analogous (geometric) results spring from other (non-

geometric) symbolic substitutions, such (@sb,c) — (b + ¢,¢ + a,a + b) and
(a,b,c) — (a?,b%,c?).

7. Homothetic triangles

We return now to the vertex-triangles introduced;$2—-5 and establish that if
U and X are a pair of isogonal conjugates, then their vertex treamgghomothetic
to ABC.

Theorem 3. SupposeX is a point not on a sideline of triangldd BC'. Then the
vertex triangle of the circumcevian trianglesXfand X —! is homothetic toA BC,
and likewise for the pairs of vertex triangles§g3—5.

Proof. In accord with the definition of isogonal conjugate, tritme forU/ = X !
are given byu = yz, v = zz, w = zy, so that
u:v:w:x_lzy_lzz_l.

In the notation ofy2, the vertex triangle (1) is given by it4-vertexxy : y7 : z7,
where

x7 = abe(x? + y?)(2? + 22) + (a®(bz + cy) + be(by + cz))x3
+a(a® + b? + ) a?yz + (beyz(bz + cy) + a®yz(by + c2))x,

yr = — baz(ab(z® +y?) + (a* + b* — *)zy),

27 = — caylac(z® + 2°) + (a® — b + P)x2).

Writing out the coordinatess : ys : zs andxg : yg : z9, We then evaluate the
determinant for parallelism of sidelin@C' and theA-side of the vertex triangle:

a b c
1 0 0 =0.
Ygzg — 28Y9 Z8T9 — Xgz9 I8Y9 — YsT9g
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Likewise, the other two pairs of sides are parallel, so thatertex triangle of the
two circumcevian triangles is now proved homotheticitBC.

The same procedure shows that the vertex triangl§§3a5, whenl = X1,

are all homothetic tol BC' (hence homothetic to one another, as well as the medial
triangle, the anticomplementary triangle, and the Eulangle).

U
A///
|
|
|
|
|
’
| :
C,, e
B//
Y, b
c’ <
c
b
W 1mrr
)(7a a
C
B/// A, A” C///
Figure 5.

Substituting into (6) gives a compact expression for the fdasses of homo-
thetic centersife., perspectors), given by the following first trilinear:
ayz
(a2 £ (b2 + 2))yz £ be(y? + 22)’
from which it is clear that the homothetic centers forand X —! are identical.

8. More Homotheties

Let C(X) denote the circumcevian triangle of a poikit and letO denote the
circumcenter, as in Figure 6.

Theorem 4. Supposéd/ is a point not on a sideline of triangld BC. The vertex
triangle of C(U') andC(0O) is homothetic to the pedal triangle bf L.
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Proof. The vertex triangled” B”’C"" of C'(U) andC(O) is given by (1), using
U=u:v:wand

r=alb®+ —d?), y=b+a>-0b?), z=cla®+b -7

Trilinears for A” as initially computed include many factors. Canceling éos
common to all three trilinears leaves

x7 = 4abc(avw + bwu + cuv) +u*(a + b+ c)(—a+b+c)(a—b+c)(a+b—c),
yr = uv(a® — b* + ) (b — a® + ) — 2cw(a® +b* — ) (av + bu),
27 = uw(a® — &+ b?)(? — a* + b?) — 2bv(a® + ¢* — b%) (aw + cu),

andzs, ys, zs andzg, yg, z9 are obtained from-, y7, z7 by cyclic permutations of
a,b,candu, v, w.

SinceU~! = vw : wu : wv, the vertices of the pedal triangle bf ! are given
([5, p.186]) by

i m 0 w(u+ver)  v(u+ wby)
fo g2 he | = | w(v+ uc) 0 u(v+way) |,
fs g3 hs v(w 4+ uby) u(w + vay) 0

where

(a1,b1,c1) = (a(b® 4+ & — a?),b(c? + a* — b%), c(a® + b* — 2)).
Side B”’C" of the vertex triangle is parallel to the corresponding lggeof the
pedal triangle if the determinant

a b c
gohs — hags  hafs — fahs  fags — g2.f3 (8)
Yszg — Z8lY9  Z8XL9 — TgZ9 TY9 — YTy
equald. Itis helpful to factor the polynomials in row 3 and cancel eoon factors.
That and puttingfy = go = hs = 0 lead to the following determinant which is a
factor of (8):

a b c
—hags ha f3 f293 :
2a(bw + cv) w(a® +b* — %) v(a® —b* + )
This determinant indeed equadls The parallelism of the other matching pairs of
sides now follows cyclically. O

9. Properties of the four mappings

This section consists of properties of the mappings, Mo, M3, My intro-
duced in§§2-5. Proofs are readily given by use of well known formulassdveral
cases, a computer is needed because of very lengthy trédinddroughout, it is
assumed that neithé&f nor X lies on a sideline o BC.
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A///

B

loid

B/// A// A/ C///
Figure 6.

la.If U €T, thenM; (U, X) = U.

1b. If X ¢ T, then

a . b . c
ayz — bzx — cry  bzx — cxy —ayz  cry — ayz — bzw’
If U =M;(X,X), then

Mi(X, X) =

avw bwu cuv

T bwtcw cutaw av+bu
lc. If X is the 1st Saragossa point bt then M;(U,X) = X. (The 1st
Saragossa point is the point

a ) b ) c
bzx + cxy  cxy+ayz  ayz + bza’
discussed at [9] just befor& 4.

1d. Supposd’ is on the line at infinity and letU* be the isogonal conjugate
of the antipode of the isogonal conjugate (of Let L be the lineXsU*. Then
M (U,U*) = X3,and if X € L, thenM; (U, X) is the inverse-irF of X.

le. M; maps the Darboux cubic to itself. (See [2] for a discussionutfics
associated with\1;.

2a. Mo (X, X) = X.
2b. My (X, X) = X-Ceva conjugate oK.

2c. Let L be the lineU X and letZ’ be the lineUU¢, whereU*¢ = My (U, U).
If X € L, thenMy(U, X) € L.
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3a. M3(Xg, X) = X.

3b. If X € I"and X is not on a sideline oABC, then M3(X, X) is the
cevapointX and Xg. (The cevapoint [9, Glossary] of poinf8 = p : ¢ : » and
U =wu:v:wisdefined by trilinears
(pv + qu)(pw + ru) : (quw + rv)(qu + pv) : (ru + pw)(rv + quw).)
3c.If U € T, then
Ms3(U, X) =

u v w

ayz — bzx —cxy  bzx — cxy —ayz  cxy — ayz — bzx’

which is the trilinear produdt’ - X , whereX is the X»-isoconjugate of the(-Ceva
conjugate ofXg.

4a. M4(X6,X) =X.

4b. SupposeP is on the line at infinity (so thaP~! is onT). Let X be the
cevapoint ofXg and P. Then M, (X5, X) = P~ L.

4c.Let X* = X- X, whereX is as in 3c. ThenM (X, X*) = X.
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On Integer Relations Between the Area and Perimeter of
Heron Triangles

Allan J. MacLeod

Abstract. We discuss the relationshiB? = nA for a triangle with integer
sides, with perimeteP and areaA, wheren is an integer. We show that the
problem reduces to finding rational points of infinite order in a family of elliptic
curves. The geometry of the curves plays a crucial role in findingriaalgles.

1. Introduction

In a recent paper, Markov [2] discusses the problem of soldirg m P, where
Aisthe area an is the perimeter of an integer-sided triangle, ang an integer.
This relation forcesA to be integral and so the triangle is always a Heron triangle.

In many ways, this is not a proper question to ask, since this relation isalet sc
invariant. Doubling the sides to a similar triangle changes the area/perimeter ratio
by a factor of2. Basically, we have unbalanced dimensions - area is measured in
square-units, perimeter in units butis a dimensionless quantity.

It would seem much better to look for relations betwetand P2, which is the
purpose of this paper. Another argument in favour of this is that thentgamer
of Baloglou and Helfgott [1], on perimeters and areas, has the main ensidlip
to (8) all balanced in terms of units.

We assume the triangle has sidesb, c) with P = a + b+ cands = £. Then
the area is given by

A= Vsls—a)5—D)(s—c) = i\/P(P ~%a)(P — 2)(P — 20)

so that it is easy to see that< P2/4. Thus, to look for an integer link, we should
study P2 = nA with n > 4.
It is easy to show that this bound ancan be increased quite significantly. We

have . .
P—:16 (a+b+c) )
A? (a+b—c)la+c—Db)(b+c—a)

and we can, without loss of generality, assuime 1. Then the ratio in equation

(1) is minimised wherd = 1,¢ = 1. This is obvious from symmetry, but can be

easily proven by finding derivatives. Tht%é > 432 and soP? > 12v/3A for all

triangles, so we need only consider> 21.

Publication Date: March 9, 2009. Communicating Editor: Paul Yiu.
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As an early example of a solution, th& 4, 5) triangle hasP? = 144 andA = 6
son = 24.
To proceed, we consider the equation
(a+b+c)? 2

O = ate—nore—a " @

2. Elliptic Curve Formulation

Firstly, itis clear that we can let, b, c be rational numbers, since a rational-sided
solution is easily scaled up to an integer one.
From equation (2), we have

(n? +16)a® 4+ (48 — n?) (b + ¢)a® — (b*(n? — 48) — 2bc(n? + 48) 4 *(n? — 48))a
+ (b4 ¢)(b?(n® + 16) + 2bc(16 — n?) + 2 (n? + 16)) = 0.

This cubic is very difficult to deal with directly, but a considerable simplifiqatio
occurs if we use = P — a — b, giving
4n?(P —2b)a® — 4n*(2b* — 3bP 4 P?)a+ P(4b*n? — 4bn* P+ P?(n® +16)) = 0.
3)
For this quadratic to have rational roots, we must have the discriminant aeing
rational square. This means that there must be rational solutions of
d? = 4n?b* — 4n?Pb® 4 n? P?p* 4 32P3%b — 16P*

Znd andz = 22, we have

and, if we defing; = B
y? =zt — 2na3 + n?z? + 64nz — 64n>. (4)

A quartic in this form is birationally equivalent to an elliptic curve, see Mordell
[3]. Using standard transformations and some algebraic manipulation, avéhén
equivalent curves are

B, v? = u® + n?u? +128n%u 4 4096n% = u® 4 n?(u + 64)* (5)
with the backward transformation

b n(u—064)+v
SRk S A B 6
P dnu ()

Thus, from a suitable poirt., v) on E,,, we can findb and P from this relation.
To find a andc, we use the quadratic far, but written as

P(16P% + n%(P — 2b)?)
4n?(P — 2b)

The sum of the roots of this quadraticks— b = a + ¢, so the two roots give and

C.

But, we should be very careful to note that the analysis based on eq(kisn
just about relations between numbers, which could be negative. Evesyifite
all positive, they may not form a real-life triangle - they do not satisfy thetyiia
inequalities. Thus we need extra conditions to give solutions, nabnely, b, ¢ <
p

5 -

a’> — (P —b)a + =0. (7)
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3. Propertiesof E,

The curvesE,, are clearly symmetric about the u-axis. If the right-hand-side
cubic hasl real rootR, then the curve has a single infinite componentfor R.

If, however, there ar@ real rootsR; < Ry < Rj3, thenE,, consists of an infinite
component for, > R3 and a closed component f&; < u < Rs, usually called
the “egg”.

Investigating with the standard formulae for cubic roots, we findal roots if
n? > 432 and1 real root ifn? < 432. Since we assume > 21, there must be
3 real roots and s@ components. Descartes’ rule of signs shows that all roots are
negative.

It is clear thatu = —64 does not give a point on the curve, but= —172
givesv? = 16(729n% — 318028) which is positive if N > 21. Thus we have
Ry < 172 < Rp < —64 < R3 < 0.

The theory of rational points on elliptic curves is an enormously developed o
The rational points form a finitely-generated Abelian group with the additgn o
eration being the standard secant/tangent method. This group of points is iso
morphic to the groug@” @ Z", whereT is one ofZ,,, m = 1,2,...,10,12 or
Zo @ Ly, m = 1,2, 3,4, andr is the rank of the curvel™ is known as the torsion-
subgroup and consists of those points of finite order on the curve, ingltle
point-at-infinity which is the identity of the group. Note that the formH)f en-
sures that torsion points have integer coordinates by the Nagell-Lutzthesee
Silverman and Tate [5].

We easily see the two point8, +-64n) and since they are points of inflexion of
the curve, they have ord@& ThusT is one 0fZs, Zg, Zg, 712, 2o © Z3. SOme
of these possibilities would require a point of or@awhich correspond to integer
zeroes of the cubic. Numerical investigations show that eny 27, for n < 499,
has an integer zero (at = —576). Further investigations shoffl; as being the
only torsion subgroup to appear, for< 499, apart fromZg for n = —27. Thus
we conjecture that, apart from = 27, the group of rational points is isomorphic
to Z3 @ Z". The points of ordeB give % undefined so we would need> 1 to
possibly have triangle solutions.

Forn = 27, we find the pointd = (—144,1296) of order6, which gives the
isosceles trianglé5, 5,8) with P = 18 and A = 12. In fact, all multiples ofH
lead to this solution 011% undefined.

4, Rank Calculations

There is, currently, no known guaranteed method to determine therrae
can estimate very well, computationally, if we assume the Birch and Swinnerton-
Dyer conjecture [6]. We performed the calculations using some homengsoft-
ware, with the Pari-gp package for the multiple-precision calculations. 8hets
for 21 < n <99 are shown in Table 1.
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TABLE 1
Ranks ofE,,n = 21,...,99

[ n O]
20+
30+
10+
50+
60+
70+
80+
90+

(] Nl Nl Nl B B\l Henl Nanl | B )

=R ON O N = O W

== = o] =] =] =] of ot

e R el R B =l R Bl | K =2)
N OO N OO || oo

N == =] =] O N = —
= OIN| = OO O | &~
OO~ o= O
=IO O|Oo|IOo| ol

==l k= ]

We can see that the curve from tfge 4, 5) triangle withn = 24 has rankl, but
the (5, 5, 8) triangle has a curve with rarlk showing that this is the only triangle
givingn = 27.

For those curves with rank, a by-product of the Birch and Swinnerton-Dyer
computations is an estimate for the height of the generator of the rational pbints
infinite order. The height essentially gives an idea of the sizes of the atwngr
and denominators of the coordinates. The largest height encountered 10e25
for n = 83 (the height normalisation used is the one used by Silverman [4]).

All the heights computed are small enough that we could compute the geserator
fairly easily, again using some simple software. From the generators,nve the
list of triangles in Table.

5. Geometry of 0 < £ < 1

The sharp-eyed reader will have noticed that several values which have
positive rank in Tabld, do not give a triangle in Tabl®, despite generators being
found To explain this, we need to consider the geometric implication&.om)
from the bound® < & < 1, or

nu—64)+ov 1

0< B P— < 3 (8)

Consider first, > 0. Then% > 0 whenv > 64n —nu. The linev = 64n — nu,
only meetst,, atu = 0, and the negative gradient shows téab 0 when we take
points on the upper part of the curve. To h%/({ % we need < nu+ 64n. The
line v = nu + 64n has an intersection of multiplicity at« = 0, so never meets
E, again. Thus) < nu + 64n only on the lower part of2,, for v > 0. Thus, we
cannot have < % < % for any points withu > 0.

Now consideru < 0. Then, for% > 0 we needv < 64n — nu. The negative
gradient and single intersection show that this holds for all point&,pwith u <
0. ForZ < 1, weneed > nu+64n. This line goes througfn, 64n) on the curve
and crosses the u-axis when= —64, which we saw earlier lies strictly between
the egg and the infinite component. Siioe64n) is the only intersection we must
have the line above the infinite componentHf whenu < 0 but below the egg.
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TABLE 2
Triangles for21 < n <99

n a b c n a b c
21 15 14 13 24 5 4 3
28 35 34 15 30 13 12 5
31 85 62 39 33 30 25 11
35 97 78 35 36 17 10 9
39 37 26 15 42 20 15 7
43 56498 31695 | 29197 45 41 40 9
47 4747 3563 1560 50 1018 707 | 375
51 149 85 72 52 5790 | 4675 | 1547
55 157 143 30 56 41 28 15
58 85 60 29 60 29 25 6
62 598052 | 343383 | 275935 63 371 250 | 135
66 65 34 33 74 740 723 91
75 74 51 25 76 || 47575 | 43074 | 7163
77 1435 2283 902 79 1027 | 1158 | 185
81 26 25 3 85 250 221 39
88 979 740 261 91 1625 909 | 742
93 2325 2290 221 95 || 24093 | 29582 | 6175
98 || 2307410 | 2444091 | 255319 99 97 90 11

Thus,0 < % < % only on the egg where < —64. The results in Tablé come
from generators satisfying this condition.

It might be thought that forming integer multiples of generators and possibly
adding the torsion points could resolve this. This is not the case, due to Hezlclo
nature of the egg. If a line meets the egg and is not a tangent to the egg, then it
enters the egg and must exit the egg. Thus any line has a double interseittion
the egg.

So, if we add a point on the infinite component to either torsion point, also on the
infinite component, we must have the third intersection on the infinite component.
Similarly doubling a point on the infinite component must lead to a point on the
infinite component. So, if no generator lies on the egg, there will never b@na p
on the egg, and so no real-life triangle will exist.

We can generate other triangles for a value dify taking multiples of the gen-
erator. Using the same arguments as before, it is clear that a gengratothe
egg ha®G on the infinite component b3tz must lie on the egg. So, for = 24,
the curveFEy, : v2 = u3 + 576u? + 73728u + 2359296 hasG = (—384, 1536),
hence2G = (768, —29184) and3G = (—2210, 23808) which leads to the triangle
(287,468, 505) whereP = 1260 and A = 66150.
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The Feuerbach Point and Reflections of the Euler Line

Jan Vonk

Abstract. We investigate some results related to the Feuerbach point, and use a
theorem of Hatzipolakis to give synthetic proofs of the facts that the tiftexcof

OI inthe sidelines of the intouch and medial triangle all concur at the Feuerbac
point. Finally we give some results on certain reflections of the Feueriznh

1. Poncelet point

We begin with a review of the Poncelet point of a quadruple of pdiitsX, Y,
Z. This is the point of concurrency of
(i) the nine-point circles of triangléd’ XY, WX Z, XY Z, WY Z,
(i) the four pedal circles oV, X, Y, Z with respecttoXY Z, WY Z, WX Z,
W XY respectively.

v ~——— 7 v \\/c Z

Nine-point circles Pedal circles

Figure 1.

Basic properties of the Poncelet point can be found in [4].ILUe¢ the incenter
of triangle ABC. The Poncelet point of, A, B, C is the famous Feuerbach point
I, as we show in Theorem 1 below. In fact, we can find a lot more circlesmas
throughFs, using the properties mentioned in [4].

Theorem 1. The nine-point circles of triangled! B, AIC, BIC are concurrent
at the Feuerbach poink;, of triangle ABC.

Publication Date: March 30, 2009. Communicating Editor: A. P. Hatzipalakis
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Figure 2.

Proof. The Poncelet point ofi, B, C, I must lie on the pedal circle af with re-
spect to triangled BC', and on the nine-point circle of triangkBC' (see Figure
1). Since these two circles have only the Feuerbach pQimh common, it must
be the Poncelet pointof, B, C, I. (]

A second theorem, conjectured by Antreas Hatzipolakis, involves thramisu
triangles which turn out to have some very surprising and beautiful piepeWe
begin with an important lemma, appearing in [9] as Lemma 2 with a synthetic
proof. The midpoints oBC, AC, AB are labeled, E, F.

Figure 3.

We shall adopt the notations of [9]. Given a triangi&C, let D, E, F be the
midpoints of the side®C, CA, AB, andX, Y, Z the points of tangency of the
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incircle with these sides. Led, and A, be the orthogonal projections df on the
bisectorsBI andC'I respectively. Similarly defin&., B,, C,, C}, (see Figure 3).

Lemma 2. (a) A, and A, lie on E'F.
(b) Ay liesonXY, A, liesonX Z.
Similar statements are true f&,, B. andC,, Cp.

We are now ready for the second theorem, stated in [6]. An elementany pro
was given by Khoa Lu Nguyen in [7]. We give a different proof, netyon the
Kariya theorem (see [5]), which states thafXif, Y’, Z’ are three points o X,
1V, 1Z with X = IYD — 1Z0 _  then the linesA X, BY’, C'Z' are concurrent.
For k = —2, this point of concurrency is known to bégg, the reflection off in
F..

Figure 4.

Theorem 3(Hatzipolakis) The Euler lines of trianglest Ay A., BB, B., CC,C)
are concurrent atf, (see Figure 4)

Proof. If X’ is the antipode ofX in the incircle,O, the midpoint of4 andI, H,
the orthocenter of triangld A, A., then clearlyH,O, is the Euler line of triangle
AAA.. Also, LZAyAA. = 7 — LA A, = BFC. Becausedl is a diameter

of the circumcircle of triangled A, A.., it follows that AH, = AI - cosBT*C =

Al -sin 4 = r, wherer is the inradius of triangle BC. Clearly,/X’ = r, and
it follows from Lemma 1 thatdH, || IX’. TrianglesAH,O, andIX'O, are
congruent, and’ is the reflection of, in O,. HenceX" lies on the Euler line of
triangle AA, A..
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Figure 5.

If X* is the reflection off in X', we know by the Kariya theorem thai, X*,
and Xy are collinear. Now the homothety( 7, %) takesA to O,, X* to X/, and
Xy to the Feuerbach poiri.. O

We establish one more theorem on the Feuerbach point. An equivalentléor
tion was posed as a problem in [10].

Theorem 4. If X", Y", Z" are the reflections ok, Y, Z in AI, BI, C1, then the
linesDX”, EY", FZ" concur at the Feuerbach poirit, (see Figure 6)

Figure 6.
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Proof. We show that the linedD X" contains the Feuerbach poiAt. The same
reasoning will apply ta8Y” andF'Z" as well.

Clearly, X" lies on the incircle. If we callV the nine-point center of triangle
ABC, then the theorem will follow from/ X" || ND sinceF, is the external
center of similitude of the incircle and nine-point circle of triangi&C. Now,
becausd X || AH, and becaus® and H are isogonal conjugatesX” || AO.
Furthermore, the homothely G, —2) takesD to A and N to O. This proves that
ND || AO. It follows that/ X" || ND. O

2. The Euler reflection point

The following theorem was stated by Paul Yiu in [11], and proved byd®&nriyic
calculation in [8]. We give a synthetic proof of this result.

Theorem 5. The reflections 0©1 in the sidelines of the intouch triangle £ F
are concurrent at the Feuerbach point of triangleBC' (see Figure 7)

A

Figure 7.

Proof. Let us call/; the reflection off in Y Z. By Theorem 1, the nine-point circle
of triangle AIC, which clearly passes throudh, O,, C,, also passes through
F.. If S is the intersection o¥ Z and A, then clearlyA is the inverse of5 with
respect to the incircle. Becauge IO, = IAand2 - IS = [1, it follows thatO,
is the inverse of; with respect to the incircle. Becauég lies on X Z, its polar
line must pass througPk and be perpendicular td/. This shows tha3, is the
inverse ofC, with respect to the incircle.

Now invert the nine-point circle of triangld /C' with respect to the incircle of
triangle ABC. This circle can never pass throudhsince ZAIC' > 7, so the
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image is a circle. This shows th&tl; F, B, is a cyclic quadrilateral, so it follows
that/F. 1B, = ZF,YX = /F,X'X.

If we call A” B”C" the circumcevian triangle df, then we notice that AA,A. =
LATA. = ZA"IC. Now, it is well known thatd”C = A”I, so it follows that
LAAYA, = ZICA" = ZC"B"” A”. Similar arguments show that triangied;, A.
and triangled” B”C" are inversely similar.

As we have pointed out before as a consequence of Lemmidi2,and I X’
are parallel. By Theorem 3;, X’ is the Euler line of triangled A, A.. Therefor,
LF.X'X = £0,X'X = ZO,H,A. We know that triangled A, A. is inversely
similar to triangleA” B”C”. SinceO and[I are the circumcenter and orthocenter
of triangle A” B”C", it follows that /O, H,A = ZA"IO = ZOIA.

We conclude that' F,.[1S = /F. 1B, = /F,YX = /F.X'X = LZAIO =
ZSI0. This shows that the reflection 61/ in EF passes througl,. Similar
arguments for the reflections 6f7 in XY and X Z complete the proof. (]

A very similar result is stated in the following theorem. We give a synthetic
proof, similar to the proof of the last theorem in many ways. First, we will need
another lemma.

Lemma 6. The vertices of the polar triangle ddPFF' with respect to the incir-
cle are the orthocenters of triangldsIC, AIC, AI B. Furthermore, they are the
reflections of the excenters in the respective midpoints of the sides.

This triangle is the main subject of [9], in which a synthetic proof can bedoun

Theorem 7. The reflections o®1 in the sidelines of the medial trianglRE F" are
concurrent at the Feuerbach point of triangleBC' (see Figure 8)

Figure 8.
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Proof. Call I, the reflection ofl in EF', and A* the orthocenter of triangl&IC.
The midpoint off and A* is calledM. Using Lemma 6, we know thdf F' is the
polar line of A* with respect to the incircle. A similar argument as the one we gave
in the proof of Theorem 5 shows that is the inverse of\/ with respect to the
incircle.

Clearly, F, M, X, D all lie on the nine-point circle of triangl81C. Call this
circleT', and callT”, the circumcircle of triangld X X”. Clearly, the center of
I/ is on AI. Becausdl is the orthocenter of triangl8A*C, we have that the
reflection of/ in D is the antipode ofA* in the circumcircle ofA* BC. Call this
point L’. Consider the homothety( I, 2), M D is mapped, and hence is parallel, to
A*L'. We know that4* is the reflection inD of the A-excenter of triangled BC
(see [9]), saA* L' is also parallel tA 1. It follows that AT and M D are parallel.

If we call T the intersection ofA] and BC, then it is clear thaf lies onT",.
Becausdl' andM D are parallel diameters of two circles, there exists a homothety
centered atX which mapsI”, to I',. BecauseX lies on both circles, we now
conclude thafX is the point of tangency df, andT”,. Inverting these two circles
in the incircle, we see tha¥ X" is tangent to the circumcircle of F, 1.

Finally, ZMIO = ZAIO + Z/MIA = /F,X'X + ZIMD = /F,XD +
/XF,D=/FXD+/DXX" = /F,XX" = /F,I,X, where the last equation
follows from the alternate segment theorem. This provesiitfatis the reflection
of OI in EF. Similar arguments foD F' and D E prove the theorem. O

The following theorem gives new evidence for the strong correlation dmtw
the nature of the Feuerbach point and the Euler reflection point.

Theorem 8. The three reflections df,O,, in the sidelines of trianglel A, A. and
the lineOI are concurrent at the reflectiof, of F;, in Ay A.. Similar theorems
hold for trianglesBB, B.., CC,C;, (see Figure 9)

Proof. The 3 reflections of{, O, in the sidelines of triangld A, A. are concurrent
at the Euler reflection point of triangléA, A.. We will first show that this point is
the reflection ofF, in A, A..

The circle with diametetX H,, clearly passes through,, A. by definition of
Ay, Ac. It also passes through,, sinceH,F, = X'F, | XF,, so we conclude
that Fi,, A., X, A, are concyclic. BecausdaA.X A, is a parallellogram, we see
that the reflection in the midpoint of, and A. of the circle through4,, A., X,
Fy is in fact the circumcircle of trianglel A, A.. We deduce that the reflection of
F in Ay A, lies on the circumcircle of triangld A, A.. SinceF, # H, lies on the
Euler line of triangleAA, A. and E, lies on the circumcircle of triangld A, A,
we have proven that the reflection Bf in A, A, is the Euler reflection point of

triangle AA, A..
By theorem 7, it immediately follows thdf, lies onOI. This completes the
proof. O

We know that we can seE, as an intersection point of the perpendicular to
Ap A, throughF, with the circumcircle of triangled A, A.. This line intersects the
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Figure 9.

circle in another point, which we will call. Similarly defineV and W on the
circumcircles of triangle®3 B, B. andCC,(C}.

Theorem 9. The linesAU, BV, CW are concurrent atXgg, the reflection of in
I, (see Figure 10)

Proof. The previous theorem tells us thaf lies onO1. It follows thatZ/ E, 10, =
/OIA. Inthe proof of Theorem 5, we prove thad/0 = ZAH,O,. SinceF . E,
and AH, are parallel, we deduce that,, I, O, and F, are concyclic. If we call
U’ the intersection of?, F, and the line throughl parallel toO, F., then we have
that/E,IA = /E,F.O, = ZE,U'A. It follows thatA, U’, E,, I are concyclic,
soU =U".

Now consider a homothety centered avith factor2. Clearly,O, F, is mapped
to a parallel line througl, which is shown to pass throudlhh. The image of
F, however isXgg, so AU passes througiXgy. Similar arguments foBV, CW
complete the proof. O
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Rings of Squares Around Orthologic Triangles

Zvonko Cerin

Abstract. We explore some properties of the geometric configuration when a
ring of six squares with the same orientation are erected on the segBénts
DC, CE, EA, AF and F'B connecting the vertices of two orthologic trian-
glesABC and DEF. The special case wheRE'F is the pedal triangle of a
variable pointP with respect to the trianglel BC' was studied earlier by Bot-
tema [1], Deaux [5], Erhmann and Lamoen [4], and Sashalmi arititdan [8].

We extend their results and discover several new properties of thisdtiteye
configuration.

1. Introduction — Bottema’s Theorem

The orthogonal projectionB,, P, and P. of a point P onto the sidelineBC,
C A andAB of the triangleABC are vertices of its pedal triangle.
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Figure 1. Bottema’s Theorem on sums of areas of squares.

In [1], Bottema made the remarkable observation that
|BP,|* + |CPy)? + |AP.|? = |P,C|* + |P,A|* + |P.B|*.

This equation has an interpretation in terms of area which is illustrated in Figure 1
Rather than using geometric squares, other similar figures may be use®hs in [
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Figure 1 also shows two congruent triangles homothetic with the triahfl€’
that are studied in [4] and [8].

The primary purpose of this paper is to extend Bottema’s Theorem (see Fig-
ure 2). The longer version of this paper is available at the author’s \Getelpage
http://math.hr/"cerin/ . We thank the referee for many useful sugges-
tions that improved greatly our exposition.

Cl/

FI
Figure 2. Notation for a ring of six squares around two triangles.

2. Connection with orthology

The origin of our generalization comes from asking if it is possible to replace
the pedal triangleP, P, P. in Bottema’s Theorem with some other triangles. In
other words, ifABC and DE'F are triangles in the plane, when will the following
equality hold?

|BD> + |CE|)? + |AF|? = |DC|* + |EA|* + |FB|? (1)
The straightforward analytic attempt to answer this question gives the foljowin

simple characterization of the equality (1).
Throughout, triangles will be non-degenerate.

Theorem 1. The relation (1) holds for trianglest BC and DEF if and only if
they are orthologic.

Recall that trianglegl BC and D E'F' areorthologicprovided the perpendiculars
at vertices ofABC onto sidesE'F', FD and DE of DEF are concurrent. The
point of concurrence of these perpendiculars is denotetMBC, DEF']. Itis
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c
E [ABC, DEF) D
[DEF, M
A V B

F
Figure 3. The trianglesl BC andDEF are orthologic.

well-known that this relation is reflexive and symmetric. Hence, the peipgiads
from vertices ofD E'F onto the sideB3C, C'A, andAB are concurrent at the point
[DEF, ABC'|. These points are called tliest andsecond orthology centersf
the (orthologic) triangles BC and DEF'.

It is obvious that a triangle and the pedal triangle of any point are orthosmg
that Theorem 1 extends Bottema’s Theorem and the results in [8] (The®eand
the first part of Theorem 5).

Proof. The proofs in this paper will all be analytic.

In the rectangular co-ordinate system in the plane, we shall assume tibrgug
that A(0, 0), B(1, 0), C(u, v), D(d, §), E(e, ) and F(f, ¢) for real numbers
u, v, d, 6, e, €, f andp. The lines will be treated as ordered triples of co-
efficients(a, b, ¢) of their (linear) equations x + by + ¢ = 0. Hence, the per-
pendiculars from the vertices @ F F onto the corresponding sidelines 46BC
are(u — 1, v, d(1 —u) —v9), (u, v, —(ue+wve)) and(l, 0, —f). They will be
concurrent provided the determinan = v((u — 1)d —ue+ f +v (d —¢)) of
the matrix from them as rows is equal to zero. In other wafds; 0 is a necessary
and sufficient condition fod BC and D EF' to be orthologic.

On the other hand, the difference of the right and the left side of (2)As
which clearly implies that (1) holds if and only #BC and DEF are orthologic
triangles. O

3. The triangles.S153.55 and 555456

We continue our study of the ring of six squares with the Theorem 2 abaut tw
triangles associated with the configuration. Like Theorem 1, this theortsntde
when two triangles are orthologic. Recall that, ..., Sg are the centers of the
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squares in Figure 2. Note that a similar result holds when the squaresided f
inwards, and the proof is omitted.

Se

Figure 4.|515355| = |52545s| iff ABC andDEF are orthologic.

Theorem 2. The trianglesS; 5355 and 52.545¢ have equal area if and only if the
trianglesABC and D E'F are orthologic.

Proof. The verticesV andU of the squareDEVU have co-ordinatege + ¢ —
d,e+d—e)and(d+e—4, d+d—e). From this we infer easily co-ordinates
of all points in Figure 2. With the notation, = v+ v, u_ =u—v,dy =d+ 9,
d_-=d—-6,ey =e+e,e_=e—¢, fr=f+pandf_ = f— pthey are the
following.

Al(—e, e), Ao, —f), B'(1—¢, f—1), B"(1+46,1—d),
C'(uy — 6, u_+d), C"(u—+e,uyr—e), D'(dy,1-d-),
D,/(d*_{'va d+—u), E,(eJr_Ua u_e*)’ E”(G,, 6+),

F'(fy, =f-), F'"(f-, f+—1), 51(1+2d+,%>, 52(%, d*%»
S (25=0m) s 9. s (5 -F) s (5 ).

Let P* and PY be thex— andy— co-ordinates of the poinP. Since the area
|DEF| is a half of the determinant of the matrix with the ro®*, DY, 1),
(B®, EY, 1) and(F*, FY, 1), the differencdS>S4Ss| — |S1.5355| is 4. We con-
clude that the triangle$.55S55 and S254S¢ have equal area if and only if the
trianglesABC and DEF are orthologic. O
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4. The first family of pairs of triangles

The trianglesS; 5355 and S2.54S5¢ are just one pair from a whole family of
triangle pairs which all have the same property with a single notable exception.
For any real numbetrdifferent from—1 ando, let S¢, ... ,Sg denote points that
divide the segmentdS;, ASs, BSs, BSy4, C'S5 andCSg in the ratiot : 1. Let
p(P, 6) denote the rotation about the poifitthrough an anglé. Let G, andG

be the centroids ol BC' and DEF.

Figure 5. The triangle§?52.5% and 525352 are congruent.

The following result is curios (See Figure 5) because the particular vatug
gives a pair of congruent triangles regardless of the position of theyteisd BC
andDFEF.

Theorem 3. The triangleS35%.S2 is the image of the triangl875%S2 under the
rotation p (G, 5). The radical axis of their circumcircles goes through the cen-
troid G,.

Proof. Since the point that divides the segmdd¥ in the ratio2: 1 has co-

ordinates( 4£2¢, 9£2¢) it follows that

2 (14+d 1—d_ 2 (d_+u dy—u—_
St (M ) and 3 (e, ).

SinceG, (%, ¥), it is easy to check tha$? is the vertex of a (negatively ori-
ented) square of,57. The arguments for the pai($3, S7,) and(SZ, Sz, ) are

analogous.
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Finally, the proof of the claim about the radical axis starts with the observatio
that since the triangleS; S3.55 and 5,545 are congruent it suffices to show that
|G500dd|? = |GyOcven|?, WhereOyqq and O, are their circumcenters. This
routine task was accomplished with the assistance of a computer algebra.syste

O

-5’5

.
Figure 6. |S}S5SE| = |S455S6| iff ABC andDEF are orthologic.

The following result resembles Theorem 2 (see Figure 6) and showsahht
pair of triangles from the first family could be used to detect if the triangIBg
andDEF are orthologic.

Theorem 4. For any real numbet different from—1, 0 and2, the trianglesS? S% 5%
and 54545 have equal area if and only if the trianglesBC and DEF are or-
thologic.

Proof. Since the point that divides the segménk’ in the ratiot : 1 has co-ordinates

(ﬁﬁe, ot ) , it follows that the pointsS? have the co-ordinates

t(1+d t(1—d_ t(d_+u t(dy—u_ 2+t(u—_—+e t(ur—e_
S ( é(t+1+))’ é(t+1))> , S5 ( (2(t+1)+)’ (2a+1) )> , 55 ( 2((t+1) +)’ (2(+t+1) )> ’

24te_ te 2utt fr  2v—t f_ 2utt(l+f-) 2v—¢(1—f4)
Si <2(t+1)’ 2(t++1)>7 S5 ( 2(zt+1)+7 2(t+1) )? Sé( 2(t+1) 2(t+1)+ )

As in the proof of Theorem 2, we find that the difference of areas dfituegles

S5SLSE and St SLSt is 1((21:1))%. Hence, fort # —1, 0, 2, the trianglesS? S4.S¢ and
StS%SE have equal area if and only if the triangldé®3C' and DE'F are orthologic.

O
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5. The second family of pairs of triangles

‘55
Figure 7. |T7T5Ts | = |T5T; Ts | iff ABC andDEF are orthologic.

The first family of pairs of triangles was constructed on lines joining the cgnte
of the squares with the vertices B andC. In order to get the second analogous
family we shall use instead lines joining midpoints of sides with the centers of the
squares (see Figure 7). A slight advantage of the second family is thes idn
exceptional cases.

Let Ay, B, andC, denote the midpoints of the segmeR§’, C A andAB. For
any real numbes different from—1, let77, ..., T§ denote points that divide the
segmentsi; Sy, AyS2, ByS3, BySs, CySs andCySg in the ratios : 1. Notice that
TPT5 Ay, T5T; By andT3 T Cy are isosceles triangles with the right angles at the
verticesA,, B, andC.

Theorem 5. For any real numbes different from—1 ando0, the trianglesI7T577
and T5T;T¢ have equal area if and only if the triangle$BC and DEF are
orthologic.

Proof. As in the proof of Theorem 4, we find that the difference of areas ofrithe
anglesIyT5T: andT5 T T¢ is 4(‘27_%1). Hence, fors # —1, 0, the triangleg T4 T}
andT3T;T¢ have equal area if and only if the trianglé&3C and DEF are ortho-

logic. O
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6. The third family of pairs of triangles

When we look for reasons why the previous two families served our parpb
detecting orthology it is clear that the vertices of a triangle homothetic it
should be used. This leads us to consider a family of pairs of trianglesepand
on two real parameters and a point (the center of homothety).

For any real numbers andt¢ different from—1 and any pointP the pointsX,
Y andZ divide the segment® A, PB and PC in the ratios : 1 while the points
U fori=1,..., 6 divide the segment& Sy, XS, Y S5, 'Sy, ZS5 andZSs
in the ratiot : 1.

Ss Se

Figure 8. |[U Y ulYulsY| = \ulPUu=YUs?| it ABC andDEF are orthologic.

The above results (Theorems 4 and 5) are special cases of the folliheimgm
(see Figure 8).
Theorem 6. For any pointP and any real numbers # —1 andt # —1, ;—51 the
triangles UMV U T and U U U have equal areas if and only if
the trianglesA BC' and DE F are orthologic.

The proof is routine. See that of Theorem 4.

7. The triangles Ao BoCy and Do Eg Fy

In this section we shall see that the midpoints of the sides of the hexagon
51525354555 also have some interesting properties.
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Let Ay, By, Cy, Do, Ey and F;y be the midpoints of the segmerfiSs,, S394,
S5Sg, S4.55, 5651 andS2S3. Notice that the triangledByCy and Dy Ey Fy have
as centroid the midpoint of the segméntG ...

Recall that trianglesABC and XY Z are homologicprovided the linesA X,
BY, andC'Z are concurrent. In stead of homologic many authorgpesspective

Theorem 7. (a) The trianglesA BC and Ay By Cy are orthologic if and only if the
trianglesABC and D E'F' are orthologic.

(b) The trianglesD EF' and Dy E Fy are orthologic if and only if the triangles
ABC and DEF are orthologic.

(c) If the trianglesABC and DEF' are orthologic, then the triangled,ByCy
and Dy Ey Fy are homologic.

Proof. Let Dy (d1, 61), E1(e1, €1) andFi(f1, ¢1). Recall from [2] that the trian-
glesDEF and D1 E4 Fy are orthologic if and only ifAg = 0, where

d dp 1 6 61 1
Ay = A()(DEF, DlElFl) =le e 1|4+|e g 1
I nl v ¢ 1
Then (a) and (b) follow from the relations
A A
Ao(ABC, AQBOCO) = —5 and Ao(DEF, D()E()Fo) = 5

The lineDD; is (6 — d1,d1 — d, 61 d — dy 9), so that the triangle® EF and
D, E1 Fy are homologic if and only if'y = 0, where
0—01 di—d 6d—dio
Ioy=To(DEF, D1E\F1)=| e—¢1 e1—e c1e—elc
o—p1 Hi—f eof—-fip
Part (c) follows from the observation thia§( Ao BoCo, DoEpFy) containsA as
a factor. O
8. Triangles from centroids

Let G1, G2, G3 andG,4 denote the centroids of the triangl€$: 4 G345Gs6c,
G120G34EGs6F, Ga54Ge1BG23c andG s pGe1 EGasr WhereGioa, Giap, Gaan,
G34k, Gsecy Gsery Gasa, Gasp, GeiB, Geie, Gazc andGazp are centroids of
the trianglesSngA, 5152D, 535’43, 535’4E, S5SGC: S5SGF, S4S5A, S4S5D,
SS1B, SgS1E, S255C andSQSgF.

Theorem 8. The pointsGG; and G are the pointsGs and G4 respectively. The
pointsG; and G5 divide the segments, G- andG, G, in the ratiol : 2.

Proof. The centroidsGi24, Gsap and Gsgc have the co-ordinates

(2d+1+v+u 25+1+U—u) 2(e+)+u—v 2etutv and 2(f4u)+1 2(ptv)—1 It
6 ’ 6 ! 6 ’ 6 6 ) 6 :

follows thatG; andG4y have coordinateé
(2(d+e+f)+u+1 2(6+5+<,0)+v>
9 ) 9

andGy = Gs.

d+e+f49rQ(u+1)’ 6+£+§0+2v) and

respectively. It is now easy to check th@ = G4
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Sa

S5

Figure 9. G and G5 divide G, G~ in four equal parts andl BC' is orthologic
with G124G348G56c iff it is orthologic with DEF".

Let & divide the segment, G, in the ratiol : 2. SinceG, <d+6+f, ‘”f,f‘”)

and G, (44, %), we have(G})” = 2(Ge)"HC) . @RZuHdter)) _ (g,
Of course, in the same way we see tf@t)¥ = (G1)¥ and thaiGg dividesG,G,
in the same ratia : 2. U

Theorem 9. The following statements are equivalent:

(a) The trianglesABC' and G124 G343Gsec are orthologic.

(b) The trianglesABC andG12p G314 G5 are orthologic.

(c) The trianglesD EF' and G454 Gg13G23¢ are orthologic.

(d) The trianglesD EF and G45pGe1 eGosr are orthologic.

(e) The trianglesG 124 G348Gssc and G454 Ge18Gasc are orthologic.
(f) The trianglesG1op G4 Gser and G4sp G pGogr are orthologic.
(g) The trianglesA BC and DEF are orthologic.

Proof. The equivalence of (a) and (g) follows from the relation

A
Ao(ABC, G124G348G56c) = 3
The equivalence of (g) with (b), (c), (d), (e) and (f) one can provthe same
way. ([

9. Four triangles on vertices of squares

In this section we consider four triangld$B’C’, D'E'F', A”B"C", D" E" F"
which have twelve outer vertices of the squares as vertices. The sureasf af
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the first two is equal to the sum of areas of the last two. The same relatiosiihold
we replace the word "area” by the phrase "sum of the squares of tbg"sid

C//

Cl

FI

FII
Figure 10. Four triangled’ B’'C’, D'E'F’, A" B"C" andD"E" F" .

ForatriangleXY Z let | XY Z| ands2 (XY Z) denote its (oriented) area and the
sum|Y Z|? + |ZX|? + | XY |? of squares of lengths of its sides.

Theorem 10. (a) The following equality for areas of triangles holds:
|A/B/C/| + |D/E/F/‘ — ’AI/B//C//‘ + ’D//E//F//‘.
(b) The following equality also holds:
SQ(A/B/C/) + SQ(D,E/F/) — SQ(A//B//C//> + SQ(D//EHFH).

The proofs of both parts can be accomplished by a routine calculation.

Let A}, B} andC denote centers of squares of the same orientation built on the
segmentB’C’, C' A" andA’B’. The pointsD}, E1, Fy, A, BY, CY, DY, EY and
F{" are defined analogously. Notice ttiat B'C", A1 B1C1), (A”"B"C", A{B{CY),
(D'E'F', D{E{F]) and (D"E"F" D{E{F{") are four pairs of both orthologic
and homologic triangles.

The following theorem claims that the four triangles from these centersiafreg
retain the same property regarding sums of areas and sums of squiaregtio$ of
sides.

Theorem 11. (a) The following equality for areas of triangles holds:
|A1B1C1| + |DIE1FY| = |AYB{CY| + |DYE{ FY'|.
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(b) The following equality also holds:
$2(A1B1CY) + s2(D1ELFY) = s2(A1BYCY) + s2(DYEVFY).

The proofs of both parts can be accomplished by a routine calculation.

Notice that in the above theorem we can take instead of the centers any points
that have the same position with respect to the squares erected on thefsides o
the trianglesA’B’C’, D'E'F’, A”B"C"” and D" E"F". Also, there are obvious
extensions of the previous two theorems from two triangles to the statements abo
two n-gons for any integen > 3.

Of course, it is possible to continue the above sequences of triangleefind
for every integei > 0 the trianglesd; B; C}, A]B)/C}!, D, E, F;, and D} E}'F}!.

The sequences start with B’'C’, A”B"C"”, D'E'F’ andD" E" F”. Each member
is homologic, orthologic, and shares the centroid with all previous membdrs an
for eachk an analogue of Theorem 11 is true.

Figure 11.G,G,.G,. G,» andG,G-G .~ G,/ are squares.

10. The centroids of the four triangles

LetGy, G, Gy, G, G, andG, be shorter notation for the centroi@sy g/,
Gpgp, Gangrnon, Gprgnpn, G515355 and G5254S6. The following theorem
shows that these centroids are the vertices of three squares assoitiatibe ring
of six squares.

Theorem 12. (a) The centroid€~,, G, G, andG, are vertices of a square.
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(b) The centroidg7,» and G are reflections of the centroids,» and G, in
the lineG,G . Hence, the centroid&' ., G5/, G, and G, are also vertices of a
square.

(c) The centroidd=. and G, are the centers of the squares (@) and (b), re-
spectively. Hence, the centroids,, G., G, andG,, are also vertices of a square.

The proofs are routine.

11. Extension of Ehrmann—Lamoen results

Ka A,\/ K b

Figure 12. The trianglé, K, K. from parallels toBC, C A, AB throughB”,
C", A” is homothetic taA BC from the centetky.

Let K, KK, be a triangle from the intersections of parallels to the liB&s,
C'A and AB through the pointsB”, C” and A”. Similarly, Let K, K, K. be a
triangle from intersections of parallels to the linBg', C A and AB through the
points B”, C” and A”. Similarly, the trianglesL,LyL., M,MyM,., N,NyN,,
P,P,P. andQ,Q,Q. are constructed in the same way through the triples of points
(', A, B, (D", E", F"), (D', E', F'),(S1, Ss, S5) and(Ss, Sy, Sg), respec-
tively. Some of these triangles have been considered in the case wherigetr
DEF isthe pedal triangl®, P, P. of the pointP. Work has been done by Ehrmann
and Lamoen in [4] and also by Hoffmann and Sashalmi in [8]. In this sect®n w
shall see that natural analogues of their results hold in more generdicsigia

Theorem 13. (a) The trianglesK Ky K., LoLyLe, Mo MyM,., Ny NyN,., P, P, P,
andQ,Q,Q. are each homothetic with the triangleBC.

(b) The quadrangle$s,L,M,N,, KyLyM,N, and K.L.M_.N,. are parallelo-
grams.

(c) The centerd,, J, and.J, of these parallelograms are the vertices of a trian-
gle that is also homothetic with the triangkeBC'.
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Figure 13. The triangle& Ky K., Lo Ly Le, Mo My M. andN, N, N, together
with three parallelograms.

Proof of parts (a) and (c) are routine while the simplest method to proveatte p
(b) is to show that the midpoints of the segmehtsM, and L, N, coincide for
r=a,hb,ec.

Let Jy, Ko, Lo, My, No, Py and@Q)q be centers of the above homotheties. Notice
that.Jj is the intersection of the line&y My and Ly Ng.

Figure 14. The lind<, Lo goes through the symmedian pofitof the triangleABC.

Theorem 14. (a) The symmedian poink of the triangle ABC' lies on the line
KoLyg.
(b) The pointsPy and Qg coincide with the point&vy and M.
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. e E—
(c) The equalitieg - P,Q, = K, L, hold forv = a, b, c.
Proof. (a) Itis straightforward to verify that the symmedian point with co-ordinates
Sd b sty ) lies on the linef Lo,
(b) That the centeP, coincides with the cente¥N, follows easily from the fact
that(A, N,, P,) and(B, N, P,) are triples of collinear points.

(c) SinceQy = 2= py = 221 1Y = f — 1andK{ = —f, we see that
2-(Q4 — ) = Ly — Ki.
- - - - —_— —
Similarly, 2 - (Q¥ — PT) = L* — KZ. This proves the equaliy- P,Q, = K,L,.
O

Theorem 15. The trianglesk, K, K. and L, L L. are congruent if and only if the
trianglesABC and DEF are orthologic.

Proof. Since the triangle&, K, K. and L, L; L. are both homothetic to the trian-
gle ABC, we conclude that they will be congruent if and onlyAf, K| = | L, Ly|.
Hence, the theorem follows from the equality
[(Qu—1)2+ (2v+1)2+2] A
5 .
v

|KaKb|2 - |LaLb‘2 =
O

Let O andw denote the circumcenter and the Brocard angle of the triahHl€'.

Theorem 16. If the trianglesABC and DEF' are orthologic then the following
statements are true.

(a) The symmedian poirft” of the triangleA BC is the midpoint of the segment
KoLyg.

(b) The trianglesM, M, M. and N, N, N are congruent.

(c) The trianglesP, P, P. and Q. Q@ are congruent.

(d) The common ratio of the homotheties of the triandted(, K. and L, L, L.
with the triangleABC' is (1 + cot w) : 1.

(e) The translationsK, K, K. +— Ly,LyL. and N,NyN,. — M, M,M,_ are for
the image of the vect@- O[DEF, ABC] under the rotatiorp (O, %).

(f) The vector of the translatioR, P, P. — Q.,QyQ. is the image of the vector

—_
O[DEF, ABC] under the rotatiorp (O, 3).
Proof. (a) Let¢ = u? — u +v?. Let the trianglesABC and DEF be such that
the centersky and Ly are well-defined. In other words, &/, N # 0, where
M, N = (u—1)d+vd —ue —ve+ f £ ({+1). Let Z; be the midpoint of the
segmentiyLg. Then|ZyK|? = Mﬁ, where
Q S? (€4 1)2T7
E+u2(E+3u+1)2 " (E+u)(E+3u+1)

S = (ue +ve) (€2 + & — 3u(u— 1)) + (€ + u)
[(+3u+1)((u—1)d+vd) + (1 -2 u—&—1)f = (E+1)(§+u—1)],
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Q=¢8>+ du+1)¢+uBu+1)andT = ue + ve + (€ +u)(f — 1). Hence, if
the trianglesABC and DEF' are orthologic (i. e.A =0), thenK = Z,. The
converse is not true because the factSrand 7T can be simultaneously equal to
zero. For example, this happens for the poiaits, 0), B(1,0), C (1, 1), D(2,5),
E (4, —3) andF(3, —1). Aninteresting problem s to give geometric description
for the conditionsS = 0 andT = 0.

(b) This follows from the equality

d(vd+ (1 —u)d —vetue—p+E+1)A
v? '

‘NaNbF - ’MaMbP =

(c) This follows similarly from the equality

(vd+ (1 —u)d —vetue—p+E{+v+1)A
5 :

PaPif? ~ |Qu @il = .

(d) The ratio”fjg"" is [A+uizuwte®orl] Hence, when the triangle$BC and

DEF are orthologic, thelh = 0 and this ratio is

v —ut+vi+u+1 " |BO|? + |CA|? + |AB|?
v B 4-|ABC|

=1+ cotw.

(e) The tip of the vectoK, L, (translated to the origin) is at the point
V(€ —2(ue +ve —uf), 2f —1).

The intersection of the perpendiculars through the paihtsnd E onto the side-
lines BC andC A is the point

-1 _ o
u ((1 —u)d — vd + ue + ve, wvd + (u )f]du ue 05)) ‘
When the trianglesABC and DEF' are orthologic this point will be the second

orthology centefDEF, ABC|. Since the circumcent&? has the co-ordinates

<l i) the tip of the vecto? - OU is at the point
20 20

W (2(<1 —u)d — vd + ue 4+ ve) — 1, 2((u — 1)(ud — ue — ve) + uvd) — f) _

v

Its rotation about the circumcenter Byhas the tip at?V’ (—(W*)¥, (W*)*). The
relationsU* — W% = % andUY — WY = 2A now confirm that the claim (e)
holds.

(f) The proof for this part is similar to the proof of the part (e). O

12. New results for the pedal triangle

Let a, b, c and S denote the lengths of sides and the area of the triaAgté€’.
In this section we shall assume tHaf' F' is the pedal triangle of the poiit with
respecttcd BC. Our goal is to present several new properties of Bottema'’s original
configuration. It is particularly useful for the characterizations of thecBrd axis.
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c"
c’
C
A’
E X
.~ /\D
P
o B
A F B
BI

Al/
Figure 15.52(A’B'C") = s2(A” B”C") iff P is on the Brocard axis.

Theorem 17. There is a unique central poii with the property that the triangles
515355 and S2.5,5¢ are congruent. The first trilinear co-ordinate of this poift
isa((b? + c* +29)a® — b* — c* —28(b? + ¢?)). It lies on the Brocard axis and
divides the segme@ K in the ratio (— cot w) : (1 + cotw) and is also the image
of K under the homothety(O, — cotw).

Proof. Let P(p, ¢). The orthogonal projections,, P, and P, of the pointP onto
the sidelineBC, C'A and AB have the co-ordinates

(u—1)2%p+vu—1)g+v* v((u—1)p+vg—u+1)
< E—u+1 ’ E—u+1 )’

Etu 0 E+u
Since the triangles;53555 and 55545 have equal area, it is easy to prove
using the Heron formula that they will be congruent if and only if two of their
corresponding sides have equal length. In other words, we must gnsbthtion
of the equations

<u(up+vq) v(up+“‘1)) and(p, 0).

v v? +u—1
|SgS5|2—|S456’2_ é.p q § _

= — 0,
E+u 4w 2

2 s v(Eptvg € -Q2u-v)-é+u(u-1)
511" ~ 18652l == 2(¢ —u+1) =0
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As this is a linear system it is clear that there is only one solution. The required
point is P (1‘2;““’ 52“”“)5*”2). Lets = L = =Zwtw The pointP di-

2 ’ 202 1+ 511 1+cotw”

vides the segme@ K in the ratios : 1, whereO (%, %) andK (25(2._%{), 2(511)>-

Theorem 18. The trianglesS; 5355 and 525456 have the same centroid if and
only if the pointP is the circumcenter of the trianglé BC'.

2 _ M24 N2 :
Proof. We get|G,G.|* = SE—u e (T 1) with

M =362u—1p+v(l+48)q—E(26+3u—1)

andN =v(1+¢&)(2p—1). Hence,G, = G, if and only if N = 0 and M = 0.
In other words, the centroids of the triangl€sS3S5; and.S254Sg coincide if and
onlyifp = % andqg = % (i. e., if and only if the pointP is the circumcente® of
the triangleABC). (]

Recall that the Brocard axis of the triangle3C' is the line joining its circum-
center with the symmedian point.

Let s be a real number different froand—1. Let the points4,, B; andC
divide the segment8D, CE and AF' in the ratios : 1 and let the pointd;, E;
andF; divide the segment®C, EA andF'B in the ratiol : s.

Theorem 19. For the pedal triangleD E'F' of a point P with respect to the triangle
ABC the following statements are equivalent:

(a) The trianglesA ByCy and Dy E Fy are orthologic.

(b) The trianglesA BC and G454 Ge18G23¢ are orthologic.

(c) The trianglesABC' and G45p Gg1Gosr are orthologic.

(d) The trianglesG124G348G56c and GyspGe1 eGasr are orthologic.

(e) The trianglesG 1o p G341 Gser and Gys 4Ge1 8Go3c are orthologic.

(f) The trianglesA’ B'C’" and A” B”"C" have the same area.

(g) The trianglesd’ B’'C’" and A” B” C"" have the same sums of squares of lengths
of sides.

(h) The trianglesD’ E' F/ and D" E” F” have the same area.

(i) The trianglesD’ E' F' and D" E” F" have the same sums of squares of lengths
of sides.

(i) The trianglesS; 5355 and S2.545¢ have equal sums of squares of lengths of
sides.

(k) For any real number # —1, 0, 2, the trianglesS! S5t and S4.5%SE have
equal sums of squares of lengths of sides.

() For any real numbers # —1, 0, the trianglesTyT3T¢ and 1517 T¢ have
equal sums of squares of lengths of sides.

(m) The trianglesA;B;C and D,E, F; have the same area.

(n) The pointP lies on the Brocard axis of the triangléBC'.
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Proof. (a) The orthology criteriod\y(AyByCo, DoFEoFp) is equal to the quotient
W&J\/l—u-i—l)’ with M the following linear polynomial ip andg.

M=2(+&-v?)p+2vR2u—1)g—(E+u)(E+u—1).

Infact, M = 0is the equation of the Brocard axis because the co—ordiv(e}t,e%)

and (25(‘5“3{), 2(511)> of the circumcentet) and the symmedian poirft” satisfy
this equation. Hence, the statements (a) and (n) are equivalent.

(f) It follows from the equaliMA”B”C”] — |A'B'C'| = W@W—um that the
statements (f) and (n) are equivalent.

(i) It follows from the equalityss(D'E'F") — so(D"E"F") = vl

. . T 2(64u)(—utl)
that the statements (i) and (n) are equivalent. O

Itis well-known thatcot w = % so that we shall assume that the degener-
ate triangles do not have well-defined Brocard angle. It follows thatttteraent
"The trianglesS;.5355 and S254.5¢ have equal Brocard angles” could be added
to the list of the previous theorem provided we exclude the points for whieh th
trianglessS;S3.55 and S»54.5¢ are degenerate. The following result explains when
this happens. LekK _,, denote the point described in Theorem 17.

Theorem 20. The following statements are equivalent:

(a) The pointsSy, S3 and Sy are collinear.

(b) The pointsS,, S5 and.Sg are collinear.

(c) The pointP is on the circle with the centek_, and the radius equal to the
circumradiusR of the triangleABC times the numbey/(1 + cot w)? + 1.

Proof. Let M be the following quadratic polynomial inandg:
PP+ @) FoRu—w)p— (€ +wé—v?)g— (E+u) (€ —utw),
wherew = v + 1. The pointsSy, S3 and.Ss are collinear if and only if
Sy Sy 1

M
0=|5 8 1|= v .
ng SZ?J 1 2(w—1-¢)(u+§)

The equivalence of (a) and (c) follows from the fact that= 0 is the equation
of the circle described in (¢). Indeed, we see directly that the co-dedildiits cen-

ter are(“’*zu E1we—v*) 50 that this center is the poiAf_,, while the square of

v 202
4u qu v
A3 is equal to the numbey/(1 + cot w)2 + 1 becauseot w = 11,
The equivalence of (b) and (c) is proved in the same way. O

Theorem 21. The trianglesA, ByCy and Dy Ey Fy always have different sums of
squares of lengths of sides.
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Proof. The differencesy(AgByCy) — so(DoEoFy) is equal t%, where

N denotes the following quadratic polynomial in variabtesndg:
1\’ £, 3¢ —u+ D)€+
(f"z) i (qm) i 1? |
However, this polynomial has no real roots. O

\\ % //

Figure 16. | Ao BoCo| = | Do Fo Fo| iff P is on the circledo.

Theorem 22. The trianglesd, BoCy and Dy Ey Fyy have the same areas if and only
if the point P lies on the circlgdy with the center at the symmedian poikitof the
triangle ABC and the radiusR v'4 — 3 tan? w, where R andw have their usual
meanings associated with triangheBC.

. . . v2 2
Proof. The differencel Do EgFy| — |AoBoCo| is equal tg the quotlg 6/f(<ﬁ4u)’ .
where( = ¢+ 1, p = £ + w and M denotes the following quadratic polynomial
in variablesp andgq:

TR S ORI S L (St O C Sk L)
P=79¢ 17 5¢ 40202 '
The third term is clearly equal te R?(4 — 3tan®w). Hence,M = 0 is the equa-

tion of the circle whose center is the symmedian point of the triadgh’ with

the co-ordinatesé“;g, %) and the radiug? v4 — 3 tan? w. O
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Let A*, B*, C*, D*, E* and F* denote the midpoints of the segments4”,
B'B",C'C"”, D'D", E'E" andF'F". Notice that the points\*, B*, C*, D*, £*
and F* are the centers of squares built on the segménts, SsS51, S2.53, S1.59,
S35, andS5.Sg, respectively. Also, the triangle$* B*C* and D* E* F* share the
centroids with the triangled BC andDEF.

Notice that the linesi A*, BB* andC'C* intersect in the isogonal conjugate of
the pointP with respect to the triangld BC'.

Theorem 23. The trianglesA* B*C* and D* E* F'* have the same sums of squares
of lengths of sides if and only if the poiRtlies on the circledy.

Proof. The proof is almost identical to the proof of the previous theorem since the

differencesy(D* E*F*) — so( A*B*C*) is equal t 2(22_(513?51\@)- U

Theorem 24. For any pointP the trianglesA* B*C* and D* E* F* always have
different areas.

Proof. The proof is similar to the proof of Theorem 21 since the difference

* Tk T * RE K| N
|D*E*F*| — |A*B*C*| is equal t 8(§_u”+1)(5+u)' -

13. New results for the antipedal triangle

Recall that the antipedal triangle; P; P of a point P not on the side lines of
the triangleABC' has as vertices the intersections of the perpendiculars erected
atA, BandC to PA, PB and PC respectively. Note that the trianglé; P, P
is orthologic with the triangleABC' so that Bottema’s Theorem also holds for
antipedal triangles.

Our final result is an analogue of Theorem 19 for the antipedal triafiglpaint.

It gives a nice connection of a Bottema configuration with the Kiepert giar
(i. e., the rectangular hyperbola which passes through the verticegrttreid and
the orthocenter [3]).

In the next theorem we shall assume thaf F' is the antipedal triangle of the
point P with respect taA BC'. Of course, the poinP must not be on the side lines
BC,CAandAB.

Theorem 25. The following statements are equivalent:

(a) The trianglesAg By Cy and Dy E Fy are orthologic.

(b) The trianglesA BC and G454 G¢15G23c are orthologic.

(c) The trianglesA BC' and G45p Gg1 Gosr are orthologic.

(d) The triangles7124G34G56c and G 45 pGe1 pGasr are orthologic.

(e) The trianglesG 1o p G341 Gser and Gy 4Ge1 8Go3c are orthologic.

(f) The trianglesA’ B’C’" and A” B”"C" have the same area.

(g) The trianglesd’ B’C’" and A” B” C"" have the same sums of squares of lengths
of sides.

(h) The trianglesD’ E' F and D" E” F” have the same area.

(i) The trianglesD’ E' F/ and D" E” F"" have the same sums of squares of lengths
of sides.
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Ss
Figure 18.52(5153S55) = s2(525456) also whenP is on the circumcircle.

(i) The trianglesS: 5355 and S2.545¢ have equal sums of squares of lengths of
sides.
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(k) For any real numbet # —1, 0, 2, the trianglesS? S%St and S§.S%SE have
equal sums of squares of lengths of sides.

() For any real numbers # —1, 0, the trianglesTyT5T¢ and T5T;T¢ have
equal sums of squares of lengths of sides.

(m) The trianglesA;B;C; and D,E, F; have the same area.

(n) The pointP lies either on the Kiepert hyperbola of the triangdd3C or on
its circumcircle.

Proof. (g) so(A"B"C") — s9(A'B'C’) = q(vp_uq)a”(ﬁjl\g_(u_l)q), with

1\? £\? &+
M=(p—= _8) L
(p 2) +<q 221) 0?

N:v(2u—1)(p2—q2—p)—2 (u2—u—02+1)pq+(u2+u—v2)q.

In fact, M = 0 is the equation of the circumcircle of the triangleBC' while
N =0 is the equation of its Kiepert hyperbola because the co-ordinates of the

verticesA, B andC' and the co—ordinateéu, @) and (!, ¢) of the ortho-
centerH and the centroid~ satisfy this equation. Hence, the statements (g) and
(n) are equivalent.

() It follows from the equality

vM N
q(vp —ug)(v(p — 1) — (u —1)q)
that the statements (j) and (n) are equivalent.
(m) It follows from the equality

52(525456) — 52(515355) =

svMN
2(s +1)?q(vp —ug)(v(p — 1) — (u—1)q)
that the statements (m) and (n) are equivalent. O

’DSESFS| - |A5Bscs| ==

Of course, as in the case of the pedal triangles, we can add the statérhent ”
trianglesS,.53S5 and.S>S4.5¢ have equal Brocard angles.” to the list in Theorem 25
but the points on the circle described in Theorem 20 must be excludedcfsom
sideration.

Notice that when the poinP is on the circumcircle oA BC then much more
could be said about the properties of the six squares built on segBéntDC,
CE, FEA, AF andF B. A considerable simplification arises from the fact that the
antipedal triangléD E I reduces to the antipodal poiftof the pointP. For exam-
ple, the trianglesS; 5355 and 525456 are the images under the rotatign@/, 7)

and p(V, —T) of the triangleA, B.C,, = h(O, %2)(ABC) (the image ofABC

under the homothety with the circumcenéeas the center and the facté?—). The
pointsU andV” are constructed as follows.

Let the circumcircles,, of the triangleA,B,C., intersect the segmeid(Q in
the pointR, let ¢ be the perpendicular bisector of the segm@iit and letT be
the midpoint of the segmer®(@. Then the pointl/ is the intersection of the
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line ¢ with p(T, 7)(PQ) while the pointV is the intersection of the liné with
p(T, =7)(PQ).
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On the Newton Line of a Quadrilateral

Paris Pamfilos

Abstract. We introduce the idea of the conjugate polygon of a point relative
to another polygon and examine the closing property of polygons insciibe
others and having sides parallel to a conjugate polygon. Specializingifat-q
rangles we prove a characterization of their Newton line related to the pibgsib
to inscribe a quadrangle having its sides parallel to the sides of a conjugate o

1. Introduction

Given two quadrangles = A;A5A3A4 andb = ByB;BsB4 one can ask
whether it is possible to inscribe in the first a quadrangte C;C>C3Cy hav-
ing its sides parallel to corresponding sides of the second. It is also oftamoe
to know how many solutions to the problem exist and which is their structure. Th
corresponding problem for triangles is easy to solve, well known asddiations
to pivoting around a pivot-point of which there are twelve in the generse ¢,
p. 297], [8, p. 109]). Here | discuss the case of quadrangles asdnre extend
the case of arbitrary polygons. While in the triangle case the inscribed simaiis
lar to a given triangle, for quadrangles and more general polygons thisnsn®
possible. | start the discussion by examining properties of polygonshesicin
others to reveal some general facts. In this frame it is natural to intrddecgass
of conjugate polygonwith respect to a point, which generalize the idea offire2
ceviantriangle, having for vertices thearmonic associatesf a point [12, p.100].
Then | discuss some properties of them, which in the case of quadraelgiesthe
inscription-problem to the Newton line of their associatednpletequadrilateral
(in this sense | speak of thidewton line of the quadrangld 3, p.169], [6, p.76],
[3, p.69], [4], [7]). Atfter this preparatory discussion | turn to the mxaation of
the case of quadrangles and prove a characteristic property of thetohldine
(85, Theorems 11, 14).

2. Periodic polygon with respect to another

Consider two closed polygons = A;--- A, andb = B;--- B, and pick a
point C; on sideA; A, of the first. From this draw a parallel to sidé B, of
the second polygon until it hits sidé; A to a pointC, (see Figure 1). Continue
in this way picking point<’; on the sides of the first polygon so th@C;, is
parallel to sideB; B, of the second polygon (indicés> n are reduced modulo
n if corresponding pointsY; are not defined). In the last step draw a parallel to
B, B from C,, until it hits the initial sideA; A5 at a pointC,,.1. | call polygon
c=C1---Cyh4q parallel tob inscribed ina and starting atC;. In general polygon
cis not closed. It can even have self-intersections and/or some siggg)erate to
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Figure 1. Inscribing a polygon

points (identical with vertices af). One can though create a corresponding closed
polygon by extending segmeat,C,, 1 until to hit C1C5 at a pointZ. Polygon
Z(Cs ---C, has sides parallel to corresponding side®3¢f - - B,,. Obviously tri-
angleC,,+1ZCy has fixed angles and remains similar to itself if the place of the
starting pointC; changes oM A;. Besides one can easily see that the function
expressing the coordinateof C,,+; in terms of the coordinate of C; is a linear
oney = ax + b. This implies that poinZ moves on a fixed lind. ([10, Tome 2,

p. 10]) as point’; changes its position on lind; A, (see Figure 1). This in turn
shows that there is, in general, a unique place&’fpon sideA; A, such that points
Cr+1, Cy coincide and thus definecdosedpolygon( - - - C,, inscribed in the first
polygon and having its sides parallel to corresponding sides of the deddris
place forC1 is of course the intersection poift of line L with side A; A,. In the
exceptional case in which is parallel toA; A, there is no such polygon. By the
way notice that, for obvious reasons, in the case of triangledlipasses through
the vertex opposite to sidé; As.

A

1

Figure 2. The triangle case

This example shows that the answer to next question is not in general ifi-the a
firmative. The question is: Under which conditions for the two polygons is line
L identical with sideA; A,, so that the above procedure produces always closed
polygonsC - - - C,? If this is the case then | say that polygBn- - - B,, is periodic
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with respect td; - - - A,,. Below it will be shown that this condition is independent
of the sideA; A, selected. If it is satisfied by starting point§ on this side and
drawing a parallel td3, B then it is satisfied also by picking the starting paift
on sideA; A; 1, drawing a parallel td3; B;,1 and continuing in this way.

Figure 3. B1 B2 B3 B4 periodic with respect tol; A2 A3 Ay

There are actually plenty of examples of pairs of polygons satisfying thedse
icity condition. For instance take an arbitrary quadramylel A3 A4 and consider
its dual quadrangleB, B, B3 By, created through the intersections of its sides with
the lines joining the intersection of its diagonals with the two intersection points
of its pairs of opposite sides (see Figure 3). For every pGinbn A, A, the pro-
cedure described above closes and defines a quadr@nglg’'sC, inscribed in
A1A2A3A4 and having its sides parallel 8, B3 B3B4. This will be shown to
be a consequence of Theorem 11 in combination with Proposition 16. utdsho
be noticed though that periodicity, as defined here, is a relation depeowlitige
orderedsets of vertices of two polygon®; - - - B,, can be periodic with respect to
Aq--- A, but By - - - B, By not. Figure 4 displays such an example.

Figure 4. B, B3 B4 B1 not periodic with respect tal; A; A3 Ay
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To handle the question in a systematic way | introduce some structure into the
problem, which obviously is affinely invariant ([1], [2, vol.l, pp.32—-66]). |
will consider the correspondencg —— C), 1 as the restriction on lingl; A, of
a globally defined affine transformati@®, and investigate the properties of this
map. Figure 5 shows how transformati@h is constructed. It is the composition
of affine reflections; ([5, p. 203]). The affine reflectioh; has itsaxisalongA;Y;
which is the harmonic conjugate line of; X; with respect to the two adjacent
sidesA;_1A;, A;A;11 at A;. Its conjugate directioris A; X; which is parallel to
side B;_1 B;. By its definition mapF; corresponds to each poitd the pointY
such that the line-segmentY is parallel to the conjugate directiofy X; and has
its middle on the axisl;Y; of the map.

Figure 5. An affine transformation

The mapG; = FioF,oF, j0---oF;isaglobally defined affine transformation,
which on lineA; Az coincides with correspondencg — C,, ;. | call it the first
recycler ofb in a. Line A1 A, remains invariant byz; as a whole and each solution
to our problem having’;, = C,, .1 represents a fixed point @f;. Thus, if there
are more than one solutions, then lidg A will remain pointwise fixed under
G1. Assume now thafy; leaves lineA; A, pointwise fixed. Then it is either an
affine reflection or ashear([5, p.203]) or it is the identity map, since these are
the only affine transformations fixing a whole line and having determigant
SinceG; is a product of affine reflections, its kind depends only on the number
n of sides of the polygon. Thus for even it is a shear or the identity map and
for n odd it is an affine reflection. For even it is shown by examples that both
cases can happen: m&j can be a shear as well as the identity. In the second
case | callB; - - - B,, strongly periodicwith respect toA; - -- A,,. The strongly
periodic case delivers closed polygobs - - - D,, with sides parallel to those of
B, --- B, and the position ofD; can be arbitrary. To construct such polygons
start with an arbitrary poinD; of the plane and defin®y = Fy(D;), D3 =
F5(Ds),---, D, = F,(D,—1). The previous example of the dual of a quadrangle
is a strongly periodic one (see Figure 6).
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Figure 6. Strongly periodic case

Another case delivering many strongly periodic examples is that of a equar
A1A2A3A4 and the inscribed in it quadrangl® Bs B3 By, resulting by projecting
an arbitrary point X on the sides of the square (see Figure 7).

Figure 7. Strongly periodic case Il

Analogously taz; one can define the affine méfy = FroFioF,0F, q10---0
F3, which | callsecond recycler dfin a. This does the same work in constructing
a polygonDs - -- D,, D inscribed inA; - - - A,, and with sides parallel to those of
B, - - - B,, B1 but now the starting poinb;, is to be taken on sidd; A3, whereas the
sides will be parallel successively 18, B3, B3 B4, - --. Analogously are defined
the affine maps€~;,7 = 3,--- ,n (i-th recycler ofb in a). It follows immediately
from their definition that; are conjugate to each other. Obviously, sincefhe
are involutive, we havé/s = F5 oG4 o F, and more generdl, = Fy o Gi_1 0 Fy.
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Thus, if there is a fixed poink; of G; on sideA; Ay, thenXy, = Fy(X7) will be

a fixed point ofG, on A, A3 and more generaK, = Fj o --- o F»(X7) will be

a fixed point ofGG;, on sideA; Ay 1. Corresponding property will be also valid in
the cased; A; remains pointwise fixed undér;. Then every sided; Ay, will
remain fixed under the correspondiig. The discussion so far is summarized in
the following proposition.

Proposition 1. (1) Given two closed polygons= A;--- A, andb = By --- By,
there is in the generic case only one closed polygenC; - - - C,, having its vertex
C; on sideA; A; ;1 and its sides;C;,1 parallel to B;B; 1 fori = 1,--- n. If
there are two such polygons then there are infinite many and their camelipg
point Cy can be an arbitrary point ofd; As. In this case is called periodic with
respect tau.

(2) Using the sides of polygonsand b one can construct an affine transfor-
mationG leaving invariant the sidel; A, and having the propertyb is periodic
with respect ta: precisely wherty; leaves sided; As pointwise fixed.

(3) In the periodic case, it is odd thenG, is an affine reflection with axis
(mirror) line A1 A5 and ifn is even then it is a shear with axis, A, or the identity
map. In the last caskis called strongly periodic with respect to

Figure 8. Periodic pentagons

Figure 8 shows a periodic case for= 5. The figure shows also a typical pair
Y = G1(X) of points related by the affine reflectiéf, resulting in this case.

3. Conjugate polygon

Given a closed polygoa = A, - - - A, and a pointP not lying on the side-lines
of a, consider for eachh= 1, ..., n the harmonic conjugate ling; X; of line A; P
with respect to the two adjacent sideswht A;. The polygonb = By --- B,
having sides these lines is callednjugate of: with respect toP. The definition
generalizes the idea of threcevian triangleof a trianglea = A1 A5 A3 with
respect to a poinP, which is the triangleB3, B, B3 having vertices théarmonic
associates3; of P with respect ta: ([12, p.100]).
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-

Figure 9. Conjugate quadrangle with respectto P

Proposition 2. Given a closed polygoa = A; - - - A,, with n odd and a pointP
not lying on its side-lines, lét = B; -- - B,, be the conjugate polygon afwith
respect toP. Then the transformatioty; is an affine reflection the axis of which
passes througl? and its conjugate direction is that of ling; A,.

Figure 10. G, is an affine reflection

That pointP remains fixed undef;; is obvious, sincé~; is a composition of
affine reflections all of whose axes pass throdyhtFrom this, using the preserva-
tion of proportions by affinities and the invariance 4f A, follows also the that
the parallels tod; A, remain also invariant undéf,. Let us introduce coordinates
(z,y) with origin at P andz-axis parallel toA; As. ThenG; has a representation
of the form{z’ = ax + by,y’ = y}. Since its determinant is1 it follows that
a = —1. Thus, on every lingg = y, parallel toA; A, the transformation acts
throughz’ = —x + byy & 2’ + = = byp, showing that the action on line= vy is
a point symmetry at poiri’ with coordinatesby, /2, yo), which remains also fixed
by GG; (see Figure 10). Then the whole lif&Z remains fixed by~,, thus showing
it to be an affine reflection as claimed. The previous proposition completielysso
the initial problem of inscription for conjugate polygons withsides anch odd.
In fact, as noticed at the beginning, such an inscription possibility carrelspto
a fixed point of the mag+; and this has a unique such point dnA,. Thus we
have next corollary.
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Corollary 3. If b = B; - - - By, is the conjugate of the closed polygos- A; - -- A,
with respect to a poinP not lying on its side-lines and is odd, then there is ex-
actly one closed polygof - - - C,, with C; € A;A; 44 foreveryi =1,--- ,n and
sides parallel to corresponding sides fof In particular, for n odd there are no
periodic conjugate polygons.

The analogous property for conjugate polygons arelen is expressed by the
following proposition.

Proposition 4. Given a closed polygon = A; - - - A, with n even and a poinP
not lying on its side-lines, léf = B --- B,, be the conjugate polygon afwith
respect toP. Then the transformatio@'; either is a shear the axis of which is the
parallel to sideA; A; through P, or it is the identity map.

The proof, up to minor changes, is the same with the previous one, so | omit it.
The analogous corollary distinguishes now two cases, the secondomcing to
(1 being the identity. Periodicity and strong periodicity coincide when even
and wherb is the conjugate of with respect to some point.

Corollary 5. If b = B; - - - By, isthe conjugate of the closed polygon- A; --- A,
with respect to a poinP not lying on its side-lines and is even, then there is ei-
ther no closed polygon; - - - C, with C; € A;A;;, for everyi = 1,--- ,n and
sides parallel to corresponding sidesigfor b is strongly periodic with respect to
a.

Remark. Notice that the existence of even one fixed point not lying on the par-
allel to A, A5 through P (the axis of the shear) imply that; is the identity or
equivalently, the corresponding conjugate polygon is strongly periodic.

The next propositions deal with some properties of conjugate polygatede
in the case of quadrangles, in relating the periodicity to the Newton'’s line.

Figure 11. Fixed poin©

Lemma 6. Let {ABC, D, e} be correspondingly a triangle, a point and a line.
Consider a variable line througld intersecting sidesA B, BC' correspondingly
at pointsE, F'. LetG be the middle of2 F' and P the intersection point of lines
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e and BG. Let furtherC'L be the harmonic conjugate of lir@P with respect to
CA,CB. Then the parallel t&’' L from F' passes through a fixed poiét

To prove the lemma introduce affine coordinates with axes along {iB€S e}
and origin atJ, wherel = enNCA,J = eN CB (see Figure 11). The points on
lineeare:M =enNAB,N =eNn(||BC,D),H=enDE,Q =en(||DE,B),
where the symbo{|| XY, Z) means:the parallel toXY from Z. Denote abscis-
sas/ordinates by the small letters corresponding to labels of points, withdbp-ex
tions ofa = DN, the abscissa of I’ and the ordinate) of K. The following
relations are easily deduced.

hx B bh . mgq - pi lx
c+a 1770 p_2q—m Cp—i’ y=7
Successive substitutions produce a homographic relation betweenessiai

b=

p1z + p2y + psxy =0,

with constants(p;, p2, p3), which is equivalent to the fact that linEK passes

through pointO with coordinateg—22, —£%).

Figure 12. Sides through fixed points

Lemma 7. Let{A; - A,,Ci,e} be correspondingly a closed polygon, a point
on sideA; A, and a line. Consider a poinP varying on linee and the corre-
sponding conjugate polygdn= B; - - - B,,. Construct the parallel té& polygon

c = C1---Cphyq Starting atCy. As P varies one, every side of polygon passes
through a corresponding fixed point.

The proof results by inductively applying the previous lemma to each side of
starting with sideC; C, which by assumption passes through(see Figure 12).
Next prove that sidé€’sCs passes through a poifks by applying previous lemma
to the triangle with sided ; A5, As A3, A3 A4 and by taking” to play the role ofD
in the lemma. Then apply the lemma to the triangle with sideds, A3 A4, A4 A5
taking for D the fixed pointOs3 of the previous step. There results a fixed point
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O34 through which passes sidgC,. The induction continues in the obvious way,
using in each step the fixed point obtained in the previous step, therebyeatomp
the proof.

Lemma8. Let{A;---A,,Ci,e} be correspondingly a closed polygon, a point
on sideA; A; and a line. Consider a poin® varying on linee, the corresponding
conjugate polygorb = Bj --- B, and the corresponding parallel tb polygon

¢ = C1---Cyqq starting atC;. Then the correspondende — C,,, 1 is either
constant or a projective one from lireonto line A As.

Assume that the correspondence is not a constant one. Proceed tiguiying
the previous lemma and using the fixed poifitg, O34, - - - through which pass the
sides of the inscribed polygonsas P varies on linee. It is easily shown induc-
tively that correspondence : P — Cs, fo : P — C3, ..., fn : P — Cpi1
are projective maps between lines. Tlfais a projectivity is a trivial calculation.
Map f5 is the composition off; and the perspectivity between lindg A,, A3 A,
from Os3, hence also projective. Maf3 is the composition of> and the perspec-
tivity between linesd4 A3, A4 A5 from O34, hence also projective. The proof is
completed by the obvious induction.

4. The case of parallelograms

The only quadrangles not possessing a Newton line are the parallelograms
these though the periodicity question is easy to answer. Next two propsstiow
that parallelograms are characterized by the strong periodicity of thgugates
with respect t@verypoint not lying on their side-lines.

Figure 13. Parallelograms and periodicity

Proposition 9. For every parallelogranu = A;A3A3A4 and every pointP not
lying on its side-lines the corresponding conjugate quadrarigie B; Bo B3 By is
strongly periodic.

The proposition (see Figure 13) is equivalent to the property of thespond-
ing first recyclerG; to be the identity. To prove this it suffices to show thatfixes



On the Newton line of a quadrilateral 91

a point not lying on the parallel td, A, throughP (see the remark after corollary
5 of previous paragraph). In the case of parallelograms however dtsiy/eseen
thata is the parallelogram of the middles of the sides of the conjudates

Figure 14. C, fixed by G

In fact, leth = By By B3 B4 be the conjugate af with respect taP and consider
the intersection point€’y, Cs, - - - of the sidesA; As, A5 As, - - - of the parallelo-
gram correspondingly with line® By, PBs, ... (see Figure 14). The bundles of
lines Ay (B, P,Cy, As) at Ay and As(By, P,Cq, Az) at Ay are harmonic by the
definition ofb. Besides their three first rays intercept on liA8; correspondingly
the same three poin8;, P, C1 hence the fourth harmonic of these three points is
the intersection point of their fourth rays, A4, A> A3, which is the point at infin-
ity. Consequently’; is the middle ofP B;. The analogous property fély, Cs, Cy
implies that quadrangle= C;C>C3Cy has its sides parallel to thoselpodnd con-
sequently linesP A; are the medians of triangled3B;_1 B;. Thus pointB; is a
fixed point ofG; not lying on its axis, consequentty; is the identity.

Proposition 10. If for every pointP not lying on the side-lines of the quadrangle
a = A1A3A3A4 the corresponding conjugate quadrangle= B1B;B3Bj is
strongly periodic, them is a parallelogram.

Figure 15. Parallelogram characterization
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This is seen by taking foP the intersection point of the diagonals of the quad-
rangle. Consider then the parallelit@olygon starting atd,. By assumption this
must be closed, thus defining a triangleC3C, (see Figure 15). The middles
D+, D, of the sides of the triangle are by definition on the diagohialls, which
is parallel toC3Cy. Thus the diagonafl; A3 is parallel to the conjugate direction
of the other diagonall; A4, consequentlyP is the middle of4; A3. Working in the
same way with sidel; A3 and the recycle6s it is seen thafP is also the middle
of Ay A4, hence the quadrangle is a parallelogram.

5. A property of the Newton line

By the convention made above thiewton lineof a quadrangle, which is not
a parallelogram, is the line passing through the middles of the diagonals of the
associatedompletequadrilateral. In this paragraph | assume that the quadrangle
of reference is not a parallelogram, thus has a Newton line. The point&sdifih
are then characterized by having their corresponding conjugateaqueistrongly
periodic.

Theorem 11. Given a non-parallelogramic quadrangle = A;A4;A3A4 and a
point P on its Newton-line, the corresponding conjugate quadrangieB; Bo B3 By
with respect taP is strongly periodic.

Before starting the proof | supply two lemmata which reduce the periodicity
condition to a simpler geometric condition that can be easily expressed in{rojec
tive coordinates.

Figure 16. A fixed point

Lemmal2. Leta = EE'FF’' be a quadrangle with diagonalSF', E'F’ and cor-
responding middles on thefm, A. Draw from A parallels AB, AC correspond-
ingly to sidesF'F’, F'E intersecting the diagonakl I’ correspondingly at points
B, C. For every pointP on the Newton-lined D of the quadrangle line®FE, PF
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intersect correspondingly linedC, AB at pointsS, T'. Line ST intersects the di-
agonal EF' always at the same poimt, which is the harmonic conjugate of the
intersection pointG of the diagonals with respect i8, C.

The proof is carried out using barycentric coordinates with respectaagle
ABC. Then pointsD, E, F, ...on lineBC are represented using the correspond-
ing small letters for parametefs = B+dC, E = B+eC, F = B+ fC, ...(see
Figure 16). In additionP is represented through a parametén P = D + pA.
First we calculate®’, F” in terms of these parameters:

E'=(f+9+2fg)A— fB—(fg)C,
F'=(g— f)A+ fB+ fgC.
Then the coordinates ¢f, 7" are easily shown to be:
S =pA+(d—e)C,
T =(pf)A+(f—d)B.
From these the intersection poiRtof line ST with BC is seen to be:
R=(d—-f)B+(f(d—e))C.
This shows thai? is independent of the value of paramegenence the same for
all points P on the Newton-line. Some more work is needed to verify the claim
about its precise location on linéB. For this the parallelisn& 7’ to AC and the

fact thatD is the middle ofE F" are proved to be correspondingly equivalent to the
two conditions:

_ fl+e) _flet D) +e(f+1)
Tl f T (e D) (fHD)
These imply in turn the equation
_ fle—d)
=7

which is easily shown to translate to the fact tiais the harmonic conjugate 6f
with respect taB, C.

Lemma 13. Leta = ABCD be a quadrangle with diagonaldC, BD and cor-
responding middles on thed/, N. Draw from M parallels M E, M F corre-
spondingly to sidesiB, AD intersecting the diagonaBD at pointsE, F'. Let
P be a point of the Newton-ling/ N and S, T correspondingly the intersections
of line-pairs(PB, M E), (PD, M F). The conjugate quadrangle &f is periodic
precisely when the harmonic conjugateAP with respect tod B, AD is parallel
to ST.

In fact, consider the transformatid@r, = F4 o F3 o F5 o F} composed by the
affine reflections with corresponding axe€’, PD, PA, PB. By the discussion
in the previous paragraph, the periodicity of the conjugate quadrilatetgl ito
equivalent ta7; being the identity. Sincé&’; is a shear and acts dsiC' in general
as a translation by a vecteorto show thatv = 0 it suffices to show that it fixes
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Figure 17. Equivalent problem

an arbitrary point orBC. This criterion applied to poinf’ means that fofl” =
F»(C),S" = F3(T") pointC’ = Fy(S’) is identical withC' (see Figure 17). Since
T, S are the middles of£T”, C'S’, this implies the lemma.

Figure 18. Representation in coordinates

Proof of the theoremBecause of the lemmata 12 and 13 one can consider the
variable pointP not as an independent point varying on the Newton-lhé&/ but
as a construct resulting by varying a line throughwhich is the harmonic con-
jugate of the intersection poirdt of the diagonals with respect 6, F. Such a
line intersects the parallel E, M F' to sidesAB, AD at S, T and determine#®
as intersection of line®S, DT. Consider the coordinates defined by the projec-
tive basis (see Figure 18§)A(1,0,0), B(0,1,0), D(0,0,1), M(1,1,1)}. Assume
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further that the line at infinity is represented by an equation in the form
axr + by +cz = 0.

Then all relevant points and lines of the figure can be expressed in tdrthe o
constantga, b, ). In particular

ar— (a+c)y+cz=0, ar+by—(a+b)z=0, (c—bx+by—cz=0,

are the equations of line® F', M E and the Newton-liné/ N. Point R has coor-
dinates(0,d’,b"), wherea’ = (¢ — a — b), b’ = (a + ¢ — b). Assume further that
the parametrization of a line throughis done by a poin©(¢,0,1) on line AD.
This gives for lineRQ the equationRQ : o’z + (tV')y — (ta’)z = 0. PointS has
coordinatega”, b”, ") wherea” = t(a’b—b'(a+b)), b" = d'(a+b) —tad’, " =
a'b — tal/. This gives for P the coordinategba”, cc” — a”(c — b),bc”) and
the coordinates of the intersection poliitof PA with RQ) can be shown to be
U=7d"Q— (c+at)Q', whereQ'(tt/, —d’, 0) is the intersection point ai B and
RQ. From these follows easily thdf is the middle ofQQ’ showing the claim
according to Lemma 13.

Theorem 14. For a non-parallelogramic quadrangle = A;A5A3A4 only the
points P on its Newton-line have the corresponding conjugate quadrabgie
By By B3 B, strongly periodic.

The previous theorem guarantees that all points of the Newton line hiremgly
periodic corresponding conjugate polygbn Assume now that there is an addi-
tional point Py, not on the Newton line, which has also a strongly periodic cor-
responding conjugate polygon. In addition fix a paiiton A; A;. Take then a
point P, on the Newton line and consider lime= Py P,. By Lemma 8 the corre-
spondenced : e — Aj As sending to each poir® € e the end-poinC,,; of the
polygon parallel to the conjugateof a with respect taP starting at a fixed point
(1 is either a constant or a projective map. Sirfceakes for two points?, P,
the same value (namelf( ) = f(P1) = C;) this map is constant. Hence the
whole linee consists of points having corresponding conjugate polygon strongly
periodic. This implies that any point of the plane has the same propertyctin fa
for an arbitrary point) consider a linezg passing througld) and intersecting:
and the Newton line at two pointg, and@:. By the same reasoning as before we
conclude that all points of lineg have corresponding conjugate polygons strongly
periodic, hencé) has the same property. By Proposition 10 of the preceding para-
graph it follows that the quadrangle must be a parallelogram, hence adiztin
to the hypothesis for the quadrangle.

6. Thedual quadrangle

In this paragraph | consider a non-parallelogramic quadrangied; A, A3 A,
and itsdualquadranglé = B, B, B3 By, whose vertices are the intersections of the
sides of the quadrangle with the lines joining the intersection point of its didggjona
with the intersection points of its two pairs of opposite sides. After a prepgrato
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lemma, Proposition 16 shows thiais the conjugate polygon with respect to an
appropriate point on the Newton line, hericie strongly periodic.

Lemmal5. Leta = A1 A3 A3 A, be a quadrangle and with diagonals intersecting
at E. Let also{ F, G} be the two other diagonal points of its associated complete
guadrilateral. Let als& = By B2 B3 B4 be the dual quadrangle af.

(1) Line EG intersects the paralleli4 N to the sideB; B, of b at its middle)M .

(2) SideB; B; of b intersects the segmenf NV at its middleO.

Figure 19. Dual property

MN/MA4 = 1, since Menelaus theorem applied to trianglgNV A4 with se-
cantlineB, B3G gIVGS(BlN/BlAl)(MA4/MN)(GA1/GA4) =1. BUtBlN/BlAl
B4yA4/B4Ay = GA4/GA,. Later equality because3,, G) are harmonic conju-
gate to(A;, A4). Also ON/OM = 1, since the bundlé3;(Bs, B4, E, F') is har-
monic. Thus the paralleV M to line B; B, of the bundle is divided in two equal
parts by the other three rays of the bundle.

Figure 20. Dual is strongly periodic

Proposition 16. Leta = A1A>A3A4 be a quadrangle and with diagonals in-
tersecting atE. Let also{F,G} be the two other diagonal points of its cor-
responding complete quadrilateral and?, @, R} the middles of the diagonals
{A2A4, A1 A3, FG} contained in the Newton line of the quadrilateral. let=
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B B3 B3 B4 be the dual quadrangle af

(l) The four median$A1D1, AQDQ, A3D3, A4D4} of triangIeS{AlBlB4, A9 By By,
A3 B3 By, AyB4Bs} respectively meet at a poiston the Newton line.

(2) S is the harmonic conjugate of the diagonal mid&lavith respect to the two
others(P, Q).

Start with the intersection poifit of diagonalB, B, with line A, R (see Figure
20). Draw fromT line TV parallel to sideA; A, intersecting sideds A4 at U.
Since the bundlé’(V, T, U, A;) is harmonic and’V is parallel to rayF A, of it
pointU is the middle of'V'. SinceA4 (A1, W, T, R) is a harmonic bundle and is
the middle of F'G, its ray A4 T is parallel toF'G. It follows thatA,TFV is a paral-
lelogram. Thud/ is the middle ofA,F', hence the initial parallél'V to line A; A;
passes through the middles of segments having one end-pointaid the other
on line A; A;. Among them it passes through the middleg df A4, A4N, A4 Ao}
the last beingP the middle of the diagonali; A4. Extend the mediam; D, of
triangle A; B; B, to intersect the Newton line &t Bundle A; (P, Q, S, R) is har-
monic. In fact, using Lemma 15 it is seen that it has the same traces of'lline
with those of the harmonic bundié(P, A;, M,T). ThusS is the harmonic con-
jugate of R with respect tq P, Q).

Remarks.(1) Poncelet in a preliminary chapter [10, Tome I, p. 308] to his cele-
bratedporism(see [2, Vol. 1l, pp. 203-209] for a modern exposition) examined
the idea ofvariable polygonsb = B; - - - B,, havingall but oneof their vertices on
fixed lines (sides of another polygon) and restricted by having their sidpass
through corresponding fixed poinks, - - - , F,. Maclaurin had previously shown
that in the case of trianglea (= 3) the free vertex describes a conic([11, p. 248]).
This generalizes to polygons with arbitrary many sides. If the fixed pointsi¢fr
which pass the variable sides aalinearthen the free vertex describes a line ([10,
Tome 2, p. 10]). This is the case here, since the fixed points are the poittie o
line at infinity determining the directions of the sides of the inscribed polygons.

(2) In fact one could formulate the problem handled here in a somewha mor
general frame. Namely consider polygons inscribed in a fixed polyger; - - - A,
and having their sides passing through corresponding fislthear points. This
case though can be reduced to the one studied here by a projegtsstyding the
line carrying the fixed points to the line at infinity. The more general problees li
of course in the projective plane. In this frame the affine reflectionsonsidered
above, are replaced dyarmonic homologie¢[5, p. 248]). The center of each
F; is the corresponding fixed poi#f; through which passes a sidg B, of the
variable polygon. The axis of the homology is the polar of this fixed point with
respect to the side-pafid;, A;, A;A; 1) of the fixed polygon. The definitions of
periodicity and the related results proved here transfer to this more ¢éaena
without difficulty.

(3) Though I am speaking all the time about a quadrangle, the propestggim
85 essentially characterizes the associatadplete quadrilaterallf a point P has
a periodic conjugate with respect to one, out of the three, quadranglesdeled
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in the complete quadrilateral then it has the same property also with respeet to th
other two quadrangles embedded in the quadrilateral.

References

[1] M. Audin, Geometry Springer, Berlin, 1998, pp. 7-42.
[2] M. Berger,Geometry?2 volumes, Springer, Berlin, 1980.
[3] J. CaseyA Treatise on the Analytical Geometry of the Point, Line, Circle and Conitidbesc
Hodges Figgis, Dublin, 1893.
[4] J. W. Clawson, The Complete Quadrilaterahn. Math, 20 (1919) 232-261.
[5] H. S. M. Coxeter]ntroduction to Geometry2nd ed., John Wiley, New York, 1969.
[6] R. Deltheil and D. CaireGeometrie et Complement&ditions Gabay, Paris, 1989.
[7] J.-P. Ehrmann, Steiner's Theorems on the Complete Quadrilaferain Geom.4 (2004) 35—
52.
[8] W. Gallatly, The modern Geometry of the Triangkrancis Hodgson, London.
[9] R. A. JohnsonAdvanced Euclidean Geometiyover reprint, 2007.
[10] J. V. PonceletApplications d’ analyse et de geometrigauthier-Villars 1864 (1964).
[11] G. SalmonA treatise on conic sectionsondon 1855, Longmans.
[12] P. Yiu, Introduction to the Geometry of the TriangR001, available at
http://math. fau. edu/ yi u/ Georret r yNot es020402. pdf .
[13] P. Yiu, Notes on Euclidean Geometr}998, available at
http://math. fau. edu/ yi u/ Eucl i deanGeonet r yNot es. pdf .

Paris Pamfilos: Department of Mathematics, University of Crete, 7 H&d8kleion, Greece
E-mail addresspanf i | os@rat h. uoc. gr



Forum Geometricorum
Volume 9 (2009) 99-107.

FORUM GEOM
ISSN 1534-1178

Folding a Squareto Identify Two Adjacent Sides

Cristinel Mortici

Abstract. The purpose of this paper is to establish some properties that appear
in a square cut by two rays at 45 degrees passing through a vertexsijuhare.
Elementary proofs and other interesting comments are provided.

1. A simple problem and areformulation

The starting point of this work is the following problem from [3], partially dis-
cussed in [4]}

Proposition 1. Two pointsM and NV on the hypotenusB D of the isosceles, right-
angled triangleA B D, with M betweenB and N, define an angle’ M AN = 45°
if and only if BM? + ND? = M N? (see Figure 1)

D

M

Figure 1 Figure 3

Proof. Let R be the midpoint ofBD so thatAR = BR = BR, andAR is an
altitude of triangleABD. We assumedR = 1 and denoteRM = z, RN =y
(see Figure 3). Note that

T4y 1

1—xzy

It follows that < M AN = 45° if and only if z + y = 1 — xy. On the other hand,
BM?+ ND? = MN?ifand onlyif (1 —2)%+ (1 —y)? = (z+y)?. Equivalently,
x +y =1 — zy, the same condition fo M AN = 45°. (]

tan(4MAN) = tan({MAR + AN AR) =
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This necessary and sufficient condition assumes new, interesting fones if
consider the isosceles right triangle as a half-square, and fold theeatigides
AB and AC along the linesAM and AN. Without loss of generality we assume
AB = AC =1.

Theorem 2. Let ABC'D be a unit square. Two half-lines through meet the
diagonalBD at M and N, and the side®&C', C D at M and P and( respectively
(see Figure 2)Assumed P # AQ.

D Q c
N
M P
B
A
Figure 2

The following statements are equivalent:
() LPAQ = 45°.
(i) MN? = BM? + ND?,
(iii) The perimeter of triangl€' PQ is equal to2.
(v) PQ = BP+QD.
(v) The distance from to line PQ is equal tol.
(vi) The area of triangleA M N is half of the area of trianglel PQ.
(vii) PQ = v/2- MN.
(viiiy PQ? = 2(BM? + ND?).
(ix) The line passing through and M Q) N N P is perpendicular onPQ.
(X) AN = NP.
(xi) AM = MQ.

Remark.In the excluded casd P = A(Q), statement (ix) does not imply the other
statements.

Proof of Theorem 2With Cartesian coordinate$(0, 0), B(1, 0), C(1, 1), D(0, 1)
andP(1, a), Q(b, 1) for some distinctz, b € (0, 1), we haveM (1, %) and
N (7%, =). Then (i)-(xi) are each equivalent to

T+b° T+b
a+b+ab=1 (1)

This is clear from the following, which are obtained from routine calculations

g _ a+btab—1
(): tan LPAQ =1 — %.

. 2(a+b+ab—1
(i): MN2 - BM? - ND? = —W.
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(iii, iv): (PQ — BP — QD) +2=CP+PQ+QC=2— 2(a+b+ab—1)

atbty/(1—a)2+(1-b)2"
.3 _ (1—a)(1-b)(a+b+adb—1)
(v): dist(A, PQ) = 1+ TN/ o prar 0 Fp e
. areal[AMN a+b+ab—
(vi): area[[APQ]] =5+ 2(f+;r)(1+};)-

i a a—b)?+(ab®+a’b+a?+b%+2—6a
i): PQ2 —2MN? = (ab-+ -+ b— 1) - (LD bt )
(viii): PQ? —2(BM?+ ND?)= (a+b+ab—1)- f(a,b), where
—4a — 4b — ab® — a®b + ab® + a3b — 10ab + a? + a® + b*> + b3 — 2
f(a,b) := 5 5 .

(a+1)2(b+1)

(ix): If O isthe intersection oP N and@ N, then
(a—0b)(a+b+ab—1)
b(1 —b)(a+1)

(X): AN? = NP? = (a+b+ab—1)- {35
(xi) AM? — MQ* = (a+b+ab—1) {72,
The expression (vii) is indeed equivalent with (1), if we take into accthait
a?+ b2 +adb+abd+1+1
6

For (viii), we prove that thef(a,b) < 0 for a,b € [0,1]. This is because,
regarded as a function af € [0,1], f”(a) = 6a + 6ab + 2(1 — b) > 0. Since
f(0) < 0andf(1) < 0, we conclude thaf (a) < 0 fora € [0, 1]. O

maompg = —1+

> Va2 bv2.a3b-ab3-1-1 = ab.

2. A simple geometric proof of (i) < (ii)

Statement (ii) clearly suggests a right triangle with sides congrudhfio N D
and M N. One way to do this is indicated in Figure 5, whe€ is chosen such
that the segmenb M’ is perpendicular taBD and is congruent t&3 /. Under
the hypothesis (ii), we havé/'N = MN. Moreover,AAMB = AAM'D,
and4MAM' = 90°. It also follows that the triangled M N and AM’N have
three pairs of equal corresponding sides, and are congruent.tRiQiM AN =
£ANAM' = 45°. This shows that (ii)= (i).

D D

Figure 5 Figure 6
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Another idea is to build an auxiliary right triangle with the hypotenigéy,
whose legs have lengths equal®d/ and N D. This is based on the simple idea
of folding the half-squarel BD alongAM and AN to identify the adjacent sides
AB andAC. Let F be the reflection oB in the line AM (see Figure 6). Note that
BM = ME. Assuming£{MAN = 45°, we see thaf is also the reflection of
D in the line AN. Now the trianglesAM B and AM E are congruent, so are the
trianglesANE andAND. Thus,AMEN = AMFEA+ {NEA = {MBA +
ANDA = 45° 4+ 45° = 90°. By the Pythagorean theoremy/ N? = ME? +
EN? = BM? 4+ ND?2. This shows that ()= (ii).

3. A generalization

V. Proizolov has given in [6] the following nice result illustrating the bealtfty o
the configuration of Theorem 2.

Proposition 3. If M and N are points inside a squaté BC'D suchthatd M AN =
AMCN = 45°, thenM N? = BM? + N D? (see Figure 8)

Figure 8 Figure 8A

This situation can be viewed as a surprising extension from the case @i¢rian
ABD in Figure 6 is distorted into the polygoABM N D. In fact, by consid-
ering the symmetric of trianglel BD with respect to hypotenusBD in Figure
1, a particular case of Proposition 3 is obtained. This analogy carriesmtee
general case. More precisely, we try to use the auxiliary construction Fig-
ure 6, namely to consider the poiitsuch that the triangled NE and AN D are
symmetric and also the trianglgsV/ £ and AM B are symmetric.

Let F' be analogue defined, starting from the verféfsee Figure 8A).

It follows that<{ M EN + £ M F N = 180°, as the sum of the anglesB and<£ D
of the square. But the triangldd EN and M F'N are congruent, sSe M EN =
AMFN = 90°. The conclusion follows now from Pythagorean theorem applied
in triangle M EN.
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4. Rotation of the square

We show how to use the above auxiliary constructions to establish further inte
esting results. Complete the right triangled3 D from Figure 5 to an entire square
ABCD. TriangleAD M’ is obtained by rotating triangld BM aboutA, through
90°. This fact suggests us to make a clockwise rotation with cefigfrthe entire
figure to obtain the squaréD ST (see Figure 9).

Denote the points correspondingté, N, P, Q by M’, N', P’, Q' respectively.
Assume thak PAQ = 45°, or equivalentlyM N? = M B? + ND?2.

S P’ D Q C
M’
Q' N
N/

M P
B

T A

Figure 9

FromAAPQ = AAP'Q it follows that PQ = P'Q. If AB =1, then
2=5C=SP' +PQ+QC=CP+PQ+QC

and we obtained the implication B=- (iii).
The converse (iii)= (i) was first stated by A. B. Hodulev in [2].

5. Secants, tangentsand linesexternal toacircle

We begin this section with an interesting question. Assurdi§C' D a unit
square, how can we construct poifts() such that the perimeter of triangle)C'
is equal to2? As we have already seen, one method is to makelQ) = 45°.
Alternatively, note that the perimeter of triangR)C' is equal to2 if and only if
PQ = BP + DQ. This characterization allows us to construct poifRts) on the
sides with the required property.

If we draw the arc with cented, passing througlB and D, then every tan-
gent line meeting the circle &t and the sides aP and(@ determines the triangle
APQC of perimeter2, becausé®T = PB andQT = QD (see Figure 10).

Moreover, if PQQ does not meet the arc, then the lengthRd) is less than the
parallel tangenf”’ )’ to the circle (see Figure 11). Consequently, if a segnitpt
does not meet the circle, thehP AQ < 45°. On the other hand, iPQ) meets the
circle twice, therk PAQ > 45°.

We summarize these in the following theorem.
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D Y Q l-vy C D Q' Q C
P
N 1—x P’
T

M P

x
B B

A A
Figure 10 Figure 11

Theorem 4. Let ABCD be a unit square, and, @ be points on the sideBC
andC D respectively. Consider the quadranbf the circle with center, passing
throughB and D.

() £PAQ = 45° if and only if PQ) is tangent tav. Equivalently, the perimeter of
triangle PQC' is equal to2.

(b) £PAQ > 45° if and only if PQ intersectsv at two points. Equivalently, the
perimeter of trianglePQC is greater thart.

(c) £PAQ < 45° if and only if PQQ is exterior tow. Equivalently, the perimeter of
triangle PQC' is less thar®.

6. Comparison of areas

The implication (i) = (vi) was first discovered by Z. G. Gotman in [1].
In Figure 12 below, observe that the quadrilaterdBPN and ADQM are
cyclic, respectively becauséN AP = A NBP and{ M AQ = £ M DQ.

D Q c
N
T
P
B
A
Figure 12

ConsequentlyAM @ and AN P are isosceles right-angled triangles. Hence,
Samn _ AM-AN AM AN 1 1 1
Sapg AP-AQ  AQ AP V2 V2 2
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Now we establish the implication (i}= (ix).

In triangle AAPQ, QM and PN are altitudes, so the radiusI” from Figure
10 is in fact the third altitude of the triangl® APQ).

We can continue with the identifications, making use of the congruehdd3B =
AAPT andAAQD = AAQT. We deduce thdf'M = M B andTN = ND. It
follows that

MN? = MT? + TN? = BM? + ND?.

Remark.The pointE from Figure 6, coinciding with the poirit from Figure 12,
is more interesting than we have initially thought. It lies on the circumcircle of the
given triangleABD.

7. Two pairs of congruent segments

The implications ()= (x) and (xi) follow from the fact thal N P andAM Q)
are isosceles right-angled triangles.

For the converses, let us assume by way of contradictionthatd N, = 45°,
with Ny in BD, distinct fromN. ThenAN; = N1 P. Aswe have alselN = NP,
it follows that NN, and consequently3 D is the perpendicular bisector ofP,
which is absurd.

8. Concluding remarks

Now let us return for a short time to the opposite angles drawn in Figurds8. It
the moment to celebrate the contribution of V. Proizvolov which proves in ] th
following nice result.

Proposition 5. If M and N are points inside a squar¢ BC'D suchthatd M AN =
£LMCN = 45°, then

Smcen +Sva +Svap = Suan + Susc + Snep-

Having at hand the previous construction from Figure 8A (whérie defined
by the conditionsACND = ACNF andACM B = ACMF), we have

Smen + Sva +Svap = Sucen + SameEN = Samen + SvEN-

Similarly, Spyran+SvBe+SNep = Samen+Syrn and the conclusion follows
from the congruence of the trianglés EN andM F'N.

We mention for example that the idea of folding a square as in Figure 6 leads to
new results under weaker hypotheses. Indeed, if we consider toatqfipaper as
an isosceles triangle, not necessarily right-angled, then similar resultsTiald,
if triangle ABD is isosceles, then in triangld £ N, the angle M EN is the sum
of angles{ABD and £ ADB. Consequently, by applying the law of cosines to
triangle M E N, we obtain the following extension of Proposition 1.

Proposition 6. Let M and N be two points on sid& D of the isosceles triangle
ABD such thatthe anglg M AN = 14BAD. Then

MB? — MN? + DN? = —2M B - DN cos A.
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Another interesting extension is the following problem proposed by the autho
at the 5th Selection Test of the Romanian Team participating at 44th IMO Japan
2003.

Problem. Find the angles of a rhombud BC'D with AB = 1 given that on
sidesC' D (CB) there exist pointd, respective)) such that the angle PAQ =
%L{BAD and the perimeter of triangl€ PQ is equal ta2.

C P D

B
W A
E
Figure 13

Let £ be as in Figure 13 such thatAPD = AAE B. In fact we rotate triangle
APD aboutA and what it is interesting for us is th&)) = QF andPD = BE.
Now, the equalityPQQ = PD + QB can be written a§)EF = BFE + QB, so the
points@, B, E are collinear.

This is possible only whed BC' D is square.

Finally, we consider replacing the square in Theorem 2 by a rhombupo$iro
tion 7 below was proposed by the author as a problem for the 12th Editior of th
Clock-Tower School Competition, @nnicu Valcea, Romania, 2009, then given
at the first selection test for the Romanian team participating at the JunicarBalk
Mathematical Olympiad, Neptun-Constanta, April, 15-th, 2009.

Proposition 7. Let ABC D be a rhombus. Two rays throughmeet the diagonal
BD at M, N, and the sideBC and C'D at P, () respectively(see Figure 14)
ThenAN = NPifand only if AM = MQ.

D Q c

N1

Figure 14
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Proof. The key idea is that the statementd” = NP andAM = M@ are equiv-
alentto£ PAQ = $£ABC.

First, if {PAQ = 14ABC, then{ NAP = £NBP, and the quadrilateral
ABPN is cyclic. As{ABN = £{PBN, we haveAN = NP.

For the converse, we considaf on BD such thatx PAN; = %ABAD. As
above, we gei N1 = N1 P. ButAN = N P so thatB D must be the perpendicular
bisector of the segmenmtP. This is absurd. O
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An Extension of Triangle Constructions
from L ocated Points

Harold Connelly

Abstract. W. Wernick has tabulatet39 triangle construction problems using a
list of sixteen points associated with the triangle. We add four points to his list
and find an additional40 construction problems.

William Wernick [3] and Leroy Meyers [2] discussed the problem of ¢ar-
ing a triangle with ruler and compass given the location of three points atsicia
with the triangle. Wernick tabulated all the significantly distinct problems that
could be formed from the following list of sixteen points:
A B, C Three vertices
M,, My, M. Three midpoints of the sides
H,, H,, H. Three feet of the altitudes
To, Ty, T, Three feet of the internal angle bisectors
G, H, I, O The centroid, orthocenter, incenter and circumcenter
Wernick found139 triples that could be made from these points. They can be
divided into the following four distinct types:
R — Redundant. Given the location of two of the points of the triple, the location
of the third point is determined. An example would bg:B, M..
L — Locus Restricted. Given the location of two points, the third must lie on a
certain locus. Exampled, B, O.
S— Solvable. Known ruler and compass solutions exist for these triples.
U — Unsolvable. By using algebraic means, it is possible to prove that no ruler
and compass solution exists for these triples. Examle, I; see [1, 4].
To extend the work of Wernick and Meyers, we add the following four sdin
their list:
E., E,, E. Three Euler points, which are the midpoints between
the vertices and the orthocenter
N The center of the nine-point circle.
Tabulated below, along with their types, are all of i@ significantly distinct
triples that can be formed by adding our new points to the original sixteein- Pr
lems that remain unresolved as to type are left blank. In keeping with the spirit
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of Wernick’s article, we have listed all of the possible combinations of poirts th
are significantly distinct, even though many of them are easily converted tes
dundancies, to problems in Wernick’s list. We point out that although mattyeof
problems are quite simple, a few provide a fine challenge. Our favoritesdimclu
A, Ey, G (Probleml7) andFE,, E;, O (Problem50).

1.A,B,E, S| 36.A,M,, N S| 7l.E,H,1T, U] 106.E,, M,T.

2.A,B,E, S|37.A4 M, N S| 72E,H,H, S| 107.E,N,0 S

3.A,B,N S| 3%.A4,N,0 S| 73.E,,H,,I S| 108. E,,N,T,

1. AE,E, S|39.A4N,T, 4. E,,H,, M, L || 109.E,,N,T,

5.4,E,,G S| 40.A,N,T, 75. B, H,, M, S| 110.E,,O0,T,

6.A,E,,H R |4l E, Ey,E. S| 76.E, H,, N L | 111. E,,0,Tp

7.A,E, H, L |42 E, E,,G S| 77.E,, H,, O S| 112. E,,T,, T

8. A,E, H, L |43.E, Ey,H S| 78 E, H,, T, L ||113.E,, T}, 1.

9.A4,E,,1 S| 44.E,,E,,H, S| 179.E, H, T, 114. G, H N R
10. A,E,,M, S| 45.E,, E,,H. S| 80.E, Hy,, H. L | 115.G,H,,N S
11. A, E,,M, S| 46.E,, E,,I U | 81 E,, H,,I 116. G, I,N U
12.A,E,,N S| 47.E,, E,,M, L || 82.E,, Hy,, M, L | 117.G,M,,N S
13.4,E,,0 S| 48.E,,E,,M. S| 83.E, H,, M, S| 118.G,N,0 R
4. A,E,, T, S| 49.E,,E,,N L || 84 E,, H,, M, S| 119.G,N,T, U
15. 4,E,,T, U | 50. E,,E,,0 S| 8.E, H,,N L] 120.H H,,N S
16. A, E,,E. S| 51 E,, By, T, 86. E,, H,,O S| 121.H,I,N U
17.4,E,,G S| 52 E,,E,,T. U | 87. E,, Hy, T, 122.H,M,,N S
18.A,E,,H S| 53 E,,G,H S| 88.E, H, T, U|123.H,N,0 R
19. 4, E,,H, S| 54 E,,G,H, S| 89.E,, H,, 1. 124. H,N,T, U
20. A, Ey, H, L |55 E,,G,H, S| 90.E,I,M, S| 125 H,,Hy,N L
21. A, Ey, H. S| 56. E,,G,1 91. E,, I, M, 126.H,,I,N S
22. A, By, I 57.E,,G,M, S| 92.E,,I,N S| 127. H,, M,,N L
23. A, E,, M, S| 58 E, G M, S| 93.E,I,0 128. H,,M,,N L
24. A, E,, M, S| 59.E,,G,N S| 94.E,I1,1T, 129.H,,N,0 S
25. A, By, M, S| 60.E,G,0 S| 95 E,, 11T 130. H,, N, T,
2. A,E,,N S| 6L E,,G,T, 96. E,, M,, M, L | 131. H,,N,T,,
27.A,E,,0 S| 62 E,,G, T} 97.E,,M,,N R | 132.1,M,,N S
2. A, By, T, 63. E,, H,H, L| 98 E, M, O S| 133.1,N,0 U
29. A, By, T 64. E,, H,H, L | 99.E,, M, T, 134.1,N, T,
30. A4, Ey, T, 65. B, H,I S| 100. E,, M,, T, 135. M,,M,,N L
31.A,G,N S| 66.E,, H,M, S| 10L.E,, M, M. S| 136.M,,N,0 S
32.A,H N S| 67.E, H M, S| 102.E, M,, N L | 137.M,,N,T,
33.A,H,, N S| 68 E,HN S| 103.E,,M,,0O S| 138 M,,N,T,
34.A,H,, N S| 69.E,,HO S| 104. E,, M, T, 139.N,0,7, U
35. A, 1, N 70.E,, H,T, S| 105. E,, My, T} 140. N, T, T,

Many of the problems in our list can readily be converted to one in Wernick’s
list. Here are those by the application of a redundancy.
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Problem| 5 7 8 9 10 11 13 14 15 31 32 3
Wernick| 40 45 50 57 24 33 16 55 56 16 16 1
Problem| 53 63 64 65 66 67 69 70 71
Wernick| 40 45 50 57 24 33 16 55 56

Problem| 115 116 117 119 120 121 122 124 129 133 136 139
Wernick| 75 80 66 79 75 80 66 79 75 80 66 79

O

2}

A few solutions follow.

Problem 41. Given pointsty,, E;, E..
Solution. The orthocenter of triangle, £, E.. is also the orthocentef], of triangle
ABC. SinceE, is the midpoint ofAH, A can be found. SimilarlyB andC.

Problem 50. Given pointsE,, Ej, O.

Solution. LetP and@ be the midpoints ofZ,O and E;O, respectively. LetR
be the reflection ofP through@. The line throughE}, perpendicular ta, Ey,
intersects the circle with diameté&R at M,,. The circumcircle, with centep and
radiusE, M,, intersectsM, R at B andC. The line through®, perpendicular to
BC intersects the circumcircle at. There are in general two solutions.

A

Figure 1.

Proof. In parallelogramO M, E, M., since diagonals bisect each oth@r,is the
midpoint of M, M. (see Figure 1). SimilarlyP is the midpoint ofM,M.. Since
Q is also the midpoint of°R, PM,RM. is also a parallelogram ankl must lie
on BC'. Therefore, the circle with diametérR is a locus forM,. SinceM,FE, is

perpendicular td&, £, the line through, perpendicular ta?(Q is a second locus
for M,. O

Problem 72. Given pointst,,, H,, Hy.

Solution. The line through Ha perpendicular to the liigH,, is the sideBC.
All three given points lie on the nine-point circle, so it can be found. Téwmsd
intersection of the nine-point circle with BC givéd,. The circle withM, as
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center and passing throudh, intersects the sid8C at B andC. Finally, CH,
intersects¥, H, at A.

Problem 103. Given pointsE,, Mj, O.

Solution. The line throughV/,, perpendicular taVf,O is AC. ReflectingAC
through F,, then dilating this line withO as center and ratié and finally inter-
secting this new line with the perpendicular bisectoEgflf, gives N. Reflecting
O throughN givesH. E,H intersectsAC' at A. The circumcircle, with centap
passing through, intersectsAC again atC. The perpendicular front/ to AC
intersects the circumcircle &.
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Characterizations of a Tangential Quadrilateral

Nicusor Minculete

Abstract. In this paper we will present several relations about the tangential
quadrilaterals; among these, we have that the quadrilatdsal D is tangential
if and only if the following equality
1 11 1
4(0,4B) " 4 =

(0,CD) — d(0,BC) T d(0, DA)
holds, where) is the point where the diagonals of convex quadrilatdrBIC D
meet. This is equivalent to Wu’'s Theorem.

A tangential quadrilateral is a convex quadrilateral whose sides all natgea
circle inscribed in the quadrilateralln a tangential quadrilateral, the four angle bi-
sectors meet at the center of the inscribed circle. Conversely, a cquadxilateral
in which the four angle bisectors meet at a point must be tangential. A regess
and sufficient condition for a convex quadrilateral to be tangential isith#vo
pairs of opposite sides have equal sums (see [1, 2, 4]). In [5], Eldosifescu
proved that a convex quadrilatetdBC D is tangential if and only if

x z Y w

tan — - tan — = tan = - tan —,

2 2 2 2

wherez, y, z, w are the measures of the angé®8D, ADB, BDC, andDBC
respectively (see Figure 1). In [3], Wu Wei Chao gave anotheraciarization of
tangential quadrilaterals. The two diagonals of any convex quadrilatierdé the
guadrilateral into four triangles. Let, r, r3, 4, in cyclic order, denote the radii
of the circles inscribed in each of these triangles (see Figure 2). Wul fina the
guadrilateral is tangential if and only if

1 1 1 1

L T3 T2 T4

In this paper we find another characterization (Theorem 1 below) oétsirad
guadrilaterals. This new characterization is shown to be equivalent te &@ndi-
tion and others (Proposition 2).

Consider a convex quadrilaterdlBC'D with diagonalsAC and BD intersect-
ing atO. Denote the lengths of the sidds3, BC, CD, DA by a, b, ¢, d respec-
tively.

Publication Date: May 26, 2009. Communicating Editor: Paul Yiu.
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verions of this paper.

Tangential quadrilateral are also known as circumscriptible quadrilsteee [2, p.135].
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Figure 1 Figure 2

Theorem 1. A convex quadrilateral ABC D with diagonals intersecting at O is
tangential if and only if

1 1 1 1

4(0.4B) T d(0.CD) ~ d(0.BC) T (0, DA)’ @)

where d(O, AB) isthe distance from O to theline AB etc.

Proof. We first express (1) is an alternative form. Consider the projectiéng/,
P and@ of O on the sidesAB, BC, CD, D A respectively.

A

Figure 3
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Let AB=a,BC =b,CD =¢, DA =d. Itis easy to see

OM A0  0Q
d(C,AB) ~ AC ~ d(C,AD)’
OM  BO  ON
d(D,AB) BD d(D,BC)’
ON 0OC  OP
d(A,BC)  AC ~ d(A,DC)

This means

oM 0Q OM _ ON  ON _ OP
bsinB c¢sinD’ dsinA  ¢sinC’  asinB  dsinD’

The relation (1) becomes

1111
OM " OP  ON ' 0Q’

which is equivalent to

OM OM OM

1 —
top ~oN T oq

or

asin Asin B B dsinA bsinB
esinCsinD  e¢sinC esinD’

1+

Therefore (1) is equivalent to
asin Asin B 4 ¢sin C'sin D = bsin B sin C' 4 dsin D sin A. (2)

Now we show thatd BC'D is tangential if and only if (2) holds.
(=) If the quadrilaterad BC' D is tangential, then there is a circle inscribed in
the quadrilateral. Let be the radius of this circle. Then

= tA+ tB b= tBJr tC
a=r|{cot = +coto |, =7 (cot 5 +eoto ),

= tC+ tD d= tD—i- tA
c=r{cot o +cot o |, =7 {cot 5 +eot ).
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Hence,
B) A A B B

A
in Asin B = . — ] -4sin = cos = sin — cos —
asin A sin r<cot 5 —+ cot 5 Sin 5 Ccos 5 Sin 5 CcOs 5

A . B .
=4r | cos —sin — + cos —sin — | cos — cos —

2 2 2 2 2 2
drsi A B
= 4rsin COS — COS —
2 2
. +D A B
= 4rsin cos 3 Ccos 5

D . C .
=4r | cos —sin — + cos — sin — | cos — cos —
2 2 2 2 2 2

o (60 C b ton ) cos A cos B eos € cos 2
= 4r an2 an2 COS2COS2COSQCOSQ.

Similarly,

D A A B D
bsin BsinC' = 4r | tan — + tan — cos—cos—cosgcos—,
2 2 2 2 2 2

inCsinD = dr (tan s + tan 2 A cos B cos Ccos 2
csim O sin = ar an 5 an B COS B COS B COS B COS 2,
B C A B C D

inDsinA =4 — - 2 cos = cos — cos =.
dsin D sin T <tan 5 + tan 5 ) cos 5 CoS 5 cos 5 cos 2
From these relations it is clear that (2) holds.
(<) We assume (2) and BC' D not tangential. From these we shall deduce a

contradiction.

A

Figure 4.

Case 1. Suppose the opposite sided 81C' D are not parallel.

Let T be the intersection of the linedD and BC. Consider the incircle of
triangle ABT (see Figure 4). Construct a parallel to the siglé which is tangent
to the circle, meeting the sidé3C and D A atC’ and D’ respectively. LeBC’ =
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V,C'D' =, D'A=d,C'C =z, D'D =y, andD'D = z, and whereD" is
the point onC’ D’ such thatC’C D D" is a parallelogram. Note that
b=b 42, c=c -y, d=d+=z
Since the quadrilateral BC' D' is tangential, we have

asin Asin B + ¢’ sin C'sin D = V' sin Bsin C + d’ sin D sin A. 3)

Comparison of (2) and (3) gives
asin Asin B 4 ¢sin C'sin D = bsin B sin C' 4 dsin Dsin A,

we have
—ysinC'sin D = xsin Bsin C' + zsin D sin A.
This is a contradiction since, v, = all have the same sighand the trigonometric
ratios are all positive.
Case 2. Now supposa BC' D has a pair of parallel sides, sayD and BC.
Consider the circle tangent to the sidés, BC and D A (see Figure 5).

A Dz D

Figure 5.

Construct a parallel t&C, tangent to the circle, and intersectiyf’, DA at
C' andD’ respectively. LeC’C = D'D = z, BC' =/, andD'A = d'. 3 Clearly,
bV =b—x,d=d +x, andC’'D" = CD = c. Since the quadrilateral BC' D' is
tangential, we have

asin Asin B + csin C'sin D = b sin Bsin C + d’ sin D sin A. 4

Comparing this with (2), we have(sin Bsin C' + sin D sin A) = 0. Sincex # 0,
sin A = sin B andsin C = sin D, this reduces t@sin Asin C' = 0, a contradic-
tion. O

Proposition 2. Let O bethe point where the diagonals of the convex quadrilateral
ABCD meet and r1, 9, r3, and r4 respectively theradii of the circlesinscribed in
thetriangles AOB, BOC, COD and DO A respectively. Thefollowing statements
are equivalent:

2In Figure 4, the circle does not intersect the gitP. In case it does, we treat y, z as negative.
3Again, if the circle intersect€’' D, thenz is regarded as negative.
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1 1 _ 1 1
Nt
(b) 7 0.1B) + o, CD) = 70,80y T 20,04y
b d

(€) 3408 + acop = apoc T apO
() ACODG ¢ AAOB = b~ADOA + d - ABOC.

(€)a-OC-OD+c¢-OA-OB=0b-OA-OD+d-OB-OC.

Proof. (a) < (b). The inradius of a triangle is related to the altitudes by the simple
relation

1 1 1 1

P he R
a b c
Applying this to the four triangleslO B, BOC, COD, andDO A, we have
1 1 1 1

7 d(O,AB) " d(A,BD) " d(B,AC)’
11 1 1
ry  d(O,BO) + d(C, BD) * d(B,AC)’
11 1 1
r3  d(O,CD) + d(C, BD) + d(D, AC)’
1 1 1 1

v2 (0, DA) T d(A,BD) " d(D,AC)’

From these the equivalence of (a) and (b) is clear.

(b) < (c) is clear from the fact thaém ol OAB) = sxa0p etc.
The equivalence of (c), (d) and (e) foIIows from follows from

AAOB = % -OA-OB -sinyp
etc., wherep is the angle between the diagonals. Note that
AAOB - ACOD = ABOC - ADOA = % -OA-OB-0C -0D -sin® .
[l
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A Note on the Anticomplements of the Fer mat Points

Cosmin Pohoata

Abstract. We show that each of the anticomplements of the Fermat points is
common to a triad of circles involving the triangle of reflection. We also gen-
erate two new triangle centers as common points to two other triads of circles.
Finally, we present several circles passing through these new cemeérthe
anticomplements of the Fermat points.

1. Introduction

The Fermat pointé’. are the common points of the lines joining the vertices of
a triangleT to the apices of the equilateral triangles erected on the corresponding
sides. They are also known as the isogonic centers (see [2, pp.1Jy ah8 are
among the basic triangle centers. In [4], they appear as the triangle £énter
and X14. Not much, however, is known about their anticomplements, which are
the pointsPy. which divide F..G inthe ratioF.L.G : GP+ =1 : 2.

Given triangleT with verticesA, B, C,
(i) let A’, B’, C' be the reflections of the verticels B, C'in the respective opposite
sides, and
(ii) for e = +£1, let A, Be, C. be the apices of the equilateral triangles erected
on the sidesBC, C' A, AB of triangle ABC respectively, on opposite or the same
sides of the vertices accordingas- 1 or —1 (see Figures 1A and 1B).

Theorem 1. For ¢ = %1, thecircumcirclesof triangles A’ B.C., B'C.A., C' A.B.
are concurrent at the anticomplement P_. of the Fermat point F'_..

2. Proof of Theorem 1

Fore = £1, let O, . be the center of the equilateral triangle BC'; similarly
for Oy . andO, .

(1) We first note thaOD, _. is the center of the circle through’, B., and
Ce. Rotating triangleO, . AB through B by an angles - 5, we obtain triangle
O,,--C.B. Therefore, the triangles are congruent &g .C. = O, .A. Simi-
larly, O, —cB: = O, A. Clearly,O,.A = O,,_.A’. It follows thatO, _. is the
center of the circle througH’, B. andC.. Figures 1A and 1B illustrate the cases
e = +1 ande = —1 respectively.

(2) Let A; B1C1 be the anticomplementary triangle AiBC. SinceAA; and
A4+ A_ have a common midpoinj A, A; A_ is a parallelogram. The line$A_.
and A; A, are parallel. Sinced; is the anticomplement ofl, it follows that the
line A; A. is the anticomplement of the lindA_.. Similarly, By B. andC;C. are
the anticomplements of the lindsB_. andCC_.. SinceAA_., BB ., CC_,

Publication Date: June 16, 2009. Communicating Editor: Paul Yiu.



120 C. Pohoata

Figure 1A Figure 1B

concur atf’_., it follows that A, A, B1 B, C1C. concur at the anticomplement of
F_.. This is the pointP_..

(3) A1 B1(C is also thes-Fermat triangle oA_.B_.C_..

(i) TrianglesA B.C. andC B. A are congruent, sincéB. = CB., AC. = AB =
CA;, and each of the anglé8. AC. and B.C'4; ismin (A+ %, B+ C +%).

It follows that B.C. = B. A;.

(i) TrianglesAB.C. and BA,C. are also congruent for the same reason, and we
haveB.C. = A;C..

It follows that triangleA; B.C. is equilateral, and’C. A1 B. = 3.

(4) Because’_. is the second Fermat point df; B;C4, we may assume
ZC.P_.B: = 5. Therefore,P_. lies on the circumcircle ofi; B.C;, which is
the same as that of’ B.C.. On the other hand, since the quadrilatetal , A; A
is a parallelogram (the diagonalsA; and A_ A, have a common midpoinD,
the midpoint of segmenBC'), the anticomplement of the lingéA_ coincides with
A;A,. It now follows that the linesA; A, By By, C1C, are concurrent at the
anticomplemenf’_ of the second Fermat points, and furthermafé;, P_B, =
. Since

LC+ABy =27 — (LBAC, + LCAB + /B AC)
4

- g + /ABC + /BCA

= /ABC + ZABC + /CBM
= /C,.BM,
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A 7
7
/
A s
Cy

\‘ Bl

N |
N

“

7

B
B_

=
E‘

Figure 2

it follows that the triangle€’. AB andC. BM are congruent. Likewise;C L AB, =
ZMC B, and so the triangleS AB andM C B, are congruent. Therefore, the
triangleC, M B is equilateral, and thugCy M B, = 5. Combining this with
ZCLP_B. = 60°, yields that the quadrilateral/ P_ B, C is cyclic, and since
A'M B, C, is also cyclic, we conclude that the anticomplemént of the sec-
ond Fermat poinf’_ lies on the circumcircle of triangld’ B, C',. Similarly, P_

lies on the circumcircles of triangle8’C. A, andC’ A, B, respectively. This
completes the proof of Theorem 1.

3. Two new triangle centers

By using the same method as in [6], we generate two other concurrentdfiads
circles.

Theorem 2. For ¢ = 41, the circumcircles of the triangles A.B'C’, B.C'A,
C.A’' B’ are concurrent.

Proof. Consider the inversioi with respect to the anticomplement of the second
Fermat point. According to Theorem 1, the images of the circumcircles oftdan
A'B,Cy, B'CL Ay, C"AL By are three lines which bound a trianglé B’ ",
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whereA’,, B/ , C', are the images ofl,, B, andC,, respectively. Since the
imagesA”, B”, C" of A’, B', C' underV lie on the sideliness’, C",, C!, A',,
A! B, respectively, by Miquel's theorem, we conclude that the circumcircles of
trianglesA!, B"C", B/ .C" A", C', A" B are concurrent. Thus, the circumcircles
of trianglesA, B'C’, B.C'A’', C A’ B’ are also concurrent (see Figure 3).
Similarly, inverting with respect to the anticomplement of the first Fermat point,
by Miquel’s theorem, one can deduce that the circumcircles of triangles’'C”,
B_C'A’, C_A'B’ are concurrent. O

Figure 3.

Javier Francisco Garcia Capitan has kindly communicated that their points of
concurrency do not appear in [4]. We will further denote these poyis.h and
U_, respectively. We name these centérs, U_ theinversive associates of the
anticomplement#,., P_ of the Fermat points.

4, Circlesaround Py and their inver sive associates

We denote by), H the circumcenter, and orthocenter of trianglBC'. LetJ,,
J_ be respectively the inner and outer isodynamic points of the triangle. Thoug
the last two are known in literature as the common two points of the Apollonius
circles, L. Evans [1] gives a direct relation between them and the Napicleon-
figuration, defining them as the perspectors of the triangle of reflecHoB&C”
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with each of the Fermat triangles,. B, C, andA_B_C_. They appear aX s,
X6 in [4]

Furthermore, letV,, W_ be the Wernau points of triangléBC. These points
are known as the common points of the folloing triads of circkes., C., BC A,
CA, By, and respectiveMAB_C_, BC_A_, CA_B_ [3]. According to the
above terminologyV.,., W_ are the inversive associates of the Fermat pdihts
andF_. They appear aX 337 andX33g in [4].

We conclude with a list of concyclic quadruples involving these triangle cente
The first one is an immediate consequence of the famous Lester circlerthggre
The other results have been verified with the aid of Mathematica.

Theorem 3. The following quadruples of points are concyclic:
(i) Py, P_,0, H;

(ll) P+, P_, F+, J+,

(ii"YPy, P_,F_, J_;

@iy Py, Uy, Fy, O;

(i"yP_,U_, F_, O;

(|V) P+, U_, F+, W+,

(iv)yP_,U., F_,W_;

(V) U_;,_, J+, W+, wW_;

MU_, J_, Wy, W_.

References

[1] L. Evans, Some configurations of triangle cent&sum Geom., 3 (2003) 49-56.

[2] W. Gallatly, The Modern Geometry of the Triangle, 2nd ed., London: Hodgson, 1913.

[3] D. Grinberg, Hyacinthos messages 6874, 6881, 6882, April3200

[4] C. Kimberling, Encyclopedia of Triangle Centers, available at
http://faculty.evansville. edu/ cké/ encycl opedi a/ ETC. ht m .

[5] J. Lester, Triangles lll: Complex Triangle Functiodgquationes Math., 53 (1997) 4-35.

[6] C. Pohoata, On the Parry reflection poirdrum Geom., 8 (2008) 43—48.

Cosmin Pohoata: 13 Pridvorului Street, Bucharest, Romania 010014
E-mail address. pohoat a_cosnmi n2000@ ahoo. com






Forum Geometricorum
Volume 9 (2009) 125-148.

FORUM GEOM
ISSN 1534-1178

Heptagonal Triangles and Their Companions

Paul Yiu

Abstract. A heptagonal triangle is a non-isosceles triangle formed by three ver-
tices of a regular heptagon. Its angles @r,e%’f and 47". As such, there is a
unique choice of a companion heptagonal triangle formed by three akthe
maining four vertices. Given a heptagonal triangle, we display a numiber
interesting companion pairs of heptagonal triangles on its nine-point eintle
Brocard circle. Among other results on the geometry of the heptagdaadte,

we prove that the circumcenter and the Fermat points of a heptagomagléria
form an equilateral triangle. The proof is an interesting application of 'sste
theorem that the Fermat points, the circumcenter and the nine-point oéate
triangle are concyclic.

1. The heptagonal triangleT and its companion

A heptagonal triangld’ is one with angleg;, 27” and%’r. Its vertices are three
vertices of a regular heptagon inscribed in its circumcircle. Among the rengainin
four vertices of the heptagon, there is a unique choice of three whioh &or
other (congruent) heptagonal trian@é We call this the companion &, and the
seventh vertex of the regular heptagon the residual vert8xarfid T’ (see Figure
1). Inthis paper we work with complex number coordinates, and take theitohé

C

———~_ B

Al

B’
lok

Figure 1. A heptagonal triangle and its companion

in the complex plane for the circumcircle ®f. By putting the residual vertek at
1, we label the vertices df by

4 2
A=(, B =¢, C=¢,
Publication Date: June 22, 2009. Communicating Editor: Antreas P. H&ikipo
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and those ofl” by
A,:CBa B,:CG, C,:C5,
where( := cos 2F + isin 27 is a primitive7-th root of unity.

We study the triangle geometry @f, some common triangle centers, lines, cir-
cles and conics associated with it. We show that the Simson lingt$, d8’, C’
with respect tdT' are concurrent (Theorem 4). We find a number of interesting
companion pairs of heptagonal triangles associated Witkor example, the me-
dial triangle and the orthic triangle & form such a pair on the nine-point circle
(Theorem 5), and the residual vertex is a point on the circumcircle difis indeed
the Euler reflection point dI'. In the final section we prove that the circumcenter
and the Fermat points form an equilateral triangle (Theorem 22). Tkemirpaper
can be regarded as a continuation of Bankoff-Garfunkel [1].

2. Preliminaries

2.1 Some simple coordinate€learly, the circumcente&p of T has coordinaté,

and the centroid is the poiit = %(C + (2 + ¢*). Since the orthocentdd and the

nine-point centeV are points (on the Euler line) satisfying
OG:GN:NH=2:1:3,

we have

H=(+ o+

N= 2+ 4+, @

This reasoning applies to any triangle with vertices on the unit circle. The-bise
tors of anglesA, B, C of T intersect the circumcircle atC’, A’, B’ respectively.
These form a triangle whose orthocenter is the incehtdrT (see Figure 2). This
latter is therefore the point

I=¢ =+ (2)
Similarly, the external bisectors of anglds B, C intersect the circumcircle &t’,
—A’, —B' respectively. Identifying the excenters®Bfas orthocenters of triangles
with vertices on the unit circle, we have

L=~ +¢+¢,
I=¢+¢" = ¢, 3)
Ie= =+ +¢"

Figure 2 shows the tritangent circles of the heptagonal trigiigle

2.2 Representation of a companion paMWaking use of the simple fact that the
complex number coordinates of vertices of a regular heptagon can leazbtiam
any one of them by multiplications lay . .., ¢%, we shall display a companion pair
of heptagonal triangle by listing coordinates of the center, the residuaixvand
the vertices of the two heptagonal triangles, as follows.
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Figure 2. The tritangent centers

Center: P
Residual vertex: @

Rotation| Vertices Rotation| Vertices
¢ [ P+@-P)| ¢ |[P+Q-P)
¢ P+{(Q-P) ¢° P+¢%(Q—P)
¢ [ P+F@Q-P)] ¢ [P+(@Q-P)

2.3 While we shall mostly work in the cyclotomic fiel@(¢), ! the complex
number coordinates of points we consider in this paperesidinear combinations
of ¢¥ for 0 < k < 6, (the vertices of the regular heptagon on the circumcircle of

Isee Corollary 23 for an exception.
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T). The real coefficients involved are rational combinations of

¢+ (8 2m 2+ ¢ 47 SENG 6T

5 —(3087, Cy = 2 —COS7, c3 = 5 —cos7.
Note thate; > 0 andco, c3 < 0. An expression of a complex humbeias a real
linear combination ot*, ¢, ¢? (with sum of coefficients equal tt) actually gives
the absolute barycentric coordinate of the paimtith reference to the heptagonal
triangleT. For example,

Ccl1 =

¢ = 20-C" + 202-¢C +  1-C
G o= 2 + 1-¢C — 2
¢¢ = 1-¢* = 2c3-C + 2c3-C%
1 = —2¢-¢* — 2c3-¢C — 2¢1-C2

We shall make frequent uses of the important result.

Lemma 1(Gauss) 1+ 2(¢ + ¢ + ¢*) = V/Ti.

Proof. Although this can be directly verified itis actually a special case of Gauss
famous theorem that if = cos 2& T+ sin & - for an odd integer., then

n—1 .
2 Jvn  ifn=1 (mod4),
kZ:OC - {\/ﬁz ifn=3 (mod 4).

For a proof, see [2, pp.75-76]. O

2.4. Reflections and pedals.

Lemma 2. If o, (3, v are unit complex numbers, the reflectionofn the line
joiningaandfisy = a+  — af7.

Proof. As points in the complex plane; has equal distances fromand 3 as~
does. This is clear from

Y —a=p(1-07) =37y - ),
Y =B =a(l-p7) =ay(y-B).
]

Corollary 3. (1) The reflection of* in the line joining¢? and(¢7 is ¢ 4-¢7 — i+,
(2) The pedalorthogonal projectiondf ¢* on the line joiningt? and ¢’ is

S+ ¢E o)
(3) The reflections oft in BC', Bin CA, andC in AB are the points
A=+ - ¢
B* =+ ¢t - ¢ 4)
Cr=¢-¢P 4t
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3. Concurrent Simson lines

The Simson line of a point on the circumcircle of a triangle is the line containing
the pedals of the point on the sidelines of the triangle.

Theorem 4. The Simson lines of’, B’, C’ with respect to the heptagonal triangle
T are concurrent.

Figure 3. Simson lines

Proof. The pedals ofA on BC' is the midpointA’ of AA*; similarly for those of
BonCA andC on AB. We tabulate the coordinates of the pedalsd6f B/,

C’ on the sidelineBC, C A, AB respectively. These are easily calculated using
Corollary 3.

BC CA AB
AT (14 C+ 4 ) (P +¢h sC=C+ 3+
B 3¢+ -+ %(—1+<2+<4+<6> ¢+
c' 3¢+ S(—CH+CH+CC) F(-1+C+ T+ )

We check that the Simson lines 4f, B’, C’ all contain the point-1. For these,
it is enough to show that the complex numbers

CHCHA) A+ ¢, () A+, (HEHC) M+ )
are real. These are indeédr ¢%, ¢2 + ¢?, ¢3 + ¢* respectively. O
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Remark.The Simson line ofD, on the other hand, is parallel @D (see Figure
3). This is because the complex number coordinates of the pedBlsrafmely,

14+ - 143+ - 14+ -
2 ’ 2 ’ 2 ’
all have the same imaginary part¢ — ¢+ ¢2 — ¢> — 3 + ¢*).

4. The nine-point circle

4.1 A companion pair of heptagonal triangles on the nine-point cirés.is well
known, the nine-point circle is the circle through the vertices of the medialiéa
and of the orthic triangle. The medial triangle Bfclearly is heptagonal. It is
known thatT is the only obtuse triangle with orthic triangle similar to itsélfThe
medial and orthic triangles &F are therefore congruent. It turns out that they are
companions.

Theorem 5. The medial triangle and the orthic triangle @f are companion hep-
tagonal triangles on the nine-point circle @f. The residual vertex is the Euler
reflection pointE (on the circumcircle ofl’).

c’

Figure 4. A companion pair on the nine-point circle

2if the angles of an obtuse angled triangle arg. 8 < =, those of its orthic triangle a2z, 2,
and2~v — «. The two triangles are similar if and onlydf = 2y — 7, 8 = 2a. andy = 23. From
thesea = Z, 8 = 27” andy = 47” This shows that the triangle is heptagonal. The equilateral
triangle is the only acute angled triangle similar to its own orthic triangle.
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Proof. (1) The companionship of the medial and orthic triangles on the nine-point
circle is clear from the table below.

Center: N = 1(< ¥ §2 T C4)
Residual vertex: E = g(f1 +CH+ G+ Y

Rotation| Medial triangle | Rotation| Orthic triangle
¢t A =1+ ¢ =36+ -C+ ¢
¢ [Bo=3+¢D [ ¢ TA=5+E+¢ -
¢ [ Co=3+Y ¢ [ Bi=35(C+¢+¢-¢)

Figure 5. The Euler reflection point af

(2) We show thatt is a point on the reflection of the Euler line in each of the
sidelines ofT. In the table below, the reflections 6f are computed from the
simple fact tha© BO;C, OCO; A, OAO} B are rhombi. On the other hand, the
reflections ofH in the sidelines can be determined from the fact tHd{ and
AA* have the same midpoint, so dbH;; andBB*, HH} andCC*. The various
expressions foE’ given in the rightmost column can be routinely verified.
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Line | Reflection ofO | Reflection ofH || £ =

BC | O:=(+ CQ H} = —Cﬁ (=2c1 —ca —¢3)Ok + (—co —c3)H}
CA OZ = CQ + C4 H; = —C5 (—61 — 2¢9 — 63)02< + (—Cl — Cg)H{;
AB O: = C + C4 Hg = _<3 (—01 — Cy — 263)(): + (—Cl — CQ)H:

Thus, E, being the common point of the reflections of the Euler liné'dh its
sidelines, is the Euler reflection point@f, and lies on the circumcircle @&. [

4.2. The second intersection of the nine-point circle and the circumcircle.

Lemma 6. The distance between the nine-point cerifeand theA-excentetl, is
equal to the circumradius of the heptagonal trian@te

Proof. Note thatl, — N =

complex number.

24CHCHC! L BHIR2(CHECHCY) 34T i
5 = 1 = =5~ is a unit

O

This simple result has a number of interesting consequences.

Proposition 7. (1) The midpointF, of N1, is the point of tangency of the nine-
point circle and theA-excircle.
(2) The A-excircle is congruent to the nine-point circle.
(3) F, lies on the circumcircle.

C/
Figure 6. TheA-Feuerbach point dT"
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Proof. (1) By the Feuerbach theorem, the nine-point circle is tangent externally to
each of the excircles. Sin@€l, = R, the circumradius, and the nine-point circle
has radiu%R, the point of tangency with thd-excircle is the midpoint ofV1i,,
ie.

_ L+ N 2+43(C++¢Y

F, 5 1 . (5)

This proves (1).
(2) It also follows that the radius of thé-excircle is%R, and theA-excircle is
congruent to the nine-point circle.

(3) Note thatF, = F306CHEHD) 163V s 4 unit complex number. [

Remark.The reflection of the orthic triangle if, is the A-extouch triangle, since
the points of tangency are

3 C5 C6
~(EFCHO) S ACHEFON S, (OO Y

(see Figure 6).
4.3. Another companion pair on the nine-point circle.

Center: N=3(+C+
Residual vertex: F, = $(2+3(¢+ 2+ ¢%)
Rot. | Feuerbach triangle Rot. | Companion

G R=1C+C+3+20" ) | " [FL=206¢+2+4C"+° + ()
C IR =7+C+-C+O) [ ¢ [FH=74+3C++2("+ )
C [ Fe=3+2C-C++O) | & [F=30@0+4C+3 +3¢"+¢°)

Proposition 8. F., F,, Fy, F,. are the points of tangency of the nine-point circle
with the incircle and thed-, B-, C-excircles respectivelisee Figure 7)

Proof. We have already seen thBf = 1 - N + 1 - I,. Itis enough to show that
the pointsFy, Fy, F, lie onthe linesNI, N1, NI respectively:

Fo= (e —e5)- N+ (cr— 265 —8es) T,
Fy, = (CQ - 63) -N + (_201 — 3¢ — 63) Ay,
F.=(c1 —c2) N+ (=3c1 —c2 — 2¢3) - L.
[l

Proposition 9. The verticed,, F}, F,. of the companion of}, F.. F, are the second
intersections of the nine-point circle with the lines joiniAgto A, B, C respec-
tively.

Proof.
Fl' = —2cy- F, —2(c1 +c3)A,
F, = —2c3-F, —2(c1 + c2)B,
Fl= —2c;-F, —2(ca + ¢3)C.
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Figure 7. Another companion pair on the nine-point circle

5. The residual vertex as a Kiepert perspector

Theorem 10. D is a Kiepert perspector of the heptagonal triangl&C.

Proof. What this means is that there are similar isosceles trianfléxC, B"C A,

C" AB with the same orientation such that the linéd”, BB”, CC" all pass
through the poinD. Let A” be the intersection of the linesD and A’ B/, B” that
of BD andB’'C’, andC” that of C D andC’ A’ (see Figure 8). Note thatC’ B’ A”,

BAC'B", andA’ B'CC" are all parallelograms. From these,

A//:C4_C5+C67
B =+,
C//:CQ+<3_C6‘
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Figure 8. D as a Kiepert perspector af

It is clear that the linest A”, BB” andCC" all contain the poinD. The coordi-
nates ofA”, B”, C” can be rewritten as

A//:C2+C+C2_<_

(L+2(C+ ¢ +¢h),

2 2
4 2 4_ 2
B//:C —;C _|_< 2< -(1+2(C+CQ+C4))7
4 _ 4
C//:C—ZC +< 2C .(1—|—2(C+C2+C4))'

Sincel + 2(¢ + ¢ + ¢*) = /T7i (Gauss sum), these expressions show that
the three isosceles triangles all have base angiesn /7. Thus, the triangles
A"BC, B"CA, C"AB are similar isosceles triangles of the same orientation.
From these we conclude thBXis a point on the Kiepert hyperbola. O

Corollary 11. The center of the Kiepert hyperbola is the point

Ki= -5+ + ). ©)

Proof. Since D is the intersection of the Kiepert hyperbola and the circumcircle,
the center of the Kiepert hyperbola is the midpoint/ofi, where H is the or-
thocenter of triangleA BC' (see Figure 9). This has coordinate as given in (6)
above. O

Remark. K; is also the midpoint 0O 1,,.
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Figure 9. The Kiepert hyperbola af

SinceX = —1 is antipodal to the Kiepert perspector= 1 on the circumcircle,
it is the Steiner point ofl’, which is the fourth intersection of the Steiner ellipse
with the circumcircle. The Steiner ellipse also passes through the circumdbeter
A-excenter, and the midpoint &f G. The tangents af, and X pass througlH,
and that ap passes throughi = (1 — (¢3 + ¢° + ¢°)) on the circumcircle such
thatOX NY is a parallelogram (see Lemma 21).

Figure 10. The Steiner ellipse af
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6. The Brocard circle

6.1 The Brocard points.

Proposition 12 (Bankoff and Garfunkel) The nine-point centel is the first Bro-
card point.

c’

Figure 11. The Brocard points of the heptagonal triafigle

Proof. The relations

_ _ _ 2 4
R &)

_ _ _ 2 4
gl o= P ta T UICHERE) (2 )

_ _ _ 2 4
;(<+C2+C4)—C2=< 3c1 — 2¢p 2037)(4+C+C +¢%) (¢t = ¢?)

show that the linesVA, NB, NC are obtained by rotations a8 A, CB, AC
through the same angle (which is necessarily the Brocard argld his shows
that the nine-point centeV is the first Brocard point of the heptagonal triangle
T. O

Remark. It follows that4 + ¢ + ¢2 + ¢* = V14(cosw + i sinw).

Proposition 13. The symmedian poitt has coordinat (1“(@7“42*44)) =z,
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Proof. It is known that on the Brocard circle with diamet@', /NOK = —w.

From this,
1
K = (cosw —isinw) - N
cosw

7
= (1)
244+ HE)
N 7 2
= 24 2(C+ ¢+ ¢Y)
ﬁ
VT
by Lemma 1. O

Corollary 14. The second Brocard point is the Kiepert centér

Proof. By Proposition 13, the Brocard axi3K is along the imaginary axis. Now,
the second Brocard point, being the reflectionMdfin OK, is simply—%(g3 +
¢® + (). This, according to Corollary 11, is the Kiepert centgr O

SinceOD is along the real axis, it is tangent to the Brocard circle.

6.2 A companion pair on the Brocard circle.

Center: 1(1+2(¢C+ 3+ M)
Residual vertex: O =0

Rot. | First Brocard triangle Rot. | Companion
¢ Ay =1(—4c1 —2c5 —8c3) - (—=¢°) | ¢* [ F(—4e1 — 2cp — 8cy) -
C6 B_w = %(—801 — 462 — 263) . (—C?’) C %(—861 — 462 - 203) . C4
C5 C_w = %(—201 — 802 — 463> . (—CG) CQ %(—261 — 862 — 403) . C
Since—¢? is the midpoint of the minor arc joining and¢?, the coordinate of
the point labeledd _,, shows that this point lies on the perpendicular bisector of
BC'. Similarly, B_, andC_,, lie on the perpendicular bisectors 6fA and AB
respectively. Since these points on the Brocard circle, they are theegedidthe
first Brocard triangle.
The vertices of the companion are the second intersections of the Bioicaed

with and the lines joining) to C, A, B respectively.

Proposition 15. The first Brocard triangle is perspective withBC' at the point
—1 (see Figure 12)

Proof.
1

2

(=3c1 —2c9 —2¢3) - Ay +¢1 - ¢,
(—2¢1 —3cg — 2¢3) - B_yy + 2+ (,
(—261 — 262 — 363) . C'_w +c3- Cz.
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Figure 12. A regular heptagon on the Brocard circle

7. A companion of the triangle of reflections

We have computed the coordinates of the vertices of the triangle of reflgction
A*B*C* in (4). Itis interesting to note that this is also a heptagonal triangle, and
its circumcenter coincides with,. The residual vertex is the reflection©fin 1.

Center: I,=—(C+ ¢+
Residual vertex: D = —2(¢3 + ¢® + (%)

Rotation| Triangle of reflectiong| Rotation| Companion
A=+ ¢ [ B=1+-¢
¢ B =+ -¢ ¢ 1C=1+¢-¢
¢ [o=¢-¢¢+ ¢ [A=1+-¢

The companion has vertices on the sides of triangh’,

(14 2¢1)¢ — 2¢y - Cz;
(1+ 202)C2 — 2¢9 - C4;
C = (1+2c3)¢t —2¢3-C.

It is also perspective wit. Indeed, the linestA, BB, CC are all perpendic-
ular to the Euler line, since the complex numbers

1+ -¢—¢t 14+ -¢-¢ 14+¢-¢-¢
C+G+¢ 7 G+t T e+
are all imaginary, being respectively,/2(¢% — ¢%), v2(¢2 — ¢*), —v2(¢ — ¢%).

Z:
E:
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lok

Figure 13. The triangle of reflections a@f

Proposition 16. The triangle of reflectiongl* B*C* is triply perspective witlT.

Proof. The triangle of reflectiomd* B*C* is clearly perspective witld BC at the
orthocenterH. SinceA*C, B* A, C* B are all parallel (to the imaginary axis), the
two triangles are triply perspective ([3, Theorem 381]). In other wopAt B*C*
is also perspective witlBC A. In fact, the perspector is the residual verfex

A= —(142¢1) 14 (24 2¢1)¢,

B* = — (14 2¢) - 1+ (2 + 2¢2)¢?,

C* = — (14 2¢c3) -1+ (2 + 2¢3)¢

O

Remark. The circumcircle of the triangle of reflections also contains the circum-
centerO, the Euler reflection poink, and the residual verteX.
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8. A partition of T by the bisectors

Let A;B;C7 be the cevian triangle of the incenteof the heptagonal triangle
T = ABC. ltis easy to see that triangld3CI, ACC; and BB;C' are also
heptagonal. Each of these is the image of the heptagonal triah§té under
an affine mapping of the formv = az + 8 or w = «az + 8, according as the
triangles have the same or different orientations. Note that the image triaamgle h
circumcentepd and circumradiug|.

A o

Figure 14. Partition off" by angle bisectors

Each of these mappings is determined by the images of two vertices. For exam-
ple, sinceABC and BC'I have the same orientation, the mappjia@:) = az +
is determined by the image$(A) = B and f1(B) = C; similarly for the map-
pings fo and f3.

| Affine mapping |A|B|C|
filz) =(C+¢Hz-¢ Bl C |1
L) =0+(+C+)z-(1+C+) [A] O[O
=0+ ++CzZ-0+C+O)[B|B| C

Thus, we have
I= fi(C)=¢ =+,

Cr= fo(C)=-1+¢+ -+

Br= f3(B) = -1+ (+ (' =+
Note also that fromfa(A;) = I, it follows that

A =1+ -+ =

Remark.The affine mapping that associates a heptagonal triangle with circumcen-
terc and residual vertex to its companion is given by

d—c _ dec—7cd

= zZ+ = .
d—¢ d—¢

w =
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8.1 Four concurrent lines.A simple application of the mappingj yields the fol-
lowing result on the concurrency of four lines.

Proposition 17. The orthocenter of the heptagonal triangk'I lies on the line
OC and the perpendicular fror@'; to AC.

Figure 15. Four concurrent altitudes

Proof. Since ABC has orthocenteH = ¢ + ¢? + (%, the orthocenter of triangle
BC1T is the point

H' = fi(H) = —(1+¢") = =(¢* +¢*)¢%
This expression shows that’ lies on the radiu®)C. Now, the vectorH'C; is
given by
Cr—H' = (-1+¢(+ =+ )+ 1+
=+ -G+ + ¢
On the other hand, the vectatC is given by¢? — ¢*. To check thatH'Cy is
perpendicular tAC, we need only note that

C+C=CH+ONC-N) =2~ O)+ (=) + (P = ¢
is purely imaginary. O

Remark. Similarly, the orthocenter cAC'Cy lies on theC-altiude of ABC, and
that of BB;C on the B-altitude.
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8.2 Systems of concurrent circles.

Proposition 18. The nine-point circles ol CC; and(the isosceles trianglé)’ A’C
are tangent internally at the midpoint &' C'.

Figure 16. Two tangent nine-point circles

Proof. The nine-point circle of the isosceles triandkeA’C' clearly contains the
midpoint M of B’C. Since triangleAB’C is also isosceles, the perpendicular
from A to B'C passes through/. This means that/ lies on the nine-point circle
of triangle ACC;. We show that the two circles are indeed tangert/at

The nine-point center cAC'CY is the point

1
Fa(N) = 520+ + P+ M+ ).
On the other hand, the nine-point center of the isosceles tridigle” is the point
1
N' = 5(42 + ¢+ ().

Since

¢2+¢° ,
M = = (1 —2cp — 4e3) fo(N) + (2¢2 + 4e3) N

as can be verified directly, we conclude that the two circles are tangemntaiiye
O
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Theorem 19. The following circles have a common point.
(i) the circumcircle ofACCY,

(i) the nine-point circle oACCY,

(iii) the A-excircle ofACCY,

(iv) the nine-point circle oBB;C.

Figure 17. Four concurrent circles

Proof. By Proposition 7(3), the first three circles concur at h&euerbach point
of triangle AC'C, which is the point

1
fo(Fa) = 2(C+262 + ¢ = ¢+ C0).
It is enough to verify that this point lies on the nine-point circle®B;C, which

has center
<<+<2+<4> A+ HCH
f3 2 - 2 5

and square radius
TP = 1 (B )+ (C+ ) 2+ ().

This is exactly the square distance betwge(F;,) and the center, as is directly
verified. This shows thafk(F,) indeed lies on the nine-point circle 8fB;C. [
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Theorem 20. Each of the following circles contains the Feuerbach p@inof T :
() the nine-point circle ofT,

(i) the incircle ofT,

(iii) the nine-point circle of the heptagonal triangkC'7,

(iv) the C-excircle of BC1,

(v) the A-excircle of the heptagonal triangléCC',

(vi) the incircle of the isosceles triangle/C’;.

Figure 18. Six circles concurrent at the Feuerbach poifit of

Proof. It is well known that the nine-point circle and the incircleBfare tangent
to each other internally at the Feuerbach pdint It is enough to verify that this
point lies on each of the remaining four circles.

(iii) and (iv) The C-excircle of BCI is the image of theB-excircle of ABC
under the affine mapping . It is therefore enough to check thAt(F;) = Fe:

(R = JCHCHE Pt ¢ - ¢

= O =R
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(v) The heptagonal triangld C'C7 is the image ofABC under the mapping
f2. It can be verified directly thatl = —1(¢ — ¢? + 3¢3 + 3¢%) — (% is the
point for which fo(W) = F.. The square distance ¥ from the A-excenter
I, = —(¢®+ 5+ ¢%)isthe square norm aV — I, = (¢ + 2+ 3+ ¢°). An
easy calculation shows that this is

i(—c +C+C+ONCH+T+ - = =1L

_1
16 4
It follows that, under the mapping, F. lies on theA-excircle of ACC7.

Figure 19. The incircle of an isosceles triangle

(vi) Since C;BC and IC B; are isosceles triangles, the perpendicular bisec-
tors of BC andC By are the bisectors of anglég’; B andC; I B respectively. It
follows that the incenter of the isosceles trianBléC'; coincides with the circum-
center of triangleB B;C, which is the pointl’ = —(1 + ¢3 + ¢°) from the affine
mappingfs. This incircle touches the sideC; at its midpointM, the sidel B at
the midpointQ) of BBy, and the sideB(C’; at the orthogonal projectioR of C' on
AB (see Figure 19). A simple calculation shows tHd& M () = 37” To show that
I lies on the same circle, we need only verify tha? F,.(Q = 47”. To this end, we
first determine some complex humber coordinates:

P=3(+E -4 Y,

Q=5(-1+20+¢ =+ ).
Now, with £, = 3(2¢ + ¢% + ¢* — ¢° + ¢5), we have
Q-Fe=("+)(P-F).

From the expressiott* + (5 = (~2(¢ + ¢°), we conclude that indeedPF,Q =
47r. O
7
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9. A theorem on the Fermat points

Lemma 21. The perpendicular bisector of the segmény is the line containing

X =-landY = 3(1—(¢3+ ¢ +¢Y)).

Proof. (1) Complete the parallelogrami, H X, then
X=0+H-I,=(C+C+MN+(E++0) =1

is a point on the circumcircle. Note that is the midpoint ofl, X. Thus,NX =

NI, = R = OX. This shows tha¥ is on the bisector cON.

(2) Complete the parallelogramN 1,Y, with Y = O + I, — N. Explicitly,
Y =3(1-(¢®+ ¢ +¢%). But we also have

X+Y=(0O+H-1,)+(O+I,—N)=(2-N—-1,)+(O+1I,—N)=O+N.

This means thaD X NY is a rhombus, and/'Y = OY'.
From (1) and (2) XY is the perpendicular bisector 6fN. O

o’

Figure 20. The circumcenter and the Fermat points form an equilatienad e

Theorem 22. The circumcenter and the Fermat points of the heptagonal triangle
T form an equilateral triangle.
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Proof. (1) Consider the circle through, with center at the point
1
L:= —g(Cg + ¢+ ¢%).

This is the center of the equilateral triangle withas a vertex ands; = —%(C?’ +
¢ + ¢%) the midpoint of the opposite side. See Figure 20.

(2) With X andY in Lemma 21, it is easy to check that=
means thaL lies on the perpendicular bisector@fV.

(3) SinceKj is on the Brocard circle (with diametérK'), O Kj is perpendicular
to the line K K;. Itis well known that the ling< K; contains the Fermat point%.
Indeed, K is the midpoint of the Fermat points. This means thas lies on the
perpendicular bisector of the Fermat points.

(4) By awell known theorem of Lester (see, for example, [5]), thefagpoints,
the circumcenter, and the nine-point center are concyclic. The centiee ofrcle
containing them is necessarily, and this circle coincides with the circle con-
structed in (1). The side of the equilateral triangle opposit® tis the segment
joining the Fermat points. O

(X +2Y). This

Corollary 23. The Fermat points of the heptagonal triandleare the points
1
Fr= (420 + ¢+ ),
1
Fo= (X +20)(¢C 4+ ¢ +¢0),

whereX = 2(—1+v/3i) andA? = 1(—1 — /3¢) are the imaginary cube roots of
unity.

Remarks,(1) The triangle with vertices, and the Fermat points is also equilateral.

(2) SinceOI, = /2R, each side of the equilateral triangle has Ieng@R.

(3) The Lester circle is congruent to the orthocentroidal circle, whichHh&
as a diameter.
(4) The Brocard axi®) K is tangent to thed-excircle at the midpoint of , H.
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The Symmedian Point and Concurrent
Antiparallel Images

Shao-Cheng Liu

Abstract. In this note, we study the condition for concurrency of ¢he lines

of the three triangles determined by three vertices of a reference triang|six
vertices of the second Lemoine circle. Hérds the centroid and is arbitrary
triangle center different frond”. We also study the condition for the images of
a line in the three triangles bounded by the antiparallels through a giventpoint
be concurrent.

1. Antiparallelsthrough the symmedian point

Given a triangled BC with symmedian poink’, we consider the three triangles
AB,C,, AyBCy, and A.B.C bounded by the three lings, ¢, £. antiparallel
throughK to the sidesBC, C'A, AB respectively (see Figure 1). It is well known
[4] that the6 intercepts of these antiparallels with the sidelines are on a circle with
centerK. In other words K is the common midpoint of the segme®sC,, Cy, Ay
andA.B.. The circle is called the second Lemoine circle.

Figure 1.

Triangle AB,C,, is similar toABC, because it is the reflection in the bisector of
angleA of a triangle which is a homothetic image 43C'. For an arbitrary trian-
gle centerP of ABC, denote byP, the corresponding center in trianghe3,C,;
similarly, P, and P. in trianglesA, BC, andA.B.C.
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Now let P be distinct from the centroid’. Consider the line througH parallel
to GP. lIts reflection in the bisector of anglé intersects the circumcircle at a
point Q’, which is the isogonal conjugate of the infinite point@P. So, the line
G, P, is the image ofAQ’ under the homothetly (K, 1), and it passes through a
trisection point of the segmeif Q' (see Figure 2).

Figure 2.

In a similar manner, the reflections of the parallel&t throughB andC' in the
respective angle bisectors intersect the circumcircle at the same(@oiftence,
the linesG, P, and G, P. also pass through the poi@, which is the image of)’
under the homothetly (K, 1). Itis clear that the poing) lies on the circumcircle
of triangleG, GG, (see Figure 3). We summarize this in the following theorem.

Theorem 1. Let P be a triangle center oA BC, andFP,, P, P. the corresponding
centers intriangles\B,C,,, BCy Ay, CA.B., which have centroid&,,, Gy, G, re-
spectively. The line&, P,, G, P, G.P. intersect at a point) on the circumcircle
of triangle G, GypG..

Here we use homogeneous barycentric coordinates. Supgpeséu : v : w)
with reference to trianglel BC.
(i) The isogonal conjugate of the infinite point of the liG&” is the point

Ql _ a2 ' b2 ' 02
o\ 2ut+v+w u—2v4+w u+v-—2w
on the circumcircle.
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Figure 3.

(i) The linesG,P,, Gy Py, G.P. intersect at the point
0 (@ (o Plomw | Pemw
v+w—2u wHu—2v utv—2w)/) ' '

which dividesK Q' in the ratioKQ : QQ' =1 : 2.

2. A generalization

More generally, given a poirf = (z : y : z), we consider the triangles inter-
cepted by the antiparallels throu@h These are the trianglesB,C,, A, BC, and

A.B.C with coordinates (see [33]):

By = 0Pz + (b2 — )y : 0: 2y +b2),
r— (b —c?)z: Py +b%2:0),
et ctr Aty + (2 —a?)z: 0),

Co = (
Cy=(a"z2+cz:c
Ay = (0:a’y — (® — a®)x : a®2 + c*a),
Ae = (0: %z + a’y : a®z + (a® — b?)2),
Be = (b®x +a%y : 0: b%z — (a® — b)y).
Now, for a pointP with coordinategu : v : w) with reference to triangld BC,
the one with the same coordinates with reference to triadadglgC, is

P, = (B’Flx+y+2)ut A%+ 0 = A)y)v + b (P — (b — F)z)w
V2 (Py + b2 2)w : A (Py + b%2)v) .
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By puttingu = v = w = 1, we obtain the coordinates of the centroid
Go = (3b*cPz + (20 — )y — B*(b* — 2¢%)2) : b*(Py + b%2) : *(Py + b%2))
of AB,C,. The equation of the lin&, P, is

(Py +b*2) (v — w)X
+ (A(x+y+2)u+ (=2 — Ay + (0* — 22 2)v + (Pz — (b — )2)w)Y
— (X (x +y + 2)u+ 0Pz + (b — A)y)v — (20%z + (26 — )y + b?2)w)Z
0.

By cyclically replacing(a, b, ¢), (u,v,w), (z,y, z), and(X, Y, Z) respectively by
(b,c,a), (v,w,u), (y, z,x),and(Y, Z, X), we obtain the equation of the liri&, P,.
One more applications gives the equatiorGRfP..

Proposition 2. The three line¢, P,, G, P,, G.P. are concurrent if and only if
flu,v,w)(@ +y + 2)? (02 (v — w)x + 2 (w — uw)y + a®b*(u — v)z) =0,
where

flu,v,w) = Z ((21)2 +2¢2 —aHu? + (® + A2 — 5a2)vw) .

cyclic
Computing the distance betweé&hand P, we obtain
flu,v,w) = 9(u+ v +w)? - GP2.
This is nonzero fo® # G. From this we obtain the following theorem.

Theorem 3. For a fixed pointP = (u : v : w), the locus of a poinf” for which
the G P-lines of trianglesA B, C,,, Ay BCy, and A.B.C are concurrent is the line

b2 (v — w)X + a?(w — u)Y + a?b*(u — v)Z = 0.

Remarks (1) The line clearly contains the symmedian pdihand the poinfa?u :
b%v : c2w), which is the isogonal conjugate of the isotomic conjugat® of
(2) The locus of the point of concurrency is the line

Z b2 (v —w)((* +a® = b*)(u—v)? + (a* +b* — ) (u — w)*)X = 0.
cyclic

This line contains the points

a2
((62+a2—b2)(U—v)2+(a2+b2_c2)(u_w)2 )
and

CL2U
((62+a2_bQ)(U—U)2+(a2+b2—02)(u—w)2 >
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Theorem 4. For a fixed pointl’ = (x : y : z), the locus of a poinP for which the
G P-lines of trianglesA B, C,,, Ay BCy, and A.B.C are concurrent is the line

Y z z T x Y
(-2)x+ (G- 2)Y+(a-p)2=0

Remark.This is the line containing the centroid and the point(ai2 Rk C%)

More generally, given a poirft = (x : y : z), we study the condition for which
the images of the line

L: uX + Y +wZ =0

in the three triangled B, C,,, A, BC, andA.B.C are concurrent. Now, the image
of the lineL in AB,C, is the line

—u(Py +b22)X+ (P — (b = A)2)u— Az +y+ 2)w)Y
+ (0% + (0 — A)y)u— bz + y + 2)0)Z = 0.

Similarly, we write down the equations of the imagesiinBC, andA.B.C. The
three lines are concurrent if and only if

(B +—aH)v—w)?+(+a®>—b?)(w—u)?+ (a®>+b* —P)(u—10)?)

(r+y+2)? Z u-a?(Py+b%2) | =0.
cyclic
Since the first two factors are nonzero for nonzerov, w) and (z,y, z), we
obtain the following result.

Theorem 5. GivenT = (z : y : z), the antiparallel images of a line are concurrent
if and only if the line contains the point

r (Y z oz xr Y
T=(ptaiata ot

Here are some examples of correspondence:

r] || 7T | T[T |
X1 | Xar || X1g | X214 || Xeo | X1196
Xo | Xs39 || Xoo | Xsoo || Xoo | X1084
X3 | Xg || Xao0 | X1108 || X100 | X1015
Xy | Xotg || X55 | X1 || X110 | X115
X5 | Xsro || Xs6 | Xo || X111 | Xosso
Xeo | Xo || X57 | Xi212 || Xss7 | Xsss
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Dedicated to the memory of Professor Ferenc &@®21-1990

Abstract. We offer a survey of some lesser known or new trigonometric proofs
of the Steiner-Lehmus theorem. A new proof of a recent refinedtaisaalso
given.

1. Introduction

The famous Steiner-Lehmus theorem states that if the internal angle bésector
of two angles of a triangle are equal, then the triangle is isosceles. Foeat rec
survey of the Steiner-Lehmus theorem, see M. Hajja [8]. From the biblibgra
of [8] one can find many methods of proof, purely geometric, or trigondmetr
of this theorem. Our aim in this note is to add some new references, and to draw
attention to some little or unknown proofs, especially trigonometric ones. We sha
also include a new trigonometric proof of a refined version of the Steirlrrlus
theorem, published recently [9].

First, we want to point out some classical geometric proofs published id 196
by A. Froda [4], attributed to W. T. Williams and G. T. Savage. Another irstang
proof by A. Froda appears in his book [5] (see also the book of thenskeauthor
[15]). Another purely geometric proof was published in 1973 by M. Kthga
Narayama [16]. Other papers are by K. Seydel and C. Newman [L#eanore
recent papers by D. Beran [1] or Diikhing [13]. None of the recent extensive
surveys connected with the Steiner-Lehmus theorem mentions the use dégomp
numbers in the proof. Such a method appears in the paper by C. I. Luim[1
1959.

Trigonometric proofs of Euclidean theorems have gained additional impertan
after the appearance of Ungar’s book [18]. In this book, the auttneldps a kind
of trigonometry that serves Hyperbolic Geometry in the same way our oydinar
trigonometry does Euclidean Geometry. He calls it Gyrotrigonometry anceprov
that the ordinary trigonometric identities have counterparts in that trigonometry
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Consequently, he takes certain trigonometrical proofs of Euclideaneimsoand
shows that these proofs, hence also the corresponding theorem#) xefichin
Hyperbolic Geometry. In this context, he includes the trigonometric proatiseof
Urquhart and the Steiner-Lehmus theorems that appeared in [7] anB¢Bted

to the question, first posed by Sylvester (also mentioned in [8]), whethes th

a direct proof of the Steiner-Lehmus theorem, recently J. H. Conway[2$chas
given an intriguing argument that there is no such proof. However,dhidity of
Conway’s argument is debatable since a claim of the non-existence etaplioof
should be formulated in a more precise manner using, for example, the tangua
of intuitionistic logic.

2. Trigonometric proofs of the Steiner-Lehmus theorem

2.1 Perhaps one of the shortest trigonometric proofs of the Steiner-Lehems th
rem one can find in a forgotten paper (written in Romanian) in 1916 by \t€3ds
[3]. Let BB’ andCC’ denote two angle bisectors of the triangl&C' (see Fig.
1). By using the law of sines in trianglB B’C', one gets

BB BC

sinC  sin (C + £)°

A

Figure 1.

AsC + B = ¢ 180°-C=4 _ g¢° _ A-C one has

sin C'
BB =a- ————.
oS %
Similarly,
sin B
CcC'=a - ——.
cos A*TB
Assuming BB’ = CC’, and using the identitiesin C = 2sin $ cos &, and
sin % = cos AJFTB, sin g = cos #, we have
A+ B A-B B A+C A-C
COS — - COS cos = COS — COS cos . (1)

2 2 2 2 2 2
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Now from the identity
cos(z 4+ ) - cos(z — y) = cos? z + cos?y — 1,
relation (1) becomes
— — — = = — — ——1].
cos 2 (cos 9 + cos 5 > cos 5 (COS 5 + cos 5
This simplifies into

B N (a2 A s B ©) o
COS B COS 9 S1814 9 COS B COS 9 = u.

As the second paranthesis of (6) is strictly positive, this impibe% —cos % =0,
soB=C.

2.2 In 2000, respectively 2001, the German mathematicians D. Plachky [@i2] an
D. Ruthing [14] have given other trigonometric proofs of the Steiner-Lehmers-th
rem, based on area considerations. We present here the method bgyPlzefote
the angles aB andC respectively by3 and~, and the angle bisectol3B’ and
AA’ by w, andw, (see Figure 2).

A

K1
B

A c

Figure 2.

By using the trigonometric forrr%absirw of the area of triangled BC, and
decomposing the initial triangle in two triangles, we get

1 o681 B8 1 Ca 1 e
iawﬁ sin 5 + §cwﬁ sin 5 = §bwa sin 3 + §cwa sin 9
By the law of sines we have
sina  sinf  sin(m — (a+ (3))
a b c
SO assumingv, = wg, We obtain

)

csin o . B s G csin 3 L« s a
——— sin— 4+e¢sine = ———sin — + esin —
sinfa+ ) 2 2 sin(a+p8) 2 2’

or

sin(a + ) <sin(; —sin g) + sin % sin § — sinasing = 0. (2)
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Writing sin o = 2 sin § cos § etc and using the formulae

uU—v U+ v

sinu — sinv = 28in 5 008 —5— (3)
COSU — COSV = —2sinujvsinu;v, (4)
we rewrite (2) as
+

e
2sin

i <sin(a+ﬁ)cosa +281n3sin§sina+ﬁ> —0.

2
Sincea+( < 7, the expression inside the parenthesis is strictly positive. It follows
thata = 5.

2.3 The following trigonometric proof seems to be much simpler. It can found
in [10, pp. 194-196]. According to Honsberger, this proof was kmisred by

M. Hajja who later came across in it some obscure Russian book. The swuthor
rediscovered again this proof, and wish to thank the referee for thisniiafion.
Writing the area of trianglel BC' in two different ways (using triangle$ BB’ and
BB’C) we get immediately

2ac J6]

wb—a+ccos§. (5)
Similarly,
2bc o
wa—b+ccos§. (6)

Suppose now that, > b. Thena > 3,502 > 2. As ¢, 9 ¢ (0, %), one gets
cos 5 < cosg. Also, % < & is equivalent td < a. Thus (5) and (6) imply
w, > wp. This is indeed a proof of the Steiner-Lehmus theorem, as supposing
w, = wp and lettinga > b, we would lead to the contradictiom, > wy, a
contradiction; similarly withz < b.

For another trigonometric proof of a generalized form of the theoremgvee r

the reader to [6].

3. A new trigonometric proof of a refined version

Recently, M. Hajja [9] proved the following stronger version of the Steiner
Lehmus theorem. LeBY andC'Z be the angle bisectors and BY =y, CZ =
z,YC =v, BZ =V (see Figure 3).

Then

c>b=>y+v>2z4+V. (7

AsV = 25, v = aa—fc it is immediate that > b = V > v». Thus, assuming
¢ > b, and using (7) we gaf > z, i.e. the Steiner-Lehmus theorem ($2e3). In
[9], the proof of (7) made use of a nice lemma by R. Breusch. We offier hi@ew
trigonometric proof of (7), based only on the law of sines, and simple trigxetaic
facts.
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A

Figure 3.

In triangle BC'Y one can write
a CcYy BY

sin (C+§) N sing ~ sinC’

SO
Y+ _ a
sinC—i—sing sin(C’—i—g)’
implying
a (sinC + sin g)
+v= 8
yrv sin (C + g) ®)
Similarly,
Z+V:a(sinB+sin%) )

sin (B + %)
Assume now thay + v > z + V. Applyingsinu 4 sinv = 2sin “74'” cos “5* and

using the facts thatos (§ + 2) > 0, cos (§ + ) > 0, after simplification, from
(8) and (9) we get the inequality

cos Q—E cos E—i—g > cos E—g Ccos €+§
2 4 2 4 2 4 2 4 )

Using2 cos u cos v = cos "T“’ + cos “57, this implies

Cos <30+B> + cos (C—?)B> >cos<
4 4 4 4
or
3C B 3B C
Cos <4+4> — COoS <4+4> >cos<
Now applying (4), we get
—sin Bl sin - > —sin 2 sin % (20)
By sin 3u = 3sinu — 4sin® u we get immediately from (10) that

C B
—3 + 4sin® 5 >3+ 4 sin? 3 (11)
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Since the function: + sin® z is strictly increasing inc € (0, %), the inequality
(11) is equivalentt@’ > B. We have actually shown thgt-v > z+V < C > B,
as desired.
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An Angle Bisector Parallel Applied to
Triangle Construction

Harold Connelly and Beata Randrianantoanina

Abstract. We prove a theorem describing a line parallel to an angle bisector of
a triangle and passing through the midpoint of the opposite side. We thgn app
this theorem to the solution of four triangle construction problems.

Consider the triangled BC with angle bisectoAT,, altitude AH,, midpoint
M, of side BC and Euler point, (see Figure 1). Let the circle with centerigt
and passing through/,, intersectAH, at P. Draw the lineM,P. We prove the
following theorem.

P

Figure 1.

Theorem 1. Inany triangle ABC with H, not coinciding with M, theline M, P
isparallel to the angle bisector AT,.

Proof. Let O be the circumcenter ol BC' (see Figure 2). The perpendicular bi-
sector)M,, O and the angle bisecto!T}, intersect the circumcirclg)) atS. Let the
midpoint of £, O be R, and reflect the entire figure through Let the reflection of
ABC be A'B'C’. SinceE, M, is equal to the circumradius, the cird&, (M,,) is
the reflection of O) and is the circumcircle oft’ B'C’. Since segmentd £, and
M,0O are equal and parallei is the reflection of\/, and is therefore the midpoint
of B'C’. Thus,AH, is the perpendicular bisector 8/ C’. Finally, AH,, intersects
circle E,(M,) at P, therefore)M,, P is the bisector of angl®’ A’C” and parallel to
AT,. O
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P
) K B
N
Iopy
R\>
To
B
H, A= M, c
S
Figure 2.

Remark. For the case wherH, and M, coincide, triangled BC is isosceles (with
apex atd) or equilateral. The lined/, P and AT, will coincide.

Wernick [3] presented 39 problems of constructing a triangle with ruler and
compass given the location of three points associated with the triangle aseihcho
from a list of sixteen points. See Meyers [2] for updates on the status qfrtb-
lems from this list. Connelly [1] extended this work by adding four more points
to the list and 140 additional problems, many of which were designated as unr
solved. We now apply Theorem 1 to solve four of these previously otved
problems. The problem numbers are those given by Connelly.

Figure 3.

Problem 99. GivenFE,, M, andT, construct triangled BC.
Solution. Draw line M, T, containing the sideBC' and then the altitudé’, H,,
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to this side (see Figure 3). The circle with centeéy and passing through/,
intersects the altitude &. Draw M, P. By Theorem 1, the line throudh, parallel
to M, P intersects the altitude at. ReflectA throughE, to get the orthocenter
H. The midpoint ofE, M, is the nine-point centeN. Reflectd throughN to
obtainO. Draw the circumcircle througH, intersecting\/, T, at B andC.

Number of Solutions. Depending on the relative positions of the three points, there
are two solutions, no solution or an infinite number of solutions. We start la-loc
ing £, and)M,. Then the segmeti, M, is a diameter of the nine-point circ{éV).
Since, for any triangle, angle, T, M, must be greater th&d0°, T, must be inside
(N), or coincide withM,, to have a valid solution. For the case with inside
(N), we have two solutions since the cirdig, (M, ) intersects the altitude twice
and each intersection leads to a distinct solution. If the three points are aclline
the two triangles are congruent reflections of each other through thdflifig.is
outside or on(V), except atM/,, there is no solution. If;, coincides with}M,,,
there are an infinite number of solutions. In this case, the vettean be chosen
anywhere on the open segméwt, M/, (whereM] is the reflection of\/, in E,),
and there is a resultant isosceles triangle.

Problem 108. GivenE,, N andT, construct triangleA BC.

Problem 137. GivenM,, N andT, construct triangleA BC'.
Solution. Since N is the midpoint of E,M,, both of these problems reduce to
Problem 99.

Problem 130. Given H,, N andT, construct triangleA BC'.
Solution. The nine-point circle, with centé¥ and passing througH,, intersects
line H,T, again atM,, also reducing this problem to Problem 99.

Related to these, the solutions of the following two problems are locus restricted
(i) Problem 78: giverk,, H,, T;
(i) Problem 99 in Wernick'’s list [3]: given\l,, H,, T,.
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A Family of Quartics Associated with a Triangle

Peter Yff

Abstract. It is known [1, p.115] that the envelope of the family of pedal lines
(Simson or Wallace lines) of a triangleBC is Steiner’s deltoid, a three-cusped
hypocycloid that is concentric with the nine-point circle4BC and touches it

at three points. Also known [2, p.249] is that the nine-point circle is thadoc
of the intersection point of two perpendicular pedal lines. This papesiders a
generalization in which two pedal lines form any acute afglé is found that
the locus of their intersection point, for any valueébfis a quartic curve with
the same axes of symmetry as the deltoid. Moreover, the deltoid is the pavelo
of the family of quartics. Finally, it is shown that all of these quartics, a$ age
the deltoid and the nine-point circle, may be simultaneously generatedtiig po
on a circular disk rolling on the inside of a fixed circle.

1. Sketching the loci

Consider two pedal lines of triangkeBC which intersect and form an angle
It is required to find the locus of the intersection point for all such paingeofal
lines for any fixed value of. There are infinitely many loci asvaries betweef
and3. By plotting points, some of the loci are sketched in Figure 1. These include
the case® = 7, Z, 22, and%, the curves have been colored. As— 0, the
locus approaches Steiner’s deltoid. It will be shown later that in gettezdbcus
is a quartic curve. A§ — 7, the quartic merges into two coincident circles (the
nine-point circle). Otherwise each curve has three double points, vgeieim to
merge into a triple point wheé = %. This case resembles the familiar trefoil, or
“three-leaved rose” of polar coordinates.

2. A conjecture

Figure 1 seems to suggest that all of the loci might be generated simultane-
ously by points on a circular disk that rolls inside a fixed circle concentric thith
nine-point circle. For example, the deltoid could be generated by a poititeon
circumference of the disk, provided that the radius of the disk is one thitdoth
the circle. The other curves might be hypotrochoids generated by inperitatis of
the disk. However, this fails because, for example, there is no genepatingfor
the nine-point circle.

Publication Date: July 27, 2009. Communicating Editor: Paul Yiu.
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Another possible approach is given by Zwikker [2, pp.248—-249], sihows
that the same hypocycloid of three cusps may be generated when theotifies
rolling circle is two thirds of the radius of the fixed circle. In this case the deltoid
is generated in the opposite sense, and two circuits of the rolling circlecrized
to generate the entire curve. Simultaneously the nine-point circle is gemhérate
the center of the rolling disk. It is now necessary to prove that evenslotthe
family is generated by a point on the rolling disk.

B

-

Figure 1

3. Partial proof of the conjecture

In Figure 2 the nine-point circle is placed with its center at the origin of an
zy-plane. Its radius i%, R being the radius of the circumcircle gfBC. The
radius of the fixed circle, also with center at the origin%?s The rolling disk has
radiusR, and initially it is placed so that it is touching the fixed circle at a cusp of
the deltoid. Let ther-axis pass through this point of tangency. The center of the
rolling disk is designated bg, so thatOQ = %. ST is a diameter of the rolling
disk, with 7" initially at its starting point(2£,0). Let P = (£ +, 0) be any
point on the radiug)7'(0 < v < R). Then, as the disk rotates clockwise about
its center, it rolls counterclockwise along the circumference of the fixeteciand
the locus ofP is represented parametrically by

t
= — t —
T 2cos —i—ucos2,
t

y:ESint—using. D
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In these equations is the parameter of the family of hypotrochoids, while
is the running parameter on each curve. Wheg 0, the locus is the nine-point
circlez? +¢% = RTQ. Whenu = R, the parametric equations become

R t+2 !
T = — | cos cos— |,
2 2

y:];<sim7§—2sim;)7 2)

which are well known to represent a deltoid.

Figure 2
One further example is the case= %, for which
xr = 5 COS COS 5 = COS 4 COS47
R t 3t t
v=5 (sint—sin2> :Rcoszsinz. 3)

These equations represent a trefoil, for which the standard equatiomian p
coordinates is

r = acos 30,

from whichx = a cos 36 cos 8 andy = a cos 36 sin 6. This result is identical with
(3) whent = 4R andR = a. Henceu = g gives a trefoil (see Figure 3).

The foregoing is not a complete proof of the conjecture, because it &ssacy
to establish a connection with the loci of Figure 1. These are the curvesajed
by the intersection points of pedals lines that form a constant angle.
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Figure 3

4. A family of quartics

By means of elementary algebra and trigonometric identities, the parameter
may be eliminated from equations (1) to obtain

(4R?*(2* + y?) + 24u’ Rz + 8u* + 2u?R62 — T*)?
= 4u?(4Rx + 4u® — R?)*(4Rx + u® + 2R?). (4)

Thus, (1) is transformed into an equation of degtée x andy. The only excep-
tional case is; = 0, which reduces t4x? + 4y> — R?)2 = 0. This represents the
nine-point circle, taken twice.

5. Envelope of the family

In order to find the envelope of (4), itis more practical to use the paranfietnic
(2). The parametei will be eliminated by using the partial differential equation

g0y _owoy
ot Ou  Ou Ot

Bt Yeint i 2 = (cos E) (B cost — “eos t
9 Sin 231n2 Sln2 = 0082 9 COS 20082 .

This reduces ta = R cos % and substitution in (1) results in the equations

or

x :§(2C08t+0082t),
Y= % (2sint — sin 2t) . (5)
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Replacing by —% transforms (5) to (2), showing that the envelope of (1) or (4) is
the deltoid, which is itself a member of the family.

6. A “rolling” diameter

At the point given by (2) the slope of the deltoid is easily found totdnei.
Hence the equation of the tangent line may be calculated to be

—E sint—2s'nE —tauaE x—E Cost—i—2cosE
L My ) =iy 2 2))
t t
y—t&n4<x—§<1+20052>>. (6)

Since the deltoid is a quartic curve, and since the point of tangency may be
regarded as a double intersection with the tangent line (6), the tangentrmeast
the curve at two other points. L€t (cosv+2cos %), & (sinv —2siny)) be

any point on the curve, and substitute this fory) in (6). The result is

R(, 9 i v) ¢ t R( 49 v) R 149 t
— (sinv —2sin - | =tan— ( — -] == -
5 sinv S 5 a 15 CoS v (3052 5 0052 ,

which becomes

or

v ) Y,
2sin — cos — — 2sin —
2 2

t t
:tan4((3082;—sin2;}+2cos;)—1—2cos2). @)

In order to rewrite this as a homogeneous quartic equation, we make uge of th
identities

) ) )
sin — = 2sin — cos —,
2 4 4

v 9V . 9V

cos — = cos” — — sin” —,

2 4 4

Lo U v

1 = sin® - —l—cos2 —.

4 4

Then (7) becomes

L v v Lo v V /. o0 v
4SIHZCOS*<COSQ*—SIH2 7)—4smfcosf<sm2f+cos2 7>

4 4 4 4 4 4 4
t 2 2
= tanz [(cos2 z — sin? %) — (2 sin%cos Z)
aL-zE)(,-ﬂ ,23),(‘-29 ,22)2
+ 2 (cos 1 sin 1 sin 1 + cos 1 sin 1 + cos 1

t 2
—2cos 3 (sin2 Z + cos? %) } .
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The terms are then arranged according to descending powsrs;pfo obtain

t t
2tan — (1 —i—cos) sin® v_ 8 sin® Ecosg

4 2 4 4 4
t t t t
+4tan1 (2—1—0082) sin2£cos2 Z — Ztanz <1 — cos 2) COS4Z =0.

Dividing by 2 tan £ cos* 4 and lettingV’ := tan ¥ simplifies this to

A b AN t\
<1+cos2>V 400‘54 Vv +2<2+c0s2)V (1 cos2>—0.

Since the tangent line touches the deltoid whete ¢, the quartic expression must
contain the double factqfi’ — tan £)?. The factored result is

t £\ 2 t
1 _ _ — 2_2 —_ . _1 g .
< +6052> (V tan4> [V cot4 V } 0

Hence the other solutions are found by solving
t
V2—2cotZ-V—1:0,

which yieldsV = cot £ + csc & = cot £ or — tan £. SinceV = tan ¥, these may
be expressed as= 2w — g andv = —% respectively. Because of periodicity there
are other solutions to the quadratic equation, but geometrically there arenanly
and the ones found here are distinct. The first one, substituted in{&¥, gi

t t t t
(x,y) = (]; <cos2 —2COS4> , g (—sin2 —2sin4>> )

Let this be the poinf’, shown in Figures 2 and 3. The poisitat the other end of
the diameter is given by the second solutios —%:

R t t R Lt .t
S = <2 <COSQ+2COS4>, 3 (—31n2+251n4>).

The usual distance formula shows that the lengti’Bfis 2R. Moreover, the mid-
point of ST is (£ cos £, —£&sin L), which is on the nine-point circle. Therefore
it is the center of the rolling disk, anfi7" is a diameter. Since botki and7" gen-
erate the deltoid, this confirms the fact that, for any line tangent to the delteid, th
segment within the curve is of constant length. See [2, p.249].

In order for the pointl” to trace one arch of the deltoid, the rolling disk travels
through‘%r radians on the fixed circle. Simultaneously the diamgtErrolls end

over end to generate (as a tangent) the other two arches of the deltoid.

7. Proof of the conjecture

It remains to be shown that every locus defined by the intersection padiwbof
pedal lines meeting at a fixed angle is a hypotrochoid defined by (1).negpedal
line be given by (6), with slopeéan ﬁ. A second pedal line, forming the angle
with the first, is obtained by replacing by ﬁ + 6. (There is no need to include
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—6, because this will be taken care of whileanges over all of its values). The
equation of the second pedal line will therefore be

y:tan(i—kQ) [1:—5(1—#2(:05(;%—29))] (8)

Simultaneous solution of (6) and (7), after manipulation with trigonometrical
identities, gives the result

ng [cos(t+29)+2cosecos <;+9>} ,

Y= g [sin(t+29)—2cosﬁsin <;+9>} . 9)
Finally, replacing + 260 by t and R cos 6 by u, we transform (9) into

t
= — t —
T 2cos +uc052,

Yy = gsint — usin%,
precisely equal to (1), the parametric equations of the family of hypotidsho
Thus the result is established.

Remark. The family of quartics contains loci which are outside the deltoid, but
these correspond to valueswf> R, in which casé would be imaginary.
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CircleChainsInside a Circular Segment

Giovanni Lucca

Abstract. We consider a generic circles chain that can be drawn inside a circu-
lar segment and we show some geometric properties related to the chHin itse
We also give recursive and non recursive formulas for calculatiegcéimters
coordinates and the radius of the circles.

1. Introduction

Consider a circle with diametet B, centerC, and a chord7H perpendicular
to AB (see Figure 1). PoinD is the intersection between the diameter and the
chord. Inside the circular segment bounded by the clitidand the ar¢Z BH, it
is possible to construct a doubly infinite chain of circles each tangent tdtrd,c
and to its two immediate neighbors.
G

H

Figure 1. Circle chain inside a circular segment

Let2(a + b) be the diameter of the circle ad the length of the segmentB.
We set up a cartesian coordinate system with origi®.aBeginning with a circle
with center( Xy, Yp) and radius- tangent to the chor@ H and the ar&BH, we
construct a doubly infinite chain of tangent circles, with centéfs Y;) and radius
r; for integer values of, positive and negative.

Publication Date: August 31, 2009. Communicating Editor: Paul Yiu.
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2. Some geometric properties of the chain
We first demonstrate some basic properties of the doubly infinite chain Eirc

Proposition 1. The centers of the circles lie on the parabola with axisalong AB,
focus at C', and vertex the midpoint of O B.

Figure 2. Centers of circles in chain on a parabola

Proof. Consider a circle of the chain with centef(x, y), radiusr, tangent to the
arc GBH at(@. Since the segmert@ containsO’ (see Figure 2), we have, by
taking into account that’ has coordinate® — a,0) and

CQ= a+b,
CO' = /(z—b+a)?+y2
OQ=r=uz,

co' = CcQ-00Q.
From these, we have

VEe—-b+a2+y2=a+b—u,
which simplifies into
y? = —da(z —b). (D)
This clearly represents the parabola symmetric with respect te-tods, vertex

(b,0), the midpoint ofO B, and focugb — a, 0), which is the cente€ of the given
circle. O
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Proposition 2. The points of tangency between consecutive circles of the chain lie
on the circle with center A and radius AG.

H

Figure 3. Points of tangency on a circular arc

Proof. Consider two neighboring circles with centérss;, Y;), (X;+1, Yi+1), radii
ri, Tixr1 respectively, tangent to each otheflafsee Figure 3). By using Proposi-
tion 1 and noting tha#l has coordinate§—2a, 0), we have

Y2 2
A0} = (X;+2a)? +Y? = (——Z+b+2a) + Y7,

4a
2o X2 <—Y—Z2+b)2.
4a
Applying the Pythagorean theorem to the right triandte; T;, we have
AT? = AO? —r? = 4a(a +b) = AO - AB = AG>.
It follows thatT; lies on the circle with cented and radiusAG. O

Proposition 3. If a circle of the chain touches the chord GH at P and the arc
GBH at @), then the points A, P, ) are collinear.

Proof. Suppose the circle has centet. It touchesGH at P and the aré&BH at
Q (see Figure 4). Note that trianglésAQ andO’ PQ are isosceles triangles with
ZACQ = ZPO'Q. Itfollows thatZCQA = Z0'QP, and the pointsi, P, Q are
collinear. O
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H

Figure 4. Line joining points of tangency

Remark. Proposition 3 gives an easy construction of the circle given any one of th
points of tangency. The center of the circle is the intersection of thelieand
the perpendicular t& H at P.

3. Coordinates of centersand radii

Figure 5 shows a right triangl@; O, _, K; with the center®); _; andO; of two
neighboring circles of the chain. Since these circles have radii= X; ; and
r; = X; respectively, we have

(X1 =X+ (Yi= Vi)’ = (ri+ri1)? = (X + Xi1)?,
(Y; = Y1) = 4X; X 1.

Making use of (1), we rewrite this as

Y2 Y2
Yi_Y;— 2:4 - h— i—1
( 1) < 4(1)( 4@)7

4 b) — v2 +b)Y2, — dab?
& 5 ) Y01 o gy Ly g WEDYEL A
a a

If we index the circles in the chain in such a way that the ordidatecreases
with the indexi, then from (2) we have

or

2
20— (- ab) /142

}/i_
Y2
2(1+2- )

This is a recursive formula that can be applied provided that the ordifyadé
the first circle is known. Note thaf, must be chosen in the interval2v/ab, 2v/ab).

(3a)
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H

Figure 5. Construction for determination of recursive formula

Formulas for the abscissa of the centers and radii are immediately daxivedI),

ie:
2

Y,
Xi=ri=—"+b. 4

Now, it is possible to transform the recursion formu®®)(into a continued
fraction. In fact, after some simple algebraic steps (which we omit for bievity

have
b 1
Y; = 2a \/1+———Y : 5)
a i— b
e Ty1ta
Defining
b Y; b
a=24/1+-, and Z;=— —/1+ - (6)
a 2a a
fori=1, 2, ..., we have
1
T a+Zi
Thus, for positive integer values &f
1
Zi = - 1 )
a —
1
a f—
1
a+Zo+
where we have used, in place of7,
Y. b
Zop = -2 — 414 =,

2a a
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This is to distinguish from the extension of the chain by working the recu(Sian

backward!
2Y+E4b>\/> 3' -

Thus, for negative integer values®fwith

Y_.
Z_; = - “1—|—9,
2a a

Yioi=

we have

- 7Ot+Z0_

Y. / b
Z(),:fo—{— 1+ —.
2a a

It is possible to give nonrecursive formulas for calculatijgandY_;. For
brevity, in the following, we shall consider only; for positive integer indices
because, as far ds_; is concerned, it is enough to change, in all the formulae
involved, « into —a, Z; into Z_;, and Zy into Z,_. Starting from (5), and by
considering its particular structure, one can writeifer 1, 2, 3, ...,

_Qimi(a)
Qi)

whereQ;(«) are polynomials with integer coefficients. Here are the first ten of
them.

where

Z; =

Qo(a) 1

Q1(a) o+ Zot

Q2(e) (0 —1) +aZos

Qs(a) (@ —2a) + (o —1)Zo+

Qa(e) (@' =30 +1) + (o’ — 2a)Zo

Qs(a) (@® —4a3 +3a) + (a* =302 + 1) Zy+

Qs(a) (a® =52 +6a% — 1) + (a® — 4a% + 3a)Zo4

Q7(a) (a” —6a° + 1002 — 4a) + (a® — 5a* + 6a% — 1) Zp,

Qs(a) (a® —7a% +15a* —10a% + 1) + (a” — 6a° + 100 — 4a)Zy
Qo(a) | (@ —8a” +21a® — 2003 + 5a) + (a® — Ta® + 15a* — 10a? + 1) Z,

According to a fundamental property of continued fractions [1], thedgnpo-
mials satisfy the second order linear recurrence

Qi(a) = aQi-1(a) — Qi—2(a). (7)

1Equation (3b) can be obtained by solving equation (2)for; .
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We can further write

Qi(a) = Pi(a) + Pi—1(a) Zo4, (8
for a sequence of simpler polynomidPy«), each either odd or even. In fact, from
(7) and (8), we have

Pyia(ar) = aPya (o) — Pi(av).

Explicitly,
1, i=0,
Pya) = Zézo(—l)%“f(%;];’“)a%, i=2,4,6,...,
E,ﬁ(—l)%“(};ﬁ)a%—l, i=1,3,5,....

From (6), we have

- Qi—1(a)
ima(a-2905),
fori=1, 2, ....
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On Three Circles

David Graham Searby

Abstract. The classical Three-Circle Problem of Apollonius requires the con-
struction of a fourth circle tangent to three given circles in the Euclidearepla
For circles in general position this may admit as many as eight solutiongnr e
no solutions at all. Clearly, an “experimental” approach is unlikely to solge th
problem, but, surprisingly, it leads to a more general theorem. Hemnsder
the case of a chain of circles which, starting from an arbitrary point @afn
the three given circles defines (uniquely, if one is careful) a tangesiédit this
point and a tangency point on another of the given circles. Taking thigpoet

as a base we construct a circle tangent to the second circle at this pbiotthe
third circle, and repeat the construction cyclically. For any choice of tfeeth
starting circles, the tangency points are concyclic and the chain can camtain
most six circles. The figure reveals unexpected connections with niassi-c
cal theorems of projective geometry, and it admits the Three-Circlel&hoof
Apollonius as a particular case.

In the third century B.C., Apollonius of Perga proposed (and presumahigd;
though the manuscript is now lost) the problem of constructing a fourth ¢anle
gent to three given circles. A partial solution was found by Jean dezte dround
1600, but here we shall make use of Gergonne’s extremely elegatibapluhich
covers all cases. The closure theorem presented here is a genieralafahis
classical problem, and it reveals somewhat surprising connections wirethe
of Monge, D’'Alembert, Pascal, Brianchon, and Desargues.

Unless the three given circles are tangent at a common point, the Problem of
Apollonius may have no solutions at all or it may have as many as eight — a Carte
sian formulation would have to take into consideration the coordinates of & thr
centers as well as the three radii, and even after normalization we wouldedgftb
with an eighth degree polynomial. Algebraic and geometrical consideratiads le
us to consider points as circles with radius zero, and lines as circles withénfin
radius. Inversion will, of course, permit us to eliminate lines altogether, emwe
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annotations.
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we must take into account the possibility of negative fadihis apparent compli-
cation in reality allows us to define general parameters to describe the rekation
between pairs of circles:

Notation and Definitions (Circular Excesy Let C; = C;(x;,y;;7;) be the circle
with center(z;, ;) and radiug-; define

ez‘j
4T‘Z'T’j '
The usefulness of the “excess” quantitéieande will be evident from the following
definitions.

e = xi+yi—ri, ey = (ri—a;) - (yi—y;)?—(ri—rj)?,  and e =

Definition. We distinguish five types of relationships between pairs of cir€les
andC; with nonzero radii, as illustrated in the accompanying table.

Nested: Homogeneosuly tangent: Intersecting:
€ij <0 €i5 =0 0<egy <1
Oppositely tangent: External:
€ij = 1 Eij > 1

These descriptions are preserved by inversion — specifically,

Theorem 1. (Inversive Invariants)The parameteg;; is invariant under inversion
in any circle whose center does not lie on either of the two given circles.

Proof. The circleCy(x, yo; 7o) invertsC(z, y;r) to C' (2, y'; r'), where ifd is the
Euclidean distance between the center§ ahdCy, andly = dz’”forz, we find
x = xo+ Ip(z — x9),

Y = yo+ Io(y — vo),
r = rl.

There are two common ways to interpret signed radii. They provideientation to the circles
(asin [6]), so that > 0 would indicate a counterclockwise orientatiens 0 clockwise, and- = 0
an unoriented point. In the limit = 00, and one obtains oriented lines. This seems to be Searby’s
interpretation. Alternatively, as in [11], one can assume a circle forlwhic 0 to be a disk (that
is, a circle with its interior), while- < 0 indicates a circle with its exterior; a line for whieh= oo
determines one half plane and= —oco the other. This interpretation works especially well in the
inversive plane (called thercle planehere) which, in the model that fits best with this paper, is the
Euclidean plane extended by a single point at infinity that is incident wittyéier of the plane.
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(See [5, p. 79]). Upon applying the formula fay to C; andC; then simplifying,
we obtain the theorem. O

Theorem 1 permits us to work in @ircle planeusing Cartesian coordinates, the
Euclidean definition of circles being extended to admit negative, infinitezarw
radii.

7
Y
£

Figure 1. The centers of similituds; of three circles lie on the axis of similitude.

Observation ( D’'Alembert-Mongg The centers of similituds;; of two circlesC;
andC; are the points on the line of centers where the common tangents (when they
exist) intersect. In Cartesian coordinates we have [7, Art. 114, p.105]

il — T Tl — TiYi
S = J J
v e ) e :
Ty =Ty Ty =Ty

Note that if the radii are of the same sign these coordinates corresporeddgttr-
nal center of similitude; if the signs are opposite the centanternal. Moreover,
three circles with signed radii generate three collinear points that lie on &dlileel c
the axis of similitudglor Monge Ling o, whose equation is [7, Art.117, p.107]

Yy Y2 Y3 r1 T2 I3 T1 T2 I3
o= |r1 T2 T3|x — |71 T2 T3|Y=|Yr Y2 Y3|-
1 1 1 1 1 1 K To T3

As similar determinants appear frequently, we shall write the as if the rows
area;, b;, ¢;; or simply A, shoulde; = 1.
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Lemma 2 (Second tangency point)f P(zo, o) is a point on a circleC; while C;

is a second circle, then there exists exactly one ciggler,,, y.; ) that is homo-

geneously tangent 1§, at P and toC; at some poin®’(zj, y,). MoreoverC, has

parameters

(wo — mi)ei;
2 3. ’

(Yo — vi)eij (1o — 73)eq;

Toq = T; + ya:yi+ 20 ) T = —T; — 20 )

where
ro:=0 and [ :=rir; — (vo — 25)(x0 — 7;) — (yo — i) (Yo — ¥j);
and the coordinates o’ are
ri€o; (X — T;) + 1rj€i;(xo — 4
$6:$2+ ’LO](] z) ]Z](O 1)7

rieoj + 7j(eij — €oj)
rieoj (Y — vi) + i€ (Yo — vi)

rieoj + j(eij — €oj)

’y(l): Yi +

where

eoj = (0 — 2;)° + (yo — y;)* =1}

Figure 2. The second tangency point of Lemma 2.

Proof. (Outline} The two tangency point® and P’ are collinear with a center
of similitude S;;, which will be external or internal according as the radii have
the same or different signs [7, Art. 117, p. 108]. It is then sufficierfirtd the
intersections of5;; P with C;. One of the roots of the resulting quadratic equation

*The existence and uniquenessCofs immediate to anybody familiar with inversive geometry:
inversion in a circle with centeP sendsP to infinity andC; to an oriented line; the image 6%,
under that inversion is then the unique parallel oriented line that is horeogsly tangent to the
image ofC;. Searby’s intent here was to provide explicit parameters, which veprecélly useful to
him for producing accurate figures in the days before the graphicga s that are now common.
I, however, drew the figures usir@nderella Searby did all calculations by hand, but they are too
lengthy to include here; | confirmed the more involved formulas uslathematica
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represents the point af; whose radius is parallel to that & on C;; the other
yields the coordinates d@?’, and the rest follows. O

We are now ready for the main theorem. The first part of the theorem — the
closure of the chain of circles — was first proved by Tyrrell and Poj46ll, having
been conjectured earlier from a drawing.

Theorem 3 (Apollonius Closure) LetCy,Co, andCs be three circles in the Circle
Plane, and choose a poift, onC;. DefineC;, to be the unique circle homoge-
neously tangent t6; at P; and toCs, thus definingP, € Cs. Continue withCog
homogeneously tangent@ at P, and toCs at Ps, thenCs4 homogeneously tan-
gent toCs at P3 and toCy at Py, ..., andCgy homogeneously tangent € at Fs
and toC; at P;. Then this chain closes wittys = C12 or, more simply,P; = P;.
Moreover, the point#,, ..., P; are cyclic(see Figure 3)

Figure 3. Fori = 1,2, and3 the given circleC; (in yellow) is homogeneously
tangent atP; to C; ;1) @andC;4s);, and atP; 13 t0 C(;13)(i+4) @NAC(;i42)(i+3)
(where the subscrips+ ¢ of C;;, are reduced té).

Proof.3 We first show that four consecutiv’s lie on a circle, takingP,, P, Ps,
Py as a typical example. See Figure 4.

3Rigby provides two proofs of this theorem in [6]. Searby independertiscovered the result
around 1987; he showed it to me at that time and | provided yet anothef im [3]. Searby’s
approach has the virtue of being entirely elementary.
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Figure 4. Proof of the Main Theorem 3

Special cases are avoided by using directed angles (sa thB(C is the angle
between 0 andr through which the lineBA must be rotated counterclockwise
aboutB to coincide withBC). Denote byC; andC;; the centers of the circles
(wherei = 1,2, 3) andC;; (wherel < i < j). By hypothesisF; is on the lines
joining C(;_1); to Cj(;11y and C; to both Cy; 11y and C;_1y;, where we use the
convention thaCs ., = Cj as shown in Figure 4. In that figure we denote the base
angles of the isosceles triangle<’; ;1) P; Pi+1 by o, 3, andy, while d is the base
angle of AC1 P, P;. ConsiderAC, XY formed by the lines; P,Cs4, P> Ps3, and
C1oP1C1. N AX P3Py, /Py = y and/P; = /Py P3Co3 + L/Co3 P3Py = 0+ Y,
whence/X = 7 — (ﬁ -+ 2"}/) INAYP Py, /P, = cand 4Py = LP1P,Cia +
/C19P,P3s = o+ 3, whenceZY = 7w — (2a + ). Consequently/Cy =
T—(LX+2Y)=2(a+F+7v)—m Butin AC, P, Py, ZC = m — 2§; whence,
2@+ pB+vy)—m=m—26,o0r

a+pB+y+0o=m.

Because/ P, P3Py = 3+ vyand/P, P, Py = a+ 6§, we conclude that these angles
are equal and the poinf3 , P,, P3, P, lie on a circle. By cyclically permuting the
indices we deduce thd®; and P; lie on that same circle, which proves the claim
in the final statement of the theorem. This new circle already interSgcs P,
and P, so that the sixth circle of the chain, namely the unique cifglethat is
homogeneously tangent th at P; and toC;, would necessarily be tangent@
at P, or P,. Should the tangency point 8, recalling thatCs, is the unique circle
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homogeneously tangent t at P, and toCs at P;, we would necessarily have
P3; = Ps. In that case we would necessarily have al0= Py and P, = P,
and the circleP; P, P; would be one of the pair of Apollonius Circles mentioned
earlier. In any casd}; = P, and the sixth circl€g; touche<; at P, closing the
chain, as claimed. O

This Euclidean proof is quite general: if any of the circles were straighs line
we could simply invert the figure in any appropriate circle to obtain a cor#tgur
of ten proper circles. We shall call the circle through the six tangencytptie
six-point circle and denote it byS. Note the symmetric relationship among the
nine circles — any set of three non-tangent circles chosen from tHe<w€ the
configuration aside fron§ will generate the same figure. Indeed, the names of the
circles can be arranged in an array

| AL P P
Py C Cs5 Czy
P, | Cia Oy Cag
Ps | Ce1 Cs6 Cs

so that the circles in any row or column homogeneously touch one anottier at
point that heads the row or column. Given the configuration of these tlesc
without any labels, there are six ways to choose the initial three non-tecigeas.
This observation should make clear that the closure of the chain is guzsdavien
when the Apollonius Problem has no solution.

Observation (Apollonius Axi$. The requirement that a cird¥z, y; r) be tangent
to three circle<C;(x;, y;; ;) yields a system of three quadratic equations which
can be simplified to a linear equation inandy, and which will be satisfied by
the coordinates of the centers of two of the solutions of the Apollonius Rroble
(The other six solutions are obtained by taking one of the radii to be negativ
We shall call the line through those two centers (whose points satisfy thiimgs
linear equation) theApollonius Axisand denote it byy; its equation [7, Art. 118,
pp.108-110] is
Aer

5

Note that the two linegs anda are perpendicular; they are defined even when

the corresponding Apollonius Circles fail to exist (or, more preciseg/nat real).

a:xAg YAy =

Observation (Radical Centey. The locus of all points having the same power
(that is, the square of the distance from the center minus the square afiibe)r
with respect to two circles is a straight line, ttradical axis[7, Art. 106, 107,
pp.98-99]:

pij 1 2(x; — xj)T + 2(y; — y;)y = € — e;.
The axes determined by three circles are concurrent at thdical center

Ae A:pe
Cr= %L, :
20,4, 20,y
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Apollonius axis

Axis of similitude

Figure 5. The Apollonius Axis of three oriented circles contains the cenfers
the two Apollonius circles, the radical centég, and the center§' of all six-
point circles. It is perpendicular to the axis of similitude.

This point is also known as th&longe Pointas it is the center of the circle, called
the Monge Circle that is orthogonal to all three given circles whenever such a
circle exists. By substitution one sees that lies ona. In summary,

Theorem 4 (Monge Circle) The Apollonius Axisy of three given circles is the
line through their radical cente€r that is perpendicular to the axis of similitude
o; furthermore the Monge circle, if it exists, is a six-point circle that inveres th
nine-circle configuration of Theorefinto itself.

Theorem 5(Centers of Six-Point Circles}or any three given non-tangent circles,
as P, moves around’; the locus of the cente$ of the corresponding six-point
circle is either the entire Apollonius Axis, the segment af between the centers
of the two Apollonius Circles (homogeneously tangent to all three of then give
circles), or that segment’s complementin

Proof. Let P, = (z9,y). We saw (while finding the second tangency point) that
the line P, P, coincides withS;s Py, which (by the formula foiS;2) has gradient

m1(Y0 — y2) — m2(y0 — ¥1) .
ri(zo — x2) — ro(xo — 21)’
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because the perpendicular bisegiaf P, P, passes throughs, its equation must
therefore be
(yo—y1)e12

ﬁ‘ y—uy — 2]"?2 :_rl(azo—xg)—rg(xo—x1)
g gy — omzen r1(yo — y2) — r2(yo — y1)
2f1s

We can then use Cramer’s rule to find the point wheietersects the Apollonius
AXxis «, which entails the arduous but rewarding calculation of the denominator,

o T1 X2 I3
Yo Y1 Y2 Y3
o T1 T2 T3

1 1 1 1

It requires only a little more effort to find the coordinates of the desiredsattion
point, which we claim to b&', namely

(rg —m1)

€p €1 €2 €3 €p €1 €2 €3
Yo Y1 Y2 Y3 To T1 T2 I3
0 77 ro 13 0 &7 ro 13
11 1 1 1 111 1 1 1
S = — PR ) (1)
2| zg 11 T2 X3 2 zg 71 T2 23
Yo Y1 Y2 Y3 Yo Y1 Y2 Y3
0 r ry 713 0 &7 ro 13
1 1 1 1 1 1 1 1

where we have used to stand forz3 + y3 (with 7o = 0). Of course, the same
calculation could be applied @s;, and we would obtain the same point (1). In
other words, the perpendicular bisectors of the chordsfofrmed by the tangency
points of C1o with C; and C,, and of Cg; with C; and Cs, must intersect af,
which is necessarily the center §f As a byproduct of the way its coordinates
were calculated, we must hayeon «, as claimed. Finally, the Main Theorem
guarantees the existence $f and (1) shows that its coordinates are continuous
functions ofxy andyy. Since a solution circle to the Problem of Apollonius is
obviously a (degenerate) six-point circle, the second part of thedhed also
proved. O

SettingS = (s1, s2) and rewriting the first coordinate of (1) as

eyg €1 ey e3 To X1 X2 T3
Yo Yr Y2 Ys | _ o | YO Y1 Y2 U3 )
0 r ro 713 0 & ro 713

1 1 1 1 1 1 1 1

we readily see that this is an equation of the form
x% — 2510 + 3/(2) — 23910 + (terms involving neithet noryg) = 0;

the only step that cannot be done in one’s head is checking that thecmftify
necessarily equals the second coordinate of (1). In particular, wibake point
(zo0,y0) satisfies the equation of a circle with center= (s1, s2). But, the unique



190 D. G. Searby

circle with centerS that passes throudlry, yo) is our six-point circleS. Because
both equation (2) and the corresponding equation using the secordiraierof
(1) hold for any pointP; in the plane, even iP; does not lie orC;, we see thas
is part of a larger family of circles that cover the plane. We thereforeckethat

Theorem 6 (Six-point Pencil) The equations(2) represent the complete set of
six-point circles, which is part of a pencil of circles whose radical asis. When
the pencil consists of intersecting circlestnight itself be a six-point circlé.

Proof. Si2 has the same povﬁemamelym“’"2 with respect to all circles tangent

to C; and(Cs; but, for any pointP; € Cq, the quantlty812P1 x S19P5 is also the
power of 515 with respect to the six-point circle determined By. Since similar
claims hold forSs3 and Ssy, it follows thato (the line containing the centers of
similitude) is the required radical axis. The rest follows quickly from thergefi
tions. O

Since the tangency point®, and P, of C1, with C; and(C, are collinear with
S12, and similarly for the other pairs, we see immediately that (as in Figure 6)

Theorem 7(Pascal) The points where the six-point circlemeets the given circles
form a Pascal hexagoR, P» P P, P; P; whose axis is the axis of similitude

Again, the pair of Apollonius circles deriving from Gergonne’s congian and
(if they are real) delimiting the pencil of Theorem 6 are special positionsedf;th
whence (as in Figure 7)

Theorem 8(Gergonne-Desarguedjor any given triple of circles, the six tangency
points of a pair of Apollonius Circles, the three centers of similit$gle and the
radical centerC'r are ten points of a Desargues Configuration.

Proof. We should mention for completeness that by Gergonne’s constréjdtien
poles(z},y}) of o with respect ta; are collinear with the radical centéfz and
the tangency points of the two Apollonius Circles with For those who prefer
the use of coordinates,

Y1 Y2 Y3 Ty T2 I3
x; — «’L'z' —|— Ti T]_ TQ T3 5 y; - yz + Ti T]. T? T3 I
1 1 1 1 1 1

4one easily sees that each six-point circle cuts the three given circlgaaltangles. Salmon [7,
Art. 118] derives the same conclusion as our Theorem 6 while detemgrtimnlocus of the center of
a circle cutting three given circles at equal angles.

S wonder if Searby used the definition pbwerthat he gave earlier (in the ford? — ), which
seems quite awkward for the calculations needed here. The claim alatdribtant power of' >
is clear, however, without such a calculation: the circle, or circles, arsign that interchangé,
with Cz, called themid-circlesin [2, Sections 5.7 and 5.8] (see, especially, Exercise 5.8.1 06).12
is the locus of points® such that two circles, tangent to bath andC,, are tangent to each other at
P. The center of this mid-circle i§12, and the square of its radis 2 P is the power ofS;2 with
respect to any of these common tangent circles.

®Details concerning Gergonne’s construction can be found in many akfeeences that deal
with the Problem of Apollonius such as [1, Section 10.11.1, p.318%éttion 1.10, pp.22-23], or
[7, Art. 119 to 121, pp.110-113].
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Figure 6. The points where the six-point cird€in blue) meets the given circles
(in yellow) form a Pascal hexagon whose axis is the axis of similitude

and the equation of the line joiningr to the points wher€; is tangent to the
Apollonius Circles is

€1; €2; €3; €1; €2; €34 €1i €2; €3;
(x—axi)| ©1 22 23 |+W—w)| v1 Y2 y3 |+ri| i 12 r3 |[=0.
1 1 1 1 1 1 1 1 1

Gergonne’s construction yields the tangency points in three pairs collméar
Cr, which is, consequently, the center of perspectivity of the trianglesibeztin
the Apollonius Circles. The axis is cleartybecause, as with the circl€s;, an
Apollonius circle is tangent to the given circlésandC; at points whose joining
line passes through;. O

Finally, on inverting the intersection point efand« in S and tracing the six
tangent lines taS at the pointsP; where it meets the given circles, after much
routine algebra (which we leave to the reader obtain

Theorem 9(Brianchon) The inverse image efn«a in S is the Brianchon Point of
the hexagon circumscribin§ and tangent to it at the six points where it intersects
the given circle€’;, taken in the order indicated by the labels.

"There is no need for any calculation here: Theorem 9 is the projectaleofliiTheorem 7 — the
polarity defined byS takes each poinP; to the line tangent there {8, while (because L «) it
interchanges the axis of similitudewith the inverse image af N a:in S.
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Figure 7. The triangles (shown in blue) whose vertices are the pointewier
Apollonius circles (red) are tangent to the three given oriented circlfog)
are perspective from the radical centhf; the axis of the perspectivity is the
axis of similitude of the given circles.

Conclusion Uniting as it does the classical theorems of Monge, D’Alembert,
Desargues, Pascal, and Brianchon together with the problem of Apd|oni
feel that this figure merits to be better known. The ubiquitous and extremeliylus

e and e symbols take their name from the Einstein-Minkowski metric: in fact,
the circle plane (or its three-dimensional analogue) is a vector space,vdrich
substitution of the last coordinate (that is, the radius) by the imaginary dest&nc
(wherei?2 = —1) yields interesting analogies with relativity theofy.
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Class Preserving Dissections of Convex Quadrilaterals

Dan Ismailescu and Adam Vojdany

Abstract. Given a convex quadrilaterg) having a certain property, we are
interested in finding a dissection ¢f into a finite number of smaller convex
quadrilaterals, each of which has propefyas well. In particular, we prove that
every cyclic, orthodiagonal, or circumscribed quadrilateral can Isedied into
cyclic, orthodiagonal, or circumscribed quadrilaterals, respectifélg.problem
becomes much more interesting if we restrict our study to a particular fiype o
partition we call grid dissection

1. Introduction

The following problem represents the starting point and the motivation of this
paper.

Problem. Find all convex polygons which can be dissected into a finite number of
pieces, each similar to the original one, but not necessarily congruent.

It is easy to see that all triangles and parallelograms have this propestg.(se

[1, 7]).

NN/

Figure 1. (&) Triangle dissection into similar triangles.
(b) Parallelogram dissection into similar parallelograms.

Indeed, every triangle can be partitioned iGt@ or 8 triangles, each similar to
the initial one (see Figure 1 a). Simple inductive reasoning shows thavéoy e
k > 6, any triangl€el” can be dissected intotriangles similar tal’. An analogous
statement is true for parallelograms (see Figure 1 b). Are there any atlygops
besides these two which have this property?

The origins of Problem 1 can be traced back to an early paper of Lah[jf0).
More then twenty years later, Golomb [8] studied the same problem without no-
table success. It was not until 1974 when the first significant resutespusblished
by Valette and Zamfirescu.

Theorem 1(Valette and Zamfirescu, [13]Buppose a given convex polygBrcan
be dissected into four congruent tiles, each of which simil@?td@henP is either
a triangle, a parallelogram or one of the three special trapezoids shoviigiare
2 below.

Publication Date: September 14, 2009. Communicating Editor: Paul Yiu.
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é\ 60 60°

Figure 2. Trapezoids which can be partitioned into four congruent piece

Notice that the hypothesis of the above theorem is much more restrictive: the
number of pieces must be exactly four and the small polygons must all be con
gruent to each other, not only similar. However, as of today, the comviggons
presented in figures 1 and 2 are the only known solutions to the more fpradra
lem 1.

From aresult of Bleicher [2], it is impossible to dissect a convagon (a convex
polygon withn vertices) into a finite number of convexgons ifn > 6. The same
result was proved by Bernheim and Motzkin [3] using slightly differeahteques.

Although any convex pentagon can be partitioned into any nurhber 6 of
convex pentagons, a recent paper by Ding, Schattschneider andre&amf{4]
shows that it is impossible to dissect a convex pentagon into similar replicas of
itself.

Given the above observations, it follows that for solving problem 1 werea
strict ourselves to convex quadrilaterals. It is easy to prove that @segecondi-
tion for a quadrilateral to admit a dissection into similar copies of itself is that the
measures of its angles are linearly dependent over the integers. AciLgtignger
statement holds true: if the angles of a convex quadrilatgrdb not satisfy this
dependence condition, théhcannot be dissected into a finite number of smaller
similar convex polygons which are not necessarily simila@t¢for a proof one
may consult [9]). Nevertheless, in spite of all the above simplifications and r
newed interest in the geometric dissection topic (see e. g. [6, 12, 16Blepn 1
remains open.

2. A Related Dissection Problem

Preserving similarity under dissection is difficult: although all triangles have
this property, there are only a handful of known quadrilaterals sattiis con-
dition (parallelograms and some special trapezoids), while-gon can have this
property ifn > 5. In the sequel, we will try to examine what happens if we weaken
the similarity requirement.

Problem. Suppose that a given polygdhhas a certain property. Is it possible
to dissectP into smaller polygons, each having propettas well?

For instance, suppose means “convex polygon with sides”. As we have
mentioned in the previous section, in this particular setting Problem 2 has agositi
answer if3 < n < 5 and a negative answer for all> 6. Before we proceed we
need the following:
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Definition. a) A convex quadrilateral is said to beyclic if there exists a circle
passing through all of its vertices.

b) A convex quadrilateral is said to berthodiagonalif its diagonals are perpen-
dicular.

c) A convex quadrilateral is said to l@rcumscribedf there exists a circle tangent
to all of its sides.

d) A convex quadrilateral is said to bekite if it is both orthodiagonal and circum-
scribed.

The following theorem provides characterizations for all of the quadrédite
defined above and will be used several times throughout the remainthermdper.

Theorem 2. Let ABC D be a convex quadrilateral.

(a) ABCD is cyclic if and only if opposite angles are supplementary — ga/+

ZC =180°.

(b) ABCD is orthodiagonal if and only if the sum of squares of two opposite
sides is equal to the sum of the squares of the remaining opposite sidessis; tha
AB? + CD? = AD? + BC?.

(c) ABCD is circumscribed if and only if the two pairs of opposite sides have
equal total lengths —thatisdAB + CD = AD + BC.

(d) ABCD is a kite if and only if (after an eventual relabeling)B = BC and
CD = DA.

A comprehensive account regarding cyclic, orthodiagonal and rogctibed
guadrilaterals and their properties, including proofs of the above thearan be
found in the excellent collection of geometry notes [14]. An instance dflEno 2
we will investigate is the following:

Problem. Is it true that every cyclic, orthodiagonal or circumscribed quadrilatera
can be dissected into cyclic, orthodiagonal or circumscribed quadrigtezapec-
tively?

It has been shown in [1] and [11] that every cyclic quadrilateral eadigsected
into four cyclic quadrilaterals two of which are isosceles trapezoids (see Figure 3
a).

Another result is that every cyclic quadrilateral can be dissectediirgayclic
guadrilaterals one of which is a rectangle (see Figure 3 b). This disséstased
on the following property known a3 he Japanese Theorgisee [5]).

Theorem 3. Let ABC'D be a cyclic quadrilateral and led/, N, P and@ be the
incenters of trianglesiBD, ABC, BCD and AC D, respectively. TheM N PQ
is a rectangle and quadrilateralsdl M NB, BNPC, CPQD and DQM A are
cyclic (see Figure 3)
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a) b)

Figure 3. (&) Cyclic quadrilateral 2-isosceles trapezoids2tcyclic quadrilaterals.
(b) Cyclic quadrilateral = one rectangle + four cyclic quadrilaterals.

Since every isosceles trapezoid can be dissected into an arbitrary nofrigmsce-
les trapezoids, it follows that every cyclic quadrilateral can be disseanted:
cyclic quadrilaterals, for everly > 4.

It is easy to dissect an orthodiagonal quadrilateral into four smaller dietgo-

nal ones.
A’A

&

<

a) b)

Figure 4. (&) Orthodiagonal quadrilateral = four orthodiagonal dlserals.
(b) Circumscribed quadrilateral = four circumscribed quadrilaterals.

Consider for instance the quadrilaterals whose vertex set consiste eoko@x
of the initial quadrilateral, the midpoints of the sides from that vertex and the inte
section point of the diagonals (see Figure 4 a). It is easy to prove ttlabéthese
guadrilaterals is orthodiagonal.

A circumscribed quadrilateral can be dissected into four quadrilateraldivégth
same property by simply taking the radii from the incenter to the tangency points
(see Figure 4 b).

Actually, it is easy to show that each of these smaller quadrilaterals is not only
circumscribed but cyclic and orthodiagonal as well.

The above discussion provides a positive answer to problem 2. Innfauct)
more is true.

Theorem 4 (Dissecting arbitrary polygons)Every convexi-gon can be parti-
tioned into3 (n — 2) cyclic kites(see Figure 5)
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a) b)

Figure 5. Triangle = three cyclic kites; Pentagon = nine cyclic kites.

Proof. Notice first that every triangle can be dissected into three cyclic kites by
dropping the radii from the incenter to the tangency points (see FigurePasd)-

tion the givenn-gon into triangles. For instance, one can do this by drawing all the
diagonals from a certain vertex. We obtain a triangulation consisting-o® tri-
angles. Dissect then each triangle into cyclic kites as indicated in Figure 5b).

3. Grid Dissections of Convex Quadrilaterals

We have seen that the construction used in theorem 4 renders problemas2 a
trivial. The problem becomes much more challenging if we do restrict the type o
dissection we are allowed to use. We need the following

Definition. Let ABC'D be a convex quadrilateral and let andn be two posi-
tive integers. Consider two sets of segmefits- {s1, s2,..., s;,—1} and7 =

{t1, ta,..., tn,—1} with the following properties:

a) If s € S then the endpoints of belong to the sidegd B andC'D. Similarly, if

t € T then the endpoints dgfbelong to the sided D and BC'.

b) Every two segments i§ are pairwise disjoint and the same is true for the seg-
ments in7 .

We then say that segmends, ss, ..., $m-1, t1, t2, ..., t,—1 define anm-by-n
grid dissectiorof ABC'D (see Figure 6).

a)

Figure 6. A3-by-1 and a3-by-4 grid dissection of a convex quadrilateral
The really interesting problem is the following:
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Problem. Is it true that every cyclic, orthodiagonal or circumscribed quadrilat-
eral can be partitioned into cyclic, orthodiagonal, or circumscribed dasetr
als,respectivelyyia a grid dissection? Such dissections shall be referred to as
class preserving grid dissectiorm for short CPGdissections (or CPG partitions).

3.1 Class Preserving Grid Dissections of Cyclic Quadrilaterals.this section
we study whether cyclic quadrilaterals have class preserving grid dmsecWe
start with the following

Question. Under what circumstances does a cyclic quadrilateral adibg-1
grid dissection into cyclic quadrilaterals? What aboRttay-2 grid dissection with
the same property?

The answer can be readily obtained after a straightforward investigédtibe o
sketches presented in Figure 7.

a) b)

Figure 7. (aR-by-1 CPG dissection of cycli@) exists iff Q = trapezoid.
(b) 2-by-2 CPG dissection of cycli§) exists iff Q = rectangle.

A quick analysis of the angles reveals that-ay-1 CPG partition is possible if
only if the initial cyclic quadrilateral is an isosceles trapezoid - see Figude & a
similar reasoning leads to the conclusion thatly-2 CPG partition exists if and
only if the original quadrilateral is a rectangle — Figure 7 b). These ghtens
can be easily extended to the following:

Theorem 5. Suppose a cyclic quadrilaterd) has anm-by-n grid partition into
mn cyclic quadrilaterals. Then:

a) If m andn are both eveng) is necessarily a rectangle.

b) If m is odd andn is even() is necessarily an isosceles trapezoid.

We leave the easy proof for the reader. It remains to see what hajberbk
m andn are odd. The next two results show that in this case the situation is more
complex.

Theorem 6 (A class of cyclic quadrilaterals which hageby-1 CPG dissections)

Every cyclic quadrilateral all of whose angles are greater thancos @ =
51.83° admits a3-by-1 grid dissection into three cyclic quadrilaterals.
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Proof. If ABCD is an isosceles trapezoid, then any two segments parallel to the
bases will give the desired dissection. Otherwise, assume/thais the largest
angle (a relabeling of the vertices may be needed). Sitig¢e- /D = ZA+/C =

180° it follows that / B is the smallest angle o1 BC D. We therefore have:

ZB < min{ZA, ZC} < max{ZA, ZC} < £D. (1)

Denote the measures of the a@, EE, CD and DA on the circumcircle of
ABCD by 2a, 2b, 2c and2d respectively (see Figure 8 a). Inequalities (1) imply
thatc + d < min{b+ ¢, a + d} < max{b+c¢, a+d} < a+ b, thatis,c < aand

d <b.

a) b)

Figure 8. (a)DE||BC,CF | AD, E andF betweend andB due toc < a.
(b) 3-by-1 grid dissection into cyclic quads iP E andC'F' do not intersect.

Through vertexD construct a segmer?E | BC with E on line AB. Since
¢ < a, point £ is going to be betweer and B. Similarly, through vertexC
construct a segmentF | AD with F' on AB. As above, since < a, point F will
lie betweend and B.

If segmentd £ andC'F' do not intersecthen a3-by-1 grid dissection oA BC' D
into cyclic quadrilaterals can be obtained in the following way:

Choose two pointg” and D’ on sideC'D, such thatC’ is close toC and D’ is
close toD. ConstructD’E’ || DE andC’F’ || CF as shown in figure 8 b). Since
segmentsDFE and C'F' do not intersect it follows that for choices 6f and D’
sufficiently close taC' and D respectively, the segmeni' E’ and C’ F” will not
intersect. A quick verification shows that each of the three quadrilatetal&/hich
ABCD is dissectedd E'D’'D, D'E'F'C" andC'F' BC) is cyclic.

It follows that a sufficient condition for this grid dissection to exist is thah{so
A — FE — F — B appear exactly in this order along sideB, or equivalently,
AE + BF < AB.

The law of sines in trianglel D E gives thatAE sin(c + d) = ADsin(a — ¢)
and sinceAD = 2R sin d we obtain

AE — 2RSII.1d sin(a — ¢)
sin(c + d)

: 2
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whereR is the radius of the circumcircle of BCD.
Similarly, using the law of sines in trianglBC' F' we haveBF sin(b + ¢) =
BC sin(a — ¢) and sinceBC' = 2R sin b it follows that

2Rsinb sin(a — c¢) 3)
sin(b+ ¢) )

Using equations (2), (3) and the fact thdB = 2R sin a, the desired inequality
AFE + BF < AB becomes equivalent to

BF =

sind sin(a —¢)  sinb sin(a — ¢)

sin(c + d) sin(b + ¢) < sma
sind sin(b+c—c¢) sin(la—c+c)

sin(c + d) * sin(b + ¢) sin(a — ¢)
sind

& sn(c+d) + cosc —sine cot(b+ ¢) < cosc+ sinc cot(a — ¢),

and after using + b + ¢ + d = 180° and simplifying further,
AE + BF < AB & sin(a — ¢) sin(b + ¢) sind < sin®(c + d) sin(c).  (4)

Recall that pointsZ and F' belong toAB as a result of the fact that < a. A
similar construction can be achieved using the fact#hatb.

Let AG ||CD andDH || AB as shown in Figure 9 a). Sinee< b, pointsG
and H will necessarily belong to sidBC'. As in the earlier analysis, if segments
AG and D H do not intersect, small parallel displacements of these segments will
produce a3-by-1 grid partition of ABC'D into 3 cyclic quadrilaterals:ABG’ A/,
A'G'"H'D" andH'D" DC (see Figure 9 b).

2c C

2a 2a
a) b)

Figure9. a)AG| CD,DH || AB, G andH betweenB andC sinced < b
b) 3-by-1 CPG grid dissection iAG and D H do not intersect.

The sufficient condition for this construction to work is that poiBtsG— H —C
appear in this exact order along si8€’, or equivalentlyBG + CH < BC.
Using similar reasoning which led to relation (4) we obtain that

BG + CH < BC < sin(b — d) sin(a + d) sinc < sin®(a +b) sind.  (5)
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The problem thus reduces to proving thatin{ £ A, /B, ZC, ZD} > arccos @
then at least one of the inequalities that appear in (4) and (5) will hold.
To this end, suppose none of these inequalities is true. We thus have:

sin ¢
. B . > . 9 ]
sin(a — ¢) sin(b+c¢) > sin“(c+d) nd and,
ind
in(b— d) sin(a+d) > sin’(a+b)- .
sin( )sin(a+d) > sin“(a+0b) .

Recall thata + b + ¢ + d = 180° and thereforesin(a + d) = sin(b + ¢) and
sin(a + b) = sin(c + d). Adding the above inequalities term by term we obtain

sin(b + ¢) - (sin(a — ¢) + sin(b — d)) > sin®*(c + d) - <sinc sinc>

sind = sind
= sin(b+c¢) - 2-sin(90° — ¢ — d) - cos(90° — b — d) > sin®(c + d) - 2
& sin(b 4+ ¢) - sin(c 4 d) - cos(c + d) > sin?(c + d)

= cos(c+d) > 1 — cos?(c+ d)

N
2

1 _
= cos(c+ d) = cos(£B) > , contradiction

This completes the proof. Notice that the result is the best possible in the sens
thatarccos \/52‘1 ~ 51.83° cannot be replaced by a smaller value. Indeed, itis easy
to check that a cyclic quad whose angles areos % 90°, 90° and180° —
arccos @ does not have a-by-1 grid partition into cyclic quadrilaterals. [

The following result can be obtained as a corollary of Theorem 6.

Theorem 7. (A class of cyclic quadrilaterals which have3-by-3 grid dissec-
tlons) Let ABCD be a cycllc guadrilateral such that the measure of each of the
arcs AB BC CD and DA determined by the vertices on the circumcircle is
greater than60°. ThenABC D admits a3-by-3 grid dissection into nine cyclic
guadrilaterals.

2c C

2a 2a
a) b)

Figure 10. a)DE | BC,CF| AD,AG| CD,DH | AB
b) 3-by-3 grid dissection into nine cyclic quadrilaterals.
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Proof. Notice that the condition regarding the arc measures is stronger than the
requirement that all angles agfBC' D exceed0°. We will use the same assump-
tions and notations as in Theorem 6. The idea is to overlay the two constriction
in Theorem 6 (see Figure 10).

Itis straightforward to check that each of the nine quadrilaterals shofiguire
10 b) is cyclic. The problem reduces to proving that{a, b, ¢, d} > 30° implies
that both inequalities in (4) and (5) hold simultaneously. Due to symmetry it is
sufficient to prove that (5) holds. Indeed,

BG + CH < BC & sin(b— d) sin(b+ ¢) sinc < sin?(¢ + d) sind
2 sin?(c + d) sind
sinc

& cos(c+d) —cos(2b+c—d) <

2sin®(c + d) sind
sinc

d
ctrd cos?

T

cos(c+d)+1<

C+dsind

ct+d . .
2 cos? sine¢ < 8sin?

sine < 2 sind - (1 — cos(c+ d))
sine < 2 sind — 2 sind cos(c + d)
sinc < 2 sind + sin ¢ — sin(c + 2d))
sin(c + 2d) < 2sind

< 1< 2sind.

K I

The last inequality holds true since we assurded 30°. This completes the
proof.
O

3.2 Class Preserving Grid Dissections of Orthodiagonal Quadrilaterdiss easy
to see that an orthodiagonal quadrilateral cannot h&#bya1 grid dissection into
orthodiagonal quadrilaterals. Indeed, if say we attempt to dissect tlukilgiaral
ABCD with a segment/ P, whereM ison AB and P is onC'D, then the diag-
onals of AD PM are forced to intersect in the interior of the right triangl® D,
preventing them from being perpendicular to each other (see Figurg 11 a

a) b)

Figure 11. a) Orthodiagonal quadrilaterals haveiy-1 CPG dissections
b) A kite admits infinitely many-by-2 CPG dissections



Class preserving dissections of convex quadrilaterals 205

The similar question concerning the existence-bfy-2 CPG dissections turns out
to be more difficult. We propose the following:

Conjecture 1. An orthodiagonal quadrilateral has a-by-2 grid dissection into
four orthodiagonal quadrilaterals if and only if it is a kite.

The “only if” implication is easy to prove. We can show that every kite has
infinitely many2-by-2 CPG grid dissections. Indeed, l&BC D be a kite AB =
AD andBC = CD) and letM N || BD with M and N fixed points on sidesi B
and respectivelyAD. Consider then a variable segmdng) || BD as shown in
figure 11 b). Denoté/ = NQ N M P; due to symmetryJ € AC. Consider the
grid dissection generated by segmenfs® and N(Q. Notice that quadrilaterals
ANUM andCPUQ are orthodiagonal independent of the positiorPgj. Also,
quadrilateralsD NU P and BM U@ are congruent and therefore it is sufficient to
have one of them be orthodiagonal.

Let point P slide alongCD. If P is close to vertex’, it follows that@ andU
are also close t¢' and therefore the measure of angl® X N is arbitrarily close
to the measure of DC' N, which is acute. On the other hand, wheris close to
vertexD, () is close toB and the angle’ DX N becomes obtuse.

Since the measure of DX N depends continuously on the position of paint
it follows that for some intermediate position Bfon C'D we willhave/DX N =
90°. For this particular choice aP both DNU P and BM U@ are orthodiagonal.
This proves the “only if” part of the conjecture.

Extensive experimentation with Geometer’s Sketchpad strongly suggesiis the
rect statement also holds true. We used MAPLE to verify the conjecturevin se
eral particular cases - for instance, the isosceles orthodiagonat didpeith base
lengths of1 and+/7 and side lengthg does not admit @-by-2 dissection into
orthodiagonal quadrilaterals.

3.3 Class Preserving Grid Dissections of Circumscribed Quadrilateréiter
the mostly negative results from the previous sections, we discoverealitheinhg
surprising result.

Theorem 8. Every circumscribed quadrilateral haszaby-2 grid dissection into
four circumscribed quadrilaterals.

Proof. (Sketch) This is in our opinion a really unexpected result. It appears to be
new and the proof required significant amounts of inspiration and persest&Ve
approached the problem analytically and used MAPLE extensively tonpeithe
symbolic computations. Still, the problem presented great challenges, adlwe w
describe below.

Let M N PQ be a circumscribed quadrilateral with incent@r With no loss
of generality suppose the incircle has unit radius. Ogt1 < i < 4 denote
projections ofO onto the sides as shown in Figure 12 a). Denote the angles
404001 = 2a, 401002 = 2b, 402003 = 2¢ and403004 = 2d. Clearly,
a+ b+ c+d=180° andmax{a, b, ¢, d} < 90°. Consider a coordinate system
centered a® such that the coordinates 6, are(1, 0).
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F

M
&

T W /E
Q

Figure 12. a) A circumscribed quadrilateral
b) Attempting a2-by-2 CPG dissection with lines through and F’

We introduce some more notatiorkna = A, tanb = B, tanc = C, tand = D.
Notice that quantities!, B, C' and D are not independent. Sineet+ b+ c+d =
180° it follows thatA+ B+ C+ D = ABC+ ABD+ ACD + BC D. Moreover,
sincemax{a, b, ¢, d} < 90° we have thatd, B, C andD are all positive.

Itis now straightforward to express the coordinates of the verfi¢ed/, P and
Q in terms of the tangent valueg B, C andD. Two of these vertices have simple
coordinatesM (1, A) andQ(1, — D). The other two are

1— A2 —-24AB 2A+ B — A’B and P 1—-D2—-2CD C+2D — CD?
1+ A2 ’ 1+ A2 1+ D2 ’ 1+ D2 ’

The crux of the proof lies in the following idea. Normally, we would look for
four points (one on each side), which create the degirbg-2 grid partition. We
would thus have four degrees of freedom (choosing the points) ameééuations
(the conditions that each of the smaller quadrilaterals formed is circumsgribed

However, the resulting algebraic system is extremely complicated. Trying to
eliminate the unknowns one at a time leads to huge resultants which even MAPLE
cannot handle.

Instead, we worked around this difficulty. Extend the sided&WV PQ until
they intersect at point& and F' as shown in Figure 12 b). (Ignore the case when
M N PQ) is a trapezoid for now). Now locate a poititon sideM N and a pointS
on side@M such that when segmentd/ and £'S are extended as in the figure,
the four resulting quadrilaterals are all circumscribed. This reducesuimder
of variables from four to two and thus the system appears to be ovarriessl.
However, extended investigations with Geometer’s Sketchpad indicatethibat
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construction is possible. At this point we start computing the coordinateseof th
newly introduced points. We have

E<1+AD A—D) and F(l A+B>.

1-AD’ 1—-AD "1- AB
Denote
MU QS
m——MN a q——QM.

Clearly, the coordinates @ andV are rational functions om, A, B, C and D
while the coordinates o8 and7’ depend in a similar manner @n A, B, C'andD.
These expressions are quite complicated; for instance, each one obtitinates

of point7 takes five full lines of MAPLE output. The situation is the same for the
coordinates of poinV.

Define the following quantities:

Z1= MU+ WS —-WU - MS,
Zy= NT+WU —-WT — NU,
Z3= PV +WT - WV — PT,
Zy= QS+WV -WS—-QV.
By Theorem 2 b), a necessary and sufficient condition for the questala\M/ U W S,

NTWU, PVWT andQSWYV to becyclicisthatZ; = Z, = Z3 = Z4, = 0.
Notice that

1+ Zo+Z3s+Zy=MU—-NU+NT—PT+PV-QV+QS—MS (6)

and

Zy—Zo+Zs—Zy= MN —-NP+ PQ - QM +2(WS+WT —-WU - WV)
= 2(ST-UV), @)

the last equality is due to the fact thet/V PQ is circumscribed.

Since we wan¥; = 0 for everyl < i < 4, we need to have the right hand terms
from (6) and (7) each equal t In other wordsnecessaryconditions for finding
the desired grid dissection are

MU—-NU+PV—-QV =PT—NT+MS—QS and UV = ST. (8)

There is a two-fold advantage we gain by reducing the number of equditans
four to two: first, the system is significantly simpler and second, we avoidjusin
pointW - the common vertex of all four small quadrilaterals which is also the point
with the most complicated coordinates.

System (8) has two equations and two unknowms andq - and it is small
enough for MAPLE to handle. Still, after eliminating varialjethe resultant is
a polynomial of degreé0 of m with polynomial functions of4, B, C and D as
coefficients.

This polynomial can be factored and the valuerofve are interested in is a root
of a quadratic. Althoughn does not have a rational expression dependingipn

B, C andD it can still be written in terms of/sin a, v/cosa, ..., Vsind, Vcosd.
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Explicit Formulation of Theorem 8Let M N P() be a circumscribed quadrilateral
as described in figure 12. Denote

$1 = Vsina, S = +V/sinb, s3 = +/sinc, sS4 = Vsind
1 =4/cosa, cy =+cosb, c3=./cosc, c4=+/cosd.

O
Define pointd/ € MN, T € NP,V € TQ andS € QM such that

MU NT PV QS

My =" NP PP Qu !

where
5984C3(8451(53¢3 + s3¢3) + s5283)

(S%C% + S%C%)(815284 + 530%)(515253 + 5405) ’
s351C3(s182(85¢3 + s3¢3) + s354)

— , (10)
(8363 + s3c3)(s2s351 + sac3) (528354 + 5163)

(9)

m =

848262(8283(5503 + sicg) + 8481)

7 (11)
(83¢3 + s3c2)(s3s452 + s1¢2) (838481 + s2C3)

p:

s183¢3(8354(s3¢3 + s3¢3) + s5182)
(s3c3 + s3c3)(sas183 + s2¢7)(sas152 + s3¢7)

DenoteWW = ST NnUV. Then, quadrilateral3/UW S, NTWU, PVWT and
QSWYV are all circumscribed €., Z1 = Zy = Z3 = Z, = 0).

Verifying these assertions was done in MAPLE. Recall thatndq were obtained
as solutions of the systedy + Zs + Z3+ Z4, =0, 21 — Zo + Z3 — Z, = 0. At
this point it is not clear why for these choicesf n, p andq we actually have
Z; =0,foralll <i<4.

Using the expressions ot, n, p andg given above, we can write the coordinates
of all points that appear in figure 12 in termsspfandc; wherel < i < 4. We can
then calculate the lengths of all the twelve segments which appear as sides of th
smaller quadrilaterals.

For instance we obtain:

q= (12)

(5354C2 + 5152547 + 5953)5254
2 2 PR
c5 (515253 + €554) (515254 + ¢753)
(8383¢3 + s78983¢3 + $154)5183
c2(s15283 + 254) (518254 + C283)
and similar relations can be written fof7", PV, QS andPT', QV, M S by circu-

lar permutations of the expressions faftV and NU, respectively.
In the same way it can be verified that

MU =

NU =

Uv =8T
_ (sic + sief)(sts] + s3s3 + 2s1508354(57c3 + s5¢7)) (s3¢] + sTc] + 2s1505354)
(518283 + c354) (528354 + c%sl)(333431 + c2s9) (518254 + C}s3)
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and
AUV UV A ST T s ST

UW: 5 — ) - ’ - )
Ar + iy A As + fis As + s

where

2 22
5182¢y + S18254C1 + 5354) (525354 + S1¢3)(535451 + S2¢)

(s ) 3)( 1)
Ly = (5%546% + 5354S§C§ + 5182) (845182 + 5361)(818283 + 8465 )
(s5 ) 3)( 5)

2 22
5458103 + S45183Cy + 5253)(528384 + $1C3)(S15253 + 545

s = (5553¢3 + s95350¢3 + 5451) (545152 + 53¢3) (535451 + 52€3).

Still, verifying thatZ; = 0 is not as simple as it may seem. The reason is that the
quantitiess; andc; are not independent. For instance we hgve- ¢! = 1, for all
1 <4< 4. Also, sincea+b+c+d = 180O we havesin(a+b) = sin(c+d) which
translates te? c2 &, + s3c} =s3c3 + s c3 Similarly, cos(a + b) = — cos(c + d)
which means? ¢ — s? s3 = s2s2 — c2¢3. There arel + 3 + 3 = 10 such side
relations which have to be used to prove that two expressions which |dekedtit
are in fact equal. MAPLE cannot do this directly.

For example, it is not at all obvious that the expressionsipf, p andg de-
fined above represent numbers from the intef@all). Since each expression is
obtained via circular permutations from the preceding one it is enough tcalibok
m.

Clearly, sinces; > 0 ande; > 0 forall 1 < i < 4 we have thatn > 0. On the
other hand, using the side relations we mentioned above we get that

5351¢3 (s283(83¢3 + s3¢3) + 5184)
(s1c3 4 s3¢3)(s15284 + $3¢3) (515283 + $4¢3)

1—m=

Obviously,1 — m > 0 and therefor® < m < 1.

As previously eluded the construction works in the case wWheN PQ is a
trapezoid as well. In this casedf N | PQ thenUV || M N too. In conclusion, it
is quite tricky to check that the valuesf, n, p andq given by equalities (9) - (12)
imply that 7, = Z, = Z3 = Z, = 0. The MAPLE file containing the complete
verification of theorem 8 is about pages long. On request, we would be happy
to provide a copy. O

4. Conclusions and Directions of Future Research

In this paper we mainly investigated what types of geometric properties can be
preserved when dissecting a convex quadrilateral. The original cotidriis are
contained in section 3 in which we dealt exclusively with grid dissectionsrerhe
are many very interesting questions which are left unanswered.

1. The results from Theorems 6 and 7 suggest that if a cyclic quadrilateral
ABC D has ann-by-n grid dissection into cyclic quadrilaterals with - n a large
odd integer, thed BC' D has to be “close” to a rectangle. It would be desirable to
guantify this relationship.
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2. Conjecture 1 implies that orthodiagonal quadrilaterals are “bad” when it
comes to class preserving dissections. On the other hand, theoreme8 phav
circumscribed quadrilaterals are very well behaved in this respect. \Gény tthis
happen? After all, the characterization Theorem 2 b) and 2 c¢) suggdgshtse
two properties are not radically different.

More precisely, let us define am-quadrilateral to be a convex quadrilateral
ABCD with AB* + CD* = BC® + AD%, where« is a real number. Notice
that fora. = 1 we get the circumscribed quadrilaterals anddoe 2 the ortho-
diagonal ones. In particular, a kite is anquadrilateral for all values of. The
natural question is:

Problem. For which values otx does everyx-quadrilateral have &-by-2 grid
dissection intax-quadrilaterals?

3. Theorem 8 provided a constructive method for finding a grid dissection of
any circumscribed quadrilateral into smaller circumscribed quadrilateratsthis
construction be extended toleby-4 class preserving grid dissection? Notice that
extending the opposite sides of each one of the four small cyclic quadaikater
which appear in Figure 12 we obtain the same pair of poiAtgnd F. 1t is
therefore tempting to verify whether iterating the procedure usedfdfPQ for
each of these smaller quads would lead telay-4 grid dissection of\/ N PQ into
16 cyclic quadrilaterals. Maybe ever2a-by-2" grid dissection is possible. If true,
it is desirable to first find a simpler way of proving Theorem 8.
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On the Construction of Regular Polygons and
Generalized Napoleon Vertices

Dimitris Vartziotis and Joachim Wipper

Abstract. An algebraic foundation for the derivation of geometric construction
schemes transforming arbitrary polygons witlvertices intok-regularn-gons

is given. It is based on circulant polygon transformations and thecided
eigenpolygon decompositions leading to the definition of generalized Napole
vertices. Geometric construction schemes are derived exemplaritifferent
choices ofn andk.

1. Introduction

Because of its geometric appeal, there is a long, ongoing tradition in discover
ing geometric constructions of regular polygons, not only in a direct tuatyalso
by transforming a given polygon with the same number of vertices [2, 6019, 1
In the case of the latter, well known results are, for example, Napoldoesem
constructing an equilateral triangle by taking the centroids of equilaterabtdaa
erected on each side of an arbitrary initial triangle [5], or the results wf Peu-
glas, and Neumann constructihgegularn-gons byn—2 iteratively applied trans-
formation steps based on taking the apices of similar triangles [8, 3, 7].ItResu
like these have been obtained, for example, by geometric creativity, taigated
constructions or by analyzing specific configurations using harmonlgsisa

In this paper the authors give an algebraic foundation which can beused
der to systematically derive geometric construction schemes-fegularn-gons.
Such a scheme is hinted in Figure 1 depicting the construction of a 1-reguiar p
tagon (left) and a 2-regular pentagon (right) starting from the same initiydjpo
marked yellow. New vertex positions are obtained by adding scaled paraiels
perpendiculars of polygon sides and diagonals. This is indicated by ind&tae
construction vertices whereas auxiliary construction lines have been orfutted
the sake of clarity.

The algebraic foundation is derived by analyzing circulant polygorstoama-
tions and the associated Fourier basis leading to the definition of eigenpslygo
By choosing the associated eigenvalues with respect to the desired synuoetric
figuration and determining the related circulant matrix, this leads to an algebraic
representation of the transformed vertices with respect to the initial veaits
the eigenvalues. Interpreting this algebraic representation geometricadly ihe
desired construction scheme.

Publication Date: September 21, 2009. Communicating Editor: Paul Yiu.

The authors would like to thank Bernd Scholz from TWT GmbH, Enginedbiagartment, for
pointing out a modified triangle transformation based on the results of\fiith attracted our inter-
est on deriving geometric construction schemes from circulant polyrgmsformations.
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Figure 1. Construction of regular pentagons.

A special choice of parameters leads to a definition of generalized Napoleo
vertices, which coincide with the vertices given by Napoleon’s theoreneicdke
of n = 3. Geometric construction schemes based on such representations are
derived for triangles, quadrilaterals, and pentagons.

2. Eigenpolygon decompositions

Let = € C™ denote a polygon with verticeszy, k € {0,...,n — 1}, in the
complex plane using zero-based indexes. In order to obtain geometstwon
tions leading to regular polygons, linear transformations representedrbglex
circulant matricesV € C™*™ will be analyzed. That is, each row @f results
from a cyclic shift of its preceding row, which reflects that new vertesigians are
constructed in a similar fashion for all vertices.

The eigenvectorg;, € C", k € {0,...,n — 1}, of circulant matrices are given
by the columns of the Fourier matrix

00 F0-(n—1)

\/ﬁ T(nfl)-[] o T(nfl)-(nfl)
wherer := exp(27i/n) denotes the:-th complex root of unity [1]. Hence, the
eigenvectorf, = (1/y/n)(@0% 1% . r(»=1F)t represents thé-th Fourier
polygon obtained by successively connecting counterclockwitienes eachk-
th scaled root of unity starting by’/\/n = 1/y/n. This implies thatf; is a
(n/ ged(n, k))-gon with vertex multiplicityged(n, k), whereged(n, k) denotes
the greatest common divisor of the two natural numbeasidk. In particular,fj
degenerates to one vertex with multiplicity and f; as well asf,,_; are convex
regularn-gons with opposite orientation. Due to its geometric configurafiois
calledk-regular, which will also be used in the case of similar polygons.
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k=0 k=1 k=2 k=3

Figure 2. Fourier polygong, forn € {4,5} andk € {0,...,n — 1}.

Examples of Fourier polygons are depicted in Figure 2. In this, black mearke
indicate the scaled roots of unity lying on a circle with radivs/n, whereas blue
markers denote the vertices of the associated Fourier polygons. Ao igithe
vertex index or, in the case of multiple vertices, a comma separated list oesidex
If » is a prime number, all Fourier polygons except ko= 0 are regulatm-gons
as is shown in the case af= 5. Otherwise reduced Fourier polygons occur as is
depicted fom = 4 andk = 2.

Since F' is a unitary matrix, the diagonalization 8f based on the eigenval-
uesn, € C, k € {0,...,n — 1}, and the associated diagonal matfix =
diag(no, ...,nn—1) is given by M = FDF*, where F* denotes the conjugate
transpose of". The coefficientsy, in the representation of = ZZ;& crfr in
terms of the Fourier basis are the entries of the vecter F*z and lead to the
following definition.

Definition. The k-th eigenpolygorof a polygonz € C” is given by
t
€L = Ckfk = % (To'k, Tl'k, NN ,T(nil)'k) y (l)

wherecy, := (F*z), andk € {0,...,n — 1}.

Sinceey, is fi times a complex coefficient; representing a scaling and ro-
tation depending on, the symmetric properties of the Fourier polygofisare
preserved. In particular, the coefficient= (F*z)y = ﬁ ZZ;& z, implies that
eo = % < Z;é zk) (1,...,1)%is n times the centroid of the initial polygon. This
is also depicted in Figure 3 showing the eigenpolygon decomposition of two ran
dom polygons. In order to clarify the rotation and orientation of the eigggpas,

the first three vertices are colored red, green, and blue.
Due to the representation of the transformed polygon

n—1 n—1 n—1
z'::Mz:M<Zek):ZMek=Z77k€k (2)
k=0 k=0 k=0
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SRRSO R« S O
=c+1:*+-<j+\,+<f+c

Figure 3. Eigenpolygon decomposition of-aand6-gon.

applying the transformation/ scales each eigenpolygon according to the associ-
ated eigenvalue, € C of M. This is utilized by geometric construction schemes
leading to scaled eigenpolygons. One is the Petr-Douglas-Neumannrthigoi&

7] which is based om — 2 polygon transformations each consisting of taking the
apices of similar isosceles triangles erected on the sides of the polygoachn e
step a different apex angle taken from the{geir/n |k =1,...,n — 1} is used.
The characteristic angles are chosen in such a way that an eigenvaleeactm-
position (2) becomes zero in each case. Since all transformation stspsveréhe
centroid,n — 2 steps successively eliminate the associated eigenpolygons until one
scaled eigenpolygon with preserved centroid remains. In the case=083 this
leads to the familiar Napoleon’s theorem [5] in which one transformation stiep s
fices to obtain a regular triangle.

3. Construction of regular polygons

The eigenpolygon decomposition presented in the previous section caedbe u
to prove that specific geometric transformations result in regular polydg@wond
that, it can also be used to find new geometric construction schemes leading to
predefined symmetric configurations. This is done by an appropriateechbic
the eigenvalueg, and by interpreting the resulting transformation matrix =
FDF* geometrically.

3.1 General caseln this subsection, a specific choice of eigenvalues will be an-
alyzed in order to derive transformations, which lead:toegular polygons and
additionally preserve the centroid. The latter impligs= 1 sinceey already rep-
resents the centroid. By choosing = 0 forall j € {1,...,n — 1} \ {k} and

Nk € C\ {0}, the transformation eliminates all eigenpolygons except the centroid
eg and the designated eigenpolyggnwhich is scaled by the absolute valuerpf

and rotated by the argumentf. This implies

M = F diag(1,0,...,0,7,0,...,0) F*
— F diag(1,0,...,0) F* + nuF diag(0,...,0,1,0,...,0) F*.  (3)

Hence,M is a linear combination of matrices of the typg := FI,F™*, where
I}, denotes a matrix with the only nonzero entry), », = 1. Taking into account
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that (F),,, = r*/y/n and(F*),, = r~*/y/n, the matrix, ["* has nonzero
elements only in itd-th row, where(I.F*);., = r—*/\/n. Therefore, the-th
column of Ey, = F I, F* consists of thé-th column ofF' scaled by-—* //n, thus
resulting in(Ey) . = (F)xr™" /y/n = riFr=k fn = k=) /n_ This yields
the representation

1 4
(M) = (Eo)pw + i (Br)py = - <1 + nkrk(’“‘ )) ’

since all entries ofy, equall/n. Hence, transforming an arbitrary polygen=

(20,---,2n—1)" results in the polygon’ = Mz with vertices
nfll
Z;L =(Mz), = Z - (1 + nkrk(“f")> 2y,
v=0

wherep € {0,...,n — 1}. In the case ofx = v the weight of the associated
summand is given by := (1 + n;)/n. Substituting this expression in the repre-
sentation of;, usingn; = nw — 1, hencew # 1/n, yields the decomposition

n—1

2z, = Z:i (1 + (nw — l)rk(“”’)) 2y
n—1 n—1
= %Z (1 — pklu ”)) Zy +w2rk(“ ) 2 = Uy + woy, 4)
v=0 v=0

of z), into a geometric location,, not depending ow, and a complex numbey,,
which can be interpreted as vector scaled by the parametér should also be
noticed that due to the substitutiap) does not depend o),, since the associated
coefficient becomes zero.

A particular choice isv = 0, which leads t% = u,. As will be seen in the next
section, in the case of = 3 this results in the configuration given by Napoleon’s
theorem, hence motivating the following definition.

Definition. Forn > 3letz = (2o,...,2,-1)" € C" denote an arbitrary polygon,
andk € {1,...,n — 1}. The vertices
-1
u :zlnz:<1—rk(“_”))z,,, wed0,...,n—1},
g 7Lu=0

defining ak-regularn-gon are calledjeneralized Napoleon vertices

According to its construction)/ acts like a filter on the polygon removing
all except the eigenpolygomrg ande;.. The transformation additionally weightens
er by the eigenvaluey, # 0. As a consequence, i is not contained in the
eigenpolygon decomposition of the resulting polygon’ = Mz degenerates to
the centroick of z.

The next step consists of giving a geometric interpretation of the algellyaica
derived entitiesiy andvg for specific choices of, k, andw resulting in geometric
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construction schemes to transform an arbitrary polygon interegular polygon.
Examples will be given in the next subsections.

3.2 Transformation of trianglesThe general results obtained in the previous sub-
section will now be substantiated for the choice- 3, £k = 1. That is, a geometric
construction is to be found, which transforms an arbitrary triangle into ateou
clockwise oriented equilateral triangle with the same centroid. Due to the citcula
structure, it suffices to derive a construction scheme for the firsbveftie poly-
gon, which can be applied in a similar fashion to all other vertices.

Inthe case of, = 3 the root of unity is given by = exp(2i) = £(—1+iV/3).
By using (4) in the case gf = 0, as well as the relations™! = > = 7 and

r~2 = r, this implies
2
1 B 11(3 .V3 3 V3
= 3,,220(1_T =3 (2*1 2 )Zl+<2_1 2 )Zzl

1 1+v3
= 2(214»22)13\;(2221)
and
2
1 V3 3
vo—z%r z,,:zo+<—2—12>21+<—+1>22
v=

1 V3
= 20—5(214-22)4-17(22—21).

Thereby, the representations @f andvy, have been rearranged in order to give
geometric interpretations as depicted in Figure 4.

ho ,‘
ho /|
z92 x
0 — 7
h/ 1 ’
(51 ’
’
20 2L hi
ho v1
U2
Vo h2

Figure 4. Napoleon verticas, and directions,, in the casex = 3, k = 1.
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Since multiplication by—i denotes a clockwise rotation hy/2, u represents
the centroid of a properly oriented equilateral triangle erected on the-sideln
a vectorial sensey represents the vector from the midpoint of the side, to z
added by the opposite directed heightof the equilateral triangle erected ofr,.
Due to the circulant structure éf/, the locations:;, us and the vectors;, v, can
be constructed analogously. Using this geometric interpretation of the aigely
derived elements, the task is now to derive a construction scheme whiclinesmb
the elements of the construction.

Algebraically, an obvious choice in the representatipn: Uy +wuy, isw =0,
which leads to the familiar Napoleon configuration since in this czegs& Uy
Geometrically, an alternative construction is obtained by parallel translation o
to u,. This is equivalent to the choice = 1, hencez) = zy + %}(22 —21). An

v
according geometric construction scheme is depicted in Figure 5.

C,
\
\
! e
\ V3
C/
Ce
C
Ap c Cp
1%
a b /7! a
a
7
/ \
] B
A, A ¢ b /L B
o 5o
b
V3
/ !
Aa / A Bp Ba

Figure 5. Construction of an equilateral triangle.

Thereby, the new positioA’ of A is derived as follows. First, the parallelogram
ABCA, is constructed and an equilateral triangle is erectedidn. Since the
distance from the centroid. to the apexA4, of this triangle is of the required
Iengtha/\/§, wherea = |BC/|, one can transfer it by parallel translation to the
vertical line onBC through A. The other vertices are constructed analogously as
is also depicted in Figure 5.
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According to the choice of parameters in the definition\6f the resulting tri-
angle A’ B'C" is equilateral and oriented counterclockwise. A geometric proof is
given by the fact that the trianglé, B,,C,, of the associated parallelogram vertices
is similar to ABC' with twice the side length. Due to their construction the new
verticesA’, B’, andC’ are the Napoleon vertices of,B,C,, henceA’B'C’ is
equilateral. In particular, the midpoints of the sides46B’C’ yield the Napoleon
triangle of ABC'. Thus,A’ can also be constructed by intersecting the line through
A, and A, with the vertical line onBC throughA.

3.3 Transformation of quadrilateralsAs a second example, the generalized Na-
poleon configuration in the case af = 4, k = 1 is presented, that is = 0
resulting inz), = w,, p € {0,...,3}. Usingr = i and the representation (4)
implies

3
ug = 1;)(1 — )z, = %((1 +i)zr+ (1 4+ 1Dz + (1 - 1)23)

1 1 1
= z1+ 5(22 — 21) + 1(23 - 2’1) - 11(23 - 21),

which leads to the construction scheme depicted in Figure 6.

Figure 6. Construction of a regular quadrilateral.

As in the case ofi = 3, the generalized Napoleon vertices can be constructed
with the aid of scaled parallels and perpendiculars. Figure 6 depicts thenader
ate vertices obtained by successively adding the summands given in theaep
tation ofu,, from left to right. Parallels, as well as rotationsby2 are marked by
dashed lines. Diagonals, as well as subdivision markers are depicthohtipfack
lines.
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3.4. Transformation of pentagondn the case ofi = 5, the root of unity is given

by r = (-1 + v/5)/4 +iy/(5+ v/5)/8. The pentagon depicted on the left of
Figure 1 has been transformed by using 1 andw = 1 resulting in

1 1
up +vo = 20 + ﬁ(zl - 22) + ﬁ(z4 - Z3)
V10 +2V/5 V10 —-2V/5
_lf(zl — 24) —1f(22 — 23).

Due to the choicé& = 1, 2’ is a regular convex pentagon. The same initial polygon
transformed by using = 2 andw = 1 resulting in

1 1
ﬁ(@ %(23 — 2y)
V10 — 24/5 V10 +2v/5

5 (21—Z4>—i 5

is depicted on the right. Sinde = 2 is not a divisor ofn = 5, a star shaped
nonconvex2-regular polygon is constructed. Again, the representation also gives
the intermediate constructed vertices based on scaled parallels anddieufzes,
which are marked by small markers. Thereby, auxiliary construction liage h
been omitted in order to simplify the figure.

ug +vg = 20 + —Zl)+

(23 — 22)

3.5. Constructibility. According to (4) the coefficients of the initial vertices in
the representation of the new verticgsare given byl — r*(#*=*) andwr*(+=)
respectively. Using the polar form of the complex roots of unity, thesdvavibe
expressionsos(27¢/n) andsin(27¢ /n), wheref € {0,...,n—1}. Hence a com-
pass and straightedge based construction scheme can only be detezd dxists
a representation of these expressionsandly using the constructible operations
addition, subtraction, multiplication, division, complex conjugate, and sqoate
Such representations are given exemplarily in the previous subseatiotise f
casesn € {3,4,5}. Asis well known, Gaul? proved in [4] that the regular poly-
gon is constructible if: is a product of a power of two and any number of distinct
Fermat prime numbers, that is numbétg = 2(2™) + 1 being prime. A proof
of the necessity of this condition was given by Wantzel [13]. Thus, tisé riion
constructible case using this scheme is givemby: 7. Nevertheless, there ex-
ists a neusis construction using a marked ruler to construct the assoeigtdalr
heptagon.

4. Conclusion

A method of deriving construction schemes transforming arbitrary polygua
k-regular polygons has been presented. It is based on the theorguafoir ma-
trices and the associated eigenpolygon decomposition. Following a ceragrs
proach, the polygon transformation matrix is defined by the choice of its eigen
values representing the scaling and rotation parameters of the eigenmmlyy®
has been shown for the special case of centroid preserving traratfons leading
to k-regular polygons, a general representation of the vertices of thepolggon
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can be derived in terms of the vertices of the initial polygon and an arbiirzamg-
formation parametew. Furthermore, this leads to the definition of generalized
Napoleon vertices, which are in the caseicf 3 identical to the vertices given by
Napoleon’s theorem.

In order to derive a new construction scheme, the number of vertieesl the
regularity indext have to be chosen first. Since the remaining paramelers in-
fluence on the complexity of the geometric construction it should usually tseoho
in order to minimize the number of construction steps. Finally giving a geometric
interpretation of the algebraically derived representation of the new estigcstill
a creative task. Examples farc {3, 4,5} demonstrate this procedure. Naturally,
the problems in the construction of regular convegons also apply in the pre-
sented scheme, since scaling factors of linear combinations of verticesilsavto
be constructible.

Itis evident that construction schemes for arbitrary linear combinatiogigjeh-
polygons leading to other symmetric configurations can be derived in a similar
fashion. Furthermore, instead of setting specific eigenvalues to zarsingathe
associated eigenpolygons to vanish, they could also be chosen in orglec-to
cessively damp the associated eigenpolygons if the transformation is ajpgaed
tively. This has been used by the authors to develop a new mesh smoothémgesc
presented in [11, 12]. It is based on successively applying transttwns to low
quality mesh elements in order to regularize the polygonal element boundary ite
atively. In this context transformations based on positive real valuezheddues
are of particular interest, since they avoid the rotational effect knoam fother
regularizing polygon transformations.
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A Simple Barycentric Coordinates For mula

Nikolaos Dergiades

Abstract. We establish a simple formula for the barycentric coordinates with
respect to a given triangld BC' of a point P specified by the oriented angles
BPC,CPA andAPB. Several applications are given.

We establish a simple formula for the homogeneous barycentric coordirfates o
a point with respect to a given triangle.

Theorem 1. With reference to a given a triangléBC, a point P specified by the
oriented angles

x=4ABPC, y=ACPA, z=AAPB,

has homogeneous barycentric coordinates

1 _ 1 _ 1 W
cot A—cotz = cot B—coty ~cotC —cotz)’

A

(&

Figure 1.

Proof. Construct the circle througB, P, C, and let it intersect the lind P at A’
(see Figure 2). Clearly, A'BC = Z/A'PC =1 — Z/CPA = m — y and similarly,
/A'CB = 7 — z. It follows from Conway'’s formula [5§3.4.2] that in barycentric
coordinates

A= (=a®:Sc+ Sp—s: Sp+ Sey) = (—a?: So — S. : Sp— 5,).

Publication Date: September 28, 2009. Communicating Editor: Paul Yiu.
The author thanks the editor for many improvements, especially in thé gi@wrollary 3.



226 N. Dergiades

Similarly, the linesB P intersects the circl€’ P A at a pointB’, andC P intersects
the circle APB at ¢’ whose coordinates can be easily written down. These be
reorganized as

Figure 2.

yas (_ a? ) 1 . 1 >
- (SB—Sy)(SC—SZ)'SB—Sy'SC—Sz ’

B 1 b 1
N SA _Sw ’ (SC_SZ)(SA—S'JK) . SC_SZ ’

C,_( IS c? )
Sa—S: Sp—5,  (Sa—5.)(Sp—5y))"

According the version of Ceva’s theorem given in§3,2.1], the linesAA’, BB/,
CC' intersect at a point, which is clearly, whose coordinates are

r 11
Sa—S:  Sp—8S,  Sc—-5.)
Since by definitionSy = S - cot 6, this formula is clearly equivalentto (1). O

Remark. This note is a revision of [1]. Antreas Hatzipolakis has subsequently
given a traditional trigonometric proof [3].

The usefulness of formula (1) is that it is invariant when we substituie z by
directed angles.

Corollary 2 (Schaal) If for three pointsA’, B’, C’ the directed angles =
(A'B, A'C),y = (B'C, B'A)andz = (C'A, C'B) satisfyz+y+z = 0 mod ,
then the circumcircles of triangled’ BC, B'C A, C' AB are concurrent at”.
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Proof. Referring to Figure 2, if the circumcircles of triangleg$BC and B'C A
intersect atP, then from concyclicity,

(PB, PC)= (A'B, A'C) =z,

(PC, PA) = (B'C, B'A) =y.
It follows that
(PA, PB) = (PA, PC) + (PC, PB)=—y—xz=z=(C'A, C'B) mod ,

andC’, A, B, P are concyclic. Now, it is obvious that the barycentricsfoare
given by (1). O

For example, if the triangled’ BC', B'C A, C' AB are equilateral on the exterior
of triangleABC, thenx = y = 2 = —%, andz +y + z = 0 mod 7. By Corollary
2, we conclude that the circumcircles of these triangles are concutrent a

1 1 1
b= (cotA — cot (—g) " cot B — cot (—g) " cot C' — cot (—g))

1 1 1
B (cotA +cot (3) " cot B+ cot (3) ~ cot C + cot (—§)> ’
This is the first Fermat pointY;3 of [4].

Corollary 3 (Hatzipolakis [2]) Given a reference trianglel BC' and two points
P and@, let R, be the intersection of the reflections of the lif@®, C'P in the
lines BQ, CQ respectively(see Figure 3)Similarly define the point®, and R...
The circumcircles of triangle®, BC', R,C A, R.AB are concurrent at a point
1 1 1
1(PQ) = (cotA —cot(2z’ —x) ~ cot B —cot(2y’ —y) = cot C — cot(2z" — z)) '
(2)

where

r = (PB, PC), y = (PC, PA), z = (PA, PB);

o' =(QB, Q0), ¥y =(QC, Q4), ' =(QA, QB). 3
Proof. Letz” = (R,B, R,C). Note that

2" = (R.B, QB) + (@B, QC) + (QC, R,C)
= (@B, QC) + (R.B, @B) + (QC, R,C)

= (@B, QC)+ (@B, PB) + (PC, QC)
= (@B, QC) + (@B, QC) — (PB, PC)
= 2% — x.

Similarly, y” = (R,C, RyA) =2y —yandz” = (R.A, R.B) = 22 — z. Hence,
24y +2 =20 +y + ) - (x+y+2) =0mod 7.

By Corollary 2, the circumcircles of trianglds, BC, R,C A, R.AB are concur-
rent at the poinR = f(P, Q) given by (2). O
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Figure 3.

Clearly, for the incentel, f(P,I) = P*, sinceR, = R, = R. = P*, the
isogonal conjugate aP.

Corollary 4. The mappingf preserves isogonal conjugatioig.,
[1(P,Q) = f(P, Q7).

Proof. If the points P and @ are defined by the directed angles in (3), dd=
f(P,Q),S = f(P*, Q"),thenby Corollary 3(R*B, R*C') = A— (22’ —z) and
(SB, SC)= 2(Q*B, Q*C) — (P*B, P*(C)
=2(A-2")—-(A-2x)

= A- (22 —x)

= (R'B, R*C) mod .
Similarly, (SC,SA) = (R*C, R*A) and(SA, SB) = (R*A, R*B) mod .
Hence,R* = S, or f*(P,Q) = f(P*,Q%). O
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Conic Homographies and Bitangent Pencils

Paris Pamfilos

Abstract. Conic homographies are homographies of the projective plane pre-
serving a given conic. They are naturally associated with bitangenilperfic
conics, which are pencils containing a double line. Here we study this cenne
tion and relate these pencils to various groups of homographies asdogitite

a conic. A detailed analysis of the automorphisms of a given pencil djizesia

to the description of affinities preserving a conic. While the algebraic steictu
of the groups involved is simple, it seems that a geometric study of the vari-
ous questions is lacking or has not been given much attention. In thisctesp
the article reviews several well known results but also adds some niets b
view and results, leading to a detailed description of the group of homoigiap
preserving a bitangent pencil and, as a consequence, also thedjraffipities
preserving an affine conic.

1. Introduction

Deviating somewhat from the standard definition | ¢angentthe pencilsP
of conics which are defined in the projective plane through equation® dbtm

ac+ Be? = 0.

Herec(z,y,z) = 0 ande(z,y, z) = 0 are the equations ihomogeneous coordi-
natesof a non-degenerate conic and a line and@ are arbitrary, no simultaneously
zero, real numbers. To be short | use the same symbol for the sehatliation
representing it. Thus denotes the set of points of a conic ané- 0 denotes an
equation representing this set in some system of homogeneous coorditedies
note bitangent pencils | use the letf@rbut also the more specific symbgl, e).
For any other member-coni¢ of the pencil(¢, e) represents the same pencil. |
call line e and the poleF of e with respect toc respectivelyinvariant line and
centerof the pencil. The intersection points e, if any, are calledixedor base
points of the pencil. As is seen from the above equation, if such points thagt,
lie on every member-conic of the pencil.

Traditionally the termbitangentis used only for pencilgc, e) for which line
e either intersects or is disjoint from it. This amounts to a second order (real
or complex) contact between the members of the pencil, wherefore alstethe s
of the term. Pencils for whick ande? are tangent have a fourth order contact
between their members and are classified under the saperosculatingpencils
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([4, vol.ll, p.188], [12, p.136]) openosculatingencils ([9, p.268]). Here | take
the liberty to incorporate this class of pencils into the bitangent ones, thgideon
ering as a distinguished category the class of pencils which contain amang the
members a double line. This is done under the perspective of the tight relapon
of conic homographies with bitangent pencils under this wider sense. Amiirgs
discussion in synthetic style on pencils of conics, which however, despitédés
extend, does not contain the relationship studied here, can be foundirerSte
lectures ([11, pp.224—430)).

Every homography f of the plane preserving the conicdefines a bitangent
pencil (¢, e) to which conicc belongs as a member and to whi¢hacts by pre-
serving each and every member of the pencil. The pencil contains a dowble
e, which coincides with thexis of the homography. In this article | am mainly
interested in the investigation of the geometric properties of four groggs,
G(c,e), K(c,e) and.A(c), consisting respectively of homographies (i) preserving
a conice, (ii) preserving a pencilc, e), (iii) permuting the members of a pencil,
and (iv) preserving an affine conic. Last group is identical with a grofutype
G(c, e) in which line e is identified with the line at infinity. In Section Zpnic
homographies| review the well-known basic facts on homographies of conics
stating them as propositions for easy reference. Their proofs caoube in the
references given (especially [4, vol.ll, Chapter 16], [12, ChaytH}). Section 3
(Bitangent pencilsis a short review on the classification of bitangent pencils. In
Section 4 The isotropy at a pointl examine the isotropy of actions of the groups
referred above. In this, as well as in the subsequent sections, liygbppproofs of
propositions for which | could not find a reference. SectioM&t¢morphisms of
pencilg is dedicated to an analysis of the graiif, ). Section 6 Bitangent floy
comments on the vector-field point of view of a pencil and the charactemzatio
its flow through a simple configuration on the invariant line. Sectiofile(per-
spectivity group of a pengictontains a discussion on the grokijc, ) permuting
the members of a pencil. Finally, Section @ahic affinitie$ applies the results
of the previous sections to the description of the group of affinities prieggan
affine conic.

2. Conic homographies

Conic homographieare by definition restrictions onof homographies of the
plane that preserve a given conic One can define also such maps intrinsically,
without considering their extension to the ambient plane. For this fix a pbint
on ¢ and a linem and define the imag& = f(X) of a point X by using its
representatiorf’ = p o f o p~! through the (stereographic) projectiprof the
conic onto linem centered at.

1| use this term coming from my native language (greek) as an alternatjué/alent to
projectivity.
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Figure 1. Conic homography

Homographyf is the defined using a Moebius transformation ([10, p.40]) (see
Figure 1)

, ax + (3
It can be shown ([4, vol.ll, p.179]) that the two definitions are equivaleDe-
pending on the kind of the question one can prefer the first definitionydihrthe
restriction of a global homography, or the second through the projectiater
point of view implies the following ([10, p.47]).

Proposition 1. A conic homography on the conicis completely determined by
giving three pointsA, B, C on the conic and their image$', B’, C’. In particular,
if a conic homography fixes three points ot is the identity.

The two ways to define conic homographies on a coméflect to the represen-
tation of their groupG(c). In the first case, since every conic can be brought in
appropriate homogeneous coordinates to the form ([2, p.209])

?+y?—22=0

their group is represented through the group preserving this quadratiodhich
is O(2,1). By describing homographies through Moebius transformatifjas$ is
represented with the grouBpGL(2,R). The two representations are isomorphic
but notnaturally isomorphic ([4, vol.ll, p.180]). An isomorphism between them
can be established by fixing € ¢ and associating to eaghe O(2,1) the corre-
sponding induced im: transformationf’ € PGL(2,R) ([15, p.235]), in the way
this was defined above through the stereographic projection fromto some line
m (see Figure 1).

Next basic property of conic homographies is the existence oftibeiography
axis([4, vol.ll, p.178]).

Proposition 2. Given a conic homographjy of the conic, for every pair of points
A,Bong, linesAB’ and BA', with A’ = f(A), B’ = f(B) intersect on a fixed
line e, the homography axis gf. The fixed points of, if any, are the intersection
points ofc ande.
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Figure 2. Homography axis

Remark. This property implies (see Figure 2) an obvious geometric construction
of the imageB’ of an arbitrary point3 under the homography once we know the
axis and a single poind and its imageA’ on the conic: DrawA’B to find its
intersectiont” = A’B N e and from there draw liné”’ A to find its intersection
B'=FAne.

Note that the existence of the axis is a consequence of the existenceasdtat le
fixed point P for every homography of the plane ([15, p.243]). If preserves in
addition a conig;, then it is easily shown that the polaof P with respect to the
conic must be invariant and coincides either with a tangent of the conic ad fi
point of f or coincides with the axis of.

Next important property of conic homographies is the preservation of iiodew
bitangent family(c, e) generated by the conic and the axis of the homogra-
phy. Here the viewpoint must be that of the restrictioncofande) of a global
homography of the plane.

Proposition 3. Given a conic homography of the conicc with homograpy axis,
the transformatiory preserves every membér= ac+ e? of the pencil generated
by ¢ and the (double) line. The poleE of the axise with respect tae is a fixed
point of the homography. It is also the poleeofvith respect to every conic of the
pencil. Linee is the axis of the conic homography inducedfbgn every member
¢ of the pencil.

To prove the claims show first that lirels preserved by (see Figure 3). For
this take onc points A, B collinear with the poleE and consider their images
A" = f(A), B’ = f(B). SinceAB contains the pole of, the poleQ of AB will
be on linee. By Proposition 2 linesAB’, BA’ intersect at a point of line e. It
follows that the intersection poi of AA’, BB’ is also ore and thatA’ B’ passes
through E. Hence the pol&)’ of A’B’ will be on linee. Since homographies
preserve polarity it must b@' = f(Q) and f preserves line. From this follow
easily all other claims of the proposition.

| call pencilP = (¢, e) theassociated tg bitangent pencill use also folE the
namecenter of the pencibr/andcenter of the conic homography
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Figure 3. Invariance of axis

Next deal with conic homographies is their distinctioninmolutive and non-
involutive, i.e. homographies of period two and all others ([4, vol.ll, p]112,
p.223]). Following proposition identifies involutive homographies wigtmonic
homologiegsee Section 7) preserving a conic.

Proposition 4. Every involutive conic homography of the conicc fixes every
point of its axise. Inversely if it fixes its axis anfl ¢ e itis involutive. Equivalently
for each pointP € ¢ with P’ = f(P), line PP’ passes througl¥ the pole of
the axise of f. Point E is called in this case the center or Fregier point of the
involution.

Involutions are important because they can represent through theiosdiops
every conic homography. The bitangent pengils:) of interest, though, are those
created by non-involutive conic homographigés ¢ — ¢, and it will be seen that
the automorphisms of such pencils consist of all homographies of the cbich w
commute withf. The following proposition clarifies the decomposition of every
conic homography in two involutions ([4, vol.ll, p.178], [12, p.224]).

Proposition 5. Every conic homography of a conicc can be represented as the
product f = I, o I; of two involutionsl;, I,. The centers of the involutions are
necesserilly on the axisof f. In addition the center of one of them may be any
arbitrary point P; € e (not a fixed point off), the center of the otheP, € e is
then uniguely determined.

Following well known proposition signals also an important relation between
a non-involutive conic homography and the associated to it bitangentl.pénc
call the method suggested by this propositionttmegential generatiomf a non-
involutive conic homography. It expresses for non-involutive horaphies the
counterpart of the property of involutive homographies to have all lin2§ with
(P € ¢, P' = f(P)), passing through a fixed point.

Proposition 6. For every non-involutive conic homograplfiyof a conicc and ev-
ery pointP € cand P’ = f(P) lines PP’ envelope another coni¢. Conicc
is a member of the associated fditangent pencil. Inversely, given two member
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conicsc, ¢’ of a bitangent pencil the previous procedure defines a conic homogra
phy onc having its axis identical with the invariant lineof the bitangent pencil.
Further the contact poing)’ of line PP’ with ¢’ is the harmonic conjugate with
respect to P, P’) of the intersection poin®) of PP’ with the axise of f.

Figure 4. Tangential Generation

An elegant proof of these statements up to the last is implied by a proposition
proved in [8, p.253], see also [4, vol.ll, p.214] and [5, p.245]. Lststement
follows from the fact that) is the pole of lineQ)’ E (see Figure 4).

Propositions 5 and 6 allow a first description of theomorphism groug(c, €)
of a given pencil(c, e) i.e. the group of homographies mapping every member-
conic of the pencil onto itself. The group consists of homographies of tmask
The first kind are the involutive homographies which are completely defiged
giving their center on line or their axis throughZ. The other homographies
preserving the pencil are the non-involutive, which are compositionsio$ f
involutions of the previous kind. Since we can put the center of one of the tw
involutions anywhere oa (except the intersection points @andc), the homogra-
phies of this kind are parameterized by the location of their other center.

Before to look closer at these groups | digress for a short revievedfi#tssifica-
tion of bitangent pencils and an associated nhaming convention for honegsap

3. Bitangent pencils

There are three cases of bitangent pencils in the real projective plaicé w
are displayed in Figure 5. They are distinguished by the relative locatitimeof
invariant line and the conic generating the pencil.

Proposition 7. Every bitangent pencil of conics is projectively equivalent to one
generated by a fixed conitand a fixed line: in one of the following three possible
configurations.

(I) The linee non-intersecting the conic(elliptic).

(I The linee intersecting the conie at two points (hyperbolic).

(1) The linee being tangent to the conie(parabolic).
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0) (m (1
Figure 5. Bitangent pencils classification

The proof follows by reducing each case to a kincdhofmalform. For case (l)
select a projective basié, B, C' making aself-polartriangle with respect te. For
this takeA to be the pole oé with respect ta:, take thenB arbitrary on linee and
defineC to be the intersection of and the polapgp of B with respect ta.. The
triangle ABC thus defined is self-polar with respecttand the equations efand
e take the form

ar’ + By’ +422 =0, z=0.
In this we can assume that > 0, 3 > 0 andy < 0. Applying then a simple
projective transformation we reduce the equations in the form

2?4y =22 =0, r=0.

For case (ll) one can define a projective basjd3, C' for which the equation of
ande take respectively the form

22 —yz=0, z=0.

For this it suffices to take fod the intersection of the two tangents, ¢t to the
conic at the intersectionB, C' of the linee with the conicec and theunit point of
the basis on the conic. The projective equivalence of two such systerngidue.
Finally a system of type (lll) can be reduced to one of type (Il) by s&lgagain
an appropriate projective bask B, C. For this takeB to be the contact point
of the line and the conic. Take thehto be an arbitrary point on the conic and
defineC to be the intersection point of the tangetis ¢ 5. This reduces again the
equations to the form ([4, vol.ll, p.188])

a:y—z2:0, z = 0.
The projective equivalence of two suobrmal formss again obvious.

Remark.The disctinction of the three cases of bitangent pencils leads to a natural
distinction of the non-involutive homographies in four general classée fifst
class consists of homographies preserving a conic, such that theéagsddmtan-

gent pencil is elliptic. It is natural to call these homograpleidiptic. Analogously
homographies preserving a conic and such that the associated bitpegeittis
hyperbolic or parabolic can be called respectivieyyperbolicor parabolic All

other non-involutive homographies, not falling in one of these categfreesnot
preserving a conic), could be calléakodromic Simple arguments related to the
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set of fixed points of an homography show easily that the four claseafisjoint.

In addition since, by Proposition 2, the fixed points of a homogrgphseserving

a conic are its intersection points with the respective homographyeaxe see
that the three classes of non-involutive homographies preserving@arenchar-
acterized by the number of their fixed points on the conic ([12, p.101]d243]).
This naming convention of the first three classes conforms also with the traditio
naming of the corresponding kinds of real Moebius transformations étdloc the
invariant line of the associated pencil ([10, p.68]).

4. The isotropy at a point

Next proposition describes the structure of the isotropy gi@up(c, e) for a
hyperbolic pencilc, e) at each one of the two intersection poifit$, B} = cNe.

Proposition 8. Every homography preserving both, a conj@n intersecting the
conic linee, and fixing one (A say) of the two intersection poidtsB of c ande
belongs to a grou/ 45 (c, ) of homographies, which is isomorphic to the multi-
plicative groupR* and can be parameterized by the points of the two disjoint arcs
into whichc is divided byA, B.

Figure 6. Isotropy of type Ilb

Figure 6 illustrates the proof. Assume that homograjftpreserves both, the
conice, the linee, and also fixesl. Then it fixes also the other poifit and also the
poleC of line AB. Consequently is uniquely determined by prescribing its value
f(D)=FE € catapointD € c. | denote this homography bfpz. This map has
a simple matrix representation in the projective bdsisA, B, D} in which conic
cis represented by the equatign — z? = 0 and lineAB by x = 0, the unit point
D(1,1,1) being on the conic. In this basis and f6re ¢ with coordinategz, v, 2)
map fpg is represented by non-zero multiples of the matrix

z 0 O
FDE = 0 Yy 0
0 0 =z
This representation shows th@i (¢, ) is isomorphic to the multiplicative group

R* which has two connected components. The grGug(c, ¢) is the union of
two cosetsj;, Go corresponding to the two arcs enhdefined by the two points
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A, B. The arc containing poinD corresponds to subgroup, coinciding with
the connected component containing the identity. The other arc definedBby
corresponds to the other connected compogertdf the group. For point€ on
the same arc wittD the corresponding homography g preserves the two arcs
defined byA, B, whereas for point& on the other arc than the one containifig
the corresponding homographiyinterchanges the two arcs.

Obviously pointD can be any point ot different from A and B. Selecting
another place foD and varyingE generates the same group of homographies.
Clearly also there is a symmetry in the rolesffB and the group can be identified
with the group of homographies preserving coniand fixing both points4 and
B.

Remark.Note that there is a unique involutidg contained inGaz(c, e). Itis the
one having axisi B and cente(”, obtained for the position df for which lineDE
passes througt, the corresponding matrix being then hegonal(—1,1,1).

Following proposition deals with the isotropy of pendiise) at normal points
of the conice, i.e. points different from its intersection point(s) with the invariant
linee.

Figure 7. Isotropy at normal points

Proposition 9. For every normal poinD of the conia: the isotropy grougp(c, e)
is isomorphic toZ,. The different from the identity element of this group is the
involution Ip with axisDE.

For types (1) and (1) of pencils a proof is the following. Let the homaimaf
preserve the conie, the linee and fix pointD. Then it preserves also the tangent
tp at D and consequently fixes also the intersection pdirdf this line with the
axise (see Figure 7). It is easily seen that the pdlaF of A passes through the
centerE of the pencil and thaf preserved) F'. Thus the polaiD F' carries three
points, which remain fixed undgft. Sincef has three fixed points on linB F it
leaves the whole line fixed, hence it coincides with the involution with &xis
and centet.
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For type (lll) pencils the proof follows from the previous proposition.fact,
assumingB = cNeandA € ¢, A # B an elemenf of the isotropy groug(c, e)
fixes pointsA, B hencef € G4p. But from all elementg of the last group only
the involutionp with axis AB preserves the members of the perfcjle). This is
immediately seen by considering the decompositiofiioftwo involutions. Would
f preserve the member-conics of the bitangent farfily) then, by Proposition
5, the centers of these involutions would be pointe bt this is impossible for
f € Gap, since the involutions must in this case be centered ondiBe

A byproduct of the short investigation on the isotropy gréu of a hyperbolic
pencil (¢, e) is a couple of results concerning the orbitstfs on points of the
plane, other than the fixed points, B, C. To formulate it properly | adopt for
triangle ABC' the name ofnvariant triangle

Proposition 10. For every pointF’ not lying on the conie and not lying on the
side-lines of the invariant trianglel BC the orbitG 45 F' is the member conicg
of the hyperbolic bitangent pencit, e) which passes through'.

Infact,GapF C cp since allf € G4 preserve the member-conics of the pencil
(see Figure 6). By the continuity of the action the two sets must then be identical.
The second result that comes as byproduct is the one suggested by &idn its
formulation as well the formulation of next proposition | use the maps intratiuce
in the course of the proof of Proposition 8.

Proposition 11. For every pointF' not lying on the conie and not lying on the
side-lines of the invariant triangld BC', the intersection poini/ of linesDFE and
FG, whereG = fpg(F), asE varies on the conie, describes a conic passing
through pointsA, B, C, D and F.

Figure 8. A triangle conic

To prove this consider the projective basis and the matrix representatfgyof
given above. It is easy to describe in this basis the map sendingDifieto
FG. Indeed letE(x,y, z) be a point on the conic. Lin&FE has coefficients
(y — z,z — z,x — y). Thus, assuming’ has coordinate&y, 3, ), its image will
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be described by the coordinatesr, 3y, vz). The coefficients of the lin&'G will

be then(8v(y — 2),va(z — z),aB(z — y)). Thus the correspondence of line
FG to line DE will be described in terms of their coefficients by the projective
transformation

(y—zz—z2—y)— (By(y —2), ya(z — ), aB(z —y)).
The proposition is proved then by applying tikasles-Steingheorem, according
to which the intersections of homologous lines of two pencils related by a homog-
raphy describe a conic ([3, p.73], [4, vol.ll, p.173]). According tis thheorem the
conic passes through the vertices of the perRilg". It is also easily seen that the
conic passes through points B andC.

Proposition 12. For every pointF' not lying on the conie: and not lying on the
side-lines of the invariant triangld BC, linesEG with G = fpg(F') asE varies
on ¢ envelope a conic which belongs to the bitangent peiacd = AB).

/

A

Figure 9. Bitangent member as envelope

The proof can be based on the dual of the argumerGlusles-Steine([3,
p.89]), according to which the lines joining homologous points of a homograph
relation between two ranges of points envelope a conic. Here Bidéésee Figure
9) join points(z,y, z) on the conice with points (ax, Sy, ~vz) on the conicep,
hence their coefficients are given by

((v = Byz, (a—7)zz, (B—a)zy).
Taking the traces of these lines o= 0 andy = 0 we find that the corresponding
coordinateq0, %/, 2') and (z”,0, 2”) satisfy an equation of the form/7” = k,
wherer’ = //2', 7 = 2" /2" andk is a constant. Thus lineBG join points on
x = 0 andy = 0 related by a homographic relation hence they envelope a conic.
It is also easily seen that this conic passes throdgh and has there tangents
C A, CB hence it belongs to the bitangent family.

Continuing the examination of possible isotropies, after the short digression
the three last propositions, | examine the isotropy gr@ugpc, e) of a parabolic
pencil(c, e), for which the axis is tangent to the conicat a pointA. An element
f € Gal(c,e) may haved as its unique fixed point or may have an additional fixed
point B £ A.
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An elementf € G4(c, e) havingA as a unique fixed point cannot leave invariant
another line through, since this would create a second fixed pointoAlso there
is no other fixed point on the tangemsince this would also create another fixed
point onc.

Figure 10. Parabolic isotropy

Proposition 13. The groupGY including the identity and all homographie
which preserve a conie and haveA as a unique fixed point, is isomorphic to
the additive groufR. Every non-indetity homography in this group induces in the
tangente at A a parabolic transformation, which in line coordinates with origin
at A is described by a function of the kind = ax/(bx + a) or equivalently, by
settingd = b/a, through the relation

11
— =

o
This function uniquely describes the conic homography from which it is @uinc
line e. All elements of this group are non-involutive.

In fact consider the induced Moebius transformation on éirveith respect to
coordinates with origin a#l (see Figure 10). Sincd is a fixed point this trans-
formation will have the form:’ = ax/(bxz + ¢). Since this is the only root of the
equationz(bx + ¢) = ax < bx? + (c — a)r = 0, it must bec = a. Since for
every pointB other thanA the tangentsg, t g where B’ = f(B) intersect linee
at corresponding points, C’ = f(C') the definition off from its action on line:
is complete and unique. The statement on the isomorphism results from the abov
representation of the transformation. The value 0 corresponds to the identity
transformation. Every other valukec R defines a unique parabolic transformation
and the product of two such transformations corresponds to thel st of these
constants.

The groupG4 of all homographies preserving a conri@nd fixing a point4
contains obviously the groug}. The other elements of this group will fix an
additional pointB on the conic. Consequently the group will be represented as
aunionGy = gg Upxa Gap. For another poinC' different from A and B the
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corresponding groug 4¢ is conjugate taG .4z, by an element of the groug!.

In fact, by the previous discussion there is a unique elerfientG% mappingB

to C. ThenAd;(Gag) = Gac i.e. every elemenfc € Gc is represented as
fo = fofgo f~lwith fg € G4p. These remarks lead to the following proposi-
tion.

Proposition 14. The isotropy groug; 4 of conic homographies fixing a poidt of
the conicc is the semi-direct product of its subgroug§ of all homographiesf
which preserve and have the unique fixed poidton c and the subgroug 4z of
conic homographies which fix simultaneoudlynd another poin3 € ¢ different
from A.

To prove this apply the criterion ([1, p.285]) by which such a decomposition
the group is a consequence of the following two properties: (i) Every eleme
of the groupG 4 is expressible in a unique way as a prodyct gg o g4 with
ga € GY, gp € Gap and (i) GroupGY, is a normal subgroup @ 4. Starting from
property (ii) assume that € G4 has the formf = gg o ga o ggl. Shouldf fix a
pointC € c different from A then it would beg 4 (g5 (0)) = g5 (C) i.e. g5' (C)
would be a fixed point of 4, henceggl(C) = A which is impossible. To prove
() show first that every element i, is expressible as a produgt= gg o ga.
This is clear ifg € G or g € Gap. Assume then thaj in addition to A fixes
also the pointC € ¢ different from A. Then as remarked aboyecan be written
in the formg = g4 o g 0 g;*, henceg = gp o (95" © ga 0 g5 o g;*) and the
parenthesis is an element@}. That such a representation is also unique follows
trivially, since the equatiop c gg = ¢/4 © gz would implyg;1 ogy =gpo ggl
implying g4 = ¢/; andgp = ¢/, since the two subgrougs) andG45 have in
common only the identity element.

5. Automorphisms of pencils

In this section | examine the automorphism grélp, e) of a pencil(c, e) and in
particular the non-involutive automorphisms. Every such automorphismasia c
homographyf of conic ¢ preserving also the line. Hence it induces on line a
homography which can be represented by a Moebius transformation

/ ax + 3
x = .
T+ 6

Inversely, knowing the induced homography on lm&om a non-involutive ho-
mography one can reconstruct the homography on every other meotier:of
the pencil. Figure 11 illustrates the construction of the image pBint f(B)
by drawing the tangentp of ¢ at B and finding its intersectiod’ with e. The
imagef(B) is found by taking the image poidt’ = f(C') one and drawing from
there the tangents toand selecting the appropriate contact pdtor B” of the
tangents fromC’. The definition of the homography anis unambiguous only
for pencils of type (lll). For the other two kinds of pencils one can toras two
homographieg and f*, which are related by the involutiofy with centerE’ and
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Figure 11. Using line

axise. The relation isf* = f o Iy = Iy o f (last equality is shown in Proposition
16).

Using this method one can easily answer the question of periodic conic homo-
graphies.

Proposition 15. Only the elliptic bitangent pencils have homographies periodic of
periodn > 2. Inversely, if a conic homography is periodic, then it is elliptic.

In fact, in the case of elliptic pencils, selecting the homography tinbe of the
kind
,  cos(p)x — sin(op) 27

v sin(@)z + cos(p)’ ¢= n’
we define by the procedure described above-geriodic homography preserving
the pencil. For the cases of hyperbolic and parabolic pencils it is impossible to
define a periodic homography with peried> 2. This because, for such pencils,
every homography preserving them has to fix at least one point. If & éxactly
one, then itis a parabolic homography, hence by Proposition 13 cae petindic.
If it fixes two points, then as we have seen in Proposition 8, the homogaphy
be represented by a rediaigonalmatrix and this can not be periodic for > 2.
The inverse is shown by considering the associated bitangent penapahdng
the same arguments.

Since a general homography preserving a cowign be written as the composi-
tion of two involutions, it is of interest to know the structure of the set of intiohs
preserving a given bitangent pencil. For non-parabolic pencils tharpasticular
involution Iy, namely the one having for axis the invariant linef the family and
for centerE the pole of this line with respect t©
If Iis an arbitrary, other thafy, involution preserving the bitangent family, e)
then, since: is invariant byl, either its centet) is on linee or its axis coincides
with e. Last case can be easily excluded by showing that the compaosgitioiiy o I
is then an elation with axis and drawing from this a contradiction. Consequently
the axise; = E'F (see Figure 12) of the involution must pass through the fble
of e with respect ta. It follows that/ commutes withly. A consequence of this is
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Figure 12. Involutive automorphisms

thatI” = I, o I is another involution the axis of which is liféQ and its center is
F'. Since by Proposition 5 every homographyreserving the bitangent pencil is
a product of two involutions with centers on the axii$ follows that I, commutes
with f. We arrive thus at the following.

Proposition 16. The group5 (¢, e) of all homographies preserving a non-parabolic
bitangent pencil is a subgroup of the group of homographies of theegleaserving
line e, fixing the cente of the pencil and commuting with involutidp.

For the rest of the section | omit the reference(¢oe) and write simplyG
instead ofG(c, e). Involution Ij is a singularium and should be excluded from the
set of all other involutions. It can be represented in infinite many waypestact
of involutions. In fact for any other involutive automorphism of the peiidihe
involution I’ = I o Iy = Iy o I represents it as a produfy = I o I’. Counting
it to the non-involutive automorphisms, it is easy to see that we can sepagate th
group@ into two disjoint sets. The set of non-involutive automorphisths- G
containing the identity and, as particular elements, and the §ét ¢ G of all
other involutive automorphisms.

Proposition 17. For non-parabolic pencils two involutions I’ commute, if and
only if their product isly. Further if the product of two involutions is an involution,
then this involution idy. For parabolic pencild o I’ is never commutative.

For the first claim notice that/ o I = I impliesI’ = IyoI = I o Iy. Last
because every element 6f commutes withl,. Last equation implied o I’ =
I’ o I. Inversely, if last equation is valid it is readily seen that the two involutions
have common fixed points anand fix £ hence their composition i o I = I,.
Next claim is a consequence of the previous, sificel being involution implies
(I'ol)o(I'ol) =1=TI'ol = Iol Lastclaimis a consequence of the
fact thatl o I’ andI’ o I are inverse to each other and non-involutive, according to
Proposition 13.

Proposition 18. The automorphism grou@ of a pencil(c, e) is the union of two
cosetsg = G' U G”. G’ consists of the non-involutive automorphisms (dpd
for non-parabolic pencils) and builds a subgrouphfG” consists of all involutive
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automorphisms of the pencil (which are different frgnfior non-parabolic pencils)
and builds a coset &’ in G. Further itisG”G"” c G’ andg'G” c G”.

In fact, given an involutivd € G” and a non-involutive € G’, we can, accord-
ing to Proposition 5, represerftas a producf = I o I’ using involution/ and
another involution/” completely determined by. Thenl o f = I’ € G”. This
showsG”G’ ¢ G”. The inclusiong’G’ C G’ provingG’ a subgroup ofj is seen
similarly. The other statements are equally trivial.

Regarding commutativity, we can easily see that the (co)set of involutionts co
tains non-commuting elements in genetdlq I is the inverse of o I’), whereas
the subgrou’ is always commutative. More precisely the following is true.

Proposition 19. The subgrouy’ C G of non-involutive automorphisms of the
bitangent pencil(c, e) is commutative.

Figure 13. Commutativity for type |

The proof can be given on the basis of Figure 13, illustrating the cadiice
pencils, the arguments though being valid also for the other types of pefrils.
this figure the two productg o g andg o f of two non-involutive automorphisms
of the pencilf € ¢’ andg € G’ are represented using tkengential generation
of Proposition 6. ForA € ¢ point B = f(A) has lineAB tangent at/ to a
coniccy of the pencil. Analogously’ = ¢(B) defines lineBC tangent at to
a second conie, of the pencil. LetD = g(A) and consequentliD be tangent
at point.J to ¢,4. It must be shown thaf(D) = C or equivalently that lineDC
is tangent at a poink to c;. For this note first that line¢ 5D, I.J} intersect at
a pointM one. This happens because of the harmonic ratiésB, G, I) = —1
and(A, D, F,J) = —1. Similarly linesAC, I K intersect at a point/’ of e. This
follows again by the harmonic ratid#$3, A, I,G) = (B,C, K, H) = —1. Hence
M' = M and consequently linedC, BD intersect atM, hence according to
Proposition 2(' = f(D).

For hyperbolic pencils the result is also a consequence of the retatserof
these homographies through diagonal matrices, as in Proposition 8. rabopa
pencils the proof follows also directly from Proposition 13.
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Note that for pencilgc, e) of type (ll) for which ¢ ande intersect at two points
{A, B}, the involutionsl 4, Iz with axes respectively3FE, AE, do not belong to
G but define through their compositidn, o Iz = Iy. This is noticed in Proposi-
tion 5 which represents every automorphism as the product of two invodutibn
is though a case to be excluded in the following proposition, which results fro
Proposition 5 and the previous discussion.

Proposition 20. If an automorphisny € G of a pencil(c, e) is representable as a
product of two involutiong = I, o I, then with the exception @) = I4 o Ig in
the case of an hyperbolic pencil, in all other cadesand I; are elements of .

Regarding the transitivity of(c, e¢) on the conics of the pencil, the following
result can be easily proved.

Proposition 21. (i) For elliptic pencils (¢, e) each one of the coses, G” acts
simply transitively on the points of the conic

(i) For hyperbolic pencils(c, e) each one of the cose, G” acts simply tran-
sitively onc — {A, B}, where{A, B} = cne. All elements off” interchange
(A, B), whereas all elements ¢f fix them.

(iii) For parabolic pencils each one of the coséts G acts simply transitively on
c —{A} whereA = ¢ N e and all of them fix poin#.

6. Bitangent flow

Last proposition shows that every non-involutive conic homogrgpbfya conic
c is an element of a one-dimensional Lie group ([6, p.210], [13, p82gting on
the projective plane . The invariant conigs then a union of orbits of the action
of this group. Groug is a subgroup of the Lie grouBGL(3, R) of all projectiv-
ities of the plane and contains a one-parameter group ([13, p.102]) ajrthigp,
which can be easily identified with the connected component of the subgfoup
containing the identity. Through the one-parameter group one can defesa
field on the plane, the integral curves of which are contained in the cohib o
bitangent pencil associated to the non-involutive homography. Thusdtdregbnt
pencil represents the flow of a vector field on the projective plane (189}, [14,
p.292]). The fixed points correspond to the singularities of this vector field

This point of view rises the problem of the determination of the simplest possible
data needed in order to define such a flow on the plane. The answpp$Rian
26) to this problem lies in a certain involution emelated to the cosé&t” of the in-
volutive automorphisms of the bitangent pencil. | start with non-parabolicifse
characterized by the existence of the particular involufion

Proposition 22. For every non-parabolic pencil the correspondernite Q — F
between the centers of the involutidnsnd I o I defines an involutive homography
on linee. The fixed points off coincide with the intersection poin{A, B} =
cNe.

In fact considering the pencl* of lines throughFE it is easy to see that the cor-
respondence/ : F' — (@ (see Figure 14) is projective and has period two. The
identification of the fixed points of with {A, B} = c¢n e is equally trivial.
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Proposition 23. The automorphism groug(c,e) of a non-parabolic pencil is
uniquely determined by the triple

(e, E,T)
consisting of a line a pointE ¢ e and an involutive homography on lire
In fact 7 completely determines the involutive automorphisisof the pencil,
since for each poin one point F' = 7(Q) defines the axi$'E of the involution

Ig. The involutive automorphisms in turn, through their compositions, determine
also the non involutive elements of the group.

Figure 14. Quadrilateral in case |

Remark. For elliptic pencils involution7 induces on every member-conicof
the pencil a correspondence of poids— Y through its intersection with lines
(EF, EQ) (see Figure 14). This defines an automorphism of the pencil of order 4
and through it infinite many convex quadrangles, each of which compledédy-d
mines the pencil. Inversely, by the results of this section it will follow that &arte
convex quadrangle there is a well defined bitangent pencil having a meruolve
cumscribed and a membérinscribed in the quadrangle. Conids characterized
by having its tangents at opposite vertices intersect orelif@nicc’ contacts the
sides of the quadrangle at their intersections with lingg, £.J } (see Figure 15).
Note that for cyclic quadrilaterals in the euclidean plane the correspondimgc
does not coincide in general with their circumcircle. It is instead identical téh
image of the circumcircle of the square under the unique projective majmgend
the vertices of the square to those of the given quadrilaterialthe image under
this map of the line at infinity).

Knowing the groupg of its automorphisms, one would expect a complete re-
construction of the whole pencil, through the orl#it&” of points X of the plane
under the action of this group. Before to proceed to the proof of thisgotpp
modify slightly the point of view in order to encompass also parabolic penails. F
this consider the map : e — E* induced in the pencik* of lines emanating from
E, the pole of the invariant line of the pencil. This map associates to every point
Q@ € ethe axisE'F of the involution centered &). Obviously for non-parabolic
pencilsZ determines/ and vice versa. The first map though can be defined also
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Figure 15. Circumcircle and circumconic

for parabolic pencils, since also in this case, for each piate there is a unique
line F'Q) representing the axis of the unique involutive automorphism of the pencil
centered af). Following general fact is on the basis of the generation of the pencil
through orbits.

Proposition 24. Given a linee and a pointE consider a projective map : e —
E* of the line onto the pencit* of lines throughZ. Lete’ denote the complement
ine ofthe see” = {Q € e: Q € Z(Q). For every@ € ¢’ denote the involution
with center@ and axisZ(Q). Then for every poinX ¢ e of the plane the set
{Io(X) : Q € €'} U e is aconic.

Figure 16. Orbits of involutions

In fact, by the Chasles-Steiner construction method of conics ([3, pl#&i3 X Q
andZ(Q) intersect at a poinP describing a conie’/, which passes through
and E. Every pointQ € ¢” i.e. satisfyingQ € Z(Q) coincides with a point of
the intersectior’ N e and vice versa. Thus’ has at most two point§ @, B} in
Figure 16).

The locus{ig(X) : @ € e} coincides then with the image of the conic
c, under the perspectivityx with center atX, axis the linee and homology

coefficientk = 1/2.
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Proposition 25. The conics generated by the previous method belong to a bitan-
gent pencil with axig and centerE if and only if they are invariant by all involu-
tions I for Q € €'. The points ire” are the fixed points of the pencil.

The necessity of the condition is a consequence of Proposition 21. Ve fire
sufficiency assume thatis invariant under al{Igp : Q € €'}. Then for every
Q € ¢ line Z(Q) is the polar of@ with respect tae. Consequently line is the
polar of E with respect te:and, if E ¢ ¢, the involution], with axise and cente”
leaves invariant. Since the center of each involution from the pdiy, Io) is on
the axis of the other the two involutions commute dpa I, defines an involution
with center at the intersectia’ = e N Z(Q) and axis the polar of this point with
respect ta;, which, by the previous arguments, coincides WiflQ)'). This implies
that the map induced in lineby 7' : Q — Q' = Z(Q) N e is an involution.
Consider now the pendit, e). Itis trivial to show that its member-conics coincide
with the conics(I(X) : Q € e} for X ¢ e andJ" is identical with the involution
J of the pencil. This completes the proof of the proposition for the ¢agee.

The proof for the cas& € e is analogous with minor modifications. In this case
the assumption of the invariance otinderI implies that lineZ(Q) is the polar
of @ with respect ta=. From this follows that is tangent ta: at £ andZ(E) = e.
Thuse” contains the single elemerit. Then it is again trivial to show that the
conics of the pencilc, e) coincide with the conic$lo(X) : Q € e} for X ¢ e.

The arguments in the previous proof show that non-parabolic pencitsoare
pletely determined by the involutior on line e, whereas parabolic pencils are
completely defined by a projective mdp: e — E* with the propertyZ(E) = e.
Following proposition formulates these facts.

Proposition 26. (i) Non-parabolic pencils correspond bijectively to triples £, .7)
consisting of a line, a pointE ¢ e and an involution7 : e — e. The fixed points
of the pencil coincide with the fixed points ®f

(i) Parabolic pencils correspond bijectively to triplés, F, 7) consisting of a line
e, a pointE € e and a projective mafI : e — E* onto the pencilE* of lines

through E, such thatZ (F) = e.

7. The perspectivity group of a pencil

Perspectivities are homographies of the plane fixing adjroalled theaxisand
leaving invariant every line through a poiat, called thecenterof the perspec-
tivity. If £ € e then the perspectivity is called atation, otherwise it is called
homology Tightly related to the groug of automorphisms of the pendit, e)
is the groupk of perspectivities, with centel the center of the pencil and axis
the axise of the pencil. As will be seen, this group acts on the pefcit) by
permuting its members. For non-parabolic pencils the perspectivities of thip gr
arehomologiesand for parabolic pencils the perspectivities alaions The ba-
sic facts about perspectivities are summarized by the following three gitimps
([12, p.72], [15, p.228], [7, p.247]).
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Proposition 27. Given a linee and three collinear point€, X, X', there is a
unique perspectivity with axise and center® and f(X) = X'.

Proposition 28. For any perspectivity’ with axise and centerE and two points
(X,Y) with (X' = f(X),Y' = f(Y)), linesXY and X'Y" intersect ore. For
homologies the cross ratio\, X', £, X.) = , whereX, = X X'Ne, is a constant
k called homology coefficient. Involutive homographies are homologiesanith
—1 and are called harmonic homologies.

Proposition 29. The set of homologies having in common the a%isd the center
E builds a commutative grouft which is isomorphic to the multiplicative group
of real numbers.

That the compositioh = go f of two homologies with the previous characteristics
is a homology follows directly from their definition. The homology coefficients
multiply homomorphicallys;, = rg4k ¢, this being a consequence of Proposition
27 and the well-known identity for cross ratios of five poiQfs, Y, Z, H) on a
lined ([2, p.174])

(X, Y,E.H)Y,Z,E,H)(Z,X,E,H) =1,
whereH = d N e. This implies also the commutativity.

Whereas the previous isomorphism is canonical, the following one, easitggr
by using coordinates is not canonical. The usual way to realize it is toestenid-
finity and have the elations conjugate to translations parallel to the direction dete
mined byE ([4, vol.ll, p.191]). The representation of the elation as a composition,
given below follows directly from the definitions.

Proposition 30. The set of all elations having in common the ax@&nd the center

E builds a commutative grouR which is isomorphic to the additive group of real
numbers. Every elatioif can be represented as a composition of two harmonic
homologiesf = Ip o I4, which share withf the axise and have their centers
{A, B} collinear with E. In this representation the center ¢ e can be arbitrary,

the other cente3 being then determined kyand lying on lineAFE.

Returning to the pencilc, e), the groupg of its automorphisms and the corre-
sponding groupC of perspectivities, which are homologies in the non-parabolic
case and elations in the parabolic, combine in the way shown by the following
propositions.

Proposition 31. For every bitangent pencik, e) the elements of(c, e) commute
with those ofG(c, e).

The proposition is easily proved first for involutive automorphisms of thecihe
characterized by having their cent&pson the perspectivity axis and their axis

g passing through the perspectivity center Figure 17 suggests the proof of the
commutativity of such an involutiorig with a homologyfr with center at® and
axis the linee. PointY = fg(X) satisfies the cross-ratio condition of the perspec-
tivity (X,Y, E, H) = k, wherex is the homology coefficient of the perspectivity.
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Figure 17. Homology commuting with involution

Then takingZ = fg(Y') and the intersectiold of line ZE with XQ it is readily
seen thatfo(fe(X)) = fe(fo(X)). Thus perspectivityfy commutes with all
involutive automorphisms of the pencil.

In the case of parabolic pencils,AfF is the axis of the involutive automorphism
fo, Q € e of the pencil, according to Proposition 30, one can represent the elation
fr as a compositiodg o I4 of two involutions with centers lying o F' and
axis the invariant line. Each of these involutions commutes then wfith hence
their composition will commute witlfy too. Since the involutive automorphisms
generate all automorphisms of the pencil it follows tifigtcommutes with every
automorphism of the pencil.

Proposition 32. For non-hyperbolic pencils and every two member-cofics’)

of the pencil there is a perspectivity with centefzaand axis the line, which maps

c to ¢/. For hyperbolic pencils this is true if and ¢’ belong to the same connected
component of the plane defined by liés4, EB), where{A, B} = cNe are the
base points of the pencil anfd the center of the pencil.

Figure 18. Perspectivity permuting member-conics

To prove the claim consider a line throughintersecting two conics of the pencil
at pointsP € ¢, P’ € ¢’ (see Figure 18). By Proposition 27 there is a perspectivity
f mappingP to P’. By the previous propositiofi commutes with aly € G which

can be used to map to any other (than the base points of the pencil) pQirdf

c and pointP’ to Q' € ¢ N EQ. This implies thatf(c¢) = ¢’. The restriction for
hyperbolic pencils is obviously necessary, since perspectivities leaagant the
lines through their centdt.
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Figure 19. Conjugate member-conic

Proposition 33. Let f be a non-involutive automorphism of the perieile) and

¢ be the member-conic determined by its tangential generation with respect to
c(proposition-6). Then, for non-hyperbolic pencils there is a perspiéctiy € K
mappingc to /. This is true also for hyperbolic pencils providg¢doreserves the
components aof cut out bye. Furtherp; is independent of.

In fact, givenf € G, according tgroposition-6 there is a conie¢’ of the bitangent
pencil such that line®P’, P’ = f(P) are tangent te’. The exceptional case for
pencils of type (Il) occurs whefi interchanges the two components cut out from
by the axise. In this case conicsandc’ are on different connected components of
the plane defined by linggZ A, EB}. This is due to the fact (ibid) that the contact
point @ of PP’ with ¢’ is the harmonic conjugate with respect(8, P’) of the
intersection)’ = PP’ N e. Figure 19 illustrates this case and shows that for such
automorphisms the resulting automorphigin= f o Iy = Iy o f, mappingP to
S = f(P) = Iy(f(P)) = Io(P'), defines through its corresponding tangential
generation a kind ofonjugateconicc” to ¢’ with respect ta:.

To come back to the proof, first claim follows from the previous proposition
Last claim means that if the pencil is represented through another meatierc
by the pair(d, ), and the tangential generation pfis determined by a coni¢,
then the correspondirygc mappingd to d’ is identical topy. The property is indeed
a trivial consequence of the commutativity between the members of the gfoups
andC. To see this consider a poift € ¢ and its image”’ = f(P) € c¢. Consider
also the perspectivity € K sendingc to d and let@Q = g(P),Q" = g(P'). By
the commutativity off, g itis f(Q) = f(g(P)) = g(f(P)) = g(P’) = Q'. Thus
the envelope’ of lines PP’ maps viag to the envelopel!’ of lines QQ’. Hence
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if pr(c) = ¢ andp’(d) = d' thend’ = g(c') = g(ps(c)) implying p';(g(c)) =
g(ps(c)) and from thiSp’f =gopsog ' =pssinceg andp; commute.

Remark.Given a bitangent pencfk, e) the correspondence pf to f considered
above is univalent only for parabolic pencils. Otherwise it is bivalentesbothp
andpsoly = Ipops do the same job. Even in the univalent case the correspondence
is not a homomorphism, since it is trivially seen thfaaindg = f—! havep; =

pg. This situation is reflected also in simple configurations as, for example, in the
case of the bitangent pen¢il, e) of concentric circles with common centgr, the
invariant linee being the line at infinity.

Figure 20. Acasedf’ > f—pr e K

In this case the rotatioR,, by anglea € (0, 7) at E (see Figure 20), which is an
element of the corresponding, maps to the elemetﬁ'cos(%) of IC, which is the

homothety with centef and ratiocos(5).

8. Conic affinities

By identifying the invariant line of a bitangent penci(c, e) with the line at
infinity all the results of the previous sections translate to properties oéaffaps
preserving affine conics ([2, p.184], [4, vol.ll, p.146]). The autopidsm groupg
of the pencil(c, e) becomes the groug of affinities preserving the conic Elliptic
pencils correspond tellipses hyperbolic pencils correspond ttyperbolasand
parabolic pencils tparabolas The centelZ of the pencils becomes tloenterof
the conic, for ellipses and hyperbolas, called collectivalgtralconics. For these
kinds of conics involutiony becomes theymmetnor half turnat the center of the
conic. Every involution/ other that/y, becomes amffine reflection([7, p.203])
with respect to the corresponding axis of the involution, which coincides avith
diameterd of the conic. The center of the affine reflectidms a point at infinity
defining theconjugatedirection of linesX X’ (X’ = f(X)) of the reflection. This
direction coincides with the one of the conjugate diameted.toFor an affine
reflection] with diameterd the reflectionl o I is the reflection with respect to
theconjugatediameterd’ of the conic. Products of two affine reflexions are called
equiaffinities([7, p.208]) oraffine rotations For central conics the groug of
perspectivities becomes the group of homotheties centerd at

For parabolas the center of the perfiis the contact point of the curve with the
line at infinity. All affine reflections have in this case their axes passingitiré’
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i.e. they are parallel to the direction defined by this point at infinity, which is als
the contact point of the conic with The groupkC of elations in this case becomes
the group of translations parallel to the direction definedtby

In order to stress the differences between the three kinds of affinesddnans-
late the results of the previous paragraphs for each one separately.

By introducing an euclidean metric into the plane ([4, vol.l, p.200]) and taking
for ¢ the unit circlec : 22 + y? = 1, the group of affinities of an ellipse becomes
equal to the group of isometries of the circle. The subgrglequals then the
group of rotations about the center of the circle and the ag@$etquals the coset
of reflections on diameters of the circléy is the symmetry at the center of the
circle and the map +— I o Iy sends the reflection on a diametkto the reflection
on the orthogonal diametel of the circle. An affine rotation is identified with
an euclidean rotation and in particular a periodic affinity is identified with a peri-
odic rotation. This and similar simple arguments lead to the following well-known
results.

Proposition 34. (1) The groupg of affinities preserving the ellipsgs isomorphic
to the rotation group of the plane.

(2) For each pointP € c there is a unique conic affinity (different from identity)
preservinge and fixingP. This is the affine reflectiohr on the diameter through
P.

(3) For everyn > 2 there is a unique cyclic group of elements f, f2, ..., f* =

1} € G’ with f periodic of periodn.

(4) For every affine rotatiory of an ellipsec the corresponding axisis the line at
infinity and the centeF is the center of the conic.

(5) The pencil(c, e) consists of the conics which are homothetie twith respect
to its center.

(6) Group K is identical with the group of homotheties with center at the center
of the ellipse. To each affine rotatighof the conic corresponds a real number
r¢ € [0, 1] which is the homothety ratio of the elemente K : ¢ = ps(c), where

¢ realizes through its tangents the tangential generatiofi.of

In the case of hyperbolas the groups differ slightly from the corredipgrones
for ellipses in the connectedness of the cogéts;” which now have two compo-
nents. The existence of two components has a clear geometric meaningrithe ¢
ponents result from the two disjoint parts into which is divided the axigough
its intersection pointsl, B with the conice. Involutions/p which have their center
P in one of these parts have their axis non-intersecting the conic. Thesations
are characterized in the affine plane by diameters non-intersecting tbebojg
They represent affine reflections which have no fixed points on therhgfa. The
other connected component of the coset of affine reflections is ¢bdrad by the
property of the corresponding diameters to intersect the hyperboladéiumng
two fixed points of the corresponding reflection.

Group ¢’ is isomorphic to the multiplicative grouR* corresponding t@ 4z
of Proposition 8. This group is the disjoint union of the subgrgijpof affine
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hyperbolicrotations that preserve the components of the hyperbola and its coset
g1 = 1vG), of affinehyperbolic crossedotations that interchange the two compo-
nents of the hyperbola ([7, p.206]). By identifyingvith the hyperbolay = 1 one

can describe the elements@f through the affine map§(z, y) — (uz, iy), >

0}. The other componerd; is then identified with the set of magsz,y) —

(—p, —iy), w > 0}. Following proposition summarizes the results.

Proposition 35. (1) The group of affinitie§/ of a given affine hyperbolaconsists

of affine reflections and affine rotations which are compositions of tflecteons.

(2) The affine rotations build a commutative subgratipc G and the affine reflec-
tions build the unique cos&’ C G of this group.G’ andG” are each homeomor-
phic to the pointed real lin&k* and groupg’ is isomorphic to the multiplicative
groupRR*.

(3) GroupG’ = G, U G} has two components corresponding to rotations that pre-
serve the components of the hyperbola and the otfiers 1,G|, called crossed
rotations, that interchange the two components. There are no periofiliitias
preserving the hyperbola for a period> 2.

(4) The coset of affine reflections of the hyperbola is the ugior= G U G7 of
two components. Reflectiofisc G preserve hyperbola’s components and have
fixed points on them, whereas reflectidns G = 1G] interchange the two com-
ponents and have no fixed points.

(5) For each pointP € c there is a unique conic affinity (different from identity)
preservinge and fixingP. This is the affine reflectiofi> on the diameter through
P.

(6) Group K is identical with the group of homotheties with center at the center of
the hyperbola.

(7) For each non-involutive affinity of an hyperbola: preserving the components
the tangential generation of defines another hyperbold homothetic ta: with
respect toE. If f permutes the componentsathen f* = f o Iy defines through
tangential generation’ homotheticc. The homotety ratios for the two cases are
correspondingly-; > 1 andrg- € (0,1).

The case of affine parabolas demonstrates significant differeraraselfipses
and hyperbolas. Since the affinities preserving a parabola fix its poinfimity
E, their group is isomorphic to the groups discussed in Proposition 14. This
group contains the subgro@}, of so-calledparabolic rotations which are prod-
ucts of twoparabolic reflections These are the only affine reflections preserving
the parabola and their set is a cosef®fin Gr. The most important addition in the
case of parabolas are the isotropy grogps; fixing the point at infinityE of the
parabola and an additional poiBtof it. Figure 21 illustrates an example of such
a groupGg g in which the parabola is described in an affine frame by the equation
y = 22 and pointB is the origin of coordinates. In this example the grély is
represented by affine transformations of the form

(z,y) — (ra,r?y), r € R



Conic homographies and bitangent pencils 255

X'(rx, ry)

Figure 21. The grouges

The figure displays also two other parabalas:_,.. These are the conics realizing
the tangential generations (Proposition 6) for the corresponding affitiitiy) —
(rz,r?y) and(z,y) — (—rz,r?y) for » > 0. Note that, in addition to the unique
affine reflection and the unique affine rotation sending a p&irid another point
X' and existing for affine conics of all kinds, there are for parabolasiiafinore
affinities doing the same job. In fact, in this case, by Proposition 14, foy ewe
points(X, X') different from B there is precisely one elemefitc Gz mapping
X to X’. This affinity preserves the parabola, fixBsand is neither an affine
reflection nor an affine rotation.

Figure 22 shows the decomposition of the previous affinity into two involutions
fr = IoI' with centers)y, Q- lying on the axis{ = 0) of the parabola. These are
not affine since they do not preserve the line at infinity. They have ththeir axis
parallel to the tangent at B and their intersections with the axig are symmetric
to @); with respect toB. Thus, both of them map the line at infinity onto the
tangentd at B, so that their composition leaves the line at infinity invariant. Since
for another poinC' € c the corresponding grouprc = Ad¢(Geg) is conjugate
to G by an affine rotatiory € GY the previous analysis transfers to the isotropy

atC.
/f(P)

Figure 22. f, as product of involutions
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Another issue to be discussed when comparing the kinds of affine cortitatis
of area. Area in affine planes is defined up to a multiplicative constantd|4,
p.59]). To measure areas one fixes an affine frame, thus fixing simultsigebe
orientationof the plane, and refers everything to this frame. Affinities preserving
the area build a subgroup of the group of affinities of the plane, to whildnge
all affine rotations. Affine reflections reverse the sign of the areas &fffine re-
flections and rotations, considered together build a group preservinmsigned
area. The analysis in the previous sections shows that affinities presarvaffine
conic are automatically also unsigned-area-preserving in all cases wigx¢bp-
tion of some types of affinities of parabolas. These affinities are the eleoféhts
subgroupgigp with the exception of the identity and the parabolic reflectign
fixing B. Thus, while for all conics there are exactly two area preserving affnitie
mapping a poinX to another poinX’ (an affine rotation and an affine reflection),
for parabolas there is in addition a one-parameter infinity of area n@emiag
affinities mappingX to X”.

Proposition 36. In the followinge denotes the line at infinity anfl’ its unique
common point with the parabola

(1) The groupg of affinities preserving parabolais the uniong = G% Ugc. Grp.
This group is also the semidirect product of its subgrogfisand Gz, the first
containing all parabolic rotations and the second being the isotropy graup a
point B € ¢ of G.

(2) G2 is the group of affine rotations, which are products of two affine reflestio
preserving the conic. This group is isomorphic to the additive group dfrmesn-
bers. There are no periodic affinities preserving a parabola for a gerio> 2.

(3) The seG” of all affine reflections preserving the parabola consists of affinities
having their axis parallel to the axis of the parabola, which is the directionreete
mined by its point at infinity. This is a coset of the previous subgrougiaicting
simply transitively ore.

(4) The groupG g is isomorphic to the multiplicative grouR* and its elements,
except the affine reflectialy € G, the axis of which passes through though
they preserve, are neither affine reflections nor affine rotations and do not pre-
serve areas. This group acts simply transitivelycon { B}.

(5) For every pair of pointsB € ¢, C € c there is a unique affine rotatiofi € G%
such thatf(B) = C'. This element conjugates the corresponding isotropy groups:
Ads(GgB) = GEC-

(6) Every coset 0§ intersects each subgroupzs C G in exactly one element.

(7) For each affine rotatiory € GY% the tangential generation defines an element
ps € K. Last group coincides with the group of translations parallel to the axis of
the parabola.

(8) For each elemenf € Ggp the tangential generation defines a parabola which
is a member of the bitangent pengil £B). This pencil consists of all parabolas
sharing withc the same axis and being tangenttat B.
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Some Triangle Centers Associated with
the Tritangent Circles

Nikolaos Dergiades and Juan Carlos Salazar

Abstract. We investigate two interesting special cases of the dabksipollo-
nius problem, and then apply these to the tritangent cimiestriangle to find
pair of perspective (or homothetic) triangles. Some neanggie centers are con-
structed.

1. Aninteresting construction

We begin with a simple construction of a special case of thesital Apollonius
problem. Given two circle®(r), O'(r’) and an external tangex}, to construct a
circle O (r1) tangent to the circles and the line, with point of tangeAthetween
AandA’, those of(O), (O') andL (see Figure 1). A simple calculation shows that
AX = 2./rir andX A’ = 2/r177, so thatAX : XA’ = \/r : V/r'. The radius of
the circle is

)
a\reVe )

Figure 1

From this we design the following construction.

Construction 1. On the lineZ, choose two point® and Q) be points on opposite
sides ofA such thatPA = r and AQ = r’. Construct the circle with diameter
PQ to intersect the lin@) A at F' such thatO and F' are on opposite sides .
The intersection of)’ F' with £ is the pointX satisfyingAX : XA = \/r : V7'
Let M be the midpoint oA X. The perpendiculars t& M at M, and to£ at X
intersect at the centad, of the required circlgsee Figure 2)

Publication Date: October 12, 2009. Communicating Ediaul Yiu.
Many thanks to the editor for many additions and especiallyCfonstruction 1.
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Figure 2

For a construction in the case whéris not necessarily tangent @) and(0’),
see [1, Problem 471].

2. An application to the excircles of atriangle

We apply the above construction to the excircles of a trieadgBC. We adopt
standard notations for a triangle, and work with homogeadiarycentric coordi-
nates. The points of tangency of the excircles with the idslare as follows.

| | BC | CA | AB |
(I) | Aa=(0:s—=b:s—c¢) | Ba=(—(s=0):0:8) | Co=(—(s—¢):5:0)
(Ip) | Ap=0:—=(s—a):s) | Bp=(s—a:0:s—¢) | Cr=(s:—(s—¢):0)
(I.) | Ac=(0:8:—(s—a)) | Be=(s:0:=(s—¢)) |[Co=(s—a:5—0:0)

Consider the circle®; (X) tangent to the excircleg, (1) andI.(r.), and to the
line BC at a pointX betweenA. and A4, (see Figure 3).

Figure 3
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Lemma 2. The pointX has coordinates
0:svVs—c—(s—a)Vs—b:sVs—b—(s—a)Vs—c).

Proof. If (O;) is the circle tangent t¢/;), (I.), and toBC at X betweenA. and

Ay, thenA X : XAy = \/rc: /T, = Vs —b:+/s—c. Note thatd. 4, = b + c,
so that

BX =A.X — A.B

- Vb - (s—a)
Vs—b++s—c
sVs—b—(s—a)ys—c
 Vs—b4++s—c¢
Similarly
X0 = sx/sT—(s—a)m.
Vs—b++/s—c
It follows that the pointX has coordinates given above. a

Similarly, there are circle®(Y) andO3(Z) tangent taC' A atY and toAB at
Z respectively, each also tangent to a pair of excircles. rid¢mrdinates can be
written down from those oKX by cyclic permutations o, b, c.

3. Thetriangle bounded by the polars of the vertices with respect to the excir-
cles

Consider the triangle bounded by the polars of the vertiEesR®C' with respect
to the corresponding excircles. The polardfvith respect to the excirclgl,,) is
the line B,C,; similarly for the other two polars.

Lemma 3. The polars of the vertices of BC' with respect to the corresponding
excircles bound a triangle with vertices

U=(—a(b+c):Sc:Sp),

V =(Sc:-blc+a):Sa),

W =(Sp:S4:—cla+Db)).

Proof. The polar of A with respect to the excirclél,) is the line B,C,, whose
barycentric equation is

=0,

e
(s —¢)

»n o

O »w W

or
st+(s—c)y+(s—b)z=0.

Similarly, the polars’, A, and A. B, have equations
(s —c)x + sy + (s — a)z =0,
(s —=b)x + (s — a)y + sz =0.



262 N. Dergiades and J. C. Salazar

Figure 4

These intersect at the point
U=(—a(2s —a):ab—2s(s —c¢) :ca—2s(s — b))
=(—2a(b+¢):a>+ b -2 : 2 +a%>—b?)
=(—a(b+¢): Sc : Sp).
The coordinates o andW can be obtained from these by cyclic permutations of
a, b, c. O

Corollary 4. TrianglesUVW and ABC are
(a) perspective at the orthocentéf,
(b) orthologic with centerdd and I respectively.

Proposition 5. The triangleU'VW has circumcenteH and circumradiufR + r.

Proof. SinceH, B, V are collinear,HV is perpendicular té'A. Similarly, HW
is perpendicular tel B. SinceV'W makes equal angles witliA and A B, it makes
equal angles wittHV and HW. This meansdV = HW. For the same reason,
HU = HV,andH is the circumcenter d/ V.

Applying the law of sines to triangldU B,.., we have we have

. 180°—-C

AU:ABC-SIHSTé:(s—b)cot%:ra.
2

The circumradius oUVW is HU = HA + AU = 2Rcos A+ r, = 2R + r,
as a routine calculation shows. O
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Proposition 6. The triangleU VW and the intouch triangleD E F' are homothetic
at the point
b+ c c+a a+b
J= ( rte o _crae o _aof > . (1)

b+c—a c+a—b a+b—c
The ratio of homothety is 22t

Figure 5

Proof. The homothety follows easily from the parallelismiofy and E'F', and of
WU, FD, andUV, DE. The homothetic center is the common poihbf the
lines DU, EV, andFW (see Figure 5). These lines have equations

b—c)b+c—a)x+(b+c)(c+a—Dby— (b+c)(a+b—c)z =0,
—(c+a)b+c—a)r+ (c—a)(c+a—Dby+ (c+a)(a+b—c)z =0,
(a+b)(b+c—a)x—(a+b)(c+a—Db)y+ (a—b)(a+b—c)z=0.
It follows that
b+c—a)r:(c+a—-by:(a+b—c)z

| ¢e—a c+a|l |c+a —(c+a)| |-(c+a) c—a
" |—(a+0b) a—b]"la+b a-—b a+b —(a+0)
=2a(b+c): 2a(c+a):2a(a +b)

=b+c:ct+a:a+b.
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The coordinates of the homothetic cenfeare therefore as in (1) above.

Since the triangle$/V F' and DEF' have circumcircled? (2R + r) and I(r),
the ratio of homothety isrw%. The homothetic centef dividesI H in the ratio
I1J:JH =7r:2R+r. U

Remark.The triangle centey appears aXsy4 in Kimberling’s list [2].

4. Perspectivity of XY Z and UVW

Thteorem 7. Triangles XY Z and UV are perspective at a point with coordi-
nates

( SB i Sc B a(bJrC) . Sc X Sa B b(c+a) . Sa i SB _ C(a+b)>

Proof. With the coordinates o andU from Lemmas 1 and 2, the lin€U has
equation

x Yy z
—a(b+c) Sc SB =0.
0 svs—c—(s—a)Vs—b svs—b—(s—a)ys—c

Since the coefficient of is
(s(Sg + Sc) — aSp)Vs —b— (s(Sp + Sc) — aSc)Vs — ¢

=a((as — S)Vs —b— (as — Sc)V/'s — c)

=a(b+¢)((s — c)Vs —b— (s — b)V/5 — c).
From this, we easily simplify the above equation as

(s—c)Vs—b—(s—bs—c)z
+(sVs —b—(s—a)Vs —c)y+ ((s —a)Vs —b—svs —c)z = 0.

With u = /s — a, v = v/s — b, andw = /s — ¢, we rewrite this as

—vw(v—w)z+ (v(u? + v +w?) —uPw)y + (v —w(u® + 02 +w?))z = 0. (2)
Similarly the equations of the lindsY, W7 are

(v*w — u(u® + v + w?))r — wu(w — w)y + (wu? + v? + w?) — uw?)z =0,
®3)
(u(u? + 0% + w?) — vz + (W?u — v(u?® + v* + w?))y — ww(u — v)z =0.

(4)

It is clear that the sum of the coefficientso{respectivelyy andz) in (2), (3)
and (4) is zero. The system of equations therefore has aiviahsolution. Solving
them, we obtain the coordinates of the common point of treslkU, YV, ZW
as
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Figure 6

Tiy:z
=uv(v?(u® + v? + w?) — w?u?) + wu(w? (u? + v+ w?) — u*v?)
—vw(v? + w?)(2u? + v* + w?)
ww(w? (u? 4+ 0?2 + w?) — u?o?) +uv(u?((W? + v+ w?) — v2w?)
— wu(w? + u?) (u? + 20 + w?)
wu(u? (u? + v+ w?) — v*w?) + vw(?((W? + v + w?) — wu?)

—uv(u? + v?) (u? + v? + 2w?)

:(S—b)s—(s—c)(s—a) n (s—c)s—(s—a)(s—b) alb+c)

:(s—c)s—(s—a)(s—b) N (s—a)s=(s=b)(s—¢c) blc+a)
:(s—a)s—(s—b)(s—c)+(s—b)s—(s—c)(s—a) _cla+b)

_Sp, S _albto) S Sa_beta) Si, Sp_clath)

w v U Y w v v U w

The triangle center constructed in Theorem 3 above doesppeta in [2].

265
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5. Another construction

Given three circle®);(r;), i = 1,2,3, on one side of a lin&, tangent to the
line, we construct a circl®(r), tangent to each of these three circles externally.
Fori = 1,2, 3, let the circleO;(r;) touch£ at.S; andO(r) atT;. If the line S; T}

meets the circléO) again atT’, then the tangent t60) at 7" is a line £ parallel
to £. Hence, T, Ty, S are collinear; so ar&", T3, S3. Since the lin€lL T3 is
antiparallel to£’ with respect to the line$'T, andT'T3, it is also antiparallel taC
with respect to the line%'S; andT'Ss, and the pointds, T3, S3, So are concyclic.
FromTTy - TS, = T7T3-TSs, we conclude that the poifit lies on the radical axis
of the circlesOz(r2) andO3(r3), which is the perpendicular from the midpoint of
5553 to the lineO,03. For the same reason, it also lies on the radical axis of the
circlesOs(rs) andO; (1), which is the perpendicular from the midpoint &S5

to the lineO;03. HenceT is the radical center of the three given circlegr;),

i = 1,2,3, and the circleél1T5T3 is the image of the lin& under the inversion
with centerT” and powerI'T; - T'S;. From this, the required circléO) can be
constructed as follows.

Figure 7

Construction 8. Construct the perpendicular from the midpoint%{S; to 0,0,
and from the midpoint of;53 to O103. LetT be the intersection of these two
perpendiculars. Fot = 1,2, 3, let T; be the intersection of the lin€S; with the
circle (O;). The required circlgO) is the one throughT’, T», T (see Figure 7)

6. Circlestangent to theincircle and two excircles

We apply Construction 2 to obtain the circle tangent to thérafe (7) and the
excircles(I,) and(I.). Let the incircle(]) touch the side®3C, CA, AB atD, E,
I respectively.

Proposition 9. The radical center ofI), (1), (I.) is the point
Jo=0b+c:c—a:b—a).
This is also the midpoint of the segmént/.
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Proof. The radical axis of(/) and (1) is the line joining the midpoints of the
segmentd 4, and F'Cy,. These midpoints have coordinai@s: a — ¢ : a + ¢) and
(c+a:c—a:0). This line has equation

—(c—a)r+ (c+a)y+ (c—a)z =0.
Similarly, the radical axis of/) and(I.) is the line
(a—b)x —(a—Db)y+ (a+b)z =0.

The radical center, of the three circles is the intersection of these two radical
axes. Its coordinates are as given above.

By Construction 2,J, is the intersection of the lines through the midpoints of
Ay D andA.D perpendicular td I, andl I. respectively. As such, itis the midpoint
of DU. O

Figure 8.

The linesJ, D, J,A, andJ, A. intersect the circle$!), (1) and(I.) respec-
tively again at

Ay =((b+c)*(s —b)(s —c): (s —a)(s —c) : b*(s — a)(s — b)),
Al =((b+¢)*s(s —¢) : —(ab— c(s — a))? : b*s(s — a)),
AL =((b+¢c)*s(s —b) : ?s(s — a) : —(ca — b(s — a))?).
The circle through these points is the one tangerif 1o(1;), and(1.) (see Figure

8). It has radiug® - =2 +7a,
In the same way, we have a cirdl@;) tangent ta(]), (1.), (I,) respectively at
B, B!, B!, and passing through the radical cenfgrof these three circles, and

another circle(O,..) tangent to(1), (I,), (1) respectively aC, C,,, C;, passing



268 N. Dergiades and J. C. Salazar

through the radical centel. of the circles.J, and.J, are respectively the midpoints
of the segment&V and FIW. The coordinates ofy, J., By, C; are as follows.

.

Iq

Figure 9.

Proposition 10. The triangleJ, J,J. is the image of the intouch triangle under the
homothetyh(.J, — £).

Proof. SinceUVW and DEF are homothetic af, andJ,, J;, J. are the mid-
points of DU, EV, FW respectively, it is clear thai, J,J. and DEF' are also
homothetic at the samé Note that/,J. = (VW — EF). The circumradius of
JoJp . IS %((2R +r) —r) = R. The ratio of homothety of,,J,J. and DEF' is
_R \:‘

r -
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Corollary 11. J is the radical center of the circleg), ), (Oy), (O.).

Proof. Note that/J, - J4; = £ . D.J - JA;. This is£ times the power of with
respect to the incircle. The same is true §ok, - JB; andJJ. - JCy. This shows
thatJ is the radical center of the circl€®),,), (Oy), (O.). O

Since the incirclgI) is the inner Apollonius circle and the circumcirde;),
1= 1,2,3, it follows that J, J,J.. is the outer Apollonius circle to the same three
circles (see Figure 10). The centef of the circleJ, J,J. is the midpoint between
the circumcenters oD EF and UVIV, namely, the midpoint of H. It is the
triangle centetXy44 in [2].

1o

Figure 10.

Proposition 12. A; B is perspective with BC' at the point

Q- 1 . 1 . 1
\a%(s—a) b2(s—b) A(s—c))’
which is the isotomic conjugate of the insimilicenter of tireumcircle and the
incircle.
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This is clear from the coordinates df;, B,, C;. The perspectof) is the iso-
tomic conjugate of the insimilicenter of the circumcircledathe incircle. It is not
in the current listing in [2].
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Abstract. Let F; and F> denote the Fermat-Toricelli points of a given triangle
ABC. We prove that the Euler lines of th® triangles with vertices chosen

from A, B, C, Fi, F» (three at a time) are concurrent at the centroid of triangle
ABC.

Given a (positively oriented) triangld BC, construct externally on its sides
three equilateral triangleBCT,, C AT,, and ABT, with centersN,, N, and N,
respectively (see Figure 1). As is well known, trian@lg/N, V. is equilateral. We
call this the first Napoleon triangle of BC.

Figure 1.

The same construction performed internally gives equidtgianglesBCT),
C AT} and ABT, with centersN;,, N, and N/ respectively, leading to the second

Napoleon triangleV, N] N/. The centers of both Napoleon triangles coincide with
the centroidM of triangle ABC.
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The linesAT,, BT, and CT,. make equal pairwise angles, and meet together
with the circumcircles of triangle8CT,, C AT, and ABT, at the first Fermat-
Toricelli point F;. Denoting by/ XY Z the oriented angle/(Y X, Y Z), we have
/AFWB = /BFC = ZCFA = 120°. Analogously, the second Fermat-
Toricelli point satisfies AFbB = Z/BEF,C = ZCF>, A = 60°.

Clearly, the sides of the Napoleon triangles are the peipelad bisectors of
the segments joining their respective Fermat-Toricellnfsowith the vertices of
triangle ABC (as these segments are the common chords of the circunscotle
the the equilateral triangle$BT,, BCT,, etc).

We prove the following interesting theorem.

Theorem The Euler lines of the ten triangles with vertices fromthe set { A, B, C,
Fy, F,} areconcurrent at the centroid M of triangle ABC.

Proof. We divide the ten triangles in three types:

(: Triangle ABC by itself, for which the claim is trivial.

(I): The six triangles each with two vertices from the $et, B, C'} and the re-
maining vertex one of the points;, F5.

(1) The three triangles each with verticég, F», and one from{ A, B, C'}.

For type (ll), it is enough to consider triangleB F;. Let M. be its centroid and
M be the midpoint of the segmenrtB. Notice also thatV. is the circumcenter
of triangle ABF (see Figure 2).

C

Fy

T
Figure 2.

Now, the pointg’, I andT., are collinear, and the poinfg, M. and N, divide
the segmentd/~C, M F; and McT, in the same ratid : 2. Therefore, they are
collinear, and the Euler line of triangléB F" contains)M .
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For type (lll), it is enough to consider triangl&F; F». Let M. and O, be its
centroid and circumcenter. Let alsd- and M be the midpoints ofAB and
F1F>. Notice thatO, is the intersection ofV, N, and N, N; as perpendicular
bisectors off} C and F»C'. Let alsoP be the intersection oV, N. and N/ N/, and
F’ be the reflection of7 in M (see Figure 3).

C

Ny

N’

a

Fy

N, F

Figure 3.

The rotation of centel/ and anglel20° maps the linesV, N, and N/ N} into
NyN. and N/ N/ respectively. Therefore, it mags. to P, andZO.M P = 120°.
SinceZO.N! P = 120°, the four pointsO.., M, N/, P are concyclic. The circle
containing them also containg, since/PN,O. = 60°. Therefore, /O .M N, =
ZO:N! N,.

The same rotation maps angke N/ N, onto angleP® NN, yielding ZO.N, N}, =
/PN/N.. SincePN! | BF,andN.N/ 1. BA, /PN!N. = /F,BA.

Since/BF'A = ZAF| B = 120° = 180°—ZAF;, B, the quadrilaterall F, BF’
is also cyclicand/ F, BA = /F, F'A. Thus,/F, F'A = ZO.M N,

Now, AF'|FAB L N,N.andN,M | N,N.yield AF'|N,M. This, together
with ZF, F'A = Z0.M N, yields F' F»||[ MO,.

Notice now that the pointd/, and M divide the segment§' M andC M in
ratio 1 : 2, thereforeM M || Mo Mp. The same argument, applied to the segments
F\Fy andF, F' with ratio 1 : 1, yields M¢ Mp||F'F;.

In conclusion, we obtainV/.M || F'F»||MO.. The collinearity of the points
M., M andQO. follows. O
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On the Possibility of Trigonometric Proofs of the
Pythagorean Theorem

Jason Zimba

Abstract. The identitycos® z 4+ sin® = = 1 can be derived independently of the
Pythagorean theorem, despite common beliefs to the contrary.

1. Introduction

In a remarkable 1940 treatise entitlBae Pythagorean Proposition, Elisha Scott
Loomis (1852-1940) presented literally hundreds of distinct proofssd®iithagorean
theorem. Loomis provided both “algebraic proofs” that make use of similar-tria
gles, as well as “geometric proofs” that make use of area reasoningabio
none of the proofs in Loomis’s book were of a style one would be temptedIto ca
“trigonometric”. Indeed, toward the end of his book ([1, p.244]) Loonsiseated
that all such proofs are circular:

There are no trigonometric proofs [of the Pythagorean theorem],
because all of the fundamental formulae of trigonometry are them-
selves based upon the truth of the Pythagorean theorem; because
of this theorem we sayin? A + cos? A = 1 etc.

Along the same lines but more recently, in the discussion page behind WiKgpedia
Pythagorean theorem entry, one may read that a purported proofihwagleleted
from the entry because it “...depend[ed] on the veracity of the idesitit}/z +
cos? z = 1, which is the Pythagorean theorem ...” ([5]).

Another highly ranked Internet resource for the Pythagorean thre@eCut-
The-Knot.org, which lists dozens of interesting proofs ([2]). The si®daage
devoted to fallacious proofs of the Pythagorean theorem. On this paggatirsas-
serted that the identityos? x +sin? 2 = 1 cannot be used to prove the Pythagorean
theorem, because the identity “is based on the Pythagorean theorem, vatstart
([3D).

All of these quotations seem to reflect an implicit belief that the relatiefz +
sin2z = 1 cannot be derived independently of the Pythagorean theorem. For
the record, this belief is false. We show in this article how to derive this identity
independently of the Pythagorean theorem.

Publication Date: Month, 2009. Communicating Editor: Paul Yiu.
The author would like to thank an anonymous referee for a numbergofestions, both general
and specific, which greatly improved the manuscript during the editaiaigss.
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2. Sineand cosine of acute angles

We begin by defining the sine and cosine functions for positive acute sangle
independently of the Pythagorean theorem, as ratios of sides of similatriagt
gles. Givern € (O, g) let R, be the set of all right triangles containing an angle
of measurex, and letT be one such triangle. Because the angle measur&s in
add up tor (see Euclid’Elements, 1.32),* T must have angle measurgss — «
anda. The side opposite to the right angle is the longest sideEbaaents 1.19),
called the hypotenuse of the right triangle; we denote its lengtH-by

First consider the case # T The three angle measuresBfare distinct, so
that the three side lengths are also distinct @ements, 1.19). Let At denote the
length of the side ofl" adjacent to the angle of measureandO~ the length of
the opposite side. I andS are any two triangles iR, then becaus& andS
have angles of equal measures, corresponding side rat$andT are equal:

Ar _ As Or _Os
Hy  Hg Hy  Hg
(seeElements, VI.4). Therefore, forx # 7 inthe range(O, g) we may define

and

A and si
COSQx :(— — SIMe :(— —
H H’

where the ratios may be computed using any triang# in?
We next consider the case = 7. Any right triangle containing an angle of
measure] must in fact have two angles of measygr¢seeElements, 1.32), so its
three angles have measuigs; and’. Such a triangle is isosceles (delements,
1.6), and therefore has only two distinct side lengtdsand L, whereH > L is the
length of the side opposite to the right angle dnid the common length shared by
the two other sides (ségtements, 1.19). Because any two right triangles containing
anglea = 7 have the same three angle measures, any two such triangles are similar

and have the same rat@ (seeElements, VI.4). Now therefore define

T L and s T L
cos4 =g sm4 =
where again the ratios may be computed using any triangks;in.

The ratios%, %, and% are all strictly positive, for the simple reason that a

triangle always has sides of positive length (at least in the simple conceytaon
triangle that operates here). These ratios are also all strictly less thajetidyise

H is the longest sideH|lements, 1.19 again). Altogether then, we have defined the

The Pythagorean theorem is proved in Book | of #ements as Proposition 1.47, and the
theorem is proved again in Book VI using similarity arguments as Propo3iti@i. References to
the Elements should not be taken to mean that we are adopting a classip@qtiee on geometry.
The references are only meant to reassure the reader that thetadrdéams do not rely on the
Pythagorean theorem (by showing that they precede the Pythagoeeaerthin Euclid’s exposition).

2We shall henceforth assume that for any¥ (0, %), there exists a right triangle containing an
angle of measure. The reader wishing to adopt a more cautious or classical viewpointeptgce
the real interval(o, g) everywhere throughout the paper by the @t %) defined as the set of all
a € (0, g) for which there exists a right triangle containing an angle of measure
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functionscos : (0, 3) — (0,1) andsin : (0, §) — (0,1) independently of the
Pythagorean theorem.

Because sine and cosine as defined above are independent of thgdpPgtn
theorem, any proof of the Pythagorean theorem may validly employ these fun
tions. Indeed, Elements V1.8 very quickly leads to the Pythagorean thesitbm
the benefit of trigonometric notatioA. However, our precise concern in this paper
is to derive trigonometric identities, and to this we now turn.

3. Subtraction formulas

The sine and cosine functions defined above obey the following subtrdotio
mulas, valid for alky, 3 € (0, §) witha — 3 alsoin(0, %):

cos(a — ) = cosacos 3+ sin asin 3, 1)
sin(a — 3) = sinacos f — cos asin . 2
Y
cos acos 3 A
\4 [0
S asin 3 sin 5
sin arsin B
cos 3 F
sin a cos B
1
sin(a — B)
(03
X
o cos(a — 3) G D
Figure 1.

The derivation of these formulas, as illustrated in Figure 1, is a textboak exe
cise. Itis independent of the Pythagorean theorem, for although treetierae hy-
potenuse®) A, OB, andAB, their lengths are not calculated from the Pythagorean
theorem, but rather from the sine and cosine we have just defined, d$signing
OB =1,we haveD A = cos f andAB = sin 3. The lengths of the horizontal and
vertical segments are easily determined as indicated in Figure 1.

3see proof #6 in [2], specifically the observation attributed to R. M. Mentock
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4. The Pythagorean theorem from the subtraction formula

It is tempting to try to derive the identitys? 2 +sin? 2 = 1 by settingn = 3 =
x andcos 0 = 1 in (1).  This would not be valid, however, because the domain of
the cosine function does not include zero. But there is a way aroundrdfitem.
Given anyz € (O, g) lety be any number witlh < y < = < 5. Thenz, y, and
z —yareallin(0, ). Therefore, applying (1) repeatedly, we have

cosy = cos(z — (z —y))
= coszcos(x —y) + sinxsin(r — y)
= cosz(coszcosy +sinzsiny) + sinz(sinx cosy — coszsiny)
= (cos? z + sin® ) cos y.

From this,cos? z + sin® z = 1.

5. Proving the Pythagorean theorem asa corollary

Because the foregoing proof is independent of the Pythagoreartheae may
deduce the Pythagorean theorem as a corollary without rigétidifo principii. The
identity cos® 2 +sin? 2 = 1 applied to a right triangle with legs b and hypotenuse

cgives(2)® + (2)* =1,0ra2 + 02 = 2.
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On the Construction of a Triangle from
the Feet of I1ts Angle Bisectors

Alexey V. Ustinov

Abstract. We give simple examples of triangles not constructible idgrrand
compass from the feet of its angle bisectors when the laiter & triangle with
an angle of50° or 120°.

Given a triangleA BC with sidesa, b, ¢, we want to construct a triangl¢/ B’'C’
such that that segment$A’, BB’ and CC’ are its angle bisectors, internal or
external. Restricted to internal bisectors, this is Pnobl88 of Wernick’s list [3]
(see also [2]). Yiu [4] has given a conic solution of the pesbl Implicit in this
is the impossibility of a ruler-and-compass constructiomgeneral, though in the
case of a right angled triangle, this is indeed possible §f4,. The purpose of
this note is to give simple examples df B’C’ not constructible fromABC' by
ruler-and-compass when the latter contairi®aor 120° angle.

Following [4] we denote byx : y : ) the barycentric coordinates of the incen-
ter of triangleA’ B'C’ with respect to trianglel BC, whenA, B, C are the feet of
the internal angle bisectors, or an excenter when on&, @, C is the foot of an
internal bisector and the remaining two external. The westiof triangled’ B'C’
have coordinate$—z, y, 2), (z, -y, ), (z,y,—z). These coordinates satisfy the
following equations (see [43]):

—z(Py? — 022 +yz(( +a® =)y — (a® + 0> — *)2) = 0,
—y(a?2? — )+ 22((®> + 0 — Pz — (B + 2 —a)z) = 0, 1)
—2(0%2? — a®9?) + 2y((0® + 2 — a®)z — (2 + a®> — b?)y) = 0.
These three equations being dependent, it is enough todesrsie last two.
Elimination ofz from these leads to a quartic equatiorziandy. This fact already
suggests the impossibility of a ruler-and-compass cocistru However, this can

be made precise if we put = a? — ab + b?. In this case, angl€' is 60° and we
obtain, by writingbx = t - ay, the following cubic equation i

Publication Date: November 2, 2009. Communicating Ediaul Yiu.
The research of the author was supported by Dynasty Fowmdati
The author is grateful to V. Dubrovsky for the references3[2,
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3(a — b)bt> — (a® — 4ab + b*)t* + (a® — 4ab + b*)t + 3a(a — b) = 0.
With @ = 8, b = 7 (so thatc = /57 and angleC is 60°), this reduces to
Tt3 + 37t — 3Tt + 8 = 0,

which is easily seen not to have rational roots. The roothefdubic equation
are not constructible by ruler and compass (see [1, ChapteE8plicit solutions
can be realized by taking = (7,0), B = (4,4V/3), C = (0,0), with resulting
A’B’C’ and the corresponding incenter (or excenter) exhibitetiartable below.

t 0.5492- .- 0.3370 - - - —6.1721 - --

A" [ (—0.3891,6.8375) | (1.3112,6.9711) | (5.8348,0.7573)
B’ || (1.4670,—25.7766) | (5.5301,29.3999) | (7.6694,0.9954)
|| (8.5071,7.0213) | (6.6557,6.8857) | (6.3481, —0.9692)
T (3.6999,3.0537) | (3.7956,3.9267) | (3.7956,3.9267)
incenter B’ — excenter A’ — excenter

On the other hand, i# = a? + ab + b2, the eliminant ofz from (1) is also a
cubic (inz andy) which, with the substitutiobz = ¢ - ay, reduces to

3(a + b)bt® — (a® 4 4ab + b*)t* — (a* — 4ab + b*)t + 3a(a + b) = 0.
With a = 2, b = 1 (so thatc = /7 and angleC' is 120°), this reduces to
9t3 — 13t — 13t + 18 = 0,

with three irrational roots. Explicit solutions can be ieedl by takingA = (1,0),
B = (—1,v/3), C = (0,0), with resultingA’ B’C’ and the corresponding excenter
exhibited in the table below.

t 1.0943 - - - 1.5382--- —1.1881---
A|[(0.6876, —0.3735) | (5.2374, —2.2253) | (0.0436,0.0549)
B’ (—1.4112,0.7665) | (1.2080,—0.5132) | (—0.0555, —0.0699)
C’ || (0.1791,0.2609) | (0.7473,0.6234) | (0.1143,—0.0586)
T || (0.1791,0.2609) | (0.3863,0.3222) | (—0.1261,0.0646)
C'" — excenter A’ — excenter C'’ — excenter
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Pythagorean Triangles with Square of Perimeter Equal to
an Integer Multiple of Area

John F. Goehl, Jr.

Abstract. We determine all primitive Pythagorean triangles withaaglon perime-
ter equal to an integer multiple of its area.

Complete solutions can be found for several special casdéiseoproblem of
solving P? = nA, whereP is the perimeter and is the area of an integer-sided
triangle, andn is an integer. The general problem is considered in a recgdrp
[1]. We consider the case of right triangles. Let the sides,lbeandc, wherec is
the hypotenuse. We require

2(a+b+c)?
ab ’
By the homogeneity of the problem, itis enough to considenitive Pythagorean

triangles. It is well known that there are positive integeendg, relatively prime
and of different parity, such that

n =

a=p*—q¢* b=2pq c=p’+q.

With thesey = 222+ _ 4D \wharer — 2. Rewriting this as
q(p—q) t—1 q

42 — (n —4)t +n =0,

we obtain

where
d? = (n—4)* —16n = (n — 12)* — 128. 1)

Sincet is rational,d must be an integer (which we may assume positive). Equation
(1) may be rewritten as

(n—12—d)(n —12+d) =128 = 2".

Publication Date: November 16, 2009. Communicating EdRawul Yiu.
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From this,
n—12—d= 2~
n—124+d= 277k,
fork =1,2,3. We have

4 —4— 2k
t:u:%"ﬂrl or t=" d_2°+8
8 8 8
Sincep andgq are relatively prime integers of different parity, we exdduthe cases
whent is an odd integer. Thus, the primitive Pythagorean triamgtaving P? =

nA are precisely those shown in the table below.

I [G.a)] @bha [n][A]P]
1] 3] (5,4)](9,40,41) [45] 180 [ 90
2[31(3,2)[(5,12,13) 30| 30 |30
312[(2,1)] (3,4,5) [24] 6 |12

Among these three solutions, only in the casé3fi, 5) can the square on the
perimeter be tessellated hycopies of the triangle.
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Trilinear Polarsand Antiparallels

Shao-Cheng Liu

Abstract. We study the triangle bounded by the antiparallels to tthelisies of a
given triangleA BC through the intercepts of the trilinear polar of a paihbther
than the centroidz. We show that this triangle is perspective with the refeeenc
triangle, and also study the condition of concurrency ofathigparallels. Finally,
we also study the configuration of inducétP-lines and obtain an interesting
conjugation of finite points other tha.

1. Perspector of atriangle bounded by antiparallels

We use the barycentric coordinates with respect to triargh” throughout.
Let P = (u : v : w) be a finite point in the plane oA BC, distinct from its
centroidG. The trilinear polar ofP is the line
c: L —

u v w
which intersects the sidelindsC, C' A, AB respectively at

P,=0:v:-w), PB=(-u:0:w), P.=(u:-v:0).
The lines throughP,, P,, P. antiparallel to the respective sidelinesABC are

L, : (b*w — v)x + (b2 — Awy + (0* — A)vz =
Ly : (? — a®)wzx + (Pu — a*w)y + (2 2)uz
L.: (a® = b*)vx + (a® — b*)uy + (a*v — bzu)z =

They bound a triangle with vertices

A= (—a*(a®(u® — vw) + b*u(w — u) — u(u — v))
2 (¢ — a®)(a®v(w — u) + bPu(v — w))
s (a® — b)) (Fu(v — w) + a*w(u — v))),
B' = ((v* = ) (a®v(w — u) + b*u(v — w)
b2 (b*(v? — wu) + v(u —v) — a*v(v — w))
s (a® — b)) (*w(u — v) + Folw — u))),
C' = ((b* = &A)(Fulv — w) + a*w(u —v))
(¢ — a®)(VPw(u —v) + o(w — u))
—A(A(w? — w) + a*w(v — w) — Pw(w — u))).

Publication Date: November 30, 2009. Communicating EdRaul Yiu.
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Figure 1. Perspector of triangle bounded by antiparallels
The linesAA’, BB’, CC’ intersect at a point
b? —¢? c? —a? a® — b?
@= <b2w(u —v) + v(w — u) : cu(v — w) + a?w(u — v) : a?v(w — u) + b2u(v — w))
(1)

We show that) is a point on the Jerabek hyperbola. The coordinateg iof(1)
can be rewritten as

a?(b> —c?) (P —a?)  P(a® - b?)
Q= T : T
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V= (1 =Pzt (- d®)y+ (@ =Pz

e = et (- )yt (0= )2

-3+ (2 -1)=0,wehave

u v

0= Y a®(—=(* = Az + (- a®)y+ (a® - b*)2)

cyclic

= Y (2B - )+~ )+ - )
cyclic

= Z b — A + 2 — a¥)x.
cyclic

This is the equation of the Euler line. It shows that the p@ries on the Jerabek
hyperbola. We summarize this in the following theorem, vaittlight modification
of (1).

Theorem 1. Let P = (u : v : w) beapoint in the plane of triangle ABC, distinct
fromits centroid. The antiparallels through the intercepts of the trilinear polar of
P bound a triangle perspective with ABC' at a point

b2—62
P = D e te e
R I Eel ey
on the Jerabek hyperbola.

Here are some examples.
X1 | X3 | Xu | X6 | Xo Xoz | Xos | Xeg
(P) || Xos | Xea | Xa | X6 | X1ooz | Xurr | X3 | Xes

P
Q
P Xaes | Xsar | X103 | Xog | Xoga | Xoaz | X1167 | Xise
Q(P) || Xev | Xes | Xoo | Xro| X1 | Xr2 | Xo3 | X

Table 1. The perspectd)(P)

Note that for the orthocenteX, = H and X = K, we haveQ(H) = H and
Q(K) = K. Infact, for P = H, the lines,, L;, L. bound the orthic triangle.
On the other hand, faP = K, these lines bound the tangential triangle, anticevian
triangle of K. We prove that these are the only points satisfying®) = P.

Proposition 2. The perspector Q(P) coincides with P if and only if P isthe or-
thocenter or the symmedian point.
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Proof. The perspectoR coincides withP if and only if the linesAP, L, L. are
concurrent, so are the tripld3P, L., L, andCP, L,, L,. Now, AP, Ly, L. are
concurrent if and only if
0 w —v

(2 —a®)w (Pu—a*w) (2—a?)u|=0,
(@ - (a2 —-bP)u  (a®v — b*u)
or

a?(a® — b )v*w + a®(® — a®)vw?® — b*(c* — a®)w?u — A(a* — b*)w? = 0.
From the other two triples we obtain

a?(b? — A)ow? + b2 (V? — Hwu + b2 (a* — b*)wu? — A (a® — b*)uPv = 0

and

—a?(b* — A)Pw — b — aP)wu? 4 A( — a®)u*v + A (b — Aww? = 0.
From the difference of the last two, we have, apart from aofaet — 2,

u(D*w? — *v?) +v(u? — a*w?) + w(a*v? — v*u?) = 0.

This shows thatP lies on the Thomson cubic, the isogonal cubic with pivot the
centroidGG. The Thomson cubic is appearskB02 in Bernard Gibert's catalogue
[2]. The same point, as a perspector, lies on the Jerabektiglpe Since the
Thomson cubic is self-isogonal, its intersections withdeebek hyperbola are the
isogonal conjugates of the intersections with the Euler. lifrom [2],P* is either

G, O or H. This means thaP is K, H, or O. Table 1 eliminates the possiblility
P = 0, leavingH andK as the only points satisfyinQ (P) = P. O

Proposition 3. Let P be a point distinct from the centroid G, and T" the circum-
hyperbola containing G and P. If T traverses T', the antiparallels through the
intercepts of the triliner polar of 7" bound a triangle perspective with ABC' with
the same perspector Q(P) on the Jerabek hyperbola.

Proof. The circum-hyperbola containir(g andP is the isogonal transform of the
line KP*. If we Write P* = (u : v : w), then a pointl" on T" has coordinates

( U w+t 2> for some real number. By Theorem 1, we have

ut+ta? * v-+tb?

b — c?
Q(T): - . - .
b2 <u+ta _ v+tbh ) +62 <w+tc . u+ta)
a? b2 c2 a2
b2 — 2
“EEpreEs

= Q(P).
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2. Concurrency of antiparallels
Proposition 4. Thethreelines L, Ly, L. are concurrent if and only if
—2(a®=b*) (0*—*) (@ —a®)www+ > b Pu((P+a’—b* v’ —(a®+b*—c*)w?) = 0.

cyclic

2
Proof. The three lines are concurrent if and only if
Vw—cv 0 —-cAw (b2 —Aw
(2 —a®)w Pu—ad*w (2 —a®)u| =0.
(@®> =¥ (a? —bP)u  d®v—b*u
O

For P = X5 (the homothetic center of the orthic and tangential triasglthe
trilinear polar is parallel to the Lemoine axis (the trilargoolar of K'), and the lines
Lq, Ly, L. concur at the symmedian point (see Figure 2).

Figure 2. Antiparallels through the interceptsXis

The cubic defined by (2) can be parametrized as follows( lis the point

<¢12(I)2+Z—22—az)+t R ) on the Jerabek hyperbola, then the antiparallels through
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the intercepts of the trilinear polar of

Po(Q)Z( a’(bc? + 1) >

(0% + 2 —a?)(a?(b? + 2 —a?) + t)

are concurrent af). On the other hand, giveR = (u : v : w), the antiparallels
through the intercepts of the trilinear polars of

_ u(v—w) ' '
Py = <a2(52+02 — &) Rw(u—0) + Fo(w—u) e >

are concurrent a (P). Here are some examples.

P X1 | X3 Xy | Xo | X
Q Xos | Xea | Xy | X6 | X3
Po(Q) || Xars | X073 | Xoos2 | Xos | X19903
Table 2. Py (Q) for @ on the Jerabek hyperbola

Py(Xe6) = <02(b4—|-1c4 a4):,..:...>7
Py(Xgo) = (P> +?—3a?): - :---),
Py(X71) = (a*(b+c—a)(albe + ca+ab) — (P 4+ ) -1 --0),
Py(X73) = (a® —a*(b4+¢c)—alb+ ) + (b+c) (b + )i -0,

3. Tripleof induced G P-lines

Let P be a point in the plane of triangld BC', distinct from the centroid>,
with trilinear polar intersectind3C, C A, AB respectively at?,, P,, P.. Let the
antiparallel toBC through P, intersectC' A and AB at B, and C, respectively;
similarly defineC}, Ay, andA., B.. These are the points

By = (0> =cv:0: v —bPw), Cu=((b*>—cHw: v —b*w:0);
Ay =(0:(c? —a®)u:a®w — u), Cy= (a’w— c2u (2 —a®)w: 0);
Ae = (0:0%u —a®v : (a® — b*)u), B.= (b*u—a’v:0: (a® —b?)v).
The trianglesAB,C,,, Ay BCy, A.B.C are all similar toABC. For every point
T with reference taA BC', we can speak of the corresponding points in these tri-

angles with the same homogeneous barycentric coordinBbes., theP-points in
these triangles are

Py = (VPP (u+v+w)(v—w)—ctv?+btw? : bPw(cPv — bPw) : oo — b*w)),
Pp = (a®w(a®w — c?u) : a®(u+v +w)(w — u) — a*w? + cu? : Fula®w — 2u)),

Po = (a®v(b?u — a®v) : B*u(b*u — a®v) : a*b*(u + v+ w)(u — v) — b*u? + a*v?).
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On the other hand, the centroids of these triangles are tinéspo

Ga= (20 (v —w) — v+ blw : (v — bPw) : A (v — bPw)),
Gp = (a®(ad*w — Pu) : 2c2a*(w — u) — a'w + 'u : P (d*w — Pu)),

Geo = (a*(V*u — a®v) : B*(b*u — a®v) : 20%0* (u — v) — blu + a'v).
We call G4 P4, GgPg, GoPc the triple of GP-lines induced by antiparallels

through the intercepts of the trilinear polar Bf or simply the triple of induced
G P-lines.

Figure 3. Triple of inducedr P-lines

Theorem 5. Thetriple of induced G P-lines are concurrent at

7(P) = (—a?(u?® — v* + vw — w?) + b?u(u + v — 2w) + Pu(w + u — 20)

ca?v(u+ v —2w) — b (v — w? + wu — u?) + oo+ w — 2u)

s aPw(w 4 u — 20) + V*w(v +w — 2u) — A(w? — u? + uv — v?)).
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Proof. The equations of the linegs 4 P4, GgPg, GoPc are

(v —bPw)z + (P(w+u —v) — bPw)y — (B} (u+v —w) — )z =

—(A(v+w —u) —d?

0,
w)z + (a*w — Pu)y + (a*(u +v —w) — u)z = 0,
V(v +w — u) — a®v)x — (a*(w 4+ u — v) — b*u)y + (b*u — a’v)z = 0.
These three lines intersecttP) given above. O
Remark. If T traverses the lin&'P, thent(T') traverses the lin€&/r(P).

Note that the equations of inducét-lines are invariant under the permutation
(z,y,2) < (u,v,w), i.e, these can be rewritten as

(Py =V 2)u+ (E(z +x —y) = 2o — (B} (2 +y —2) — Cylw = 0,
—(E(y+2—x) —d?2)u+ (a®z — Ex)v+ (d*(xz +y — 2) — Ea)w = 0,
(VP (y+ 2z — x) — a®>y)u — (a®*(z + = — y) — b?2)v + (b*z — a®y)w = 0.

This means that the mappingis a conjugation of the finite points other than the
centroidG.

Corollary 6. Thetriple of induced G P-lines concur at @ if and only if the triple
of induced GQ-lines concur at P.

We conclude with a list of pairs of triangle centers conjegatderr.

| X1, Xiosa [ X3, X0 [ Xy, Xigs [ Xe, X | Xo3, Xuso | Xeo, Xi2s |
| Xog, X1316 | X100, X1083 | X184, Xise | Xisr, X353 | X352, Xor4 |
Table 3. Pairs conjugate under
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A Sequence of Triangles and Geometric I nequalities

Dan Marinescu, Mihai Monea, Mihai Opincariu, and Mariano®tr

Abstract. We construct a sequence of triangles from a given one, athacden
number of famous geometric inequalities.

1. A geometric construction

Throughout this paper we use standard notations of triageggdenetry. Given a
triangle A BC with sidelengths, b, ¢, let s, R, r, andA denote the semiperimeter,
circumradius, inradius, and area respectively. We begth wisimple geometric
construction. Letd be the orthocenter of triangléBC'. Construct a circle, center
H, radiusR’ = +/2Rr to intersect the half lineéf A, HB, HC at A’, B’, C’
respectively (see Figure 1).

Figure 1.

If the triangle ABC has a right angle atl with altitude AD (D on the hy-
potenuseB (), we choosed’ on the lineAD such thatA is betweenD and A’.

Lemmal. Triangle A’B’C’ has

(@) anglemeasures A' =7 — 4, B' =1 - 5, ’:g_%

(b) sidelengths o’ = \/a(b+c—a), ¥ = \/b(c+a—b),d = \/c(a+b—c),
and

(c)area A’ = A.

Publication Date: December 16, 2009. Communicating EdRaul Yiu.
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Proof. (a) £B'A'C"' = 1/B'HC" = L /BHC = ™4; similarly for B’ and(".
(b) By the law of sines,

a':2R'sinA':2\/2chos§:2\/ -Z—ZX Va(b + ¢ — a);
similarly for ¥’ and¢’.
(c) TriangleA’ B'C’ has area
r_ 1 Il Al é
A= 2bcsmA b00052
= %\/b(c—i-a— b) - \cla+b—c)- S(Sb; @)
= /s(s—a)(s —b)(s — ¢)
= A.
U

Proposition 2. (@)a”? +0?+c? =a? + b2+ — (b—c)? — (c—a)* — (a—b)*.
(b)a? + b2 4 2 < a® + b2 + .
©ad+b+d <a+b+e.
(d)sin A’ + sin B’ + sin ¢’ > sin A + sin B + sin C.
(e)R' < R.
' >r.
In each case, equality holdsif and only if ABC' is equilateral.

Proof. (a) follows from Lemma 1(b); (b) follows from (a). For (c),

d+b+cd = alb+c—a)++/blc+a—0b)++/clatb—c)
b+c c+a a+bd
<
- 2 + 2 + 2
=a+b+ec
For (d), we have

sin A +sin B +sinC

1
=3 (sin B +sinC +sinC +sin A + sin A + sin B)

. B+ C B—C’+, C+A C—A+, A+ B A-B
= sin 5 cos 5 sin 5 cos 5 sin 5 cos 5
. B+C . C+A . A+ B
<sin + sin 3 + sin 5

—cos S + +
= COS B COS B COS B

=sin A’ + sin B’ +sin C’.
/ a’+b'+c at+b+c _
(e)R 2(sin A’+sin B’+sin C") < 2(sin A+sin B+sinC) — R.
/
Hr=5>2=r O
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Remark. The inequalityR’ < R certainly follows from Euler’s inequality? > 2r.
From the direct proof of (e), Euler's inequality also follswsee Theorem 6(b)
below).

2. A sequence of triangles

Beginning with a triangled BC, we repeatedly apply the constructionsih to
obtain a sequence of triangled,, B,,C,,),, . With AgByCy = ABC, and angle
measures and sidelengths defined recursively by

T—A T—B T™—C
An+1: B n’ Bn+1: B n’ Cn—l—l: B n;

Ap41 = \/an(bn +cp — an)a bn+1 - \/bn(cn + an — an)7
Cpi1 = \/cn(an + by — cn).

Denote bys,, R,, r», A, the semiperimeter, circumradius, inradius, and area of
triangle A,, B,,C,,. Note thatA,, = A for everyn.

Lemma 3. The sequences (A, )nen, (Bn)nen, (Cn)nen are convergent and
lim A, = lim B, = lim C, = _.

n—o00 n—o00 n—o00 3

Proof. Itis enough to consider the sequeriek, ),,cn. Rewrite the relatiom,,;; =

A’!L
7~ 3 as
T 1 T
A ——:——(A ——>.
n+1 3 2 n 3
It follows that the sequencéﬂn — %)nEN is a geometric sequence with common
ratio —1. It converges td, giving lim,, .., A, = Z. O
Proposition 4. Thesequence (R, ),en isconvergent and lim,, .o R, = v/ V3A.
: _ anbncn _ 8R2 sin Ay, sin By, sin Oy,
Proof. SinceR,, = ¢ i Af = i, , we have
2 _ A ‘
"™ 2sin A, sin B, sin C),
The result follows from Lemma 3. d

Proposition 5. The sequences (a,; )nen, (bn)nen, (¢n)nen are convergent and

lim a, = lim b, = lim ¢, =2 é
n—oo n—oo n—oo \/g

Proof. This follows froma,, = 2R,, sin A,,, Lemma 3 and Proposition 4. [l

From these basic results we obtain a number of interestimgergent sequences.
In each case, the increasing or decreasing property isfctearProposition 2.
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| || Sequence | | Limit | Reference |
(a) || An constant | A Lem.1(c)
(b) || sin Ay, + sin B,, +sinC,, | increasing # Prop.2(d), Lem.3
(¢) || Rn decreasing %\/\/gA Prop.2(e), 4
(d) || sn decreasing | v/3v/3A | Prop.2(c), 4
(e) || increasing %\/\/gA Prop.2(f)
() ff: decreasing | 2
() || a2 + b2 + 2 decreasing | 4v/3A Prop.2(b),5
(h) [ @i + 65 + i — (bn — cn)?
—(en — an)? — (an — by)? | decreasing | 4v/3A Prop.2(a,b),5

3. Geometric inequalities

The increasing or decreasing properties of these sequealoesy with their
limits, lead easily to a number of famous geometric inedjesli1, 3].

Theorem 6. The following inequalities hold for an arbitrary angle ABC.
(@)sin A +sin B+sinC < %
(b) [Euler’s inequality]R > 2r.
(c) [Weitzenbock inequalityf?® + % + ¢ > 4v/3A.
(d) [Hadwiger-Finsler inequalityg? +b% +c? — (b—c¢)? — (c—a)?> — (a — b)? >
4v/3A.

In each case, equality holds if and only if the triangle is equilateral.

Remark. Weitzenbock’s inequality is usually proved as a conseqgeeri the Had-
wiger - Finsler’s inequality ([2, 4]). Our proof shows thaey are logically equiv-
alent.
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Trilinear Polars of Brocardians

Francisco Javier Garcia Capitan

Abstract. We study the trilinear polars of the Brocardians of a pand inves-
tigate the condition for their orthogonality.

1. TheBrocardians

Let P be a point not on any of the sidelines of triangl&C', with homogeneous
barycentric coordinatesu : v : w) and cevian triangleXY Z. Construct the

CA Z BC X,
parallels ofAB through X to intersectCA at Y. (see Figure 1(a)). The triangle
BC Y AB  Z,

XpY.Z, is perspective wittd BC' at the point

=

1(a) The Brocardia-_, 1(b) The BrocardiarP—
AB Y BC  X.
Likewise, the parallels of3C through Z intersectCA at Y, such that triangle
CA X AB  Z

X .Y, Z, is perspective witABC at

1 1 1
P<_::<—:—:—>
VoW u

(see Figure 1(b)). The point8_, and P_ are called the Brocardians &t (see
[2, §8.4]). For example, the Brocardians of the symmedian pomtlze Brocard
pointsQ = (&4 : L : %) andQ = (% : 5 %),

Publication Date: December 18, 2009. Communicating EdRaul Yiu.
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2. Noncoallinearity of P and its Brocardians
The pointsP, P_, andP_ are never collinear since

w
u2+vz+w2—vw—wu—uv7§0

1
i uVW
m

SIS S
gl

It is well known that the Brocard points are equidistant frtm symmedian
point. It follows that the pedal ok on the lineQ€)’ is the midpoint of the segment
QQ/, the triangle centeX3g = (a?(b? + c2) : b?(c? + a?) : *(a® + b?)) in [1].

Now, for the Gergonne poir®, = (b+i_a Do a+})_0), the Brocardians

are the point$7., = (a+b—c:b+c—a:c+a—>b)andG. = (c+a—b:
a+b—c:b+c—a). The midpoint ofG._,Ge is the incented = (a : b : ¢).
Indeed,I is the pedal of the Gergonne point on the ldg_ . G..

O+ —alb+e)z+ (A +a>—blc+a)y+ (a*> +b% —cla+b))z=0.

3. Trilinear polars of the Brocardians

The trilinear polars of the Brocardians Bfare the lines

l_, wr +uy +vz =0,
and
L v +wy +uz = 0.

These lines intersect at the point

Q= (u? —vw : v* —wu:w? —w).
Since
(u? —vw, v2—wu, w? —uv) = (ut+v+w)(u, v, w)— (vw+wu+uww)(l, 1, 1),
the point( divides the segmertt P in the ratio

GQ: QP = (u+v+w)*: —3(vw + wu + uv).
The point() is never an infinite point since
u? + 0%+ w? —ow — wu — ww #£ 0.

It follows that the trilinear polarg_. and/._ are never parallel.

4. Orthogonality of trilinear polarsof Brocardians

The trilinear polarg_, and/_ have infinite point§u — v : v —w : w —u) and
(w—wu:u—v:v—w)respectively. They are orthogonal if and only if

Satu—v)(w—u)+ Sp(v—w)(u—v)+ Sc(w—u)(v—-—w)=0 (1)

(see [2,54.5]). Now, (1) defines a conic with centéf = (1 : 1 : 1) (see [2,
§10.7.2]). Since the conic contaids it is necessarily degenerate. Solving for the
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infinite points of the conic, we obtain the condition that tomic consists of a pair
of real lines if and only if

Saa+ Spp + Scc —2Spe — 2504 — 254 > 0.
Equivalently,
5(a* + b 4+ 1) — 6(b%c? + 2a® + a?b?) > 0. 2)

Here is a characterization of triangles satisfying condi{i2). Given two points
B andC with BC' = a, we set up a Cartesian coordinates system suchZhat
(—%, 0) andC = (%, 0). If A = (=,y), then

a\? 2 2
_z — b
(x 2) Ty :

a\ 2
(w+§) +y? =

With these, condition (2) becomes
(422 4 4y* — 8ay + 3a?)(42? + 4y + Say + 3a*) > 0.

This is the exterior of the two circles, centdfs +a), radii . Here is a simple
example. If we requir€’ = 7, thenSc = 0 and the degenerate conic (1) is the
union of the two liney — w = 0 andSa(z — x) + Sp(y — z) = 0. These are
the C-median and the lin& K., K. being theC'-trace of the symmedian poir.
Figure 2 illustrates the trilinear polars of the Brocardiarf a pointP on GK..

A

Figure 2.
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On the other hand, for pointd on the circumferences of the two circles, the
triangle ABC' has exactly one real line through the centr6icduch that for every
P on the line, the trilinear polars of the Brocardians intetggthogonally (on the
same line). It is enough to considdron the circle4(z? + y?) — 8ay + 3a? = 0,
with coordinates(4 cos 6, a + %sinf). The center of trianglel BC is the point
G = (%cosf, 2(2+sin6)). The line in question connects to the fixed point
M = (0, 5):

(1 —sinf)z + cos 6 <y - g) = 0.

The trilinear polars of the Brocardians of an arbitrary pathon this line are
symmetric with respect t&' M, and intersect orthogonally (see Figure 3).

Figure 3.
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Reflections in Triangle Geometry

Antreas P. Hatzipolakis and Paul Yiu

On the 10th Anniversary of Hyacinthos

Abstract. This paper is a survey of results on reflections in triangdenge-
try. We work with homogeneous barycentric coordinates wéterence to a
given triangleA BC and establish various concurrency and perspectivity tesul
related to triangles formed by reflections, in particulae teflection triangle
P p(® p(©) of a point P in the sidelines ofABC, and the triangle of reflec-
tions A(@ B® () of the vertices ofABC in their respective opposite sides.
We also consider triads of concurrent circles related tegheflections. In this
process, we obtain a number of interesting triangle cemtighsrelatively simple
coordinates. While most of these triangle centers have batogued in Kim-
berling’sEncyclopedia of Triangle Centefa7] (ETC), there are a few interest-
ing new ones. We give additional properties of known trianggnters related
to reflections, and in a few cases, exhibit interesting spoadences of cubic
curves catalogued in Gibert@atalogue of Triangle Cubidd4] (CTC).
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Notations. We adopt the usual notations of triangle geometry and wotk to-
mogeneous barycentric coordinates with reference to andi@ngle ABC' with
sidelengthsa, b, ¢ and angle measure$, B, C. Occasionally, expressions for
coordinates are simplified by using Conway’s notation:

_b2+02—a2 2+a%—a® a? + b2 —c?

SA 2 ) SB = 2 ) SC = 2 )

subject toSap + Spc + Sca = S?, wheresS is twice the area of triangld BC,
andSpc stands forSp.Se etc. The labeling of triangle centers follows ETC [27],
except for the most basic and well known ones listed belovierigaces to triangle
cubics are made to Gibert's CTC [14].

G X5 centroid (@) X3 circumcenter
H X, orthocenter N X5 nine point center
F X30 Euler infinity point E X110 Euler reflection point
I X1 incenter Ge X7 Gergonne point
N, Xs Nagel point Fe X1 Feuerbach point
K X6 symmedian point Fy | Xi3,X14 | Fermat points
J+ | Xi5, X16 | isodynamic points w Xys4 first Evans perspector
P isogonal conjugate aP
P* isotomic conjugate oP
p! inverse ofP in circumcircle
P/Q cevian quotient
P,P,P. cevian triangle ofP
PeP*P°  anticevian triangle oP
P pedal of P on BC
p@ reflection of P in BC
Ey Point on Euler line dividingD H in the ratiot : 1 — ¢

¢(P,Q) Bicevian conic through the traces Bfand@ on the sidelines
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1. The reflection triangle

Let P be a point with the homogeneous barycentric coordin@iesv : w) in
reference to trianglel BC'. The reflections of in the sidelinesBC, C A, AB are
the points

P9 = (—a?u: (a* +0* — A)u+d®v: (2 +a® = b)u+ dPw),
PO = ((a® + 0% — v+ bPu: =% : (b7 + 2 — a®)v + d®w),
PO = (& +a? = tH)w+ b%u: (0* + &2 — aP)w + v : —Fw).

Figure 1. The reflection triangle

We call P(@) P(®) p(c) the reflection triangle of (see Figure 1). Here are some
examples.

(1) The reflection triangle of the circumcentér is oppositely congruent to
ABC at the midpoint ofO H, which is the nine-point centg¥. This is the only
reflection triangle congruent td BC'.

(2) The reflection triangle off is inscribed in the circumcircle aA BC' (see
Remark (1) following Proposition 2 and Figure 3(b) below).

(3) The reflection triangle oN is homothetic at) to the triangle of reflections
(see Propositioin 5 below).

Proposition 1. The reflection triangle oP is

K(l
(a) right-angled if and only ifP lies on one of the circles with centers passing
KC
B, C
throughc, A respectively,
A, B

(b) isosceles if and only iP is on one of the Apollonian circles, each with diameter
the feet of the bisectors of an angle on its opposite side,

(c) equilateral if and only ifP is one of the isodynamic points.,

(d) degenerate if and only ¥ lies on the circumcircle.
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1.1 Circle of reflections.
Proposition 2. The circleP(@ P®) P(¢) has centerP*.

p

(a) Reflections and isogonal lines (b) circle of reflections
Figure 2. Circle of reflections aP with centerP*

Proof. Let @ be a point on the line isogonal #P with respect to angld, i.e., the
lines AQ and AP are symmetric with respect to the bisector of anglaC' (see
Figure 2(a)). Clearly, the triangleQ P and AQ P(®) are congruent, so thét is
equidistant fromP(®) and P(). For the same reason, any point on a line isogonal
to BP is equidistant fromP(©) and P(%). It follows that the isogonal conjugafe*

is equidistant from the three reflectio$®), P(®), p(c), O

This simple fact has a few interesting consequences.

(1) The circle through the reflections fand the one through the reflections of
P* are congruent (see Figure 3(a)). In particular, the refiastof the orthocenter
H lie on the circumcircle (see Figure 3(b)).

H®

H©

pla) o)
(a) Congruent circles of reflection (b) Reflections off on circumcircle
Figure 3. Congruence of circles of reflection®fand P~

(2) The (six) pedals oP and P* on the sidelines of triangld BC' are concyclic.
The center of the common pedal circle is the midpoinfd?* (see Figure 3(a)).
For the isogonal pai® and H, this pedal circle is the nine-point circle.
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1.2 Line of reflections .

Theorem 3. (a) The reflections of in the sidelines are collinear if and only if
P lies on the circumcircle. In this case, the line containihg teflections passes
through the orthocentef .

(b) The reflections of a lin€ in the sidelines are concurrent if and only if the
line contains the orthocentell. In this case, the point of concurrency lies on the
circumcircle.

Remarks.(1) Let P be a point on the circumcircle arfcha line through the ortho-
centerH. The reflections of lies on/ if and only if the reflections of concur at
P ([6, 29)]). Figure 4 illustrates the case of the Euler line.

Figure 4. Euler line and Euler reflection point

2 . b2

@) If P = ( a c? ) is the isogonal conjugate of the infinite point of

v—w T w—u " u—v

alineux + vy + wz = 0, its line of reflections is
Sa(v—w)xr + Sp(w —uw)y + Sc(u—v)z = 0.

(3) Let? be the line joiningH to P = (u : v : w). The reflections of in the
sidelines of triangled BC' intersect at the point

TO(P)::< a2 b2 & )

Spv — Scw : Scw — Sau : Sau — Spv

Clearly,ro(P1) = ro(P2) if and only if P, P», H are collinear.
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| line HP | ro(P) = intersection of reflections |

Eulerline| E = (bg‘l_zcg : czb_zaz : azc_zbz)
_ a® . b’ . c?

HI X109 = ((bfc)(bJrcfa) * (c—a)(cta—b) * (afb)(aerfc))
_ a® . b2 . c?

HE X2 = ((b2—c2)54 * (P=a®)Sp (a2—b2)sc)

Theorem 4 (Blanc [3]). Let ¢ be a line through the circumcenté&p of triangle
ABC, intersecting the sidelines &, Y, Z respectively. The circles with di-
ametersAX, BY, CZ are coaxial with two common points and radical axié
containing the orthocentefi .

(a) One of the common pointB lies on the nine-point circle, and is the center
of the rectangular circum-hyperbola which is the isogonathjagate of the liné.

(b) The second common poifitlies on the circumcircle, and is the reflection of
’r'o(P) in 4.

Figure 5. Blanc's theorem

Here are some examples.

[Tine 0 [P ] Q [ro(P) |
Euler line X125 X476 = ((SBfSc)(lssz‘SAA) Lol ) FE
Brocard axis | X115 X112 Xor1s
oI X1 X108:(m:'”:"') Xora0
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1.3 The triangle of reflectionsThe reflections of the vertices of triangleBC in
their opposite sides are the points

AW = (—a?:a? +0* -2 P 4 a? —1?),
B — (a2 +02 -2 b+ P - a2),
CO = (+a®> =0 :0®+P—a?: —24%).

We call triangleA(® B®)C(©) the triangle of reflections.

Proposition 5. The triangle of reflectionsi(®) B(®) C(¢) s the image of the reflec-
tion triangle of N under the homothety(O, 2).

B®

o

Figure 6. Homothety of triangle of reflections and reflectidangle of N

From this we conclude that
(1) the center of the circld (@) B®)C(©) is the pointh(O, 2)(N*), the reflection of
O in N*, which appears a¥95 in ETC, and
(2) the triangle of reflections is degenerate if and only & tiine-point centerV
lies on the circumcircle. Here is a simple construction atsa triangle (see Figure
7). Given a pointN on a circleO(R), construct

(a) the circleN (£) and choose a poinb on this circle, inside the given one
(0),

(b) the perpendicular t® D at D to intersectO) at B andC,

(c) the antipodeX of D on the circle(N), and complete the parallelogram
ODX A (by translatingX by the vectodO).

Then triangleABC has nine-point centelN on its circumcircle. For further
results, see [4, p.77], [18] or Proposition 21 below.
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Figure 7. Triangle with degenerate triangle of reflections

2. Perspectivity of reflection triangle

2.1 Perspectivity with anticevian and orthic triangles.

Proposition 6 ([10]). The reflection triangle oP is perspective with its anticevian
triangle at the cevian quotier = H/P, which is also the isogonal conjugate of
P in the orthic triangle.

A
Hy
%
i
s
// /
/
HC //
\ H/p P
\N
\| £
B Ha [a] Pa C
X
Pa

Figure 8. H,P andH,P® isogonal in orthic triangle
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Proof. Let P, P, P. be the cevian triangle dP, and P* P’ P¢ the anticevian trian-
gle. SinceP and P* divide AP, harmonically, we havegs + 45 = 5. If the

perpendicular fronP to BC intersects the liné>® H, at X, then

pPxXx pPP* PP,+FPP* PP, PP, 2PP, 2PPy

AH, AP AP« AP« " AP ~ AP, _ AH,
Therefore,PX = 2PP,, andX = P@. This shows thaP® lies on the line
P®H,. Similarly, P®) and P\ lie on P*H, and P°H, respectively. Since the
anticevian triangle of and the orthic triangle are perspective at the cevian quintie
H/P, these triangles are perspective with the reflection ttefity®) P®) P(©) at
the same point.

The fact thatP(@ lies on the lineH,P* means that the line&, P* and H, P
are isogonal lines with respect to the sidésH; and H, H.. of the orthic triangle;
similarly for the pairsH,P°, H,P and H,P¢, H.P. It follows that H/P and P
are isogonal conjugates in the orthic triangle. O

If P = (u:wv:w)inhomogeneous barycentric coordinates, then
H/P = (u(—=Sau+ Spv+ Scw) : v(=Spv+ Scw+ Sau) : w(—Scw+ Sau+ Spv)).

Here are some examples @, H/P) pairs.

P I G 0] H| N K
H/P || X46 | X193 | X155 | H | X52 | Xos

2.2 Perspectivity with the reference triangle.

Proposition 7. The reflection triangle of a poin® is perspective witd BC' if and
only if P lies on the Neuberg cubic

Z (Sap + Sac — 2Spc)u(c*v® — b*w?) = 0. (1)
cyclic
As P traverses the Neuberg cubic, the locus of the perspegtisrthe cubic
IS 2 2
> w5~ ) =" @
el 52 —3544 \S? —3Scc S*—3SBnB

The first statement can be found in [30]. The cubic (1) is tmedias Neuberg
cubic, the isogonal cubic/p(K, E. ) with pivot the Euler infinity point. It ap-
pears as KOO1 in CTC, where numerous locus properties of tub@tg cubic
can be found; see also [5]. The cubic (2), on the other hanbeipivotal isocubic
PK (X1989, Xo65), and appears as K060. Givéhon the cubic (2), the poinP
on the Neuberg cubic can be constructed as the perspectwr oétian and reflec-
tion triangles of@) (see Figure 9). Here are some example$RfQ) with P on
Neuberg cubic and perspectQrof the reflection triangle.

PlO|H| I W | Xqis7
QN |H| Xq | Xso | X1141
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Figure 9. The Neuberg cubic and the cubic KO60

Remarks.(1) X79 = (b2+c£a2+bc | T a2+b2£62+ab) is also the per-
spector of the triangle formed by the three lines each jgitire perpendicular feet
of a trace of the incenter on the other two sides (see Figure 10

7

(@)
Figure 10. Perspector of reflection trianglelof
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(2) For the paif W, Xg),
() W = Xyg4 = (a(a®+a%(b+c)—a(B® +bc+c?)—(b+c)(b—c)?) i -+ ---)is
the first Evans perspector, the perspector of the triangleftaictionsA(® B®) ()
and the excentral trianglE*I°I¢ (see [45)),

(ii) Xgo = (m et ) is the reflection conjugate df(see$3 below).
(3) For the F;a”(;(XIZALJF?g )(211412)’ 4 2 .2 4 2 2\2 (12 2
(i) Xyy57 = (=2 trte );rza(bg?fcz_)b_(cbztgccz))z_(b S LUEL) ) is the

inverse ofN* in the circumcircle,

e _ 1 . . . . .
(i) X111 = ((S2+SBC)(S2—3SAA) Deee > lies on the circumcircle.

The Neuberg cubic also contains the Fermat points and thgrsmic points.
The perspectors of the reflection triangles of

H H _ 1 . 1 . 1
() the Fermat pointd’, = <\/§SA+ES ! /35,95 * V35,15

((SA +ev38)? (Sp+ev3S)? (Sc+ E\/§S)2>

),s:il,are

(V3Sa+e9)2  (V3Sp+eS)2 (V3Sc +eS9)?

(ii) the isodynamic pointd, = (a?(vV3Sa +£S) : b*(V3Sp +€5) : 2(V3Sc +¢e9)),
e = +1, are

1 ‘ 1 . 1
((SA +eV3S)(V3Sa+eS) (S +ev39)(V3Ss+eS)  (So+ev3S)(V3Sc + ss)> '

The cubic (2) also contains the Fermat points. For thesecanesponding
points on the Neuberg cubic are

<a2(2(b2 +? — a3 =50+ 2 — a3 — - 2V3V?29) - - - ) .
2.3 Perspectivity with cevian triangle and the triangle of eefions.

Proposition 8. The reflection triangle oP is perspective with the triangle of re-
flections if and only ifP lies on the cubic2). The locus of the perspectd} is the
Neuberg cubigl).

Proof. Note thatA(®), P(@) and P, are collinear, since they are the reflections of
A, P and P, in BC. Similarly, B®, P p, are collinear, so ar€(©), p(c),

P.. 1t follows that the reflection triangle aP is perspective with the triangle of
reflections if and only if it is perspective with the ceviaraigle of P. O

Remark. The correspondencgP, @)) in Proposition 8 is the inverse of the corre-
spondence in Proposition 7 above.
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2.4. Perspectivity of triangle of reflections and anticeviaiarigles.

Proposition 9. The triangle of reflections is perspective to the anticevrangle

of P if and only if P lies on the Napoleon cubice., the isogonal cubic i (K, N)
Z (@®(* + %) — (0% = A)?)u(v? — b*w?) = 0. (3)
cyclic

The locus of the perspectd} is the Neuberg cubifl).

Figure 11. The Napoleon cubic and the Neuberg cubic

PTIT O [N N [ Xios
Q| W | Xz | Exo | X1157| O

Remarks.(1) For the case 0D, the perspector is the Parry reflection point, the
triangle centerX3g99 Which is the reflection o) in the Euler reflection poink. It

is also the point of concurrency of reflections in sidelinebnes through vertices
parallel to the Euler line (see [34, 35]). In other wordssittie perspector of the
triangle of reflections and the cevian trianglefof,. The Euler line is the only
direction for which these reflections are concurrent.
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(2) N* is the triangle centeKs, in ETC, called the Kosnita point. It is also the
perspector of the centers of the circte®C, OC A, OAB (see Figure 12).

Figure 12. Perspectivity of the centers of the cireleBC, OC A, OAB

3. Reflection conjugates
Proposition 10. The three circles”(® BC, P C A, and P(“) AB have a common
point

r1(P) = (

u
(b2 + 2 — a®)u(u + v + w) — (avw + bPwu + uv) = @
4

It is easy to see that (P) = H if and only if P lies on the circumcircle. IP #
H and P does not lie on the circumcircle, we call(P) the reflection conjugate
of P; itis the antipode of in the rectangular circum-hyperbol&’( P) throughP
(and the orthocentell). It also lies on the circle of reflection8(@ P®) p(©) (see
Figure 13).

| P [n(P) | midpoint[ hyperbola]
I} Xgo = (m Do ) Xy1 | Feuerbach
G | Xenn = (m e ) X115 | Kiepert
O | Xogs = (52_537{%4 Do ) X125 | Jerabek
K | X¢7 = (m e ) X125 | Jerabek
X7 | X11s6 = (,2a2+a(bi6)+(b76)2 Deee ) X1 Feuerbach
X | Xiz20 = (alfitzz) Do ) X1, | Feuerbach

X3 | Xua X115 | Kiepert
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Figure 13. r1(P) and P are antipodal in7Z’(P)

Remark.r;(I) = Xg is also the perspector of the reflections of the excenters in
the respective sidelines (see [42] and Figure 143218, we have shown that (1)
is the perspector of the reflection trianglel&t.

Figure 14. r1(I) as perspector of reflections of excenters
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Proposition 11. Let Pl PVl Pld pe the antipedal triangle oP = (u : v : w).
The reflections of the circleBld BC in BC, PPICAin CA and PIYAB in AB
all contain the reflection conjugate (P).

Proof. SinceB, P, C, and P!l are concyclic, so are their reflections in the line
BC. The circlePlW BC is identical with the reflection of the circl®(® BC in
BC; similarly for the other two circles. The triad of circlesetiefore have-; (P)
for a common point. O

Proposition 12. Let P, Py Py be the pedal triangle of = (u : v : w). The
reflections of the circleslP[b}P[c] in P[b]P[c}- BP[C]P[G] in P[c]P[a}- and CP[a}P[b]
in P, P have a common point

ro(P) = (a*(2a*b*c*u + 2((a® + b — c2)? — 2a*b*)v + b*((c® + a® — b?)? — 2¢%a®)w)

-(B*Pu? — A — a*)uv + b (a? — b uw — a*(b* + A —aPvw) -1,
P TQ(P)
G a®(b* +c* —a* — b7 (a*(b* + ) — 2a%(b* —b* + ) + (b2 + ) (b7 — )P

Ceeeiees)
I (a(b®* +c* —a® —bc)(a®*(b+c) —a*(b* + ) —a(b+c)(b—c)* + (b° — 2)?)
0] circles coincide with nine-point circle
(2 a2 02 (X (02D —2a2 (b2 —b2 212 2 (5222

H X1986:< (O e —a?)? e (T (7] 20 (T 2T ) (P eP)( H,..;...)
Xiss | Xaos

Remarks.(1) For the case ofH, Xi9s6), See [22].

Figure 15. X986 as the common point of reflections of circumcircles of resid-
uals of orthic triangle

(2) For the pair(Xiss, X103),
() X1s6 is the inverse off in the circumcircle,
(i) X403 is the inverse off in the nine-point circle (seg4 below).
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4. Inversion in the circumcircle

The inverse ofP in the circumcircle is the point

P! = (a*(*Pu® + b (a® — bH)wu + (a® — *)uv — a*(B* + & — a*)vw)
V2 (a?v? + a? (b — a®)vw — b2 (2 + a® — bP)wu + (0 — )uw)

A(a??w? + a?(® — a®)ow + V(2 — P wu — P (a® + b? — )ww)).

4.1 Bailey’s theorem.

Theorem 13(Bailey [1, Theorem 5]) The isogonal conjugates @t and r;(P)
are inverse in the circumcircle.

Proof. Let P = (u : v : w), SO thatP* = (a?vw : b*wu : c2uv). From the above

formula,

(P! = (aPvw(a®vw + (¢ = b )uww + (a® — A)wu — (B* + 2 —a®)u?) - --)
= (aPvw(=(b* + & — a®)u(u + v+ w) + a*vw + bwu + uv) o).

This clearly is the isogonal conjugateqfl P) by a comparison with (4). O

4.2 The inverses afi(®), B(®) (o),

Proposition 14. The inversive images of(®, B®) C(©) in the circumcircle are
perspective witA BC at N*.

é pla)

Figure 16. N™* as perspector of inverses of reflections of vertices in cppsides
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Proof. These inversive images are

(A7 = (=a*(5% = 354a) : °(S° + Sap) : (5% + Sca)),
(B! = (a®(S? + Sap) : —b*(S? — 3SBR) : (5% + SBe)),
(CN ™t = (a2(8% + Sca) : b2(S? + Spe) : —c2(S% = 35c¢)).

From these, the triangle$BC and(A(®))~1(B®)~1(C()~! are perspective at

a? b2 c?
N* = : : .
<SZ+SBC S2+SCA SZ-FSAB)
O

Corollary 15 (Musselman [32]) The circlesAOA®, BOB®, COC(©) are coax-
ial with common point€) and (N*) L.

Figure 17. Coaxial circled PA”, BOB™, cOC®

Proof. Invert the configuration in Proposition 14 in the circumlgrc O

A generalization of Corollary 15 is the following.

Proposition 16 (van Lamoen [28]) The circlesAP A, BPB® and C PC(®)
are coaxial if and only ifP lies on the Neuberg cubic.

Remarks.(1) Another example is the paif, W).
(2) If P is a point on the Neuberg cubic, the second common point afitbkes
APA@, BPB® andCPC is also on the same cubic.
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4.3 Perspectivity of inverses of cevian and anticevian trlaag

Proposition 17. The inversive images d?,, P,, P. in the circumcircle form a
triangle perspective wittABC' if and only if P lies on the circumcircle or the
Euler line.

(a) If P lies on the circumcircle, the perspector is the isogonaljegate of the
inferior of P. The locus is the isogonal conjugate of the nine-point eiske
Figure 18)

|/
//
$’p

c

Figure 18. Isogonal conjugate of the nine-point circle

(b) If P lies on the Euler line, the locus of the perspector is thebare conic
through the traces of the isogonal conjugates of the Kieped Jerabek centers
(see Figure 19)

Figure 19. The bicevian coni€ (X 1,5, Xia5)
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The conic in Proposition 17(b) has equation

Z bt (0 — AP + 2 — a?)a® — 2a50%P (P — a?)%(a® - b?)?yz = 0.

cyclic

P
Q

G H N Xo1 HT
K| Xoy4 | X143 | Xeo | X1986

0
0

Remarks.(1) X5, is the Schiffler point, the intersection of the Euler lined 8C,
ICA, IAB (see [21]). Here is another property a&f,; relating to reflections
discovered by L. Emelyanov [11]. Let be the reflection of the touch point of
A-excircle in the line joining the other two touch points; garly defineY and

Z. The trianglesA BC and XY Z are perspective at the Schiffler point (see Figure
20).

Figure 20. Schiffler point and reflections

Sa : SB : Sc
orthic-of-orthic triangle (see [26]).
(3) X143 is the nine-point center of the orthic triangle.

(4) Xeo = (“2((512)_2“) : bQ(((fI;’)Qb) : CQ((C‘ZIS)QC)) is the isogonal conjugate of the

outer Feuerbach poig{s.

2) Xoy = (©824=8%)  V(Spp—57) . 02(300_32)> is the perspector of the

Proposition 18. The inversive images df?, PP, P¢ in the circumcircle form a
triangle perspective witld BC' if and only if P lies on

(1) the isogonal conjugate of the circky 22 + Spy? + Scz? =0, or

(2) the conic

b2 (0% — )2 + 2a?(P — a®)y? + a®b*(a® — b?)22 = 0.
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Remarks.(1) The circleSaz? + Spy? + Scz? = 0 is real only whenABC con-
tains an obtuse angle. In this case, it is the circle withereHt orthogonal to the
circumcircle.

(2) The conic in (2) is real only wheA BC' is acute. It has centel and is

homothetic to the Jerabek hyperbola, with raygm.

5. Dual triads of concurrent circles

Proposition 19. Let)f.(,’ }; g be two triads of points. The triad of circlesY’~Z’,

YZ'X"and ZX'Y’ have a common point if and only if the triad of circl&3Y 7,
Y'ZX andZ’ XY have a common point.

Proof. Let Q be a common point of the triad of circle§Y'Z’, Y Z' X', ZX'Y".
Inversion with respect to a circle, cent@rtransforms the six pointX, Y, Z, X/,
Y', Z'intox,y, z, 2,9, 2/ respectively. Note thaty'z’, yz'z' andzz'y are lines
bounding a triangle’y’2’. By Miquel’s theorem, the circles'yz, y'zz andz'zy
have a common point. Their inversesX'Y Z,Y’Z X andZ’ XY have the inverse
Q' of ¢’ as a common point. O

Proposition 20(Musselman [31]) The circlesA P(®) () Bp(e) p(a) ¢ p(a) p(b)
intersect at the pointy(P) on the circumcircle.

pe

Figure 21. The circlestP® P(®), Bp() p(a) ¢ p(®) p() intersect on the circumcircle

5.1 Circles containingd(®, B®), C(©),

5.1.1 The triad of circlesAB® (), Al Bc(e) A(@) BO)C . Since the circles
A@BC, AB®C and ABC(© all contain the orthocentel, it follows that that
the circlesdB®) C(¢), A(@) BC(¢) and A B®)C also have a common point. This
is the pointXy5; = (N*)~! (see [41, 18]). The radical axes of the circumcircle
with each of these circles bound the anticevian triangl&/b{see Figure 22).
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Figure 22. Concurrency of circleB® (), A(@) BC(®) | A« B®) ¢

5.1.2 Thetangential triangle The circlesk*B®) () Al@) gb(©)| Ala) BO) e
have X399 the Parry reflection point as a common point. On the other htned
circlesAW Kb K¢, BO KeKe 0 KaKb are concurrent. (see [35]).

5.1.3 The excentral triangle The circlesA(@ 1t1¢, 7*B®) ¢, 191°C(©) also have
the Parry reflection poinksgg as a common point (see Figure 23).

Figure 23. The Parry reflection poiftsgg

The Parry reflection poinKsg9, according to Evans [12], is also the common
point of the circles 1*A@  11°B®) and11¢C©).
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By Proposition 19, the circleg?B®) () A(@) 1bC(e) and A(@ BO) ¢ have a
common point as well. Their centers are perspective WiBT' at the point

(a(a®*(a+b+c) —ab® —bec+c?) —(b+c)(b—c)?):--mi---)
on theOl line.

5.1.4 Equilateral triangles on the sideskore = +1, let A., B., C be the apices
of the equilateral triangles erected on the sid®s, C A, AB of triangle ABC
respectively, on opposite or the same sides of the verticesrding ax = 1 or
—1. Now, fore = +1, the circlesA® B.C., B®C.A., C(9) A, B, are concurrent
at the superior of the Fermat poiht . (see [36]).

5.1.5 Degenerate triangle of reflections .

Proposition 21 ([18, Theorem 4]) Suppose the nine-point centaf of triangle
ABC lies on the circumcircle.

(1) The reflection triangled(®) B®)C'(©) degenerates into a ling.

(2) If X,Y, Z are the centers of the circleBOC, COA, AOB, the linesAX,
BY, CZ are all perpendicular ta’.

(3) The circlesA0A@, BOB®, cOC©) are mutually tangent a®. The line
joining their centers is the parallel tg throughO.

(4) The circlesAB® (), BC(©) A@) ¢ A@ B®) pass througlO.

Figure 24. Triangle with degenerate triangle of reflections

5.2 Reflections in a point.
Proposition 22. GivenP = (u: v : w), let X, Y, Z be the reflections o, B, C
in P.

(8) The circlesAY Z, BZ X, C XY have a common point a point

wP) = (oo )
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which is also the fourth intersection of the circumcircledahe circumconic with
centerP (see Figure 25)

Figure 25. CirclesAY Z, BZX, CXY throughrs(P) on circumcircle and
circumconic with centeP

(b) The circlesX BC, Y C A and Z AB intersect have a common point
V+w—u
- )

2a2vw — (v + w — u)(bw + cv) e
which is the antipode af;(P) on the circumconic with centeP (see Figure 26)
It is also the reflection conjugate of the superiorraf

Figure 26. CirclesXBC, Y CA, ZAB throughr,(P) circumconic with centeP
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(c) For a given@ on the circumcircle, the locus d? for whichrs(P) = Q is
the bicevian coni&’ (G, Q).

Here are some examplesf( P) andr,(P).

| P 1 G 1 I | N K] X9 | Xio[Xoaso| Xoa | X115 |
r3(P) || Xoo | Xioo E E | X0 | X100 | Xoo | X100 | X100
r4(P) || 71(GQ) | Xiz20 | 71(0) | Xsos | X1156 | Xso G 1 N,

6. Reflections and Miquel circles

6.1 Thereflectionof in O. If X, Y, Z are the points of tangency of the excircles
with the respective sides, the Miquel point of the circlk® 27, BZX, CXY is
the reflection ofl in O, which is X4 in ETC. It is also the circumcenter of the
excentral triangle.

Ta

Figure 27. Reflection of in O as a Miquel point

6.2 Miquel circles. For a real numbet, we consider the triad of points
Xe=0:1—t:t), Vi=(:0:1-¢), Zy=(1—-t:¢:0)

on the sides of the reference triangle. The cirddés$7;, BZ, X; andC X, Y; inter-
sect at the Miquel point

My = (a*(b** + (1 — t)? — a®t(1 — 1))
DA+ d?(1 —t)? = b(1 —t))
D@+ 01— 1) — Pl —1))).
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Figure 28. Miquel circles and their reflections

The locus ofM; is the Brocard circle with diametép K, as is evident from the
data in the table below; see Figure 28 and [37, 17].

| t | M, [ P |
0 Q:biz:%z:(%z Cziazzazibzibzicz
% (0] X115 = ((0* = 2)?: (& —a?)?: (@ — b*)?)
1 O ==L .. T . 1 . 1
= 2 G2 2 252 " b2_c2 * 242
00 K (B —AB*+cF—2a%) - :--+)
202 A
WW Bl = a2 . 62 . b2 —(b4 — C4) . b2(62 — a2) . C2(CL2 — b2)
ZaZ b7t 2 .12. .2 212 2y . 4 4y . 2/ 2 2
(727_;2;_;2?32?7) By =c":b°:a" | a®*(b®—=c%):—(c* —a”): c(a® —b7)
aZb’—c 2., 2. 2 2772 2 2/ 2 2 4 4
m BSZbIaZC a(b —C)Zb(C —a):—(a —b)

6.3 Reflections of Miquel circles.et A;, B;, C; be the reflections ofl in Y; Z;, B
in Z, Xy, C'in X;Y;. The circlesA,Y; Z;, B; Z, X; andC; X,;Y; also have a common

point

P = ((0* = A (2 = a®)t + (a®> = bH)(1 — 1))
(= a®)((a® =Dt + (® — A)(1 —1t))
(a2 =) (B2 — At + (P —a®) (1 —1))).

Fort = % all three reflections coincide with the nine-point cirdttowever,P;
approaches the Kiepert cent&rii5 = ((b2 — ¢?)? : (2 — a?)? : (a® — b?)?) as
t — %. The locus of?, is the line

T Y z 0

+ =
B2 _2 2 _a2 a2 _p2




326 A. P. Hatzipolakis and P. Yiu

which clearly contains both the Kiepert cent€i; and the Jerabek centéf,os
(see Figure 28). This line is the radical axis of the ninaipoircle and the pedal
circle of G. These two centers are the common points of the two circtesKiure
29).

B C

Figure 29. Xi15 and X125 as the intersections of nine-point circle and pedal
circle of G

6.4. Reflections of circles of anticevian residuatSonsider points(?, Y, Z! such
that A, B, C divide Yt Z!, Z! X!, XY respectively in the ratia — ¢ : ¢. Figure
30 shows the construction of these points frd) Y;, Z; and the midpoints of the
sides. Explicitly,

Xt= (1 —t): (1=1)*:2),
Y= (12 —t(1—t): (1—1)%),
Z'= (1=t : 7 —t(1 —1)).

Figure 30. Construction ak'Y*Z* from X,Y; Z;
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The circlesX!BC,Y!C A, Z! AB intersect at the isogonal conjugateldf. The
locus of the intersection is therefore the isogonal cortpigé the Brocard circle.
On the other hand, the reflections of the circlesBC, Y;C A, Z; AB intersect at
the point

1 1 1
((b2 T2 =202t + (a2 — %) (EFa?—b)t+ (B2 —c2) (a2 462 — )i+ (2 — a2)) ’
which traverses the Steiner circum-ellipse.

7. Reflections of a point in various triangles

7.1 Reflections in the medial triangldf P = (u : v : w), the reflections in the
sides of the medial triangle are

X' = ((Sg+Sc)(w+w) : Sgv — Sc(w —u) : Scw + Sp(u —v)),

Y'= (Sau+ Sc(v—w): (So+ Sa)(w+u) : Scw — Sa(u—v)),

7' = (Squ— Sp(v—w) : Spv+ Sa(w —u) : (Sa + Sp)(u+v)).
Proposition 23. The reflection triangle of in the medial triangle is perspective
with ABC'if and only if P lies on the Euler line or the nine-point circle dfBC.

(a) If P lies on the Euler line, the perspector traverses the Jerdtygerbola.

(b) If P lies on the nine-point circle, the perspector is the infipigent which is
the isogonal conjugate of the superior Bf
Remarks.(1) If P = E;, then the perspect@p = E};, where
;o a’b’c2(1 —t)

t = .
a26202(1 —t)— 4SABC(1 —2t)

P|| G| O |H|N | Xos | Xaoz | Xaor | Xaog | Xaa2 | Fo
QI H®| Xes | H| O | Xes | Xra | K | Xos | Xro | Xogs

(2) For P = G, these reflections are the points
X' =(2a*:Sp:Sc), Y' =(S4:20*:5c), Z =(Sa:Sp:2).
They are trisection points of the correspondii§—cevian (see Figure 31(a)). The
perspector ofX'Y'Z" is X9 = H®.

(3) If P = N, the circumcenter of the medial triangle, the circle thioukg
reflections in the sides of the medial triangle is congruerthé nine-point circle
and has center at the orthocenter of the medial triangleslwithe circumcented
of triangle ABC. These reflections are therefore the midpoints of the ciradin
OA, OB, OC (see Figure 31(b)).

(4) Xo5 — (62+g§_a2 R a2+g§_02> is the homothetic center of the
tangential and orthic triangles. It is also the perspectdhe tangential triangle
and the reflection triangle df. In fact,

AX' X'H,=d?>:S4, BY' :Y'H,=b*>:Sg, C'Z':Z'H,=¢c:5c.

(8) Xior = (iber + 2o Py ) is the inverse ofXys in the or-

thocentroidal circle. It is also the homothetic center @ tinthic triangle and the
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(a) Reflections of (b) Reflections ofV
Figure 31. Reflections in the medial triangle

triangle bounded by the tangents to the nine-point circlh@tmidpoints of the
sidelines (see [7]).

(6) If P is on the nine-point circle, it is the inferior of a poift’ on the cir-
cumcircle. In this case, the perspectpis the infinite point which is the isogonal
conjugate ofP’. In particular, for the Jerabek centér= X;95 (which is the in-
ferior of the Euler reflection poink = X;19), the reflections are the pedals of the
vertices on the Euler line. The perspector is the infinitexpof the perpendicular
to the Euler line (see Figure 32).

Figure 32. Reflections of Jerabek center in medial triangle

Proposition 24. The reflections ofiP, BP, C'P in the respective sidelines of the
medial triangle are concurrreni.e., triangleX'Y’Z’ is perspective with the orthic
triangle)if and only if P lies on the Jerabek hyperbola dfBC. As P traverses
the Jerabek hyperbola, the locus of the perspector is therHink (see Figure 33)
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Figure 33. Reflections in medial triangle

Remark.The correspondence is the inverse of the correspondencefpoition
23(a).
7.2 Reflections in the orthic triangle.
Proposition 25. The reflection triangle of in the orthic triangle H,H, H.,. is
perspective wittd BC' if and only if P lies on the cubic
u
Z Pre_a2 (f(Ca a, b)U2 = f(b,c, a)w2) = 0. (5)
cyclic
where
f(a,b,¢) = a*(® + ) — 2a2(b* = V22 + ) + (B® + &) (V¥ — 2)>.
The locus of the perspect@ is the cubic

a’(S? —3S44)x
y o — AT (S — Sec? —H(S” -~ Spp)?) =0, (6)

cyclic
Remarks.(1) The cubic (5) is the isocubici( X303, H), labeled K339 in TCT.

(2) The cubic (6) is the isocubicip( X1g6, X571) (See Figure 34).
(3) Here are some correspondences of

P H | O] X
Q|| Xoa | O| Xigs

The reflection triangle off in the orthic triangle is homothetic td BC' at

_ (d*(544—5%) . B*(SB—S5?%) . A(Scc—5?)
Xpg = (4=, PO, Hoee),
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Figure 34. The cubics K339 andi{ X156, X571)

7.3. Reflections in the pedal triangle.

Proposition 26. The reflection triangle of in its pedal triangle are perspective

with
() ABC if and only if P lies on the orthocubic cubic
Z Spox(y? —b22%) =0,

cyclic

(b) the pedal triangle if and only iP lies on the Neuberg cubid).

Xae H

Figure 35. The orthocubic cubic

(7)
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Remarks.(1) The orthocubic defined by (7) is the curve K006 in CTC.
(2) Both cubics contain the poinfs O, H. Here are the corresponding perspec-
tors.

P [7[O [ H |
perspector wittABC | 1] Xes | Xoa
perspector with pedal triangle I | O

The missing entry is the perspector of the orthic triangle te reflection tri-
angle ofH in the orthic triangle; it is the triangle center

(a2530(352 — SAA)(a2b262 + 2SA(52 +8Bc)) ).
7.4. Reflections in the reflection triangle.

Proposition 27. The reflections oP in the sidelines of its reflection triangle are
perspective with

(a) ABC if and only if P lies on the Napoleon cubi@).

(b) the reflection triangle if and only iP lies on the Neuberg cubid).

Remark.Both cubics contain the points, O, H. Here are the corresponding
perspectors.

P 7] 0 | H |
perspector witd BC I | Xogs | Xiss
perspector with reflection triangle/ | O

The missing entry is the perspectorf® H®) H() and the reflection triangle
of H in H@ H®) () it is the triangle center

(a2Spc(a?b?c* (352 — Saa) + 8S4(S% + Spe) (S — San)) - ---).
8. Reflections in lines

8.1 Reflections in a line.

Proposition 28. Let ¢ be a line through the circumcenté?, and A’ B'C’ be the
reflection of ABC' in £. A’B’C’ is orthologic to ABC' at the fourth intersection
of the circumcircle and the rectangular circum-hyperbolaieh is the isogonal
conjugate of (see Figure 36)

Remarks.(1) By symmetry, ifA’B’C’ is orthologic toABC atQ, thenABC'is
orthologic toA’ B'C” at the reflection of) in the line.

[Tine 0 | Q | @ |
Euler line Xoy = (% Do ) X7
Brocard axis ng = (m ) X2698
oI X104 = (a2(b+c)72abcaf(b+c)(bic)2 Ll ) Xos53

(2) The orthology is valid i¥ is replaced by an arbitrary line.
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Figure 36. Orthology of triangles symmetricén

Proposition 29. Let/ be a line through a given poi®, and A’, B’, C’ the reflec-
tions of A, B, C in £. The linesA’P, B'P, C'P intersect the sideline8C, C A,
AB respectively atX, Y, Z. The pointsX, Y, Z are collinear, and the lineZ
containing them envelopes the inscribed conic withs a focugsee Figure 37)

Figure 37. LineZ induced by reflections i
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Proof. Let ¢ be the line joiningP = (u : v : w)and@ = (z : y : z). The line.Z
containingX, Y, Z is

uX
=0
c%c (B%2u? + 2Scuv + a?v?)(uz — wz)? — (aPw? + 2Spwu + 2u?)(ve — uy)? ’
equivalently with line coordinates
u . .
(b2u? + 2Scuv + a?v?)(uz — wz)? — (a?w? + 2Spwu + 2u?)(ve —uy)? =~ '

Now, the inscribed coni@” with a focus atP = (u : v : w) has center the midpoint
betweenP and P* and perspector

1 1 1
(u(c%2 + 2540w + b2w?) * v(a?w? + 2Spwu + 2u?) T w(b?u? + 2Scuv + a2w2)> '
Its dual conic is the circumconic

Z u(v? + 250w + B*w?) 0

. X
cyclic
which, as is easily verified, contains the lit# (see [38,510.6.4]). This means
that.Z is tangent to the inscribed corti€. O

Remarks.(1) For the collinearity ofX, Y, Z, see [23].
(2) The line.Z touches the inscribed corf€ at the point

1 (uz —wzx) _ (v — uy)? 2
u(c2v? + 2540w + b2w?) \ a?w? + 2Spwu + 2u?  b2u2 4+ 2Scuv + a?v? ’ ’ '

() If P = I, then the lineZ is tangent to the incircle. For example fifs the
OI-line, then.Z touches the incircle at

X3025 = (a®(b—c)?(b+c—a)(a®> =b? +bc—c?):--m:--0).

(i) If P is a point on the circumcircle, then the cofads an inscribed parabola,
with focus P and directrix the line of reflections d? (see§l.2). If we takel to be
the diameteO P, then the lineZ touches the parabola at the point

(a(b* — ) (S? —3544)% -+ :---).

(3) Let/ be the Euler line. The two line&’ corresponding t@ and H intersect
at

Xagss = (% — 2)?(S? —3Spc)(S% —3S44) c---:--)

on the nine-point circle, the inferior af476, the reflection ofE in the Euler line
(see [15]). More generally, for isogonal conjugate poiRtand P* on the Macay
cubic K003,i.e., pK (K, O), the two corresponding line&” with respect to the
line PP* intersect at a point on the common pedal circlePodnd P*. For other
results, see [24, 16].
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8.2 Reflections of lines in cevian triangle.

Proposition 30 ([9]). The reflection triangle o” = (u : v : w) in the cevian
triangle of P is perspective witd BC' at

2 2 2 242 g2
r5(P):<u<_a_2+ +C_2+#>:...:...>. (8)
u w

v2 VW

A

Figure 38. Reflections in sides of cevian triangle

Proof. Relative to the trianglé®, P, P., the coordinates of are(v + w : w + u :
u + v). Similarly, those of4, B, C are
(—(v4w) : wtu : utv), (v+w: —(wtu) : utv), (v+w: wtu: —(utw)).

Triangle ABC is the anticevian triangle d? relative toP, P, P.. The perspectivity
of ABC and the reflection triangle @? in P, P, P. follows from Proposition 6.
The reflection ofP in the line P, F, is the point

X—<u(ﬁ b? 62_b2+62—a2+2(02+a2—b2)+2(a2—|—b2—c2)>

_l’_ - N
u? v2  w? VW wu uv
a? b2+02+02+a2—b2 a2+b2 02+a2—|—b2—02
vl === +=+——v|l=+=- =4+ — )
w2 v?2 w? wu w2 v?2 w? uv

Similarly, the coordinates of the reflectiosof P in P.P,, andZ of P in P, P,
can be written down. From these, it is clear that the liAes, BY, C'Z intersect
at the point with coordinates given in (8). a

The triangleX'Y Z is clearly orthologic with the cevian triangle, P, P., since
the perpendiculars fronX to P, F,., Y to P.P,, andZ to P, P, intersect atP. It
follows that the perpendiculars frof, to Y Z, P, to ZX, andP. to XY are also
concurrent. The point of concurrency is

Py — a2 b2 2 b2 + 2 — a? ' '
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Infact, P,, P, P, lie respectively on the perpendicular bisector¥’cf, ZX, XY.
The pointrg(P) is the center of the circl&'Y Z (see Figure 39). As such, itis the
isogonal conjugate aP in its own cevian triangle.

c

Figure 39. Circumcircle of reflections in cevian triangle

I G H Ge Xog | X100 E
7’5(P) X35 H. X24 X57 Xik15 Fc* Xik25
r6(P) X | H | Xzs4 X1618

Remarks.(1) In ETC,r5(P) is called the Orion transform a?.
(2) X35 = (a®(B* + 2 —a®+bc) : B*(* +a? —b?+ca) : (a®+b*—*+ab))
dividesOI in the ratioR : 2r. On the other hand,

r6(I) = (a®(b? + 2 —a® 4 3bc) : b?( +a? —b* +3ca) : P (a® +b* — 2 +3ab))

divides OI in the ratio3R : 2r (see also Remark (3) following Proposition 31
below).

8.3 Reflections of sidelines of cevian triangldset P be a point with cevian trian-
gle P, P, P.. Itis clear that the line®C, P, P., and their reflections in one another
concur at a point on the trilinear polar 6f(see Figure 40).

This is the same for lin€' A, P.P, and their reflections in one another; similarly
for AB and P, P,. Therefore, the following four triangles are line-perspexat
the trilinear polars ofP:

() ABC,

(i) the cevian triangle ofP,

(iii) the triangle bounded by the reflections B§P, in BC, P.P, in CA, P, P, in
AB,

(iv) the triangle bounded by the reflections 8L in P, P,, CA in P.P,, AB in
P, P,.

It follows that these triangles are also vertex-perspedisee [25, Theorems 374,
375]. Clearly if P is the centroidZ, these triangles are all homothetic(at
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Figure 40. Reflections of sidelines of cevian triangle

Proposition 31. Let P, P, P, be the cevian triangle aP = (u : v : w).
(a) The reflections of?, P. in BC', P.P, in CA, and P, P, in AB bound a triangle
perspective wittd BC' at

r7(P) = o ST
T \u(@+ =)o+ (@ + 02— Aw) ' '
(b) The reflections oBC' in P,P., CAin P.P,, andAB in P, P, bound a triangle
perspective wittA BC' at

P = (

Here are some examples.
L P I T [ O [H[K] X | E [ Xss]
[ r7(P) || Xo1 [ X1105 [ O [ N® | Xuaaa | Xoos | H® |

a*vw + u(Spv + Scw) _ _
—3a2v2w? + b2wu? + 2uv? — 2uvw(Sau + Spv + Scw) ' '

Remarks.(l) The pair(Xlg, X1444).

() X19 = (% : % : %) is the Clawson point. It is the perspector of the triangle

bounded by the common chords of the circumcircle with thérebes.

(i) Xpaas = (‘gi‘g ; 055 aifb) is the intersection ofs Xgo and X- Xo,.

(2) X303 = (505 5o % is the barycentric square of the orthocenter.
Let H,HyH . be the orthic triangle, and;, A. the pedals of{, onCA andAB
respectively, andl’ = BA. N CA,. Similarly defineB’ andC’. The linesAA’,
BB', CC' intersect atX 393 (see [40]).

(3) The coordinates ofs(P) are too complicated to list here. Fér = I, the
incenter, note that
() rs(I) = Xog42 = (a(a®(b+¢) + 2abc — (b+c)(b—¢)?) :--- :---),and
(ii) the reflections ofBC' in P,P,, CAin P.P,, andAB in P, P, form a triangle
perspective withP, P, P, atrg(I) which dividesO[ in the ratio3R : 2r.
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8.4. Reflections oH in cevian lines.

Proposition 32(Musselman [33]) Given a pointP, let X, Y, Z be the reflections
of the orthocenter in the linesAP, BP, CP respectively. The circledPX,
BPY,CPZ have a second common point

1
P — : .« .. : PEEEY .
r9(P) <—252vw + Sa(a?vw + b2wu + cuv) )

Remark.rq(P) is also the second intersection of the rectangular circypetbola
 (P) (throughH and P) with the circumcircle (see Figure 41).

Figure 41. Triad of circles through reflections@fin three cevian lines

8.5, Reflections in perpendicular bisectors.

Proposition 33([8]). Given a pointP with reflectionsX, Y, Z in the perpendic-
ular bisectors ofBC, C'A, AB respectively, the triangl&Y 7 is perspective with
ABC if and only if P lies on the circumcircle or the Euler line.

(a) If P is on the circumcircle, the lined X, BY, CZ are parallel. The per-
spector is the isogonal conjugate Bf(see Figure 42)

(b) If P = E; on the Euler line, then the perspector A, on the Jerabek
hyperbola, where

; a’b’c2(1+t)
Ca2b2c(1+t) — (b2 + 2 —a?)(c? + a2 — b2)(a? + b2 — 2)t
(see Figure 43)
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Figure 42. Reflections ofP on circumcircle in perpendicular bisectors

Figure 43. Reflections aP on Euler line in perpendicular bisectors

8.6. Reflections in altitudesLet X, Y, Z be the reflections aoP in the altitudes of
triangle ABC. The linesAX, BY, C'Z are concurrent (at a poi) if and only if
P lies on the reflection conjugate of the Euler line. The pergpdies on the same
cubic curve (see Figure 44). This induces a conjugation ertiic.
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Figure 44. Reflections in altitudes and the reflection caalig@f the Euler line

Proposition 34. The reflections of;(E;) in the altitudes are perspective with
ABC atri(Ey) if and only if
a’b’c?

tt' = :
a?b?c? — (b2 + 2 — a?)(c® + a? — b?)(a® + b2 — 2)

9. Reflections of lines in the cevian triangle of incenter
Let 1,11, be the cevian triangle df.

Proposition 35([20, 44]). The reflections of,I. in Al,, I.1,in BI,, and [ in
C1. bound a triangle perspective withBC' at

a b c
Xg1 = : :
81 <b+c cta a+b>

(see Figure 45)

Proof. The equations of these reflection lines are
—bcx +c(c+a—bly+bla+b—c)z= 0,
clb+c—a)r—cay+ala+b—c)z= 0,
b(b+c—a)r+alc+a—0b)y—abz= 0.
The last two lines intersect at the point
(—a(b® + —a?—be):bla+b)(b+c—a):c(c+a)b+c—a)).

With the other two points, this form a triangle perspectivithwd BC' at Xg; with
coordinates indicated above. O

Remark. Xg; is also the homothetic center dfBC and the triangle bounded by
the three lines each joining the perpendicular feet of a&tcd@n angle bisector on
the other two angle bisectors ([39]).



340 A. P. Hatzipolakis and P. Yiu

Figure 45. Reflections in the cevian triangle of incenter

Proposition 36. The reflections oBC'in Al,, CAin BI,, andAB in CI. bound
a triangle perspective witli, I 1. at

Xs5 = (a*(b+c—a):b*(c+a—b):la+b—rc)).

Figure 46. Reflections in angle bisectors
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Proposition 37([43]). The reflections ofil, in I1., Bl in I.1,,andC1.in I, 1,
are concurrent at a point with coordinates

(a(a® + a®(b + ¢) — 4a*be — a® (b + ¢)(2b% + be + 2¢%)
—a?(3b* —b?c® +3c*) +alb+¢)(b— ¢)?(b* + 3bc + ¢?) + 2(b — c)*(b+ ¢)*)
)
(see Figure 47)

Figure 47. Reflections of angle bisectors in the sideline=ewfan triangle of incenter

10. Reflections in a triangle of feet of angle bisectors

Let P be a given point. Consider the bisectors of andk3C, CPA, APB,
intersecting the sideBC, C A, AB at D,, Dy, D, respectively (see Figure 48).

Proposition 38. The reflections of the lined P in D, D.., BP in D.D,, andCP
in D, D, are concurrent.

Proof. Denote byz, y, z the distances oP from A, B, C respectively. The point
D, divides BC in the ratioy : z and has homogeneous barycentric coordinates
(0:z:y). Similarly, D, = (2 : 0 : z) andD. = (y : = : 0). These can be
regarded as the traces of the isotomic conjugate of the poiny : z). Therefore,
we consider a more general situation. Given poifits= (v : v : w) andQ =
(z:y:z),let D,DyD,. be the cevian triangle @p*, the isotomic conjugate a).
Under what condition are the reflections of the cevidd3, BP, CP in the lines
DyD., D.D,, D,D, concurrent?

The line Dy D, being—xX + yY + 2Z = 0, the equation of the reflection of the
cevianAP in DyD,. is

(—z((® +a® = b))z — (b + & — a®)y + 2 2)v + 2 ((a® +b% — )z + 267y — (b® + % — a®)2)w)X
+ (y((c2 + a? - b2)z — (b2 + - a2)y + 202z)v + (a2m2 — b2y2 + 222 + (02 + a? — b2)zw)w)Y
2

2

—((@®2® + %y — 2% + (a® + 0% — Dazy)v + 2((a® + 0% — D)z + 2%y — (b° + & — a®)2)w)Z

(
0.
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Figure 48. Reflections in a triangle of feet of angle bisextor

By permutating cyclicallyu, v, w; z, y, z; X, Y, Z, we obtain the equations
of the reflections ofBP in D.D, andCP in D,D,. The condition for the con-
currency of the three lines i8 = 0, whereF' is a cubic form inu, v, w with
coefficients which are sextic forms in y, z given in the table below.

term | coefficient |

'U'LU2

a’zx(—a’z® + 0%y + 22 + (B° 4+ & — ad)yz)-
(a2 = 30%y® + 2% + (V¥ + 2 — a®)yz + (P 4+ a® — bP)zz — (a® + b* — P)wy)

—a’zy(—a®z? + b7y + 22 + (b* + & — a?)yz)-
(@®2® + b%y? = 3c22% + (V¥ + 2 — a®)yz — (P 4+ a® — bP)za + (a® + b* — P)wy)

b zy(a’z? — b%y* + 2% + (& + a® — b?)zx)-
(@2 + b%y? — 3c%2% — (VP + 2 — a®)yz + (P 4+ a® — bP)za + (a® + b* — P)zy)

—bryz(a®z? — b2y? + 227 + (& 4+ a” — bP)zx)-
(=3a%2? + V9% + 222 — (B + 2 — a®)yz + (& + a® — b))z — (a® + b — P)ay)

2
(
Ayz(a®z® + b%y* — 222 + (a® + b° — A)zy)-
(=3a%2? + V9% + 222 + (B + 2 — a®)yz — (& +a? — b))z + (a® + b — P)ay)

—cPzx(az® + b%y° — P27+ (a® +b° — &F)ay)-
(a2 = 30%y® + 2% — (V¥ + 2 — a®)yz + (P + a® — bP)zz + (a® + b* — P)zy)

uvw

Y eyatic @700 (@2 + 67 = v — (P + a® — b)w)

+ chclic a2u4((a2 + b2 — 62)2'02 - (62 + a2 — b2)2w2)

+ Yeyanie €Puvw(((¢¥ = a*)? + 36*(* + a®) — 4b")o
—((a® = b*)? + 3c%(a® + b?) — 4cH)w)

By substituting
22 by 2v? + (b + 2 — a®)vw + b*w?,
y? by a®>w? + (® + a® — b*)wu + 2u?, and
22 by b2u? + (a® + b — )uv + a’v?,
which are proportional to the squares of the distan¢€s B P, C P respectively,
with the help of a computer algebra system, we verify that= 0. Therefore
we conclude that the reflections dfP, BP, C' P in the sidelines oD, D, D, do
concur. U
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In the proof of Proposition 38, if we tak@ = G, the centroid, this yields
Proposition 24. On the other hand,(f = Xg, the Nagel point, we have the
following result.

Proposition 39. The locus ofP for which the reflections of the ceviads®, BP,
C P in the respective sidelines of the intouch triangle is thioamf the circumcir-
cle and the lineD1:

Z be(b—c)(b+c—a)X=0.

cyclic

(a) If P is on the circumcircle, the cevians are parallel, with inf@npoint the isog-
onal conjugate of (see Figure 49)

Figure 49. Reflections of cevians a? in the sidelines of the intouch triangle

Ison the lin , the pomt Ol concurrency traverses the conic
(b)If Pi he lineO1, the point of h i
Y b—o)b+c—a)a®+(b-c)(cta—Db)(at+b—cyz=0,

cyclic
which is the Jerabek hyperbola of the intouch trian@ee Figure 50)Iit has center
(alc+a—b)a+b—c)a®(b+c)—2a(b?> + )+ B+ ) :eovionn).

Finally, if we take@ = (a% L c%) in the proof of Proposition 38, we obtain
the following result.

Proposition 40. Let P; P P’ be the cevian triangle of the isogonal conjugate of
P. Thereflections ol P in P P}, BPin P P;, CPin P; P’ are concurren{see
Figure 51)



344 A. P. Hatzipolakis and P. Yiu

Figure 50. Reflections of cevians Bfin the sidelines of the intouch triangle

Figure 51. Reflections of cevians 8fin cevian triangle ofP*

A special case is Proposition 37 above. Fbe= X35 = O, the common point
is X3 = O. This is because the cevian triangle(@f = H is the orthic triangle,
and the radiiD A, OB, OC are perpendicular to the respective sides of the orthic
triangle. Another example igP, Q) = (K, X427).
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Synopsis

Triangle Triangle

centers References centers References

Fe Table following Thm. 4 X79 Rmk (1) following Prop. 7
Table following Prop. 10 Xs0 Rmk (2) following Prop. 7

Fy End of§2.2 Rmk following Thm. 10
Table following Prop. 10 Table following Prop. 22

J+ Prop. 1(c); end 0§2.2 Xs1 Prop. 35

Q, Table in§6.3 Xog5 = N* Table following Prop. 31

E Rmk (3) following Thm. 3; Figure 4| Xos Table in Rmk (1) following Prop. 2
Table following Thm. 4 Xo9 Table following Prop. 22
Rmk (1) following Prop. 9 Table in§8.2
Table following Prop. 22 X100 Table following Prop. 22
Table in§8.2 Table in§8.2
Table following Prop. 31 X104 Table in Rmk (1) following Prop. 24

Ex Rmk following Prop. 7 Xio0s Table following Thm. 4
Rmk (2) following Prop. 9 X109 Rmk (3) following Thm. 3

W = Xusa Rmk (2) following Prop. 7 X112 Rmk (3) following Thm. 3
Rmk following Prop. 16 Table following Thm. 4

N~ Rmk (1) following Prop. 5 Xi15 Table following Thm. 4
Rmk (2) following Prop. 9 Table following Prop. 10
Prop. 14 886.2, 6.3

X9 Rmk (1) following Prop. 31 X125 Table following Thm. 4

X1 Rmk (1) following Prop. 17 Table following Prop. 10;
Table following Prop. 31 §6.3

Xo4 Rmk (2) following Prop. 17 Rmk (6) following Prop. 23
Rmk (3) following Prop. 25 Xia Table in§8.2
Table in Rmk (2) following Prop. 12 X143 Rmk (3) Prop. following 17
Table in§8.2 X155 = H/O | Table following Prop. 6

Xos = H/K | Table following Prop. 6 Xis6 Rmk (2) followingProp. 12
Rmk (4) following Prop. 23 Rmk (2) following Prop. 25

X35 Rmk (2) at the end 0§8.2 Table in Rmk following Prop. 27

Xao §6.1 X193 = H/G | Table following Prop. 6

Xu6 = H/I | Table following Prop. 6 X105 Rmk (1) following Prop. 5

Xs2 = H/N | Table following Prop. 6 Rmk (2) following Prop. 9

X55 = G Prop. 36 X214 Table following Prop. 22

X57 Table in§8.2 Xoag = X115 | Prop. 17(b); Table ig8.2

X509 = FY Table in§8.2 Xos0 = Xios Prop. 17(b); Table i8.2

Xo0 Rmk (4) following Prop. 17 Xa65 = r1(0) | Table following Prop. 10

Xe5 Table in Rmk (1) following Prop. 23 Tables following Prop. 22, 23, 27

Xeo Table in Rmk (1) following Prop. 23 X354 Table in§8.2

Xe7 Table following Prop. 10 X303 Rmk (2) following Prop. 31

Xes Table in Rmk (1) following Prop. 23 Xsg9 Rmk (1) following Prop. 9
Table in Rmk (2) following Prop. 12 §5.1.2;85.1.3

Xe9 = H® Table in Rmk (1) following Prop. 23 X403 Rmk (2) following Prop. 12
Table in§8.2 Table in Rmk (1) Prop. 23
Table following Prop. 31 Xaor Rmk (5) following Prop. 23

X7 Table in Rmk (1) following Prop. 23 Rmk following Prop. 40

X4 Table in Rmk (1) following Prop. 23 X429 Table in Rmk (1) Prop. 23

Table in Rmk (1) following Prop. 29

Xaa2

Table in Rmk (1) Prop. 23
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Triangle Triangle
centers References centers References
Xuze Table following Thm. 4 X086 Rmk (1) following Prop. 12
Xurr Table in Rmk (1) following Prop. 2§ Table following Prop. 17
X571 Rmk (2) following Prop. 25 Rmk (3) following Prop. 25
X671 Tables following Prop. 10, 22 Xo698 Table in Rmk (1) following Prop. 2§
Xgos Table following Prop. 22 Xor1s Table following Thm. 4
Xoa2 Rmk (3) following Prop. 31 X720 Table following Thm. 4
Xoo5 Table Prop. 31 Xo4g2 Table following Prop. 22
Xos3 Table in Rmk (1) following Prop. 28§ X3003 Rmk (1) following Prop. 25
Xi105 Table Prop. 31 X3025 Rmk (2) following Prop. 29
X114 Rmk (3) following Prop. 7 X3508 Rmk (3) following Prop. 29
Xi14s Table following Prop. 22 superiors of
Xi156 Tables following Prop. 10, 22 Fermat points| §5.1.4
Xi157 Rmk (3) following Prop. 7 new End of§2.2
= (N*)~! | Table following Prop. 9 Rmk (2) following Prop. 12

Corollary 15;§5.1.1 85.1.3
X1320 Table following Prop. 10 Rmk following Prop. 27
Table following Prop. 22 Rmk (2) following Prop. 29

X444 Rmk (1) following Prop. 31 Rmk (2) following Prop. 30
X1618 Table in§8.2 Prop. 37, 39

Reflection tri

angles References

0]
H
N
K

61

Rmk (1) following Prop. 12; Rmk following Prop. 27

81, Prop. 5

Rmk (4) following Prop. 23

Cevian triangles References

G (medial)
I (incentral)
H (orthic)

§7.1
Rmk (1) following Prop. %9

Prop. 6§5.1.1,§7.2; Rmk (5) following Prop. 23

Anticevian tr

iangles References

I (excentral)

K (tangential)

Figure 11§5.1.3

Prop. 1(ag5.1.2; Rmk (4) following Prop. 23

N* §5.1.1

Lines References

Euler line Figure 4; Prop. 17, 23, 24, 33; Rmk (2) followingpr 29
(0]] Prop. 39

Circles References

Circumcircle Prop. 1(d); Thm. 3; Prop. 17, 33, 39
Incircle Rmk (2) following Prop. 29
Nine-point circle Rmk 2 Prop. 36.3; Prop. 23
Apollonian circles Prop. 1(b)

Brocard circle £6.2

Pedal circle ofd §6.3

pla) p®) ple)
Circles containingd(®), B®, ¢(©)

passim

Prop. 2; Rmk following Prop. 10
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Conics References

Steiner circum-ellipse §6.4

Jerabek hyperbola Prop. 23, 24, 33
bicevian conicg' (G, Q) Prop. 22

bicevian conict (X115, Xios) Prop. 17

Jerabek hyperbola of intouch triangle Prop. 39

circumconic with centeP Prop. 22

Inscribed parabola with focus Rmk (2) following Prop. 29
rectangular circum-hyperbola through Rmk following Prop. 10; Rmk following Prop. 32
Inscribed conic with a given focuB Prop. 29

Cubics References

Neuberg cubic K001 Prop. 7, 8,9, 16, 26, 27

Macay cubic K003 Rmk (3) following Prop. 29
Napoleon cubic KO05 Prop. 9, 27

Orthocubic KOO6 Prop. 26

pK(X19897 X265) = K060 Prop. 7,8

pK(Xgoog, H) = K339 Prop. 25

PK (X186, Xs71) Prop. 25

Reflection conjugate of Euler line §8.6

Quartics References

Isogonal conjugate of nine-point circle Prop. 17
Isogonal conjugate of Brocard circle §6.4

Constructions References

H/P Prop. 6

ro(P) Rmk (3) following Thm. 3; Thm. 4; Prop. 20
r1(P) Prop. 10, Prop. 11
ra2(P) Prop. 12

r3(P) Prop. 22

ra(P) Prop. 22

r5(P) Prop. 30

re(P) §8.2

r7(P) Prop. 31

rs(P) Prop. 31

ro(P) Prop. 32
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