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On the Inradius of a Tangential Quadrilateral

Martin Josefsson

Abstract. We give a survey of known formulas for the inradius r of a tangential
quadrilateral, and derive the possibly new formula

r = 2

√
(M − uvx)(M − vxy)(M − xyu)(M − yuv)

uvxy(uv + xy)(ux + vy)(uy + vx)

where u, v, x and y are the distances from the incenter to the vertices, and
M = 1

2
(uvx + vxy + xyu + yuv).

1. Introduction

A tangential quadrilateral 1 is a convex quadrilateral with an incircle, that is, a
circle which is tangent to all four sides. Not all quadrilaterals are tangential. The
most useful characterization is that its two pairs of opposite sides have equal sums,
a + c = b + d, where a, b, c and d are the sides in that order [1, pp. 64–67]. 2
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Figure 1. Klamkin’s problem

It is well known that the inradius r of the incircle is given by

r =
K

s

where K is the area of the quadrilateral and s is the semiperimeter3. The area of a
tangential quadrilateral ABCD with sides a, b, c and d is according to P. Yiu [10]

Publication Date: March 22, 2010. Communicating Editor: Paul Yiu.
1Other names for these quadrilaterals are circumscriptible quadrilateral [10], circumscribable

quadrilateral [9] and circumscribed quadrilateral [4].
2There exists a lot of other interesting characterizations, see [9] and [7].
3This formula holds for all polygons with an incircle, where K in the area of the polygon.
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given by4

K =
√

abcd sin
A + C

2
.

From the formulas for the radius and area we conclude that the inradius of a tan-
gential quadrilateral is not determined by the sides alone; there must be at least one
angle given, then the opposite angle can be calculated by trigonometry.

Another formula for the inradius is

r =

√
efg + fgh + ghe + hef

e + f + g + h

where e, f , g and h are the distances from the four vertices to the points where
the incircle is tangent to the sides (see Figure 1). This is interesting, since here the
radius is only a function of four distances and no angles! The problem of deriving
this formula was a quickie by M. S. Klamkin, with a solution given in [5].
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Figure 2. Minkus’ 5 circles

If there are four circles with radii r1, r2, r3 and r4 inscribed in a tangential
quadrilateral in such a way, that each of them is tangent to two of the sides and the
incircle (see Figure 2), then the radius r of the incircle is a root of the quadratic
equation

r2 − (
√

r1r2 +
√

r1r3 +
√

r1r4 +
√

r2r3 +
√

r2r4 +
√

r3r4) r +
√

r1r2r3r4 = 0

according to J. Minkus in [8, editorial comment].5

In [2, p.83] there are other formulas for the inradius, whose derivation was only
a part of the solution of a contest problem from China. If the incircle in a tangential
quadrilateral ABCD is tangent to the sides at points W , X , Y and Z, and if E,

4A long synthetic proof can be found in [4]. Another way of deriving the formula is to use the

formula K =
√

(s − a)(s − b)(s − c)(s − d) − abcd cos2 A+C
2

for the area of a general quadri-

lateral, derived in [10, pp.146–147], and the characterization a + c = b + d.
5The corresponding problem for the triangle is an old Sangaku problem, solved in [8], [3, pp. 30,

107–108.].
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F , G and H are the midpoints of ZW , WX , XY and Y Z respectively, then the
inradius is given by the formulas

r =
√

AI · IE =
√

BI · IF =
√

CI · IG =
√

DI · IH

where I is the incenter (see Figure 3). The derivation is easy. Triangles IWA and
IEW are similar, so r

AI = IE
r which gives the first formula and the others follow

by symmetry.

A B

C

D

W

X

Y

Z

I

E
F

G
H

Figure 3. The problem from China

The main purpose of this paper is to derive yet another (perhaps new) formula
for the inradius of a tangential quadrilateral. This formula is also a function of only
four distances, which are from the incenter I to the four vertices A, B, C and D
(see Figure 4).
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Figure 4. The main problem

Theorem 1. If u, v, x and y are the distances from the incenter to the vertices of a
tangential quadrilateral, then the inradius is given by the formula

r = 2

√
(M − uvx)(M − vxy)(M − xyu)(M − yuv)

uvxy(uv + xy)(ux + vy)(uy + vx)
(1)
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where

M =
uvx + vxy + xyu + yuv

2
.

Remark. It is noteworthy that formula (1) is somewhat similar to Parameshvaras’
formula for the circumradius R of a cyclic quadrilateral, 6

R =
1
4

√
(ab + cd)(ac + bd)(ad + bc)
(s − a)(s − b)(s − c)(s − d)

where s is the semiperimeter, which is derived in [6, p.17].

2. Preliminary results about triangles

The proof of formula (1) uses two equations that holds for all triangles. These
are two cubic equations, and one of them is a sort of correspondence to formula
(1). The fact is, that while it is possible to give r as a function of the distances
AI , BI , CI and DI in a tangential quadrilateral, the same problem of giving r
as a function of AI , BI and CI in a triangle ABC is not so easy to solve, since
it gives a cubic equation. The second cubic equation is found when solving the
problem, in a triangle, of finding an exradius as a function of the distances from
the corresponding excenter to the vertices.

Lemma 2. If x, y and z are the distances from the incenter to the vertices of a
triangle, then the inradius r is a root of the cubic equation

2xyzr3 + (x2y2 + y2z2 + z2x2)r2 − x2y2z2 = 0. (2)
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Figure 5. The incircle

6A quadrilateral with a circumcircle.
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Proof. If α, β and γ are the angles between these distances and the inradius (see
Figure 5), we have α + β + γ = π, so cos (α + β) = cos (π − γ) and it follows
that cos α cos β− sin α sin β = − cos γ. Using the formulas cos α = r

x , cos β = r
y

and sin2 α + cos2 α = 1, we get

r

x
· r

y
−

√
1 − r2

x2

√
1 − r2

y2
= −r

z

or
r2

xy
+

r

z
=

√
(x2 − r2)(y2 − r2)

xy
.

Multiplying both sides with xyz, reducing common factors and squaring, we get

(zr2 + xyr)2 = z2(x2 − r2)(y2 − r2)

which after expansion and simplification reduces to (2). �

Lemma 3. If u, v and z are the distances from an excenter to the vertices of a
triangle, then the corresponding exradius rc is a root of the cubic equation

2uvzr3
c − (u2v2 + v2z2 + z2u2)r2

c + u2v2z2 = 0. (3)
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Figure 6. Excircle to triangle ABC and incircle to ABDE

Proof. Define angles α, β and γ to be between u, v, z and the sides of the triangle
ABC or their extensions (see Figure 6). Then 2α + A = π, 2β + B = π and
2γ = C. From the sum of angles in a triangle, A + B + C = π, this simplifies to
α+β = π

2 +γ. Hence cos (α + β) = cos (π
2 + γ) and it follows that cos α cos β−



32 M. Josefsson

sin α sin β = − sin γ. For the exradius rc, we have sin α = rc
u , sin β = rc

v ,
sin γ = rc

z , and so √
1 − r2

c

u2

√
1 − r2

c

v2
− rc

u
· rc

v
= −rc

z
.

This can, in the same way as in the proof of Lemma 2, be rewritten as

z2(u2 − r2
c )(v

2 − r2
c ) = (zr2

c − uvrc)2

which after expansion and simplification reduces to (3). �

3. Proof of the theorem

Given a tangential quadrilateral ABDE where the distances from the incenter
to the vertices are u, v, x and y, we see that if we extend the two sides DB and EA
to meet at C, then the incircle in ABDE is both an incircle in triangle CDE and
an excircle to triangle ABC (see Figure 6). The incircle and the excircle therefore
have the same radius r, and from (2) and (3) we get that

2xyzr3 + (x2y2 + y2z2 + z2x2)r2 − x2y2z2 = 0, (4)

2uvzr3 − (u2v2 + v2z2 + z2u2)r2 + u2v2z2 = 0. (5)

We shall use these two equations to eliminate the common variable z. To do so,
equation (4) is multiplied by uv and equation (5) by xy, giving

2uvxyzr3 + uv(x2y2 + y2z2 + z2x2)r2 − uvx2y2z2 = 0,

2uvxyzr3 − xy(u2v2 + v2z2 + z2u2)r2 + xyu2v2z2 = 0.

Subtracting the second of these from the first gives(
uv(x2y2 + y2z2 + z2x2) + xy(u2v2 + v2z2 + z2u2)

)
r2−uvx2y2z2−xyu2v2z2 = 0

from which it follows

uvxyr2(xy+uv)+z2
(
(uvy2 + uvx2 + xyv2 + xyu2)r2 − uvxy(xy + uv)

)
= 0.

Solving for z2,

z2 =
uvxy(uv + xy)r2

uvxy(uv + xy) − r2(uvy2 + uvx2 + xyv2 + xyu2)
. (6)

Now we multiply (4) by u2v2 and (5) by x2y2, which gives

2u2v2xyzr3 + u2v2(x2y2 + y2z2 + z2x2)r2 − u2v2x2y2z2 = 0,

2x2y2uvzr3 − x2y2(u2v2 + v2z2 + z2u2)r2 + u2v2x2y2z2 = 0.

Adding these we get

2uvxyz(uv + xy)r3 + (u2v2y2 + u2v2x2 − x2y2v2 − x2y2u2)z2r2 = 0

and since zr2 �= 0 this reduces to

2uvxy(uv + xy)r + (u2v2y2 + u2v2x2 − x2y2v2 − x2y2u2)z = 0.
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Solving for z, we get

z = − 2uvxy(uv + xy)r
u2v2y2 + u2v2x2 − x2y2v2 − x2y2u2

.

Squaring and substituting z2 from (6), we get the equality

uvxy(uv + xy)r2

uvxy(uv + xy) − r2(uvy2 + uvx2 + xyv2 + xyu2)

=
4 (uvxy(uv + xy))2 r2

(u2v2y2 + u2v2x2 − x2y2v2 − x2y2u2)2
,

which, since uvxy(uv + xy)r2 �= 0, rewrites as

4uvxy(uv + xy) (ux(vx + uy) + vy(uy + vx)) r2

= (2uvxy(uv + xy))2 − (u2v2y2 + u2v2x2 − x2y2v2 − x2y2u2)2.

What is left is to factor this equation. Using the basic algebraic identities a2−b2 =
(a + b)(a − b), a2 + 2ab + b2 = (a + b)2 and a2 − 2ab + b2 = (a − b)2 we get

4uvxy(uv + xy)(uy + vx)(ux + vy)r2

=
(
2uvxy(uv + xy) + (uvy)2 + (uvx)2 − (xyv)2 − (xyu)2

)
· (2uvxy(uv + xy) − (uvy)2 − (uvx)2 + (xyv)2 + (xyu)2

)
=

(
(uvy + uvx)2 − (xyv − xyu)2

) (
(xyv + xyu)2 − (uvy − uvx)2

)
=((uvy + uvx + xyv − xyu)(uvy + uvx − xyv + xyu))

· ((xyv + xyu + uvy − uvx)(xyv + xyu − uvy + uvx)) . (7)

Now using M = 1
2(uvx + vxy + xyu + yuv) we get

uvy + uvx + xyv − xyu = (uvx + vxy + xyu + yuv) − 2xyu = 2(M − xyu)

and in the same way

uvy + uvx − xyv + xyu = 2(M − vxy),

xyv + xyu + uvy − uvx = 2(M − uvx),

xyv + xyu − uvy + uvx = 2(M − uvy).

Thus, (7) is equivalent to

4uvxy(uv + xy)(uy + vx)(ux + vy)r2

=2(M − uxy) · 2(M − vxy) · 2(M − uvx) · 2(M − uvy).

Hence

r2 =
4(M − uxy)(M − vxy)(M − uvx)(M − uvy)

uvxy(uv + xy)(uy + vx)(ux + vy)
.

Extracting the square root of both sides finishes the derivation of formula (1).
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