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Calculations Concerning the Tangent Lengths and
Tangency Chords of a Tangential Quadrilateral

Martin Josefsson

Abstract. We derive formulas for the length of the tangency chords and some
other quantities in a tangential quadrilateral in terms of the tangent lengths.
Three formulas for the area of a bicentric quadrilateral are also proved.

1. Introduction

A tangential quadrilateral is a quadrilateral with an incircle, i.e., a circle tangent
to its four sides. We will call the distances from the four vertices to the points of
tangency the tangent lengths, and denote these by e, f , g and h, as indicated in
Figure 1.
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Figure 1. The tangent lengths

What is so interesting about the tangent lengths is that they alone can be used to
calculate for instance the inradius r, the area of the quadrilateral K and the length
of the diagonals p and q. The formula for r is

r =

√
efg + fgh + ghe + hef

e + f + g + h
(1)

and its derivation can be found in [5, p.26], [6, pp.187-188] and [13, 15]. Using the
well known formula K = rs = r(e + f + g + h), where s is the semiperimeter,
we get the area of the tangential quadrilateral [6, p.188]

K =
√

(e + f + g + h)(efg + fgh + ghe + hef). (2)
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Hajja [13] has also derived formulas for the length of the diagonals p = AC and
q = BD. They are given by

p =
√

e + g

f + h
((e + g)(f + h) + 4fh),

q =

√
f + h

e + g
((e + g)(f + h) + 4eg). (3)

In this paper we prove some formulas that express a few other quantities in a
tangential quadrilateral in terms of the tangent lengths.

2. The length of the tangency chords

If the incircle in a tangential quadrilateral ABCD is tangent to the sides AB,
BC , CD and DA at W , X, Y and Z respectively, then the segments WY and
XZ are called the tangency chords according to Dörrie [10, pp.188-189]. One
interesting property of the tangency chords is that their intersection is also the
intersection of the diagonals AC and BD (see [12, 20] and [24, pp.156-157]; the
paper by Tan contains nine different proofs).
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Figure 2. The tangency chord k = WY

Theorem 1. The lengths of the tangency chords WY and XZ in a tangential
quadrilateral are respectively

k =
2(efg + fgh + ghe + hef)√
(e + f)(g + h)(e + g)(f + h)

,

l =
2(efg + fgh + ghe + hef)√
(e + h)(f + g)(e + g)(f + h)

.

Proof. If I is the incenter and angles β and γ are defined as in Figure 2, by the law
of cosines in triangle WY I we get

k2 = 2r2 − 2r2 cos (2β + 2γ) = 2r2(1 − cos (2β + 2γ)).
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Hence, using the addition formula

k2

2r2
= 1 − cos 2β cos 2γ + sin 2β sin 2γ.

From the double angle formulas, we have

cos 2β =
1 − tan2 β

1 + tan2 β
=

r2 − r2 tan2 β

r2 + r2 tan2 β
=

r2 − f2

r2 + f2
(4)

and

sin 2β =
2 tan β

1 + tan2 β
=

2rf
r2 + f2

.

Similar formulas holds for γ, with g instead of f . Thus, we have

k2

2r2
= 1 − r2 − f2

r2 + f2
· r2 − g2

r2 + g2
+

2rf
r2 + f2

· 2rg
r2 + g2

= 2r2 · (f + g)2

(r2 + f2)(r2 + g2)
so

k2 = (2r2)2 · (f + g)2

(r2 + f2)(r2 + g2)
.

Now we factor r2 + f2, where r is given by (1). We get

r2 + f2 =
efg + fgh + ghe + hef + f2(e + f + g + h)

e + f + g + h

=
e(fg + fh + gh + f2) + f(gh + f2 + fg + fh)

e + f + g + h

=
(e + f)(g(f + h) + f(h + f))

e + f + g + h

=
(e + f)(f + g)(f + h)

e + f + g + h
.

In the same way

r2 + g2 =
(e + g)(f + g)(g + h)

e + f + g + h
(5)

so

k2 = (2r2)2 · (f + g)2(e + f + g + h)2

(e + f)(f + g)(f + h)(e + g)(f + g)(g + h)
.

After simplification

k = 2r2 · e + f + g + h√
(e + f)(f + h)(h + g)(g + e)

and using (1) we finally get

k =
2(efg + fgh + ghe + hef)√
(e + f)(f + h)(h + g)(g + e)

.

The formula for l can either be derived the same way, or we can use the symme-
try in the tangential quadrilateral and need only to make the change f ↔ h in the
formula for k. �
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From Theorem 1 we get the following result, which was Problem 1298 in the
MATHEMATICS MAGAZINE [8].

Corollary 2. In a tangential quadrilateral with sides a, b, c and d, the quotient of
the tangency chords satisfy (

k

l

)2

=
bd

ac
.

Proof. Taking the quotient of k and l from Theorem 1, after simplification we get

k

l
=

√
(e + h)(f + g)
(e + f)(h + g)

=

√
db

ac
,

and the result follows. �
Corollary 3. The tangency chords in a tangential quadrilateral are of equal length
if and only if it is a kite.
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Figure 3. The tangency chords in a kite

Proof. (⇒) If the quadrilateral is a kite it directly follows that the tangency chords
are of equal length because of the mirrow symmetry in the longest diagonal (see
Figure 3).

(⇐) Conversely, if the tangency chords are of equal length in a tangential quadri-
lateral, from Corollary 2 we get ac = bd. In all tangential quadrilaterals the con-
secutive sides a, b, c and d satisfy a+c = b+d (= e+f +g+h; see also [1, p.135],
[2, pp.65-67] and [23]). Squaring, this implies a2 + 2ac + c2 = b2 + 2bd + d2

and using ac = bd it follows that a2 + c2 = b2 + d2. This is the characteriza-
tion for orthodiagonal quadrilaterals1 [24, p.158]. The only tangential quadrilateral
with perpendicular diagonals is the kite. We give an algebraic proof of this claim.
Rewriting two of the equations above, we have

a − b = d − c, (6)

a2 − b2 = d2 − c2 (7)

1A quadrilateral with perpendicular diagonals.
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Factorizing the second, we get

(a − b)(a + b) = (d − c)(d + c). (8)

Case 1. If a = b we also have d = c using (6).
Case 2. If a �= b, then we get a + b = d + c after division in (8) by a − b and

d − c on respective sides (which by (6) are equal). Now adding a + b = d + c and
a − b = d − c, we get 2a = 2d. Hence a = d and also b = c using (6).

In both cases two pairs of adjacent sides are equal, so the quadrilateral is a
kite. �

3. The angle between the tangency chords

In the proof of the next theorem we will use the following simple lemma.

y

� T

�

W

�
Y

w

v

Figure 4. Alternate angles w and y

Lemma 4. The alternate angles between a chord and two tangents to a circle are
supplementary angles, i.e., w + y = π in Figure 4.

Proof. Extend the tangents at W and Y to intersect at T , see Figure 4. Triangle
TWY is isosceles according to the two tangent theorem, so the angles at the base
are equal, w = v. Also, v + y = π since they are angles on a straight line. Hence
w + y = π. �

Now we derive a formula for the angle between the two tangency chords.

Theorem 5. If e, f , g and h are the tangent lengths in a tangential quadrilateral,
the angle ϕ between the tangency chords is given by

sin ϕ =

√
(e + f + g + h)(efg + fgh + ghe + hef)

(e + f)(f + g)(g + h)(h + e)
.

Proof. We start by relating the angle ϕ to two opposite angles in the tangential
quadrilateral (see Figure 5).

From the sum of angles in quadrilaterals BWPX and DY PZ we have w+x+
ϕ + B = 2π and y + z + ϕ + D = 2π. Adding these,

w + x + y + z + 2ϕ + B + D = 4π. (9)
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Figure 5. The angle ϕ between the tangency chords

Using the lemma, w + y = π and x + z = π. Inserting these into (9), we get

2π + 2ϕ + B + D = 4π ⇔ B + D = 2π − 2ϕ. (10)

For the area K of a tangential quadrilateral we have the formula

K =
√

abcd sin
B + D

2
(11)

where a, b, c and d are the sides of the tangential quadrilateral [9, p.28]. Inserting
(10), we get

K =
√

abcd sin (π − ϕ) =
√

abcd sinϕ,

hence

sin ϕ =
K√
abcd

=

√
(e + f + g + h)(efg + fgh + ghe + hef)√

(e + f)(f + g)(g + h)(h + e)

where we used (2). �

From equation (10) we also get the following well known characterization for
a quadrilateral to be bicentric, i.e., both tangential and cyclic. We will however
formulate it as a characterization for the tangency chords to be perpendicular. Our
proof is similar to that given in [10, pp.188-189] (if we include the derivation of
(10) from the last theorem). Other proofs are given in [4, 11].

Corollary 6. The tangency chords in a tangential quadrilateral are perpendicular
if and only if it is a bicentric quadrilateral.

Proof. In any tangential quadrilateral, B + D = 2π − 2ϕ by (10). The tangency
chords are perpendicular if and only if

ϕ =
π

2
⇔ B + D = π

which is a well known characterization for a quadrilateral to be cyclic. Hence this
is a characterization for the quadrilateral to be bicentric. �
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4. The area of the contact quadrilateral

If the incircle in a tangential quadrilateral ABCD is tangent to the sides AB,
BC , CD and DA at W , X, Y and Z respectively, then in [11] Yetti2 calls the
quadrilateral WXY Z the contact quadrilateral (see Figure 6). Here we shall de-
rive a formula for its area in terms of the tangent lengths.
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Figure 6. The contact quadrilateral WXY Z

Theorem 7. If e, f , g and h are the tangent lengths in a tangential quadrilateral,
then the contact quadrilateral has area

Kc =
2
√

(e + f + g + h)(efg + fgh + ghe + hef)5

(e + f)(e + g)(e + h)(f + g)(f + h)(g + h)
.

Proof. The area of any convex quadrilateral is

K = 1
2pq sin θ (12)

where p and q are the length of the diagonals and θ is the angle between them (see
[21, p.213] and [22]). Hence for the area of the contact quadrilateral we have

Kc = 1
2kl sin ϕ

where k and l are the length of the tangency chords and ϕ is the angle between
them. Using Theorems 1 and 5, the formula for Kc follows at once after simplifi-
cation. �

5. The angles of the tangential quadrilateral

The next theorem gives formulas for the sines of the half angles of a tangential
quadrilateral in terms of the tangent lengths.

2Yetti is the username of an American physicist at the website Art of Problem Solving [3].
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Theorem 8. If e, f , g and h are the tangent lengths in a tangential quadrilateral
ABCD, then its angles satisfy

sin
A

2
=

√
efg + fgh + ghe + hef

(e + f)(e + g)(e + h)
,

sin
B

2
=

√
efg + fgh + ghe + hef

(f + e)(f + g)(f + h)
,

sin
C

2
=

√
efg + fgh + ghe + hef

(g + e)(g + f)(g + h)
,

sin
D

2
=

√
efg + fgh + ghe + hef

(h + e)(h + f)(h + g)
.

Proof. If the incircle has center I and is tangent to sides AB and AD at W and Z
(see Figure 7), then by the law of cosines in triangle WZI

WZ2 = 2r2(1 − cos 2α) =
4e2r2

r2 + e2

where we used

cos 2α =
r2 − e2

r2 + e2

which we get from (4) when making the change f ↔ e.
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Figure 7. Half the angle of A

Now using (1) and

r2 + e2 =
(e + f)(e + g)(e + h)

e + f + g + h

which by symmetry follows from (5) when making the change g ↔ e, we have

WZ2 = 4e2 · efg + fgh + ghe + hef

e + f + g + h
· e + f + g + h

(e + f)(e + g)(e + h)
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hence

WZ = 2e

√
efg + fgh + ghe + hef

(e + f)(e + g)(e + h)
.

Finally, from the definition of sine, we get (see Figure 7)

sin
A

2
=

1
2WZ

e
=

√
efg + fgh + ghe + hef

(e + f)(e + g)(e + h)
.

The other formulas can be derived in the same way, or we get them at once using
symmetry. �

6. The area of a bicentric quadrilateral

The formula for the area of a bicentric quadrilateral (see Figure 8) is almost
always derived in one of two ways.3 Either by inserting B + D = π into formula
(11) or by using a + c = b + d in Brahmagupta’s formula4

K =
√

(s − a)(s − b)(s − c)(s − d)

for the area of a cyclic quadrilateral, where s is the semiperimeter. A third deriva-
tion was given by Stapp as a solution to a problem5 by Rosenbaum in an old number
of the MONTHLY [18]. Another possibility is to use the formula6

K = 1
2

√
(pq)2 − (ac − bd)2

for the area of a tangential quadrilateral [9, p.29], inserting Ptolemy’s theorem
pq = ac + bd (derived in [1, pp.128-129], [9, p.25] and [24, pp.148-150]) and
factorize the radicand.

Here we shall give a fifth proof, using the tangent lengths in a way different from
what Stapp did in [18].

Theorem 9. A bicentric quadrilateral with sides a, b, c and d has area

K =
√

abcd.

Proof. From formula (2) we get

K2 = (efg + fgh + ghe + hef)(e + f + g + h)
= ef(g + h)(e + f) + ef(g + h)2 + gh(e + f)2 + gh(e + f)(g + h)

= (e + f)(g + h)(ef + gh + eg + hf − eg − hf) + ef(g + h)2 + gh(e + f)2

= (e + f)(g + h)(f + g)(e + h) − (eg − fh)2

where we used the factorizations ef + gh + eg + hf = (f + g)(e + h) and

(e + f)(g + h)(−eg − hf) + ef(g + h)2 + gh(e + f)2 = −(eg − fh)2,

3Or intended to be derived so; in many books [1, 7, 16, 24] this is an exercise rather than a
theorem.

4For a derivation, see [7, pp.57-58] or [9, p.24].
5The problem was to prove our Theorem 9. Stapp used the tangent lengths in his calculation.
6This formula can be derived independently from (11) and Brahmagupta’s formula.
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Figure 8. A bicentric quadrilateral ABCD

which are easy to check. Hence

K2 = acbd − (eg − fh)2

and we have K =
√

abcd if and only if eg = fh, which according to Hajja7 [13]
is a characterization for a tangential quadrilateral to be cyclic, i.e., bicentric. �

In a bicentric quadrilateral there is a simpler formula for the area in terms of the
tangent lengths than (2), according to the next theorem.

Theorem 10. A bicentric quadrilateral with tangent lengths e, f , g and h has area

K = 4
√

efgh(e + f + g + h).

Proof. The quadrilateral has an incircle, so (see Figure 8)

r = e tan
A

2
= f tan

B

2
= g tan

C

2
= h tan

D

2
,

hence

r4 = efgh tan
A

2
tan

B

2
tan

C

2
tan

D

2
. (13)

It also has a circumcircle, so A + C = π. Hence A
2 = π

2 − C
2 and it follows that

tan
A

2
= cot

C

2
⇔ tan

A

2
tan

C

2
= 1.

In the same way

tan
B

2
tan

D

2
= 1.

7Note that Hajja uses a, b, c and d for the tangent lengths.
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Thus, in a bicentric quadrilateral we get8

r4 = efgh.

Finally, the area9 is given by

K = rs = 4
√

efgh(e + f + g + h)

where s is the semiperimeter. �

We conclude with another interesting and possibly new formula for the area of
a bicentric quadrilateral in terms of the lengths of the tangency chords and the
diagonals.
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Figure 9. The tangency chords and diagonals

Theorem 11. A bicentric quadrilateral with tangency chords k and l, and diago-
nals p and q has area

K =
klpq

k2 + l2
.

Proof. Using (12), Theorem 9 and Ptolemy’s theorem, we have

K = 1
2pq sin θ ⇔

√
abcd = 1

2 (ac + bd) sin θ.

Hence
2

sin θ
=

ac + bd√
abcd

=
√

ac

bd
+

√
bd

ac
=

l

k
+

k

l
=

k2 + l2

kl

8This derivation was done by Yetti in [19], where there are also some proofs of formula (1).
9This formula also gives the area of a tangential trapezoid. Since it has two adjacent supple-

mentary angles, tan A
2

tan D
2

= tan B
2

tan C
2

= 1 or tan A
2

tan B
2

= tan C
2

tan D
2

= 1; thus the
formula for r is still valid.
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where we used Corollary 2. Then we get the area of the bicentric quadrilateral
using (12) again

K =
sin θ

2
pq =

klpq

k2 + l2

completing the proof. �
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