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Characterizations of Bicentric Quadrilaterals

Martin Josefsson

Abstract. We will prove two conditions for a tangential quadrilateral to be
cyclic. According to one of these, a tangential quadrilateral is cyclic if and only
if its Newton line is perpendicular to the Newton line of its contact quadrilateral.

1. Introduction

A bicentric quadrilateral is a convex quadrilateral with both an incircle and a
circumcircle. One characterization of these quadrilaterals is obtained by combining
the most useful characterizations of tangential and cyclic quadrilaterals, that the
consecutive sides a, b, c and d, and angles A, B, C and D satisfy

a + c = b + d,

A + C = B + D = π.

We review a few other characterizations of bicentric quadrilaterals before proving
two possibly new ones.
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Figure 1. The tangency chords and diagonals

If the incircle in a tangential quadrilateral ABCD is tangent to the sides AB,
BC , CD and DA at W , X, Y and Z respectively, then the segments WY and XZ
are called the tangency chords in [8, pp.188-189]. See Figure 1. In [4, 9, 13] it is
proved that a tangential quadrilateral is cyclic if and only if the tangency chords
are perpendicular.

Problem 10804 in the MONTHLY [14] states that a tangential quadrilateral is
cyclic if and only if

AW

WB
=

DY

Y C
.
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Using the same notations, Hajja proved in [11] that a tangential quadrilateral is
cyclic if and only if

AC

BD
=

AW + CY

BX + DZ
.

If E, F , G and H are the midpoints of WX, XY , Y Z and ZW respectively
(see Figure 2), then the tangential quadrilateral ABCD is cyclic if and only if
the quadrilateral EFGH is a rectangle. This characterization was Problem 6 on
China Western Mathematical Olympiad 2003 [5, pp.182-183].

�

A

�
C

�
D

�

B
�

W

�
Y

� X

�Z

�G
�F

�

E

�

H

Figure 2. ABCD is cyclic iff EFGH is a rectangle

2. Two characterizations of right triangles

To prove one of the characterizations of bicentric quadrilaterals we will need the
following characterization of right triangles. The direct part of the theorem is an
easy exercise 1, but we have found no reference of the converse result.

Theorem 1. In a non-isosceles triangle the median and altitude to one of the sides
divide the opposite angle into three parts. This angle is a right one if and only if
the angle between the median and the longer of the sides at the considered vertex
is equal to the angle between the altitude and the shorter side at that vertex.

Proof. We use notations as in Figure 3. If C = π
2 , we shall prove that α = β.

Triangle AMC is isosceles 2 with AM = CM , so A = α. Triangles ACB and
CHB are similar, so A = β. Hence α = β.

Conversely, if α = β, we shall prove that C = π
2 . By the exterior angle theorem,

angle CMB = A + α, so in triangle MCH we have

A + α + γ =
π

2
. (1)

1A similar problem also including the angle bisector can be found in [1, pp.46-49] and [12, p.32].
2The midpoint of the hypotenuse is the circumcenter.
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Figure 3. Median and altitude in a triangle

Let x = AM = BM and m = CM . Using the law of sines in triangles CAM
and CMB,

sin α

x
=

sin A

m
⇔ x

m
=

sin α

sin A
and with α = β,

sin (α + γ)
x

=
sin B

m
⇒ x

m
=

sin (π
2 − A)

sin (π
2 − α)

=
cos A

cos α

since B + α = π
2 in triangle BCH . Combining the last two equations, we get

sin α

sin A
=

cos A

cos α
⇔ sin 2α = sin 2A.

This equation has the two solutions 2α = 2A and 2α = π − 2A, hence α = A or
α = π

2 − A. The second solution combined with B + α = π
2 gives A = B, which

is impossible since the triangle is not isosceles by the assumption in the theorem.
Thus α = A is the only valid solution. Hence

C = α + γ + β = A + γ + α =
π

2
according to (1), completing the proof. �
Corollary 2. Let CM,CD and CH be a median, an angle bisector and an altitude
respectively in triangle ABC . The angle C is a right angle if and only if CD
bisects angle HCM .
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Figure 4. Median, angle bisector and altitude in a triangle
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Proof. Since CD is an angle bisector in triangle ABC , we have (see Figure 4)

α + ∠MCD = ∠HCD + β. (2)

Using Theorem 1 and (2), we get

C =
π

2
⇔ α = β ⇔ ∠MCD = ∠HCD.

�

3. Corollaries of Pascal’s theorem and Brocard’s theorem

Pascal’s theorem states that if a hexagon is inscribed in a circle and the three
pairs of opposite sides are extended until they meet, then the three points of inter-
section are collinear. A proof is given in [6, pp.74-75]. Pascal’s theorem is also
true in degenerate cases.

In [7, p.15], the following theorem is called Brocard’s theorem: if the extensions
of opposite sides in a cyclic quadrilateral intersect at J and K , and the diagonals
intersect at P , then the circumcenter O of the quadrilateral is also the orthocenter
in triangle JKP (see Figure 5). An elementary proof of this theorem can be found
at [16].
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Figure 5. Brocard’s theorem

To prove our second characterization of bicentric quadrilaterals we will need
two corollaries of these theorems that are quite well known. The first is a special
case of Pascal’s theorem in a quadrilateral. If the incircle in a tangential quadri-
lateral ABCD is tangent to the sides AB, BC , CD and DA at W , X, Y and Z
respectively, then in [9] Yetti 3 calls the quadrilateral WXY Z the contact quadri-
lateral.

3Yetti is the username of an American physicist at the website Art of Problem Solving [3].
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Figure 6. Pascal’s theorem in a tangential quadrilateral

Corollary 3. If the extensions of opposite sides in a tangential quadrilateral inter-
sect at J and K, and the extensions of opposite sides in its contact quadrilateral
intersect at L and M , then the four points J , L, K and M are collinear.

Proof. Consider the degenerate cyclic hexagon WWXY Y Z , where W and Y are
double vertices. The extensions of the sides at these vertices are the tangents at W
and Y , see Figure 6. According to Pascal’s theorem, the points J , L and M are
collinear.

Next consider the degenerate cyclic hexagon WXXY ZZ . In the same way the
points M , K and L are collinear. This proves that the four points J , L, K and M
are collinear, since M and L are on both lines, so these lines coincide. �
Corollary 4. If the extensions of opposite sides in a tangential quadrilateral inter-
sect at J and K, and the diagonals intersect at P , then JK is perpendicular to the
extension of IP where I is the incenter.

Proof. The contact quadrilateral WXY Z is a cyclic quadrilateral with circumcen-
ter I , see Figure 7. It is well known that the point of intersection of WY and
XZ is also the point of intersection of the diagonals in the tangential quadrilat-
eral ABCD, see [10, 15, 17]. If the extensions of opposite sides in the contact
quadrilateral WXY Z intersect at L and M , then by Brocard’s theorem ML⊥IP .
According to Corollary 3, ML and JK are the same line. Hence JK⊥IP . �

4. Two characterizations of bicentric quadrilaterals

Many problems on quadrilaterals in text books and on problem solving web sites
are formulated as implications of the form: if the quadrilateral is a special type
(like a bicentric quadrilateral), then you should prove it has some property. How
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Figure 7. Perpendicular lines JK and IP

about the converse statement? Sometimes it is concidered, but far from always.
The two characterizations we will prove here was found when considering if the
converse statement of two such problems are also true. The first is a rather easy
one and it would surprise us if it hasn’t been published before; however we have
been unable to find a reference for it. Besides, it will be used in the proof of the
second characterization.

Theorem 5. Let the extensions of opposite sides in a tangential quadrilateral in-
tersect at J and K. If I is the incenter, then the quadrilateral is also cyclic if and
only if JIK is a right angle.

Proof. We use notations as in Figure 8, where G and H are the midpoints of the
tangency chords WY and XZ respectively and P is the point of intersection of
WY and XZ . In isosceles triangles WJY and XKZ , IJ⊥WY and IK⊥XZ .
Hence opposite angles IGP and IHP in quadrilateral GIHP are right angles, so
by the sum of angles in quadrilateral GIHP ,

∠JIK = ∠GIH = 2π − 2 · π

2
− ∠WPZ.

Hence we have

∠JIK =
π

2
⇔ ∠WPZ =

π

2
⇔ WY ⊥XZ

and according to [4, 9, 13] the tangency chords in a tangential quadrilateral are
perpendicular if and only if it is cyclic 4. �

Now we are ready for the main theorem in this paper, our second characteri-
zation of bicentric quadrilaterals. The direct part of the theorem was a problem

4This was also mentioned in the introduction to this paper.
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Figure 8. ABCD is cyclic iff JIK is a right angle

studied at [2]. The Newton line 5 of a quadrilateral is the line defined by the mid-
points of the two diagonals.

Theorem 6. A tangential quadrilateral is cyclic if and only if its Newton line is
perpendicular to the Newton line of its contact quadrilateral.
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Figure 9. The Newton lines in ABCD and WXY Z

5It is sometimes known as the Newton-Gauss line.
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Proof. We use notations as in Figure 9, where P is the point where both the diag-
onals and the tangency chords intersect (see [10, 15, 17]) and L is the midpoint of
JK. If I is the incenter, then the points E, I , F and L are collinear on the Newton
line, see Newton’s theorem in [7, p.15] (this is proved in two different theorems in
[1, p.42] 6 and [17, p.169]). Let M be the intersection of JK and the extension of
IP . By Corollary 4 IM⊥JK. In isosceles triangles ZKX and WJY , IK⊥ZX
and IJ⊥WY .

Since it has two opposite right angles (∠IHP and ∠IGP ), the quadrilateral
GIHP is cyclic, so ∠HGI = ∠HPI . From the sum of angles in a triangle, we
have

∠ING = π − (∠GIF + ∠HGI) = π − (∠JIL + ∠HPI)
where N is the intersection of EF and GH . Thus

∠ING = π − ∠JIL −
(π

2
− ∠HIP

)
=

π

2
− ∠JIL + ∠KIM.

So far we have only used properties of tangential quadrilaterals, so

∠ING =
π

2
− ∠JIL + ∠KIM

is valid in all tangential quadrilaterals where no pair of opposite sides are parallel7.
Hence we have

EF⊥GH ⇔ ∠ING =
π

2
⇔ ∠JIL = ∠KIM ⇔ ∠JIK =

π

2
where the last equivalence is due to Theorem 1 and the fact that IM⊥JK (Corol-
lary 4). According to Theorem 5, ∠JIK = π

2 if and only if the tangential quadri-
lateral is also cyclic.
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Figure 10. An isosceles tangential trapezoid

It remains to concider the case when at least one pair of opposite sides are par-
allel. Then the tangential quadrilateral is a trapezoid, so8

A + D = B + C ⇔ A − B = C − D.

6That the incenter I lies on the Newton line EF is actually a solved problem in this book.
7Otherwise at least one of the points J and K do not exist.
8We suppose without loss of generality that AB ‖ CD.



Characterizations of bicentric quadrilaterals 173

The trapezoid has a circumcircle if and only if

A + C = B + D ⇔ A − B = D − C.

Hence the quadrilateral is bicentric if and only if

C − D = D − C ⇔ C = D ⇔ A = B,

that is, the quadrilateral is bicentric if and only if it is an isosceles tangential trape-
zoid. In these EF⊥GH (see Figure 10, where EF ‖ AB and GH⊥AB) com-
pleting the proof. �
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