# The Area of a Bicentric Quadrilateral 

Martin Josefsson


#### Abstract

We review and prove a total of ten different formulas for the area of a bicentric quadrilateral. Our main result is that this area is given by $$
K=\left|\frac{m^{2}-n^{2}}{k^{2}-l^{2}}\right| k l
$$ where $m, n$ are the bimedians and $k, l$ the tangency chords.


1. The formula $K=\sqrt{a b c d}$

A bicentric quadrilateral is a convex quadrilateral with both an incircle and a circumcircle, so it is both tangential and cyclic. It is well known that the square root of the product of the sides gives the area of a bicentric quadrilateral. In [12, pp.127-128] we reviewed four derivations of that formula and gave a fifth proof. Here we shall give a sixth proof, which is probably as simple as it can get if we use trigonometry and the two fundamental properties of a bicentric quadrilateral.

Theorem 1. A bicentric quadrilateral with sides $a, b, c, d$ has the area

$$
K=\sqrt{a b c d}
$$

Proof. The diagonal $A C$ divide a convex quadrilateral $A B C D$ into two triangles $A B C$ and $A D C$. Using the law of cosines in these, we have

$$
\begin{equation*}
a^{2}+b^{2}-2 a b \cos B=c^{2}+d^{2}-2 c d \cos D . \tag{1}
\end{equation*}
$$

The quadrilateral has an incircle. By the Pitot theorem $a+c=b+d$ [4, pp.65-67] we get $(a-b)^{2}=(d-c)^{2}$, so

$$
\begin{equation*}
a^{2}-2 a b+b^{2}=d^{2}-2 c d+c^{2} . \tag{2}
\end{equation*}
$$

Subtracting (2) from (1) and dividing by 2 yields

$$
\begin{equation*}
a b(1-\cos B)=c d(1-\cos D) . \tag{3}
\end{equation*}
$$

In a cyclic quadrilateral opposite angles are supplementary, so that $\cos D=-\cos B$. We rewrite (3) as

$$
\begin{equation*}
(a b+c d) \cos B=a b-c d . \tag{4}
\end{equation*}
$$

[^0]The area $K$ of a convex quadrilateral satisfies $2 K=a b \sin B+c d \sin D$. Since $\sin D=\sin B$, this yields

$$
\begin{equation*}
2 K=(a b+c d) \sin B \tag{5}
\end{equation*}
$$

Now using (4), (5) and the identity $\sin ^{2} B+\cos ^{2} B=1$, we have for the area $K$ of a bicentric quadrilateral

$$
(2 K)^{2}=(a b+c d)^{2}\left(1-\cos ^{2} B\right)=(a b+c d)^{2}-(a b-c d)^{2}=4 a b c d
$$

Hence $K=\sqrt{a b c d}$.
Corollary 2. A bicentric quadrilateral with sides $a, b, c, d$ has the area

$$
K=a c \tan \frac{\theta}{2}=b d \cot \frac{\theta}{2}
$$

where $\theta$ is the angle between the diagonals.
Proof. The angle $\theta$ between the diagonals in a bicentric quadrilateral is given by

$$
\tan ^{2} \frac{\theta}{2}=\frac{b d}{a c}
$$

according to [8, p.30]. Hence we get

$$
K^{2}=(a c)(b d)=(a c)^{2} \tan ^{2} \frac{\theta}{2}
$$

and similar for the second formula.
Corollary 3. In a bicentric quadrilateral $A B C D$ with sides $a, b, c, d$ we have

$$
\begin{aligned}
& \tan \frac{A}{2}=\sqrt{\frac{b c}{a d}}=\cot \frac{C}{2}, \\
& \tan \frac{B}{2}=\sqrt{\frac{c d}{a b}}=\cot \frac{D}{2} .
\end{aligned}
$$

Proof. A well known trigonometric formula and (3) yields

$$
\begin{equation*}
\tan \frac{B}{2}=\sqrt{\frac{1-\cos B}{1+\cos B}}=\sqrt{\frac{c d}{a b}} \tag{6}
\end{equation*}
$$

where we also used $\cos D=-\cos B$ in (3). The formula for $D$ follows from $B=\pi-D$. By symmetry in a bicentric quadrilateral, we get the formula for $A$ by the change $b \leftrightarrow d$ in (6). Then we use $A=\pi-C$ to complete the proof.

Therefore, not only the area but also the angles have simple expressions in terms of the sides.

The area of a bicentric quadrilateral also gives a condition when a tangential quadrilateral is cyclic. Even though we did not express it in those terms, we have already proved the following characterization in the proof of Theorem 9 in [12]. Here we give another short proof.

Theorem 4. A tangential quadrilateral with sides $a, b, c, d$ is also cyclic if and only if it has the area $K=\sqrt{a b c d}$.

Proof. The area of a tangential quadrilateral is according to [8, p.28] given by

$$
K=\sqrt{a b c d} \sin \frac{B+D}{2} .
$$

It's also cyclic if and only if $B+D=\pi$; hence a tangential quadrilateral is cyclic if and only if it's area is $K=\sqrt{a b c d}$.

This is not a new characterization of bicentric quadrilaterals. One quite long trigonometric proof of it was given by Joseph Shin in [15] and more or less the same proof of the converse can be found in the solutions to Problem B-6 in the 1970 William Lowell Putnam Mathematical Competition [1, p.69].

In this characterization the formulation of the theorem is important. The tangential and cyclic quadrilaterals cannot change roles in the formulation, nor can the formulation be that it's a bicentric quadrilateral if and only if the area is given by the formula in the theorem. This can be seen with an example. A rectangel is cyclic but not tangential. Its area satisfy the formula $K=\sqrt{a b c d}$ since opposite sides are equal. Thus it's important that it must be a tangential quadrilateral that is also cyclic if and only if the area is $K=\sqrt{a b c d}$, otherwise the conclution would be that a rectangle also has an incircle, which is obviously false.

## 2. Other formulas for the area of a bicentric quadrilateral

In this section we will prove three more formulas for the area of a bicentric quadrilateral, where the area is given in terms of other quantities than the sides. Let us first review a few other formulas and one double inequality for the area that can be found elsewhere.

In [12], Theorem 10, we proved that a bicentric quadrilateral has the area

$$
K=\sqrt[4]{e f g h}(e+f+g+h)
$$

where $e, f, g, h$ are the tangent lengths, that is, the distances from the vertices to the point where the incircle is tangent to the sides.

According to Juan Carlos Salazar [14], a bicentric quadrilateral has the area

$$
K=2 M N \sqrt{E Q \cdot F Q}
$$

where $M, N$ are the midpoints of the diagonals; $E, F$ are the intersection points of the extensions of opposite sides, and $Q$ is the foot of the normal to $E F$ through the incenter $I$ (see Figure 1). This is a remarkable formula since the area is given in terms of only three distances. A short proof is given by "pestich" at [14]. He first proved that a bicentric quadrilateral has the area

$$
K=2 M N \cdot I Q
$$

which is even more extraordinary, since here the area is given in terms of only two distances!


Figure 1. The configuration of Salazar's formula
The angle $E I F$ (see Figure 1) is a right angle in a bicentric quadrilateral, ${ }^{1}$ so we also get that the area of a bicentric quadrilateral is given by

$$
K=\frac{2 M N \cdot E I \cdot F I}{E F}
$$

where we used the well known property that the product of the legs is equal to the product of the hypotenuse and the altitude in a right triangle. The last three formulas are not valid in a square since there we have $M N=0$.

In [2, p.64] Alsina and Nelsen proved that the area of a bicentric quadrilateral satisfy the inequalities

$$
4 r^{2} \leq K \leq 2 R^{2}
$$

where $r, R$ are the radii in the incircle and circumcircle respectively. We have equality on either side if and only if it is a square.

Problem 1 on Quiz 2 at the China Team Selection Test 2003 [5] was to prove that in a tangential quadrilateral $A B C D$ with incenter $I$,

$$
A I \cdot C I+B I \cdot D I=\sqrt{A B \cdot B C \cdot C D \cdot D A}
$$

The right hand side gives the area of a bicentric quadrilateral, so from this we get another formula for this area. It is easier to prove the following theorem than solving the problem from China, ${ }^{2}$ since in a bicentric quadrilateral we can also use that opposite angles are supplementary angles.

[^1]

Figure 2. Partition of a bicentric quadrilateral into kites

Theorem 5. A bicentric quadrilateral $A B C D$ with incenter $I$ has the area

$$
K=A I \cdot C I+B I \cdot D I .
$$

Proof. The quadrilateral has an incircle, so $\tan \frac{A}{2}=\frac{r}{e}$ where $r$ is the inradius (see Figure 2). It also has a circumcircle, so $A+C=B+D=\pi$. Thus $\cot \frac{C}{2}=\tan \frac{A}{2}$ and $\sin \frac{C}{2}=\cos \frac{A}{2}$. A bicentric quadrilateral can be partitioned into four right kites by four inradii, see Figure 2.

Triangle $A I W$ has the area $\frac{e r}{2}=\frac{r^{2}}{2 \tan \frac{A}{2}}$. Thus the bicentric quadrilateral has the area

$$
K=r^{2}\left(\frac{1}{\tan \frac{A}{2}}+\frac{1}{\tan \frac{B}{2}}+\frac{1}{\tan \frac{C}{2}}+\frac{1}{\tan \frac{D}{2}}\right) .
$$

Hence we get

$$
\begin{aligned}
K & =r^{2}\left(\frac{1}{\tan \frac{C}{2}}+\frac{1}{\tan \frac{A}{2}}+\frac{1}{\tan \frac{D}{2}}+\frac{1}{\tan \frac{B}{2}}\right) \\
& =r^{2}\left(\left(\tan \frac{A}{2}+\cot \frac{A}{2}\right)+\left(\tan \frac{B}{2}+\cot \frac{B}{2}\right)\right) \\
& =r^{2}\left(\frac{1}{\sin \frac{A}{2} \cos \frac{A}{2}}+\frac{1}{\sin \frac{B}{2} \cos \frac{B}{2}}\right) \\
& =\frac{r^{2}}{\sin \frac{A}{2} \sin \frac{C}{2}}+\frac{r^{2}}{\sin \frac{B}{2} \sin \frac{D}{2}} \\
& =A I \cdot C I+B I \cdot D I
\end{aligned}
$$

where we used that $\sin \frac{A}{2}=\frac{r}{A I}$ and similar for the other angles.

Corollary 6. A bicentric quadrilateral $A B C D$ has the area

$$
K=2 r^{2}\left(\frac{1}{\sin A}+\frac{1}{\sin B}\right)
$$

where $r$ is the inradius.
Proof. Using one of the equalities in the proof of Theorem 5, we get

$$
K=r^{2}\left(\frac{1}{\sin \frac{A}{2} \cos \frac{A}{2}}+\frac{1}{\sin \frac{B}{2} \cos \frac{B}{2}}\right)=r^{2}\left(\frac{1}{\frac{1}{2} \sin A}+\frac{1}{\frac{1}{2} \sin B}\right)
$$

and the result follows.
Here is an alternative, direct proof of Corollary 6:
In a tangential quadrilateral with sides $a, b, c, d$ and semiperimeter $s$ we have $K=r s=r(a+c)=r(b+d)$. Hence

$$
\begin{aligned}
K^{2} & =r^{2}(a+c)(b+d) \\
& =r^{2}(a d+b c+a b+c d) \\
& =r^{2}\left(\frac{2 K}{\sin A}+\frac{2 K}{\sin B}\right)
\end{aligned}
$$

since in a cyclic quadrilateral $A B C D$, the area satisfies $2 K=(a d+b c) \sin A=$ $(a b+c d) \sin B$. Now factor the right hand side and then divide both sides by $K$. This completes the proof.

From Corollary 6 we get another proof of the inequality $4 r^{2} \leq K$, different form the one given in [2, p.64]. We have

$$
K=2 r^{2}\left(\frac{1}{\sin A}+\frac{1}{\sin B}\right) \geq 2 r^{2}(1+1)=4 r^{2}
$$

for $0<A<\pi$ and $0<B<\pi$.
In [12], Theorem 11, we proved that a bicentric quadrilateral with diagonals $p, q$ and tangency chords ${ }^{3} k, l$ has the area

$$
\begin{equation*}
K=\frac{k l p q}{k^{2}+l^{2}} \tag{7}
\end{equation*}
$$

We shall use this to derive another beautiful formula for the area of a bicentric quadrilateral. In the proof we will also need the following formula for the area of a convex quadrilateral, which we have not found any reference to.

Theorem 7. A convex quadrilateral with diagonals $p, q$ and bimedians $m, n$ has the area

$$
K=\frac{1}{2} \sqrt{p^{2} q^{2}-\left(m^{2}-n^{2}\right)^{2}}
$$

[^2]Proof. A convex quadrilateral with sides $a, b, c, d$ and diagonals $p, q$ has the area

$$
\begin{equation*}
K=\frac{1}{4} \sqrt{4 p^{2} q^{2}-\left(a^{2}-b^{2}+c^{2}-d^{2}\right)^{2}} \tag{8}
\end{equation*}
$$

according to [6, p.243], [11] and [16]. The length of the bimedians ${ }^{4} m, n$ in a convex quadrilateral are given by

$$
\begin{align*}
m^{2} & =\frac{1}{4}\left(p^{2}+q^{2}-a^{2}+b^{2}-c^{2}+d^{2}\right),  \tag{9}\\
n^{2} & =\frac{1}{4}\left(p^{2}+q^{2}+a^{2}-b^{2}+c^{2}-d^{2}\right) . \tag{10}
\end{align*}
$$

according to $[6$, p.231] and post no 2 at [10] (both with other notations). From (9) and (10) we get

$$
4\left(m^{2}-n^{2}\right)=-2\left(a^{2}-b^{2}+c^{2}-d^{2}\right)
$$

so

$$
\left(a^{2}-b^{2}+c^{2}-d^{2}\right)^{2}=4\left(m^{2}-n^{2}\right)^{2} .
$$

Using this in (8), the formula follows.
The next theorem is our main result and gives the area of a bicentric quadrilateral in terms of the bimedians and tangency chords (see Figure 3).

Theorem 8. A bicentric quadrilateral with bimedians $m, n$ and tangency chords $k, l$ has the area

$$
K=\left|\frac{m^{2}-n^{2}}{k^{2}-l^{2}}\right| k l
$$

if it is not a kite.
Proof. From Theorem 7 we get that in a convex quadrilateral

$$
\begin{equation*}
\left(m^{2}-n^{2}\right)^{2}=(p q)^{2}-4 K^{2} \tag{11}
\end{equation*}
$$

Rewriting (7), we have in a bicentric quadrilateral

$$
p q=\frac{k^{2}+l^{2}}{k l} K .
$$

Inserting this into (11) yields

$$
\begin{aligned}
\left(m^{2}-n^{2}\right)^{2} & =\frac{\left(k^{2}+l^{2}\right)^{2}}{k^{2} l^{2}} K^{2}-4 K^{2} \\
& =K^{2}\left(\frac{\left(k^{2}+l^{2}\right)^{2}-4 k^{2} l^{2}}{k^{2} l^{2}}\right) \\
& =K^{2}\left(\frac{\left(k^{2}-l^{2}\right)^{2}}{k^{2} l^{2}}\right)
\end{aligned}
$$

Hence

$$
\left|m^{2}-n^{2}\right|=K \frac{\left|k^{2}-l^{2}\right|}{k l}
$$

and the formula follows.

[^3]It is not valid in two cases, when $m=n$ or $k=l$. In the first case we have according to (9) and (10) that

$$
-a^{2}+b^{2}-c^{2}+d^{2}=a^{2}-b^{2}+c^{2}-d^{2} \quad \Leftrightarrow \quad a^{2}+c^{2}=b^{2}+d^{2}
$$

which is a well known condition for when a convex quadrilateral has perpendicular diagonals. The second case is equivalent to that the quadrilateral is a kite according to Corollary 3 in [12]. Since the only tangential quadrilateral with perpendicular diagonals is the kite (see the proof of Corollary 3 in [12]), this is the only quadrilateral where the formula is not valid. ${ }^{5}$

In view of the expressions in the quotient in the last theorem, we conclude with the following theorem concerning the signs of those expressions in a tangential quadrilateral. Let $m=E G$ and $n=F H$ be the bimedians, and $k=W Y$ and $l=X Z$ be the tangency chords in a tangential quadrilateral, see Figure 3.


Figure 3. The bimedians $m, n$ and the tangency chords $k, l$

Theorem 9. Let a tangential quadrilateral have bimedians $m, n$ and tangency chords $k, l$. Then

$$
m<n \quad \Leftrightarrow \quad k>l
$$

where $m$ and $k$ connect the same pair of opposite sides.
Proof. Eulers extension of the parallelogram law to a convex quadrilateral with sides $a, b, c, d$ states that

$$
a^{2}+b^{2}+c^{2}+d^{2}=p^{2}+q^{2}+4 v^{2}
$$

where $v$ is the distance between the midpoints of the diagonals $p, q$ (this is proved in [7, p.107] and [3, p.126]). Using this in (9) and (10) we get that the length of the bimedians in a convex quadrilateral can also be expressed as

$$
\begin{aligned}
m & =\frac{1}{2} \sqrt{2\left(b^{2}+d^{2}\right)-4 v^{2}}, \\
n & =\frac{1}{2} \sqrt{2\left(a^{2}+c^{2}\right)-4 v^{2}} .
\end{aligned}
$$

[^4]Thus in a tangential quadrilateral we have

$$
\begin{array}{ll} 
& m<n \\
\Leftrightarrow & b^{2}+d^{2}<a^{2}+c^{2} \\
\Leftrightarrow & (f+g)^{2}+(h+e)^{2}<(e+f)^{2}+(g+h)^{2} \\
\Leftrightarrow & f g+h e<e f+g h \\
\Leftrightarrow & (e-g)(h-f)<0
\end{array}
$$

where $e=A W, f=B X, g=C Y$ and $h=D Z$ are the tangent lengths.
In [12], Theorem 1, we proved that the lengths of the tangency chords in a tangential quadrilateral are

$$
\begin{aligned}
k & =\frac{2(e f g+f g h+g h e+h e f)}{\sqrt{(e+f)(f+h)(h+g)(g+e)}} \\
l & =\frac{2(e f g+f g h+g h e+h e f)}{\sqrt{(e+h)(h+f)(f+g)(g+e)}}
\end{aligned}
$$

Thus

$$
\begin{array}{ll} 
& k>l \\
\Leftrightarrow & (e+f)(f+h)(h+g)(g+e)<(e+f)(f+h)(h+g)(g+e) \\
\Leftrightarrow & e h+f g<e f+g h \\
\Leftrightarrow & (e-g)(h-f)<0 .
\end{array}
$$

Hence in a tangential quadrilateral

$$
m<n \quad \Leftrightarrow \quad(e-g)(h-f)<0 \quad \Leftrightarrow \quad k>l
$$

which proves the theorem.
We also note that the bimedians are congruent if and only if the tangency chords are congruent. Such equivalences will be investigated further in a future paper.

## References

[1] G. L. Alexanderson, L. F. Klosinski and L. C. Larson (editors), The William Lowell Putnam Mathematical Competition Problems and Solutions, Math. Assoc. Amer., 1985.
[2] C. Alsina and R. B. Nelsen, When Less is More. Visualizing Basic Inequalities, Math. Assoc. Amer., 2009.
[3] N. Altshiller-Court, College Geometry, Barnes \& Nobel, New York, 1952. New edition by Dover Publications, Mineola, 2007.
[4] T. Andreescu and B. Enescu, Mathematical Olympiad Treasures, Birkhäuser, Boston, 2004.
[5] Art of Problem Solving, China Team Selection Test 2003, http://www.artofproblemsolving.com/Forum/resources.php?c= $37 \& \mathrm{cid}=47 \&$ year=2003
[6] C. A. Bretschneider, Untersuchung der trigonometrischen Relationen des geradlinigen Viereckes (in German), Archiv der Mathematik und Physik, 2 (1842) 225-261.
[7] L. Debnath, The Legacy of Leonhard Euler. A Tricentennial Tribute, Imperial College Press, London, 2010.
[8] C. V. Durell and A. Robson, Advanced Trigonometry, G. Bell and Sons, London, 1930. New edition by Dover Publications, Mineola, 2003.
[9] D. Grinberg, Circumscribed quadrilaterals revisited, 2008, available at http://www.cip.ifi.lmu.de/~grinberg/CircumRev.pdf
[10] Headhunter (username) and M. Constantin, Inequality Of Diagonal, Art of Problem Solving, 2010,
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=363253
[11] V. F. Ivanoff, C. F. Pinzka and J. Lipman, Problem E1376: Bretschneider's Formula, Amer. Math. Monthly, 67 (1960) 291.
[12] M. Josefsson, Calculations concerning the tangent lengths and tangency chords of a tangential quadrilateral, Forum Geom., 10 (2010) 119-130.
[13] M. Josefsson, Characterizations of bicentric quadrilaterals, Forum Geom., 10 (2010) 165-173.
[14] J. C. Salazar, Bicentric Quadrilateral 3, Art of Problem Solving, 2005, http://www.artofproblemsolving.com/Forum/viewtopic.php?t=38991
[15] J. Shin, Are circumscribable quadrilaterals always inscribable?, Mathematics Teacher, 73 (1980) 371-372.
[16] E. W. Weisstein, Bretschneider's formula, MathWorld, http://mathworld.wolfram.com/BretschneidersFormula.html

Martin Josefsson: Västergatan 25d, 28537 Markaryd, Sweden
E-mail address: martin.markaryd@hotmail.com


[^0]:    Publication Date: September 6, 2011. Communicating Editor: Paul Yiu.
    The author would like to thank an anonymous referee for his careful reading and suggestions that led to an improvement of an earlier version of the paper.

[^1]:    ${ }^{1}$ This is proved in Theorem 5 in [13], where the notations are different from here.
    ${ }^{2}$ One solution is given by Darij Grinberg in [9, pp.16-19].

[^2]:    ${ }^{3}$ A tangency chord is a line segment connecting the points on two opposite sides where the incircle is tangent to those sides in a tangential quadrilateral.

[^3]:    ${ }^{4}$ A bimedian is a line segment connecting the midpoints of two opposite sides in a quadrilateral.

[^4]:    ${ }^{5}$ This also means it is not valid in a square since a square is a special case of a kite.

