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The Area of a Bicentric Quadrilateral

Martin Josefsson

Abstract. We review and prove a total of ten different formulas for thearea of
a bicentric quadrilateral. Our main result is that this areais given by
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wherem,n are the bimedians andk, l the tangency chords.

1. The formula K =
√

abcd

A bicentric quadrilateral is a convex quadrilateral with both an incircle and a
circumcircle, so it is both tangential and cyclic. It is wellknown that the square
root of the product of the sides gives the area of a bicentric quadrilateral. In [12,
pp.127–128] we reviewed four derivations of that formula and gave a fifth proof.
Here we shall give a sixth proof, which is probably as simple as it can get if we use
trigonometry and the two fundamental properties of a bicentric quadrilateral.

Theorem 1. A bicentric quadrilateral with sides a, b, c, d has the area

K =
√

abcd.

Proof. The diagonalAC divide a convex quadrilateralABCD into two triangles
ABC andADC. Using the law of cosines in these, we have

a2 + b2 − 2ab cos B = c2 + d2 − 2cd cos D. (1)

The quadrilateral has an incircle. By the Pitot theorema+ c = b+ d [4, pp.65–67]
we get(a − b)2 = (d − c)2, so

a2 − 2ab + b2 = d2 − 2cd + c2. (2)

Subtracting (2) from (1) and dividing by 2 yields

ab(1 − cos B) = cd(1 − cos D). (3)

In a cyclic quadrilateral opposite angles are supplementary, so thatcos D = − cos B.
We rewrite (3) as

(ab + cd) cos B = ab − cd. (4)
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The areaK of a convex quadrilateral satisfies2K = ab sin B + cd sin D. Since
sinD = sin B, this yields

2K = (ab + cd) sin B. (5)

Now using (4), (5) and the identitysin2 B + cos2 B = 1, we have for the areaK
of a bicentric quadrilateral

(2K)2 = (ab + cd)2(1 − cos2 B) = (ab + cd)2 − (ab − cd)2 = 4abcd.

HenceK =
√

abcd. �

Corollary 2. A bicentric quadrilateral with sides a, b, c, d has the area

K = ac tan
θ

2
= bd cot

θ

2

where θ is the angle between the diagonals.

Proof. The angleθ between the diagonals in a bicentric quadrilateral is givenby

tan2
θ

2
=

bd

ac

according to [8, p.30]. Hence we get

K2 = (ac)(bd) = (ac)2 tan2
θ

2

and similar for the second formula. �

Corollary 3. In a bicentric quadrilateral ABCD with sides a, b, c, d we have

tan
A

2
=

√

bc

ad
= cot

C

2
,

tan
B

2
=

√

cd

ab
= cot

D

2
.

Proof. A well known trigonometric formula and (3) yields

tan
B

2
=

√

1 − cos B

1 + cos B
=

√

cd

ab
(6)

where we also usedcos D = − cos B in (3). The formula forD follows from
B = π − D. By symmetry in a bicentric quadrilateral, we get the formula for A

by the changeb ↔ d in (6). Then we useA = π − C to complete the proof. �

Therefore, not only the area but also the angles have simple expressions in terms
of the sides.

The area of a bicentric quadrilateral also gives a conditionwhen a tangential
quadrilateral is cyclic. Even though we did not express it inthose terms, we have
already proved the following characterization in the proofof Theorem 9 in [12].
Here we give another short proof.

Theorem 4. A tangential quadrilateral with sides a, b, c, d is also cyclic if and only
if it has the area K =

√
abcd.
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Proof. The area of a tangential quadrilateral is according to [8, p.28] given by

K =
√

abcd sin
B + D

2
.

It’s also cyclic if and only ifB + D = π; hence a tangential quadrilateral is cyclic
if and only if it’s area isK =

√
abcd. �

This is not a new characterization of bicentric quadrilaterals. One quite long
trigonometric proof of it was given by Joseph Shin in [15] andmore or less the
same proof of the converse can be found in the solutions to Problem B-6 in the
1970 William Lowell Putnam Mathematical Competition [1, p.69].

In this characterization the formulation of the theorem is important. The tan-
gential and cyclic quadrilaterals cannot change roles in the formulation, nor can
the formulation be that it’s a bicentric quadrilateral if and only if the area is given
by the formula in the theorem. This can be seen with an example. A rectangel is
cyclic but not tangential. Its area satisfy the formulaK =

√
abcd since opposite

sides are equal. Thus it’s important that it must be a tangential quadrilateral that is
also cyclic if and only if the area isK =

√
abcd, otherwise the conclution would

be that a rectangle also has an incircle, which is obviously false.

2. Other formulas for the area of a bicentric quadrilateral

In this section we will prove three more formulas for the areaof a bicentric
quadrilateral, where the area is given in terms of other quantities than the sides.
Let us first review a few other formulas and one double inequality for the area that
can be found elsewhere.

In [12], Theorem 10, we proved that a bicentric quadrilateral has the area

K = 4
√

efgh(e + f + g + h)

wheree, f, g, h are the tangent lengths, that is, the distances from the vertices to
the point where the incircle is tangent to the sides.

According to Juan Carlos Salazar [14], a bicentric quadrilateral has the area

K = 2MN
√

EQ · FQ

whereM,N are the midpoints of the diagonals;E,F are the intersection points of
the extensions of opposite sides, andQ is the foot of the normal toEF through the
incenterI (see Figure 1). This is a remarkable formula since the area isgiven in
terms of only three distances. A short proof is given by “pestich” at [14]. He first
proved that a bicentric quadrilateral has the area

K = 2MN · IQ

which is even more extraordinary, since here the area is given in terms of only two
distances!
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Figure 1. The configuration of Salazar’s formula

The angleEIF (see Figure 1) is a right angle in a bicentric quadrilateral,1 so
we also get that the area of a bicentric quadrilateral is given by

K =
2MN · EI · FI

EF

where we used the well known property that the product of the legs is equal to
the product of the hypotenuse and the altitude in a right triangle. The last three
formulas are not valid in a square since there we haveMN = 0.

In [2, p.64] Alsina and Nelsen proved that the area of a bicentric quadrilateral
satisfy the inequalities

4r2 ≤ K ≤ 2R2

wherer,R are the radii in the incircle and circumcircle respectively. We have
equality on either side if and only if it is a square.

Problem 1 on Quiz 2 at the China Team Selection Test 2003 [5] was to prove
that in a tangential quadrilateralABCD with incenterI,

AI · CI + BI · DI =
√

AB · BC · CD · DA.

The right hand side gives the area of a bicentric quadrilateral, so from this we
get another formula for this area. It is easier to prove the following theorem than
solving the problem from China,2 since in a bicentric quadrilateral we can also use
that opposite angles are supplementary angles.

1This is proved in Theorem 5 in [13], where the notations are different from here.
2One solution is given by Darij Grinberg in [9, pp.16–19].
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Figure 2. Partition of a bicentric quadrilateral into kites

Theorem 5. A bicentric quadrilateral ABCD with incenter I has the area

K = AI · CI + BI · DI.

Proof. The quadrilateral has an incircle, sotan A

2
= r

e
wherer is the inradius (see

Figure 2). It also has a circumcircle, soA+C = B+D = π. Thuscot C

2
= tan A

2

andsin C

2
= cos A

2
. A bicentric quadrilateral can be partitioned into four right kites

by four inradii, see Figure 2.
TriangleAIW has the areaer

2
= r2

2 tan
A

2

. Thus the bicentric quadrilateral has

the area

K = r2

(

1

tan A

2

+
1
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2

+
1

tan C

2

+
1

tan D

2

)

.

Hence we get

K = r2

(

1
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2

+
1
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2

+
1
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2

+
1
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2
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((
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A

2
+ cot

A

2
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(

tan
B

2
+ cot

B

2

))

= r2

(

1

sin A

2
cos A

2

+
1

sin B

2
cos B

2

)

=
r2

sin A

2
sin C

2

+
r2

sin B

2
sin D

2

= AI · CI + BI · DI

where we used thatsin A

2
= r

AI
and similar for the other angles. �
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Corollary 6. A bicentric quadrilateral ABCD has the area

K = 2r2

(

1

sinA
+

1

sinB

)

where r is the inradius.

Proof. Using one of the equalities in the proof of Theorem 5, we get

K = r2

(

1

sin A

2
cos A

2

+
1

sin B

2
cos B

2

)

= r2

(

1
1

2
sin A

+
1

1

2
sinB

)

and the result follows. �

Here is an alternative, direct proof of Corollary 6:
In a tangential quadrilateral with sidesa, b, c, d and semiperimeters we have

K = rs = r(a + c) = r(b + d). Hence

K2 = r2(a + c)(b + d)

= r2(ad + bc + ab + cd)

= r2

(

2K

sin A
+

2K

sin B

)

since in a cyclic quadrilateralABCD, the area satisfies2K = (ad + bc) sin A =
(ab + cd) sin B. Now factor the right hand side and then divide both sides byK.
This completes the proof.

From Corollary 6 we get another proof of the inequality4r2 ≤ K, different
form the one given in [2, p.64]. We have

K = 2r2

(

1

sinA
+

1

sinB

)

≥ 2r2(1 + 1) = 4r2

for 0 < A < π and0 < B < π.
In [12], Theorem 11, we proved that a bicentric quadrilateral with diagonalsp, q

and tangency chords3 k, l has the area

K =
klpq

k2 + l2
. (7)

We shall use this to derive another beautiful formula for thearea of a bicentric
quadrilateral. In the proof we will also need the following formula for the area of
a convex quadrilateral, which we have not found any reference to.

Theorem 7. A convex quadrilateral with diagonals p, q and bimedians m,n has
the area

K = 1

2

√

p2q2 − (m2 − n2)2.

3A tangency chord is a line segment connecting the points on two opposite sides where the incircle
is tangent to those sides in a tangential quadrilateral.
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Proof. A convex quadrilateral with sidesa, b, c, d and diagonalsp, q has the area

K = 1

4

√

4p2q2 − (a2 − b2 + c2 − d2)2 (8)

according to [6, p.243], [11] and [16]. The length of the bimedians4 m,n in a
convex quadrilateral are given by

m2 = 1

4
(p2 + q2 − a2 + b2 − c2 + d2), (9)

n2 = 1

4
(p2 + q2 + a2 − b2 + c2 − d2). (10)

according to [6, p.231] and post no 2 at [10] (both with other notations). From (9)
and (10) we get

4(m2 − n2) = −2(a2 − b2 + c2 − d2)

so
(a2 − b2 + c2 − d2)2 = 4(m2 − n2)2.

Using this in (8), the formula follows. �

The next theorem is our main result and gives the area of a bicentric quadrilateral
in terms of the bimedians and tangency chords (see Figure 3).

Theorem 8. A bicentric quadrilateral with bimedians m,n and tangency chords
k, l has the area

K =

∣

∣

∣

∣

m2 − n2

k2 − l2

∣

∣

∣

∣

kl

if it is not a kite.

Proof. From Theorem 7 we get that in a convex quadrilateral

(m2 − n2)2 = (pq)2 − 4K2. (11)

Rewriting (7), we have in a bicentric quadrilateral

pq =
k2 + l2

kl
K.

Inserting this into (11) yields

(m2 − n2)2 =
(k2 + l2)2

k2l2
K2 − 4K2

= K2

(

(k2 + l2)2 − 4k2l2

k2l2

)

= K2

(

(k2 − l2)2

k2l2

)

.

Hence
∣

∣m2 − n2
∣

∣ = K

∣

∣k2 − l2
∣

∣

kl
and the formula follows.

4A bimedian is a line segment connecting the midpoints of two opposite sides in a quadrilateral.
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It is not valid in two cases, whenm = n or k = l. In the first case we have
according to (9) and (10) that

−a2 + b2 − c2 + d2 = a2 − b2 + c2 − d2 ⇔ a2 + c2 = b2 + d2

which is a well known condition for when a convex quadrilateral has perpendicular
diagonals. The second case is equivalent to that the quadrilateral is a kite according
to Corollary 3 in [12]. Since the only tangential quadrilateral with perpendicular
diagonals is the kite (see the proof of Corollary 3 in [12]), this is the only quadri-
lateral where the formula is not valid.5

�

In view of the expressions in the quotient in the last theorem, we conclude with
the following theorem concerning the signs of those expressions in a tangential
quadrilateral. Letm = EG andn = FH be the bimedians, andk = WY and
l = XZ be the tangency chords in a tangential quadrilateral, see Figure 3.
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Figure 3. The bimediansm, n and the tangency chordsk, l

Theorem 9. Let a tangential quadrilateral have bimedians m,n and tangency
chords k, l. Then

m < n ⇔ k > l

where m and k connect the same pair of opposite sides.

Proof. Eulers extension of the parallelogram law to a convex quadrilateral with
sidesa, b, c, d states that

a2 + b2 + c2 + d2 = p2 + q2 + 4v2

wherev is the distance between the midpoints of the diagonalsp, q (this is proved
in [7, p.107] and [3, p.126]). Using this in (9) and (10) we getthat the length of the
bimedians in a convex quadrilateral can also be expressed as

m = 1

2

√

2(b2 + d2) − 4v2,

n = 1

2

√

2(a2 + c2) − 4v2.

5This also means it is not valid in a square since a square is a special case of a kite.
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Thus in a tangential quadrilateral we have

m < n

⇔ b2 + d2 < a2 + c2

⇔ (f + g)2 + (h + e)2 < (e + f)2 + (g + h)2

⇔ fg + he < ef + gh

⇔ (e − g)(h − f) < 0

wheree = AW, f = BX, g = CY andh = DZ are the tangent lengths.
In [12], Theorem 1, we proved that the lengths of the tangencychords in a

tangential quadrilateral are

k =
2(efg + fgh + ghe + hef)

√

(e + f)(f + h)(h + g)(g + e)
,

l =
2(efg + fgh + ghe + hef)

√

(e + h)(h + f)(f + g)(g + e)
.

Thus

k > l

⇔ (e + f)(f + h)(h + g)(g + e) < (e + f)(f + h)(h + g)(g + e)

⇔ eh + fg < ef + gh

⇔ (e − g)(h − f) < 0.

Hence in a tangential quadrilateral

m < n ⇔ (e − g)(h − f) < 0 ⇔ k > l

which proves the theorem. �

We also note that the bimedians are congruent if and only if the tangency chords
are congruent. Such equivalences will be investigated further in a future paper.
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