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When is a Tangential Quadrilateral a Kite?

Martin Josefsson

Abstract. We prove13 necessary and sufficient conditions for a tangential quadri-
lateral to be a kite.

1. Introduction

A tangential quadrilateral is a quadrilateral that has an incircle. A convex
quadrilateral with the sidesa, b, c, d is tangential if and only if

a + c = b + d (1)

according to the Pitot theorem [1, pp.65–67]. Akite is a quadrilateral that has
two pairs of congruent adjacent sides. Thus all kites has an incircle since its sides
satisfy (1). The question we will answer here concerns the converse, that is, what
additional property a tangential quadrilateral must have to be a kite? We shall prove
13 such conditions. To prove two of them we will use a formula for the area of a
tangential quadrilateral that is not so well known, so we prove it here first. It is
given as a problem in [4, p.29].

Theorem 1. A tangential quadrilateral with sides a, b, c, d and diagonals p, q has
the area

K = 1

2

√

(pq)2 − (ac − bd)2.

Proof. A convex quadrilateral with sidesa, b, c, d and diagonalsp, q has the area

K = 1

4

√

4p2q2
− (a2

− b2 + c2
− d2)2 (2)

according to [6] and [14]. Squaring the Pitot theorem (1) yields

a2 + c2 + 2ac = b2 + d2 + 2bd. (3)

Using this in (2), we get

K = 1

4

√

4(pq)2 − (2bd − 2ac)2

and the formula follows. �
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2. Conditions for when a tangential quadrilateral is a kite

In a tangential quadrilateral, atangency chord is a line segment connecting the
points on two opposite sides where the incircle is tangent tothose sides, and the
tangent lengths are the distances from the four vertices to the points of tangency
(see [7] and Figure 1). Abimedian in a quadrilateral is a line segment connecting
the midpoints of two opposite sides.

In the following theorem we will prove eight conditions for when a tangential
quadrilateral is a kite.
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Figure 1. The tangency chordsk, l and tangent lengthse, f, g, h

Theorem 2. In a tangential quadrilateral the following statements are equivalent:
(i) The quadrilateral is a kite.
(ii) The area is half the product of the diagonals.
(iii) The diagonals are perpendicular.
(iv) The tangency chords are congruent.
(v) One pair of opposite tangent lengths are congruent.
(vi) The bimedians are congruent.
(vii) The products of the altitudes to opposite sides of the quadrilateral in the
nonoverlapping triangles formed by the diagonals are equal.
(viii) The product of opposite sides are equal.
(ix) The incenter lies on the longest diagonal.

Proof. Let the tangential quadrilateralABCD have sidesa, b, c, d. We shall prove
that each of the statements (i) through (vii) is equivalent to (viii); then all eight of
them are equivalent. Finally, we prove that (i) and (ix) are equivalent.

(i) If in a kite a = d andb = c, thenac = bd. Conversely, in [7, Corollary 3] we
have already proved that a tangential quadrilateral withac = bd is a kite.

(ii) Using Theorem 1, we get

K = 1

2

√

(pq)2 − (ac − bd)2 = 1

2
pq ⇔ ac = bd.
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(iii) We use the well known formulaK = 1

2
pq sin θ for the area of a convex

quadrilateral,1 whereθ is the angle between the diagonalsp, q. From

K = 1

2

√

(pq)2 − (ac − bd)2 = 1

2
pq sin θ

we get

θ =
π

2
⇔ ac = bd.

(iv) In a tangential quadrilateral, the tangency chordsk, l satisfy
(

k

l

)2

=
bd

ac

according to Corollary 2 in [7]. Hence

k = l ⇔ ac = bd.

(v) Let the tangent lengths bee, f, g, h, wherea = e + f , b = f + g, c = g + h

andd = h + e (see Figure 1). Then we have

ac = bd

⇔ (e + f)(g + h) = (f + g)(h + e)

⇔ ef − eh − fg + gh = 0

⇔ (e − g)(f − h) = 0

which is true when (at least) one pair of opposite tangent lengths are congruent.
(vi) In the proof of Theorem 7 in [9] we noted that the length ofthe bimedians

m,n in a convex quadrilateral are

m = 1

2

√

2(b2 + d2) − 4v2,

n = 1

2

√

2(a2 + c2) − 4v2

wherev is the distance between the midpoints of the diagonals. Using these, we
have

m = n ⇔ a2 + c2 = b2 + d2
⇔ ac = bd

where the last equivalence is due to (3).
(vii) The diagonal intersectionP divides the diagonals in partsw, x andy, z.

Let the altitudes in trianglesABP,BCP,CDP,DAP to the sidesa, b, c, d be
h1, h2, h3, h4 respectively (see Figure 2). By expressing twice the area ofthese
triangles in two different ways we get

ah1 = wy sin θ,

bh2 = xy sin θ,

ch3 = xz sin θ,

dh4 = wz sin θ,

1For a proof, see [5] or [13, pp.212–213].
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whereθ is the angle between the diagonals and we used thatsin (π − θ) = sin θ.
These equations yields

ach1h3 = wxyz sin2 θ = bdh2h4.

Hence
h1h3 = h2h4 ⇔ ac = bd.
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Figure 2. The subtriangle altitudesh1, h2, h3, h4

(ix) We prove that (i)⇔ (ix). A kite has an incircle and the incenter lies on the
intersection of the angle bisectors. The longest diagonal is an angle bisector to two
of the vertex angles since it divides the kite into two congruent triangles (SSS),
hence the incenter lies on the longest diagonal.2 Conversely, if the incenter lies on
the longest diagonal in a tangential quadrilateral (see Figure 3) it directly follows
that the quadrilateral is a kite since the longest diagonal divides the quadrilateral
into two congruent triangles (ASA), so two pairs of adjacentsides are congruent.
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Figure 3. This tangential quadrilateral is a kite

2A more detailed proof not assuming that a kite has an incircleis given in [10, pp.92–93].
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For those interested in further explorations we note that ina convex quadri-
lateral whereac = bd there is an interesting angle relation concerning the angles
formed by the sides and the diagonals, see [2] and [3]. Atzemacalls thesebalanced
quadrilaterals.

Theorem 2 (vii) has the following corollary.

Corollary 3. The sums of the altitudes to opposite sides of a tangential quadrilat-
eral in the nonoverlapping triangles formed by the diagonals are equal if and only
if the quadrilateral is a kite.

Proof. If h1, h2, h3, h4 are the altitudes from the diagonal intersectionP to the
sidesAB, BC, CD, DA in trianglesABP , BCP , CDP , DAP respectively, then
according to [12] and Theorem 1 in [11] (with other notations)

1

h1

+
1

h3

=
1

h2

+
1

h4

. (4)

From this we get
h1 + h3

h1h3

=
h2 + h4

h2h4

.

Hence
h1h3 = h2h4 ⇔ h1 + h3 = h2 + h4

and the proof is compleate. �

Remark. In [8] we attributed (4) to Minculete since he proved this condition in [11].
After the publication of [8], Vladimir Dubrovsky pointed out that condition (4) in
fact appeared earlier in the solution of Problem M1495 in theRussian magazine
Kvant in 1995, see [12]. There it was given and proved by Vasilyev and Senderov
together with their solution to Problem M1495. This problem, which was posed
and solved by Vaynshtejn, was about proving a condition withinverse inradii, see
(7) later in this paper. In [8, p.70] we incorrectly attributed this inradii condition to
Wu due to his problem in [15].

3. Conditions with subtriangle inradii and exradii

In the proof of the next condition for when a tangential quadrilateral is a kite we
will need the following formula for the inradius of a triangle.

Lemma 4. The incircle in a triangle ABC with sides a, b, c has the radius

r =
a + b − c

2
tan

C

2
.

Proof. We use notations as in Figure 4, where there is one pair of equal tangent
lengthsx, y andz at each vertex due to the two tangent theorem. For the sides of
the triangle we havea = y + z, b = z + x andc = x + y; hencea + b − c = 2z.
CI is an angle bisector, so

tan
C

2
=

r

z
and the formula follows. �
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Figure 4. An incircle in a triangle

Theorem 5. Let the diagonals in a tangential quadrilateral ABCD intersect at
P and let the inradii in triangles ABP , BCP , CDP , DAP be r1, r2, r3, r4

respectively. Then the quadrilateral is a kite if and only if

r1 + r3 = r2 + r4.

Proof. We use the same notations as in Figure 2. The four incircles and their radii
are marked in Figure 5. Sincetan π−θ

2
= cot θ

2
, whereθ is the angle between the

diagonals, Lemma 4 yields

r1 + r3 = r2 + r4

⇔
w + y − a

2
tan

θ

2
+

x + z − c

2
tan

θ

2
=

x + y − b

2
cot

θ

2
+

w + z − d

2
cot

θ

2

⇔ (w + x + y + z − a − c) tan
θ

2
= (w + x + y + z − b − d) cot

θ

2
. (5)

Using the Pitot theorema + c = b + d, (5) is eqivalent to

(w + x + y + z − a − c)

(

tan
θ

2
− cot

θ

2

)

= 0. (6)

According to the triangle inequality applied in trianglesABP andCDP , we have
w + y > a andx + z > c. Hencew + x + y + z > a + c and (6) is equivalent to

tan
θ

2
− cot

θ

2
= 0 ⇔ tan2

θ

2
= 1 ⇔

θ

2
=

π

4
⇔ θ =

π

2

where we used thatθ > 0, so the negative solution is invalid. According to Theo-
rem 2 (iii), a tangential quadrilateral has perpendicular diagonals if and only if it is
a kite. �

Corollary 6. If r1, r2, r3, r4 are the same inradii as in Theorem 5, then the tan-
gential quadrilateral is a kite if and only if

r1r3 = r2r4.
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Figure 5. The incircles in the subtriangles

Proof. In a tangential quadrilateral we have according to [12] and [15]
1

r1

+
1

r3

=
1

r2

+
1

r4

. (7)

We rewrite this as
r1 + r3

r1r3

=
r2 + r4

r2r4

.

Hence
r1 + r3 = r2 + r4 ⇔ r1r3 = r2r4

which proves this corollary. �

Now we shall study similar conditions concerning the exradii to the same sub-
triangles.

Lemma 7. The excircle to side AB = c in a triangle ABC with sides a, b, c has
the radius

Rc =
a + b + c

2
tan

C

2
.

Proof. We use notations as in Figure 6, whereu + v = c. Also, according to the
two tangent theorem,b + u = a + v. Henceb + u = a + c − u, so

u =
a − b + c

2
and therefore

b + u =
a + b + c

2
.

For the exradius we have

tan
C

2
=

Rc

b + u
sinceCI is an angle bisector, and the formula follows. �

Theorem 8. Let the diagonals in a tangential quadrilateral ABCD intersect at P

and let the exradii in triangles ABP , BCP , CDP , DAP opposite the vertex P

be R1, R2, R3, R4 respectively. Then the quadrilateral is a kite if and only if

R1 + R3 = R2 + R4.
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Proof. The four excircles and their radii are marked in Figure 7. Sincetan π−θ
2

=

cot θ
2
, whereθ is the angle between the diagonals, Lemma 7 yields

R1 + R3 = R2 + R4

⇔
w + y + a

2
tan

θ

2
+

x + z + c

2
tan

θ

2
=

x + y + b

2
cot

θ

2
+

w + z + d

2
cot

θ

2

⇔ (w + x + y + z + a + c) tan
θ

2
= (w + x + y + z + b + d) cot

θ

2
. (8)

Using the Pitot theorema + c = b + d, (8) is eqivalent to

(w + x + y + z + a + c)

(

tan
θ

2
− cot

θ

2

)

= 0. (9)

The first parenthesis is positive. Hence (9) is equivalent tothat the second paren-
thesis is zero and the end of the proof is the same as in Theorem5. �

Corollary 9. If R1, R2, R3, R4 are the same exradii as in Theorem 8, then the
tangential quadrilateral is a kite if and only if

R1R3 = R2R4.

Proof. In a tangential quadrilateral we have according to Theorem 4in [8]

1

R1

+
1

R3

=
1

R2

+
1

R4

.

We rewrite this as
R1 + R3

R1R3

=
R2 + R4

R2R4

.
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Figure 7. The excircles to the subtriangles

Hence
R1 + R3 = R2 + R4 ⇔ R1R3 = R2R4

completing the proof. �
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