A New Formula Concerning the Diagonals and Sides of a Quadrilateral

Larry Hoehn

Abstract

We derive a formula relating the sides and diagonal sections of a general convex quadrilateral along with the special case of a quadrilateral with an incircle.

Let $A B C D$ be a convex quadrilateral whose diagonals intersect at E. We use the notation $a=A B, b=B C, c=C D, d=D A, e=A E, f=B E, g=C E$, and $h=D E$ as seen in the figure below.

Figure 1. Convex quadrilateral
By the law of cosines in triangles $A B E$ and $C D E$ we obtain

$$
\frac{e^{2}+f^{2}-a^{2}}{2 e f}=\cos A E B=\cos C E D=\frac{g^{2}+h^{2}-c^{2}}{2 g h} .
$$

This can be rewritten as

$$
g h\left(e^{2}+f^{2}-a^{2}\right)=e f\left(g^{2}+h^{2}-c^{2}\right),
$$

rewritten further as

$$
f h(f g-e h)-e g(f g-e h)=a^{2} g h-c^{2} e f,
$$

and still further as

$$
f h-e g=\frac{a^{2} g h-c^{2} e f}{f g-e h} .
$$

In the same manner for triangles $B C E$ and $D A E$ we obtain

$$
f h-e g=\frac{b^{2} e h-d^{2} f g}{e f-g h} .
$$

By setting the right sides of these two equations equal to each other and some computation, we obtain

$$
(e f-g h)\left(a^{2} g h-c^{2} e f\right)=(f g-e h)\left(b^{2} e h-d^{2} f g\right),
$$

which can be rewritten as

$$
\operatorname{efgh}\left(a^{2}+c^{2}-b^{2}-d^{2}\right)=a^{2} g^{2} h^{2}+c^{2} e^{2} f^{2}-b^{2} e^{2} h^{2}-d^{2} f^{2} g^{2} .
$$

By adding the same quantity to both sides we obtain

$$
\begin{aligned}
& e f g h\left(a^{2}+c^{2}-b^{2}-d^{2}\right)+e f g h(2 a c-2 b d) \\
= & a^{2} g^{2} h^{2}+c^{2} e^{2} f^{2}-b^{2} e^{2} h^{2}-d^{2} f^{2} g^{2}+2 a g h c e f-2 b e h d f g,
\end{aligned}
$$

which can be factored into

$$
\operatorname{efgh}\left((a+c)^{2}-(b+d)^{2}\right)=(a g h+c e f)^{2}-(b e h+d f g)^{2},
$$

or
$e f g h(a+c+b+d)(a+c-b-d)=(a g h+c e f+b e h+d f g)(a g h+c e f-b e h-d f g)$.
This is a formula for an arbitrary quadrilateral. If the quadrilateral has an incircle, then the sums of the opposite sides are equal with $a+c=b+d$. By making this substitution in the last equation above we get the result that

$$
a g h+c e f=b e h+d f g .
$$

This is a nice companion result to Ptolemy's theorem for a quadrilateral inscribed in a circle. In the notation of this paper Ptolemy's theorem states that

$$
(e+g)(f+h)=a c+b d .
$$

Larry Hoehn: Austin Peay State University, Clarksville, Tennessee 37044, USA
E-mail address: hoehnl@apsu.edu

