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The Distance from the Incenter to the Euler Line

William N. Franzsen

Abstract. It is well known that the incenter of a triangle lies on the Euler line
if and only if the triangle is isosceles. A natural question to ask is how far
the incenter can be from the Euler line. We find least upper bounds, across all
triangles, for that distance relative to several scales. Those bounds are found
relative to the semi-perimeter of the triangle, the length of the Euler line and
the circumradius, as well as the length of the longest side and the length of the
longest median.

1. Introduction

A quiet thread of interest in the relationship of the incenter to the Euler line has
persisted to this day. Given a triangle, the Euler line joinsthe circumcenter,O,
to the orthocenter,H. The centroid,G, trisects this line (being closer toO) and
the center of the nine-point circle,N , bisects it. It is known that the incenter,I,
of a triangle lies on the Euler line if and only if the triangleis isosceles (although
proofs of this fact are thin on the ground). But you can’t justchoose any point, on
or off the Euler line, to be the incenter of a triangle. The points you can choose are
known, as will be seen. An obvious question asks how far can the incenter be from
the Euler line. For isosceles triangles the distance is0. Clearly this question can
only be answered relative to some scale, we will consider three scales: the length
of the Euler line,E , the circumradius,R, and the semiperimeter,s. Along the way
we will see that the answer for the semiperimeter also gives us the answer relative
to the longest side,µ, and the longest median,ν. To complete the list of lengths,
let d be the distance of the incenter from the Euler line.

Time spent playing with triangles using any reasonable computer geometry
package will convince you that the following are reasonableconjectures.

d

E ≤ 1

3
,

d

R
≤ 1

2
and

d

s
≤ 1

3

Maybe with strict inequalities, but then again the limits might be attained.
A large collection of relationships between the centers of atriangle is known,

for example, ifR is the radius of the circumcircle andr the radius of the incircle,
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then we have

OI2 = R(R − 2r)

IN =
1

2
(R − 2r)

Before moving on, it is worth noting that the second of the above gives an imme-
diate upper bound for the distance relative to the circumradius. As the inradius of
a non-degenerate triangle must be positive we haved ≤ IN = R

2
− r < R

2
, and

hence
d

R
<

1

2
.

2. Relative to the Euler line

The relationships given above, and others, can be used to show that for any
triangle the incenter,I, must lie within theorthocentroidal circlepunctured at the
center of the nine-point circle,N , namely, the disk with diameterGH except for
the circumference and the pointN .

O HNG

Figure 1

In 1984 Guinand [1] showed that every such point gives rise toa triangle which
has the nominated points as its centers. Guinand shows that if OI = ρ, IN = σ

andOH = κ then the cosines of the angles of the triangle we seek are the zeros of
the following cubic.

p(c) = c3 +
3

2

(

4σ2

3ρ2
− 1

)

c2 +
3

4

(

−2κ2σ2

3ρ4
+

8σ4

3ρ4
− 4σ2

ρ2
+ 1

)

c +
1

8

(

4κ2σ2

ρ4
− 1

)

.

Stern [2] approached the problem using complex numbers and provides a sim-
pler derivation of a cubic, and explicitly demonstrates that the triangle found is
unique. His approach also provided the vertices directly, as complex numbers.

Consideration of the orthocentroidal circle provides the answer to our question
relative toE , the length of the Euler line. The incenter must lie strictlywithin
the orthocentroidal circle which has radius one third the length of the Euler line.
Guinand has proved that all such points, exceptN , lead to a suitable triangle. Thus
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the least upper bound, over all non-degenerate triangles, of the ratio d
E is 1

3
, with

triangles approaching this upper-bound being defined by having incenters close to
the points on circumference of the orthocentroidal circle on a radius perpendicu-
lar to the Euler line. For any given non-degenerate trianglewe obtain the strict
inequality d

E < 1

3
.

Consideration of Figure 2 gives us more information. TakingOH = 3 as our
scale. For triangles withI close to the limit point above, the angleIGH is close
to π

4
. Moreover, withI near that point, a calculation using the inferred values of

OI ≈
√

5 andIN ≈
√

5

2
shows that the circumradius will be close to

√
5, and the

inradius will be close to 0.
We observed above thatIN < R

2
. This distance only becomes relevant for us if

IN is perpendicular to the Euler line. Consideration of the orthocentroidal circle
again allows us to see that this may happen, with the angleIGH being close toπ

3
.

In this case the circumradius will be close to
√

3.

1

√

5 √
5

2

√
3

2
√

3

O HNG

Figure 2

Remark.It is easy to see that the last case also gives the least upper bound of the
angleIOH as π

6
.

3. Relative to the triangle

We now wish to find the maximal distance relative to the dimensions of the
triangle itself. The relevant dimensions will be the lengthof the longest median,ν,
the length of the longest side,µ, and the semiperimeter,s. It is clear thatν < µ < s

(see Lemma 4 below).
The following are well-known, and show that the incenter andcentroid lie within

the medial triangle, the triangle formed by the three midpoints of the sides.

Lemma 1. The incenter,I, lies in the medial triangle.

Lemma 2. The centroid of triangleABC is the centroid of the medial triangle.

Lemma 3. The distance from the incenter to the centroid is less than one third the
length of the longest median of the triangle.
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Proof. We have just shown that both the incenter and centroid lie inside the medial
triangle. Therefore the distance from the incenter to the centroid is less than the
largest distance from the centroid to a vertex of the medial triangle. (Consider the
circle centered atO passing through the most distant vertex.)

Now the distance of the centroid from the vertices of the medial triangle is, by
definition, the distance from the centroid to the mid-pointsof the side of triangle
ABC. Those distances are equal to one third the lengths of the medians, and the
result follows. �

Lemma 4. The length of a median is less thanµ. Hence,ν < µ < s.

Proof. Consider the median fromA. If we rotate the triangle throughπ aboutMA,
the mid-point of the side oppositeA, we obtain the parallelogramABDC. The
diagonalAD has twice the lengthAMA. As A, B andD form a non-degenerate
triangle we have

2AMA = AD < AB + BD = AB + AC ≤ 2µ,

whereµ is the length of the longest side. Thus the medianAMA < µ. This is also
true for the other two medians. Thus,ν ≤ µ. �

Proposition 5. The distance,d, from the incenter to the Euler line satisfies

d

s
<

d

µ
<

d

ν
<

1

3
,

whereν is the length of the longest median,µ is the length of the longest side and
s is the semi-perimeter of the triangle.

Proof. As the centroid lies on the Euler line, the distance from the incenter to the
Euler line is at most the distance from the incenter to the centroid. By Lemma 3,
this distance is one third the length of the longest median. But, by Lemma 4, the
length of each median is less thanµ < s, and the result follows. �

4. In the limit

As the expressionsdE , d
R

and d
s

are dimensionless we may choose our scale as
suits us best. Consider the triangle with vertices(0, 0), (1, 0) and(ε, δ), whereε

andδ are greater than but approximately equal to0. The following information
may be easily checked.

The coordinates of the orthocenter are

H

(

ε,
ε − ε2

δ

)

.

The coordinates of the circumcenter are

O

(

1

2
,
δ2 + ε2 − ε

2δ

)

.

The Euler line has equation

lOH :
(

−δ2 + 3(1 − ε)ε
)

x + (1 − 2ε)δy + ε
(

δ2 + ε2 − 1
)

= 0.
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If we let p = 2s =
√

δ2 + ε2 +
√

δ2 + (1 − ε)2 +1, then the coordinates of the
incenter are

I

(√
δ2 + ǫ2 + ǫ

p
,
δ

p

)

.

We may now write down the value ofd, being the perpendicular distance from
I to lOH .

d =

∣

∣

∣

(

−δ2 + 3(1 − ε)ε
)

(√
δ2 + ε2 + ε

)

+ (1 − 2ε)δ2 + pε
(

δ2 + ε2 − 1
)

∣

∣

∣

p

√

(−δ2 + 3(1 − ε)ε)2 + (1 − 2ε)2δ2

.

Suppose we letδ = ε2, then the expression for the ratiod
s

is

2ε
∣

∣

∣
(−ε3 − 3ε + 3)(

√
ε4 + ε2 + ε) + ε(ε2 − 2ε3) + p(ε4 − ε2 − 1)

∣

∣

∣

p2ε
√

(−ε3 − 3(ε − 1))2 + (ε − 2ε2)2

We cancel the common factor ofε and take the limit asε → 0. Noting thatp → 2
we see that the numerator approaches 4 while the denominatorapproaches 12, and
we have proved the following.

Theorem 6. If d is the distance from the incenter to the Euler line,s the semi-
perimeter,µ the length of the longest side andν the length of the longest median,
then the least upper bound ofd

s
, and henced

µ
and d

ν
, over all non-degenerate

triangles is1

3
.

Remark.In those cases where the distance ratio is close to the maximum, the line
IG is nearly perpendicular to the Euler line. Thus the angleIGH will be close
to π

2
. In these cases the Euler line is extremely large compared tothe triangle.

Similar calculations can be carried out for the ratiosd
E and d

R
. In those cases

we take the point(ε, δ) to be a point on the circle through(0, 0) and(1, 0) with

radius
√

10

6
, or

√
3

3
respectively (remember that the values of

√
5 and

√
3 met earlier

were relative to the length of the Euler line, not the length of a side).

5. Demonstrating the limits

We now have enough information to assist us in constructing diagrams that will
demonstrate these limits using a suitable computer geometry package.

Taking the case of triangles with the ratiod
R

approaching1

2
. Let AB be a line

segment and define its length to be 1. LetG′ be the point onAB one third of the
way from A to B. Construct the lineG′T such that∠BG′T = π

3
and letO be

the point where this line meets the perpendicular bisector of AB. Draw the arc
AB centered atO and letC be a point on that arc. Constructing the Euler line
and incenter of triangleABC will demonstrate that the ratiod

R
approaches1

2
as

C approachesA. This construction is explained if you note thatG′ is the limiting
position of the centroid,G, asC approachesA (see Figure 3).
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3

Figure 3.

A similar construction, except with∠BG′T = π
4

will give a demonstration that
d
E approaches1

3
asC approachesA.

Something different is required to demonstrate thatd
s

approaches1
3
. GivenAB

above, choose a pointC ′ betweenA andB and let the lengthAC ′ = ε, with 0 <

ε < 1. Construct the perpendicular atC ′ and find the pointC on the perpendicular
with CC ′ = ε2. Constructing the Euler line and incenter of this triangle will
demonstrate that the ratiod

s
approaches1

3
asC approachesA.
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