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Characterizations of Orthodiagonal Quadrilaterals

Martin Josefsson

Abstract. We prove ten necessary and sufficient conditions for a copuadri-

lateral to have perpendicular diagonals. One of these ista gew eight point
circle theorem and three of them are metric conditions awriieg the nonover-
lapping triangles formed by the diagonals.

1. A well known characterization

An orthodiagonal quadrilaterals a convex quadrilateral with perpendicular di-
agonals. The most well known and in problem solving usefalratterization of
orthodiagonal quadrilaterals is the following theorenveFather different proofs
of it was given in [19, pp.158-159], [11], [15], [2, p.136]caM, p.91], using
respectively the law of cosines, vectors, an indirect praajeometric locus and
complex numbers. We will give a sixth proof using the Pytlraga theorem.

Theorem 1. A convex quadrilateral BC' D is orthodiagonal if and only if

AB? + CD? = BC? + DA?.

Figure 1. Normals to diagonalC

Proof. Let X andY be the feet of the normals frof and B respectively to
diagonalAC' in a convex quadrilateradl BC' D, see Figure 1. By the Pythagorean
theorem we hav8Y 2+ AY? = AB?, BY?+CY? = BC? DX?+CX? = CD?
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andAX?+ DX? = DA?. Thus
AB? + CD? — BC? — DA?
= AY? - AX? 4 CX? - CY?
= (AY + AX)(AY — AX) + (CX + CY)(CX — CY)
= (AY + AX)XY + (CX + CY)XY
(AX +CX + AY + CY)XY
= 2AC - XY.
Hence we have
AC L BD & XY =0 & AB? + CD? = BC? + DA?
sinceAC > 0. O

Another short proof is the following. The area of a convexdrilateral with
sidesa, b, ¢ andd is given by the two formulas

K = %pqsin@ = %\/4p2q2 —(a? — b2+ % — d?)?

wheref is the angle between the diagonglandg.! Hence we directly get

H:g = a+E=0+d?
completing this seventh prodf.

A different interpretation of the condition in Theorem 1h tfollowing. If four
squares of the same sides as those of a convex quadrilateerkeated on the sides
of that quadrilateral, then it is orthodiagonal if and orfljhie sum of the areas of
two opposite squares is equal to the sum of the areas of tee twth squares.

2. Two eight point circles

Another necessary and sufficient condition is that a convgddlateral is or-
thodiagonal if and only if the midpoints of the sides are thdiges of a rectangle
(FFGH in Figure 2). The direct theorem was proved by Louis Brandhegroof
of the theorem about theight point circlein [5], but was surely discovered much
earlier since this is a special case of the Varignon pacgtam theoreri. The
converse is an easy angle chase, as noted by “shobber” imp@&sét [1]. In fact,
the converse to the theorem about the eight point circlesis ttle, so we have
the following condition as well A convex quadrilateral has perpendicular diag-
onals if and only if the midpoints of the sides and the feetefrhaltitudes are

IThe first of these formulas yields a quite trivial charaaation of orthodiagonal quadrilaterals:
the diagonals are perpendicular if and only if the area ofjtndrilateral is one half the product of
the diagonals.

2This proof may be short, but the derivations of the two aremfdas are a bit longer; see [17,
pp.212-214] or [7] and [8].

3The midpoints of the sides in any quadrilateral form a patadjfram named after the French
mathematician Pierre Varignon (1654-1722). The diagoimatBis parallelogram are the bimedians
of the quadrilateral and they intersect at the centroid efothadrilateral.
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eight concyclic pointé,see Figure 2. The center of the circle is the centroid of the
guadrilateral (the intersection &fG and F'H in Figure 2). This was formulated
slightly different and proved as Corollary 2 in [10].

C

E

Figure 2. Brand’s eight point circle and rectan§lé’'G H

There is also a second eight point circle characterizatibefore we state and
prove this theorem we will prove two other necessary andcseiffi condition for
the diagonals of a convex quadrilateral to be perpendicwlaich are related to the
second eight point circle.

Theorem 2. A convex quadrilateral BC'D is orthodiagonal if and only if
/PAB+ /PBA+ /PCD+ /PDC =7
whereP is the point where the diagonals intersect.
Proof. By the sum of angles in triangle$B P andC D P (see Figure 3) we have
/PAB+ /PBA+ /PCD+ /PDC =271 — 20,

wheref is the angle between the diagonals. Hefiee 7 if and only if the equation
in the theorem is satisfied. O

Problem 6.17 in [14, p.139] is about proving that if the diagis of a convex
quadrilateral are perpendicular, then the projectionhefpoint where the diago-
nals intersect onto the sides are the vertices of a cyclidrijageral® The solution
given by Prasolov in [14, p.149] used Theorem 2 and is, afthouot stated as
such, also a proof of the converse. Our proof is basicallys#mee.

4A maltitude is a line segment in a quadrilateral from the midpof a side perpendicular to the
opposite side.

SThe quadrilateral formed by the feet of the maltitudes iteckthe principal orthic quadrilateral
in [10].

6in [14] this is called an inscribed quadrilateral, but tsadnother name for a cyclic quadrilateral.
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K
Figure 3. ABCD is orthodiagonal iffk’ LM N is cyclic

Theorem 3. A convex quadrilateral is orthodiagonal if and only if theop@ctions
of the diagonal intersection onto the sides are the vertifescyclic quadrilateral.

Proof. If the diagonals intersect i, and the projection points aAB, BC, C'D
and DA are K, L, M and N respectively, thel K PN, BLPK, CMPL and
DN PM are cyclic quadrilaterals since they all have two opposifletangles (see
Figure 3). Thev PAN = /PKN, /PBL = /PKL, /PCL = ZPML and
/ZPDN = /ZPMN. QuadrilateralABC D is by Theorem 2 orthodiagonal if and
only if

£ZPAN + /PBL + /PCL+ ZPDN =1
< LPKN+/ZPKL+/ZPML+ ZPMN =7
& LLKNA+ ZLMN =7

where the third equality is a well known necessary and safiiccondition for
K LM N to be a cyclic quadrilateral. O

Now we are ready to prove the second eight point circle theore

Theorem 4. In a convex quadrilateral BC' D where the diagonals intersect &
let K, L, M and N be the projections of onto the sides, and le&®, S, T andU
be the points where the linds P, LP, M P and N P intersect the opposite sides.
Then the quadrilaterald BC D is orthodiagonal if and only if the eight poinfs,
L,M,N,R,S,TandU are concyclic.

Proof. (=) If ABCD is orthodiagonal, ther, L, M and N are concyclic by
Theorem 3. We start by proving thatl’M N has the same circumcircle &SLM N.
To do this, we will prove that M N K+ /M T K = m, which is equivalent to prov-
ingthatZMTK = ZANK+ /DN M sinceZAN D =  (see Figure 4). In cyclic
quadrilateralAN PK and DN PM, we have/ANK = ZAPK = /TPC and
/DNM = /M PD. By the exterior angle theoremM/ TP = /TPC+ /ZTCP.
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In additonZMPD = ZTCP sinceCPD is a right triangle with altitude\/ P.
Hence

LMTK = /ZTPC + /TCP = ZANK + ZMPD = ZANK + ZDNM

which proves thafl’ lies on the circumcircle o\ LM N, since K, M and N
uniquely determine a circle. In the same way it can be prolwati?, S andU lies
on this circle.

(<)If K,L, M, N, R, S, T andU are concyclic, thenVMTK is a cyclic
quadrilateral. By using some of the angle relations fronfitlsé part, we get

/MTK =7 — /MNK
= /IMTP=/ANK+ /DNM
= /TPC+/TCP=/APK+ /MPD
= LTCP=/ZMPD.
Thus triangles\f PC' and M D P are similar since angl&/ D P is common. Then
ZCPD =/PMD =73

soACLBD. O
c
- L
M S
D
N
U
-
A K - B

Figure 4. The second eight point circle

In the next theorem we prove that quadrilateR7TU in Figure 4 is a rectangle
if and only if ABC D is an orthodiagonal quadrilateral.

Theorem 5. If the normals to the sides of a convex quadrilatefdBC D through
the diagonal intersection intersect the opposite sideskinS, T' and U, then
ABCD is orthodiagonal if and only iRSTU is a rectangle whose sides are par-
allel to the diagonals oA BC' D.
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Proof. (=) If ABCD is orthodiagonal, thetVT'M N is a cyclic quadrilateral ac-
cording to Theorem 4 (see Figure 5). Thus

LMTU = £ZDNM = ZMPD = ZTCP,

soUT || AC. In the same way it can be proved thaf | AC, UR || DB and
TS | DB. HenceRSTU is a parallelogram with sides parallel to the perpendicu-
lar linesAC andBD, so it is a rectangle.

(<) If RSTU is arectangle with sides parallel to the diagon&fs and BD of
a convex quadrilateral, then

ZDPC = ZUTS = 3.
HenceAC 1 BD. O

Figure 5. ABCD is orthodiagonal iffRST'U is a rectangle

Remark.Shortly after we had proved Theorems 4 and 5 we found out iat t
direct parts of these two theorems was proved in 1998 [2Q}sTin [20] Zaslavsky
proved that in an orthodiagonal quadrilateral, the eiglmtgox, L, M, N, R, S,

T andU are concyclic, and thaRSTU is a rectangle with sides parallel to the
diagonals. We want to thank Vladimir Dubrovsky for the heliivthe translation
of the theorems in [20].

Let’s call the eight point circle due to Louis Brand tfirst eight point circleand
the one in Theorem 4 treecond eight point circleéSinceRSTU is a rectangle, the
center of the second eight point circle is the point wheredibgonals inRSTU
intersect.

Theorem 6. The first and second eight point circle of an orthodiagonadyilat-
eral coincide if and only if the quadrilateral is also cyclic
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Proof. Since the second eight point circle is constructed fromdegments through
the diagonal intersection, the two eight point circles cwla if and only if the four
maltitudes are concurrent at the diagonal intersectiore mhltitudes of a convex
guadrilateral are concurrent if and only if the quadrilatés cyclic according to
[12, p.19]. O

Figure 6. The two eight point circles

That the point where the maltitudes intersect (the antegim a cyclic orthodi-
agonal quadrilateral coincide with the diagonal intefisectvas proved in another
way in [2, p.137].

3. A duality between the bimedians and the diagonals

The next theorem gives an interesting sort of dual connett&ween the bime-
dians and the diagonals of a convex quadrilateral. The frsiga characterization
of orthodiagonal quadrilaterals. Another proof of (i) usirectors was given in [6,
p.293].

Theorem 7. In a convex quadrilateral we have the following conditions:
(i) The bimedians are congruent if and only if the diagonals amgendicular.
(ii) The bimedians are perpendicular if and only if the diagoraaks congruent.

Proof. (i) According to the proof of Theorem 7 in [9], the bimediansandn in a
convex quadrilateral satisfy

4(m? —n?) = =2(a®> = b* + & — d?)
wherea, b, c andd are the sides of the quadrilateral. Hence
m=n & A+ =0+ &
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which proves the condition according to Theorem 1.

(i) Consider the Varignon parallelogram of a convex quatkral (see Fig-
ure 7). Its diagonals are the bimediamsandn of the quadrilateral. It is well
known that the length of the sides in the Varignon paralleogare one half the
length of the diagonalg andq in the quadrilateral. Applying Theorem 1 to the
Varignon parallelogram yields

2 2
mln o 2(23) zz(g) s p=g
2 2
since opposite sides in a parallelogram are congruent. a

Figure 7. The Varignon parallelogram

4. Three metric conditionsin the four subtriangles
Now we will use Theorem 1 to prove two more characterizati@sgmbling it.
Theorem 8. A convex quadrilateral BC' D is orthodiagonal if and only if
m% + m% = m% + mﬁ

wherem1, ms, ms andmy are the medians in the trianglesBP, BCP, CDP
and D AP from the intersectior of the diagonals to the side$B, BC, C' D and
D A respectively.

Proof. Let P divide the diagonals in parts, x andy, z (see Figure 8). By applying
Apollonius’ theorem in trianglest\ BP, CDP, BCP and DAP we get

m% —|—m§ = m% —|—m§1
& 4m? +4Am? = 4m3 + 4m]
e 2w’ +9?) —a? + 22+ 22 -2 =202 + 2%) — ® + 2(22 + w?) — &P
s a4+ E =0+ d

which by Theorem 1 completes the proof. d
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Figure 8. The subtriangle medians,, m2, ms andmu

Theorem 9. A convex quadrilateral BC' D is orthodiagonal if and only if
R?+ R2=R3+R?

whereR;, Ry, R3 and R, are the circumradii in the triangleslBP, BCP,CDP
and D AP respectively and’ is the intersection of the diagonals.

Proof. According to the extended law of sines applied in the fourtrsatgles,
a=2R;sinf,b = 2Rysin (7 — ), c = 2R3 sinf andd = 2Ry sin (7 — ), see
Figure 9. We get

a’+c® —b* —d* = 4sin*0 (R + R — R3 — R})
where we used thain (7 — §) = sin . Hence
a? 4% =b* + d? & R? + R} = R3 + R}
sincesinf > 0 for 0 < 0 < . O

When studying Figure 9 it is easy to realize the followingutgesvhich gives a
connection between the previous two theorems.

Theorem 10. A convex quadrilaterad BC' D is orthodiagonal if and only if the
circumcenters of the triangled BP, BCP, CDP and D AP are the midpoints of
the sides of the quadrilateral, whereis the intersection of its diagonals.

Proof. The quadrilaterad BC'D is orthodiagonal if and only if one of the triangles
ABP, BCP,CDP and DAP have a right angle aP; then all of them have it.
Hence we only need to prove that the circumcenter of onedieais the midpoint
of a side if and only if the opposite angle is a right angle. Big is an immediate
conseguence of Thales’ theorem and its converse, see [18]. a

The next theorem is our main result and concerns the alstudiae four nonover-
lapping subtriangles formed by the diagonals.
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Figure 9. The circumradiR:, Rz, Rs andR4

Theorem 11. A convex quadrilaterad BC' D is orthodiagonal if and only if
1 n 11 n 1
hioohi h3 o hg
whereh, ho, hg and hy are the altitudes in the triangled BP, BCP, CDP and
D AP from the intersectiorP of the diagonals to the side$B, BC,C'D and DA
respectively.

Proof. Let P divide the diagonals in parts, z andy, z. From expressing twice
the area of trianglel B P in two different ways we get (see Figure 10)

ahy = wysin 6
wheref is the angle between the diagonals. Thus
1 a? _w2+y2—2wycost9_ 1 1 1 2cos 6
h?  w?y?sin’0 w?y? sin? 9 C\y? 2
where we used the law of cosines in trianglé P in the second equality. The
same resoning in triangl€ D P yields

1 /1 n 1 1 2cos 6
hg_ 22 22 )sin%260  xzsin?6

In trianglesBC' P and D AP we have respectively

1 /1 . 1 1 . 2cos 0
R \2?  y?/)sin?0  ywsin®6

w? /sin?6  wysin?0




Characterizations of orthodiagonal quadrilaterals 23

and
1 1 1 1 2 cos 0
h_i - <E + ;> sin? § * 2w sin? 0

sincecos (m — ) = — cos 6. From the last four equations we get

1 1 1 1 2cosf [ 1 1 1 1

RO e )
Hence

hi%+hi§:hi§+hii & cosf =0 & H:g

since(sin ) =2 # 0 and the expression in the parenthesis is positive. O

Figure 10. The subtriangle altitudés, h2, hs andhg

5. Similar metric conditionsin tangential and orthodiagonal quadrilaterals

A tangential quadrilateral is a quadrilateral with an ind#r A convex quadri-
lateral with the sides, b, c andd is tangential if and only if

at+c=b+d

according to the well known Pitot theorem [3, pp.65—67]. he@rem 1 we proved
the well known condition that a convex quadrilateral with Hidesu, b, c andd is
orthodiagonal if and only if

a’ +c =bv*+ d°.

Here all terms are squared compared to the Pitot theorem.
From the extended law of sines (see the proof of Theorem 9)awe that

a+c—b—d:2sin9(R1+R3—R2—R4)
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whereR;, Rs, R3 and R4 are the circumradii in the triangle$BP, BCP, CDP
and DAP respectively,P is the intersection of the diagonals aéds the angle
between them. Hence

a+c=b+d & Ri+R3=Ry+ Ry
sincesin 6 > 0, so a convex quadrilateral is tangential if and only if
R1 + Rs = Ry + Ry.
In Theorem 9 we proved that the quadrilateral is orthodiaydgrand only if
R} + R3 = R3 + R}

All terms in this condition are squared compared to the tatiglecondition.
In [16] and [13] it is proved that a convex quadrilateral isgantial if and only
" 1 11 1
s Ry
wherehy, hs, hg andhy are the same altitudes as in Figure 10. We have just proved
in Theorem 11 that a convex quadrilateral is orthodiagdrehd only if

1 N 11 N 1
hi o hy  hi o Ay

that is, all terms in the orthodiagonal condition are sgdammpared to the tangen-
tial condition. We find these similarities between these types of quadrilaterals

very interesting and remarkable.
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