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Characterizations of Orthodiagonal Quadrilaterals

Martin Josefsson

Abstract. We prove ten necessary and sufficient conditions for a convex quadri-
lateral to have perpendicular diagonals. One of these is a quite new eight point
circle theorem and three of them are metric conditions concerning the nonover-
lapping triangles formed by the diagonals.

1. A well known characterization

An orthodiagonal quadrilateralis a convex quadrilateral with perpendicular di-
agonals. The most well known and in problem solving useful characterization of
orthodiagonal quadrilaterals is the following theorem. Five other different proofs
of it was given in [19, pp.158–159], [11], [15], [2, p.136] and [4, p.91], using
respectively the law of cosines, vectors, an indirect proof, a geometric locus and
complex numbers. We will give a sixth proof using the Pythagorean theorem.

Theorem 1. A convex quadrilateralABCD is orthodiagonal if and only if

AB2 + CD2 = BC2 + DA2.
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Figure 1. Normals to diagonalAC

Proof. Let X and Y be the feet of the normals fromD and B respectively to
diagonalAC in a convex quadrilateralABCD, see Figure 1. By the Pythagorean
theorem we haveBY 2+AY 2 = AB2, BY 2+CY 2 = BC2, DX2+CX2 = CD2
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andAX2 + DX2 = DA2. Thus

AB2 + CD2 − BC2 − DA2

= AY 2 − AX2 + CX2 − CY 2

= (AY + AX)(AY − AX) + (CX + CY )(CX − CY )

= (AY + AX)XY + (CX + CY )XY

= (AX + CX + AY + CY )XY

= 2AC · XY.

Hence we have

AC ⊥BD ⇔ XY = 0 ⇔ AB2 + CD2 = BC2 + DA2

sinceAC > 0. �

Another short proof is the following. The area of a convex quadrilateral with
sidesa, b, c andd is given by the two formulas

K = 1

2
pq sin θ = 1

4

√

4p2q2 − (a2 − b2 + c2 − d2)2

whereθ is the angle between the diagonalsp andq.1 Hence we directly get

θ =
π

2
⇔ a2 + c2 = b2 + d2

completing this seventh proof.2

A different interpretation of the condition in Theorem 1 is the following. If four
squares of the same sides as those of a convex quadrilateral are erected on the sides
of that quadrilateral, then it is orthodiagonal if and only if the sum of the areas of
two opposite squares is equal to the sum of the areas of the other two squares.

2. Two eight point circles

Another necessary and sufficient condition is that a convex quadrilateral is or-
thodiagonal if and only if the midpoints of the sides are the vertices of a rectangle
(EFGH in Figure 2). The direct theorem was proved by Louis Brand in the proof
of the theorem about theeight point circlein [5], but was surely discovered much
earlier since this is a special case of the Varignon parallelogram theorem.3 The
converse is an easy angle chase, as noted by “shobber” in postno 8 at [1]. In fact,
the converse to the theorem about the eight point circle is also true, so we have
the following condition as well.A convex quadrilateral has perpendicular diag-
onals if and only if the midpoints of the sides and the feet of the maltitudes are

1The first of these formulas yields a quite trivial characterization of orthodiagonal quadrilaterals:
the diagonals are perpendicular if and only if the area of thequadrilateral is one half the product of
the diagonals.

2This proof may be short, but the derivations of the two area formulas are a bit longer; see [17,
pp.212–214] or [7] and [8].

3The midpoints of the sides in any quadrilateral form a parallelogram named after the French
mathematician Pierre Varignon (1654-1722). The diagonalsin this parallelogram are the bimedians
of the quadrilateral and they intersect at the centroid of the quadrilateral.
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eight concyclic points,4 see Figure 2. The center of the circle is the centroid of the
quadrilateral (the intersection ofEG andFH in Figure 2). This was formulated
slightly different and proved as Corollary 2 in [10].5
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Figure 2. Brand’s eight point circle and rectangleEFGH

There is also a second eight point circle characterization.Before we state and
prove this theorem we will prove two other necessary and sufficient condition for
the diagonals of a convex quadrilateral to be perpendicular, which are related to the
second eight point circle.

Theorem 2. A convex quadrilateralABCD is orthodiagonal if and only if

∠PAB + ∠PBA + ∠PCD + ∠PDC = π

whereP is the point where the diagonals intersect.

Proof. By the sum of angles in trianglesABP andCDP (see Figure 3) we have

∠PAB + ∠PBA + ∠PCD + ∠PDC = 2π − 2θ,

whereθ is the angle between the diagonals. Henceθ = π
2

if and only if the equation
in the theorem is satisfied. �

Problem 6.17 in [14, p.139] is about proving that if the diagonals of a convex
quadrilateral are perpendicular, then the projections of the point where the diago-
nals intersect onto the sides are the vertices of a cyclic quadrilateral.6 The solution
given by Prasolov in [14, p.149] used Theorem 2 and is, although not stated as
such, also a proof of the converse. Our proof is basically thesame.

4A maltitude is a line segment in a quadrilateral from the midpoint of a side perpendicular to the
opposite side.

5The quadrilateral formed by the feet of the maltitudes is called the principal orthic quadrilateral
in [10].

6In [14] this is called an inscribed quadrilateral, but that is another name for a cyclic quadrilateral.
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Figure 3. ABCD is orthodiagonal iffKLMN is cyclic

Theorem 3. A convex quadrilateral is orthodiagonal if and only if the projections
of the diagonal intersection onto the sides are the verticesof a cyclic quadrilateral.

Proof. If the diagonals intersect inP , and the projection points onAB, BC, CD

andDA areK, L, M andN respectively, thenAKPN , BLPK, CMPL and
DNPM are cyclic quadrilaterals since they all have two opposite right angles (see
Figure 3). Then∠PAN = ∠PKN , ∠PBL = ∠PKL, ∠PCL = ∠PML and
∠PDN = ∠PMN . QuadrilateralABCD is by Theorem 2 orthodiagonal if and
only if

∠PAN + ∠PBL + ∠PCL + ∠PDN = π

⇔ ∠PKN + ∠PKL + ∠PML + ∠PMN = π

⇔ ∠LKN + ∠LMN = π

where the third equality is a well known necessary and sufficient condition for
KLMN to be a cyclic quadrilateral. �

Now we are ready to prove the second eight point circle theorem.

Theorem 4. In a convex quadrilateralABCD where the diagonals intersect atP ,
let K, L, M andN be the projections ofP onto the sides, and letR, S, T andU

be the points where the linesKP , LP , MP andNP intersect the opposite sides.
Then the quadrilateralABCD is orthodiagonal if and only if the eight pointsK,
L, M , N , R, S, T andU are concyclic.

Proof. (⇒) If ABCD is orthodiagonal, thenK, L, M andN are concyclic by
Theorem 3. We start by proving thatKTMN has the same circumcircle asKLMN .
To do this, we will prove that∠MNK+∠MTK = π, which is equivalent to prov-
ing that∠MTK = ∠ANK+∠DNM since∠AND = π (see Figure 4). In cyclic
quadrilateralsANPK andDNPM , we have∠ANK = ∠APK = ∠TPC and
∠DNM = ∠MPD. By the exterior angle theorem∠MTP = ∠TPC +∠TCP .
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In addition∠MPD = ∠TCP sinceCPD is a right triangle with altitudeMP .
Hence

∠MTK = ∠TPC + ∠TCP = ∠ANK + ∠MPD = ∠ANK + ∠DNM

which proves thatT lies on the circumcircle ofKLMN , sinceK, M and N

uniquely determine a circle. In the same way it can be proved thatR, S andU lies
on this circle.

(⇐) If K, L, M , N , R, S, T andU are concyclic, thenNMTK is a cyclic
quadrilateral. By using some of the angle relations from thefirst part, we get

∠MTK = π − ∠MNK

⇒ ∠MTP = ∠ANK + ∠DNM

⇒ ∠TPC + ∠TCP = ∠APK + ∠MPD

⇒ ∠TCP = ∠MPD.

Thus trianglesMPC andMDP are similar since angleMDP is common. Then

∠CPD = ∠PMD = π
2

soAC⊥BD. �
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Figure 4. The second eight point circle

In the next theorem we prove that quadrilateralRSTU in Figure 4 is a rectangle
if and only if ABCD is an orthodiagonal quadrilateral.

Theorem 5. If the normals to the sides of a convex quadrilateralABCD through
the diagonal intersection intersect the opposite sides inR, S, T and U , then
ABCD is orthodiagonal if and only ifRSTU is a rectangle whose sides are par-
allel to the diagonals ofABCD.
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Proof. (⇒) If ABCD is orthodiagonal, thenUTMN is a cyclic quadrilateral ac-
cording to Theorem 4 (see Figure 5). Thus

∠MTU = ∠DNM = ∠MPD = ∠TCP,

soUT ‖ AC. In the same way it can be proved thatRS ‖ AC, UR ‖ DB and
TS ‖ DB. HenceRSTU is a parallelogram with sides parallel to the perpendicu-
lar linesAC andBD, so it is a rectangle.

(⇐) If RSTU is a rectangle with sides parallel to the diagonalsAC andBD of
a convex quadrilateral, then

∠DPC = ∠UTS = π
2
.

HenceAC⊥BD. �
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Figure 5. ABCD is orthodiagonal iffRSTU is a rectangle

Remark.Shortly after we had proved Theorems 4 and 5 we found out that the
direct parts of these two theorems was proved in 1998 [20]. Thus, in [20] Zaslavsky
proved that in an orthodiagonal quadrilateral, the eight points K, L, M , N , R, S,
T andU are concyclic, and thatRSTU is a rectangle with sides parallel to the
diagonals. We want to thank Vladimir Dubrovsky for the help with the translation
of the theorems in [20].

Let’s call the eight point circle due to Louis Brand thefirst eight point circleand
the one in Theorem 4 thesecond eight point circle. SinceRSTU is a rectangle, the
center of the second eight point circle is the point where thediagonals inRSTU

intersect.

Theorem 6. The first and second eight point circle of an orthodiagonal quadrilat-
eral coincide if and only if the quadrilateral is also cyclic.
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Proof. Since the second eight point circle is constructed from linesegments through
the diagonal intersection, the two eight point circles coincide if and only if the four
maltitudes are concurrent at the diagonal intersection. The maltitudes of a convex
quadrilateral are concurrent if and only if the quadrilateral is cyclic according to
[12, p.19]. �
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Figure 6. The two eight point circles

That the point where the maltitudes intersect (the anticenter) in a cyclic orthodi-
agonal quadrilateral coincide with the diagonal intersection was proved in another
way in [2, p.137].

3. A duality between the bimedians and the diagonals

The next theorem gives an interesting sort of dual connection between the bime-
dians and the diagonals of a convex quadrilateral. The first part is a characterization
of orthodiagonal quadrilaterals. Another proof of (i) using vectors was given in [6,
p.293].

Theorem 7. In a convex quadrilateral we have the following conditions:
(i) The bimedians are congruent if and only if the diagonals are perpendicular.
(ii) The bimedians are perpendicular if and only if the diagonalsare congruent.

Proof. (i) According to the proof of Theorem 7 in [9], the bimediansm andn in a
convex quadrilateral satisfy

4(m2 − n2) = −2(a2 − b2 + c2 − d2)

wherea, b, c andd are the sides of the quadrilateral. Hence

m = n ⇔ a2 + c2 = b2 + d2
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which proves the condition according to Theorem 1.
(ii) Consider the Varignon parallelogram of a convex quadrilateral (see Fig-

ure 7). Its diagonals are the bimediansm andn of the quadrilateral. It is well
known that the length of the sides in the Varignon parallelogram are one half the
length of the diagonalsp andq in the quadrilateral. Applying Theorem 1 to the
Varignon parallelogram yields

m⊥n ⇔ 2
(p

2

)2

= 2
(q

2

)2

⇔ p = q

since opposite sides in a parallelogram are congruent. �
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Figure 7. The Varignon parallelogram

4. Three metric conditions in the four subtriangles

Now we will use Theorem 1 to prove two more characterizationsresembling it.

Theorem 8. A convex quadrilateralABCD is orthodiagonal if and only if

m2

1 + m2

3 = m2

2 + m2

4

wherem1, m2, m3 andm4 are the medians in the trianglesABP , BCP , CDP

andDAP from the intersectionP of the diagonals to the sidesAB, BC, CD and
DA respectively.

Proof. LetP divide the diagonals in partsw, x andy, z (see Figure 8). By applying
Apollonius’ theorem in trianglesABP , CDP , BCP andDAP we get

m2

1 + m2

3 = m2

2 + m2

4

⇔ 4m2

1 + 4m2

3 = 4m2

2 + 4m2

4

⇔ 2(w2 + y2) − a2 + 2(x2 + z2) − c2 = 2(y2 + x2) − b2 + 2(z2 + w2) − d2

⇔ a2 + c2 = b2 + d2

which by Theorem 1 completes the proof. �
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Figure 8. The subtriangle mediansm1, m2, m3 andm4

Theorem 9. A convex quadrilateralABCD is orthodiagonal if and only if

R2

1 + R2

3 = R2

2 + R2

4

whereR1, R2, R3 andR4 are the circumradii in the trianglesABP , BCP , CDP

andDAP respectively andP is the intersection of the diagonals.

Proof. According to the extended law of sines applied in the four subtriangles,
a = 2R1 sin θ, b = 2R2 sin (π − θ), c = 2R3 sin θ andd = 2R4 sin (π − θ), see
Figure 9. We get

a2 + c2 − b2 − d2 = 4 sin2 θ
(

R2

1 + R2

3 − R2

2 − R2

4

)

where we used thatsin (π − θ) = sin θ. Hence

a2 + c2 = b2 + d2 ⇔ R2

1 + R2

3 = R2

2 + R2

4

sincesin θ > 0 for 0 < θ < π. �

When studying Figure 9 it is easy to realize the following result, which gives a
connection between the previous two theorems.

Theorem 10. A convex quadrilateralABCD is orthodiagonal if and only if the
circumcenters of the trianglesABP , BCP , CDP andDAP are the midpoints of
the sides of the quadrilateral, whereP is the intersection of its diagonals.

Proof. The quadrilateralABCD is orthodiagonal if and only if one of the triangles
ABP , BCP , CDP andDAP have a right angle atP ; then all of them have it.
Hence we only need to prove that the circumcenter of one triangle is the midpoint
of a side if and only if the opposite angle is a right angle. Butthis is an immediate
consequence of Thales’ theorem and its converse, see [18]. �

The next theorem is our main result and concerns the altitudes in the four nonover-
lapping subtriangles formed by the diagonals.
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Theorem 11. A convex quadrilateralABCD is orthodiagonal if and only if

1

h2
1

+
1

h2
3

=
1

h2
2

+
1

h2
4

whereh1, h2, h3 andh4 are the altitudes in the trianglesABP , BCP , CDP and
DAP from the intersectionP of the diagonals to the sidesAB, BC, CD andDA

respectively.

Proof. Let P divide the diagonals in partsw, x andy, z. From expressing twice
the area of triangleABP in two different ways we get (see Figure 10)

ah1 = wy sin θ

whereθ is the angle between the diagonals. Thus

1

h2

1

=
a2

w2y2 sin2 θ
=

w2 + y2 − 2wy cos θ

w2y2 sin2 θ
=

(

1

y2
+

1

w2

)

1

sin2 θ
−

2 cos θ

wy sin2 θ

where we used the law of cosines in triangleABP in the second equality. The
same resoning in triangleCDP yields

1

h2

3

=

(

1

x2
+

1

z2

)

1

sin2 θ
−

2 cos θ

xz sin2 θ
.

In trianglesBCP andDAP we have respectively

1

h2

2

=

(

1

x2
+

1

y2

)

1

sin2 θ
+

2cos θ

yx sin2 θ
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and
1

h2
4

=

(

1

w2
+

1

z2

)

1

sin2 θ
+

2cos θ

zw sin2 θ

sincecos (π − θ) = − cos θ. From the last four equations we get

1

h2
1

+
1

h2
3

−
1

h2
2

−
1

h2
4

= −
2 cos θ

sin2 θ

(

1

wy
+

1

yx
+

1

xz
+

1

zw

)

.

Hence

1

h2

1

+
1

h2

3

=
1

h2

2

+
1

h2

4

⇔ cos θ = 0 ⇔ θ =
π

2

since(sin θ)−2 6= 0 and the expression in the parenthesis is positive. �
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Figure 10. The subtriangle altitudesh1, h2, h3 andh4

5. Similar metric conditions in tangential and orthodiagonal quadrilaterals

A tangential quadrilateral is a quadrilateral with an incircle. A convex quadri-
lateral with the sidesa, b, c andd is tangential if and only if

a + c = b + d

according to the well known Pitot theorem [3, pp.65–67]. In Theorem 1 we proved
the well known condition that a convex quadrilateral with the sidesa, b, c andd is
orthodiagonal if and only if

a2 + c2 = b2 + d2.

Here all terms are squared compared to the Pitot theorem.
From the extended law of sines (see the proof of Theorem 9) we have that

a + c − b − d = 2 sin θ(R1 + R3 − R2 − R4)
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whereR1, R2, R3 andR4 are the circumradii in the trianglesABP , BCP , CDP

andDAP respectively,P is the intersection of the diagonals andθ is the angle
between them. Hence

a + c = b + d ⇔ R1 + R3 = R2 + R4

sincesin θ > 0, so a convex quadrilateral is tangential if and only if

R1 + R3 = R2 + R4.

In Theorem 9 we proved that the quadrilateral is orthodiagonal if and only if

R2

1 + R2

3 = R2

2 + R2

4.

All terms in this condition are squared compared to the tangential condition.
In [16] and [13] it is proved that a convex quadrilateral is tangential if and only

if
1

h1

+
1

h3

=
1

h2

+
1

h4

whereh1, h2, h3 andh4 are the same altitudes as in Figure 10. We have just proved
in Theorem 11 that a convex quadrilateral is orthodiagonal if and only if

1

h2
1

+
1

h2
3

=
1

h2
2

+
1

h2
4

,

that is, all terms in the orthodiagonal condition are squared compared to the tangen-
tial condition. We find these similarities between these twotypes of quadrilaterals
very interesting and remarkable.
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