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Some Properties of the Newton-Gauss Line

Cătălin Barbu and Ion Pătraşcu

Abstract. We present some properties of the Newton-Gauss lines of thecom-
plete quadrilaterals associated with a cyclic quadrilateral.

1. Introduction

A complete quadrilateral is the figure determined by four lines, no three of which
are concurrent, and their six points of intersection. Figure 1 shows a complete
quadrilateralABCDEF , with its three diagonalsAC, BD, andEF (compared
to two for an ordinary quadrilateral). The midpointsM , N , L of these diagonals
are collinear on a line, called theNewton-Gauss line of the complete quadrilateral
([1, pp.152–153]). In this note, we present some propertiesof the Newton - Gauss
lines of complete quadrilaterals associated with a cyclic quadrilateral.
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Figure 1.

2. An equality of angles determined by Newton - Gauss line

Given a cyclic quadrilateralABCD, denote byF the point of intersection at the
diagonalsAC andBD, E the point of intersection at the linesAB andCD, N the
midpoint of the segmentEF , andM the midpoint of the segmentBC (see Figure
2).

Theorem 1. If P is the midpoint of the segment BF , the Newton - Gauss line of the
complete quadrilateral EAFDBC determines with the line PM an angle equal
to ∠EFD.

Proof. We show that trianglesNPM andEDF are similar.
SinceBE‖PN andFC‖PM , ∠EAC = ∠NPM and BE

PN
= FC

PM
= 2.

In the cyclic quadrilateralABCD, we have

∠EDF = ∠EDA + ∠ADF = ∠ABC + ∠ACB = ∠EAC.
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Therefore,∠NPM = ∠EDF .
Let R1 andR2 be the radii of the circumcircles of trianglesBED andDFC

respectively. Applying the law of sines to these triangles,we have

BE

FC
=

2R1 sin EDB

2R2 sin FDC
=

R1

R2

=
2R1 sinEBD

2R2 sin FCD
=

DE

DF
.

SinceBE = 2PN andFC = 2PM , we have shown thatPN

PM
= DE

DF
. The

similarity of trianglesNPM andEDF follows, and∠NMP = ∠EFD. �

Remark. If Q is the midpoint of the segmentFC, the same reasoning shows that
that∠NMQ = ∠EFA.
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3. A parallel to the Newton-Gauss line

Theorem 2. The parallel from E to the Newton - Gauss line of the complete
quadrilateral EAFDBC and the line EF are isogonal lines of angle BEC .

Proof. Since trianglesEDF andNPM are similar, we have∠DEF = ∠PNM .
Let E′ be the intersection of the sideBC with the parallel ofNM throughE.

BecausePN‖BE andNM‖EE′, ∠BEF = ∠PNF and∠FNM = ∠E′EF .
Thus,

∠CEE′ = ∠DEF − ∠E′EF = ∠PNM − ∠FNM = ∠PNF = ∠BEF.

�
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4. Two cyclic quadrilaterals determined the Newton-Gauss line

Let G andH be the orthogonal projections of the pointF on the linesAB and
CD respectively (see Figure 4).

Theorem 3. The quadrilaterals MPGN and MQHN are cyclic.

Proof. By Theorem 1,∠EFD = ∠PMN . The pointsP and N are the cir-
cumcenters of the right trianglesBFG and EFG, respectively. It follows that
∠PGF = ∠PFG and∠FGN = ∠GFN . Thus,

∠PGN + ∠PMN = (∠PGF + ∠FGN) + ∠PMN

= ∠PFG + ∠GFN + ∠EFD

= 180◦.

Therefore,MPGN is a cyclic quadrilateral. In the same way, the quadrilateral
MQHN is also cyclic. �
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5. Two complete quadrilaterals with the same Newton-Gauss line

Extend the linesGF andHF to intersectEC andEB at I andJ respectively
(see Figure 5).

Theorem 4. The complete quadrilaterals EGFHJI and EAFDBC have the
same Newton-Gauss line.

Proof. The two complete quadrilaterals have a common diagonalEF . Its midpoint
N lies on the Newton-Gauss lines of both quadrilaterals. NotethatN is equidistant
from G andH since it is the circumcenter of the cyclic quadrilateralEGFH. We
show that trianglesMPG andHQM are congruent. From this, it follows thatM
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lies on the perpendicular bisector ofGH. Therefore, the lineMN contains the
midpoint ofGH, and is the Newton-Gauss line ofEGFHJI.

Now, to show the congruence of the trianglesMPG andHQM , first note that
sinceM andP are the midpoints ofBF andBC, PMQF is a parallelogram.
From these, we conclude
(i) MP = QF = HQ,
(ii) GP = PF = MQ,
(iii) ∠MPF = ∠FQM .

Note also that

∠FPG = 2∠PBG = 2∠DBA = 2∠DCA = 2∠HCF = ∠HQF.

Together with (iii) above, this yields

∠MPG = ∠MPF+∠FPG = ∠FQM+∠HQF = ∠HQF+∠FQM = ∠HQM.

Together with (i) and (ii), this proves the congruence of trianglesMPG andHQM .
�

Remark. BecauseMPG andHQM are congruent triangles, their circumcircles,
namely,(MPGN) and(MQHN) are congruent (see Figure 4).
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