

Some Properties of the Newton-Gauss Line

Cătălin Barbu and Ion Pătrașcu

Abstract. We present some properties of the Newton-Gauss lines of the complete quadrilaterals associated with a cyclic quadrilateral.

1. Introduction

A complete quadrilateral is the figure determined by four lines, no three of which are concurrent, and their six points of intersection. Figure 1 shows a complete quadrilateral ABCDEF, with its three diagonals AC, BD, and EF (compared to two for an ordinary quadrilateral). The midpoints M, N, L of these diagonals are collinear on a line, called the *Newton-Gauss line* of the complete quadrilateral ([1, pp.152–153]). In this note, we present some properties of the Newton - Gauss lines of complete quadrilaterals associated with a cyclic quadrilateral.

Figure 1.

2. An equality of angles determined by Newton - Gauss line

Given a cyclic quadrilateral ABCD, denote by F the point of intersection at the diagonals AC and BD, E the point of intersection at the lines AB and CD, N the midpoint of the segment EF, and M the midpoint of the segment BC (see Figure 2).

Theorem 1. If P is the midpoint of the segment BF, the Newton - Gauss line of the complete quadrilateral EAFDBC determines with the line PM an angle equal to $\angle EFD$.

Proof. We show that triangles NPM and EDF are similar. Since BE || PN and FC || PM, $\angle EAC = \angle NPM$ and $\frac{BE}{PN} = \frac{FC}{PM} = 2$. In the cyclic quadrilateral ABCD, we have

 $\angle EDF = \angle EDA + \angle ADF = \angle ABC + \angle ACB = \angle EAC.$

Publication Date: May 2, 2012. Communicating Editor: Paul Yiu.

Therefore, $\angle NPM = \angle EDF$.

Let R_1 and R_2 be the radii of the circumcircles of triangles BED and DFC respectively. Applying the law of sines to these triangles, we have

$$\frac{BE}{FC} = \frac{2R_1 \sin EDB}{2R_2 \sin FDC} = \frac{R_1}{R_2} = \frac{2R_1 \sin EBD}{2R_2 \sin FCD} = \frac{DE}{DF}.$$

Since BE = 2PN and FC = 2PM, we have shown that $\frac{PN}{PM} = \frac{DE}{DF}$. The similarity of triangles NPM and EDF follows, and $\angle NMP = \angle EFD$. \Box

Remark. If Q is the midpoint of the segment FC, the same reasoning shows that that $\angle NMQ = \angle EFA$.

3. A parallel to the Newton-Gauss line

Theorem 2. The parallel from E to the Newton - Gauss line of the complete quadrilateral EAFDBC and the line EF are isogonal lines of angle BEC.

Proof. Since triangles EDF and NPM are similar, we have $\angle DEF = \angle PNM$. Let E' be the intersection of the side BC with the parallel of NM through E. Because PN ||BE and NM ||EE', $\angle BEF = \angle PNF$ and $\angle FNM = \angle E'EF$. Thus,

$$\angle CEE' = \angle DEF - \angle E'EF = \angle PNM - \angle FNM = \angle PNF = \angle BEF.$$

4. Two cyclic quadrilaterals determined the Newton-Gauss line

Let G and H be the orthogonal projections of the point F on the lines AB and CD respectively (see Figure 4).

Theorem 3. The quadrilaterals MPGN and MQHN are cyclic.

Proof. By Theorem 1, $\angle EFD = \angle PMN$. The points P and N are the circumcenters of the right triangles BFG and EFG, respectively. It follows that $\angle PGF = \angle PFG$ and $\angle FGN = \angle GFN$. Thus,

$$\angle PGN + \angle PMN = (\angle PGF + \angle FGN) + \angle PMN$$
$$= \angle PFG + \angle GFN + \angle EFD$$
$$= 180^{\circ}.$$

Therefore, MPGN is a cyclic quadrilateral. In the same way, the quadrilateral MQHN is also cyclic.

5. Two complete quadrilaterals with the same Newton-Gauss line

Extend the lines GF and HF to intersect EC and EB at I and J respectively (see Figure 5).

Theorem 4. The complete quadrilaterals EGFHJI and EAFDBC have the same Newton-Gauss line.

Proof. The two complete quadrilaterals have a common diagonal EF. Its midpoint N lies on the Newton-Gauss lines of both quadrilaterals. Note that N is equidistant from G and H since it is the circumcenter of the cyclic quadrilateral EGFH. We show that triangles MPG and HQM are congruent. From this, it follows that M

lies on the perpendicular bisector of GH. Therefore, the line MN contains the midpoint of GH, and is the Newton-Gauss line of EGFHJI.

Now, to show the congruence of the triangles MPG and HQM, first note that since M and P are the midpoints of BF and BC, PMQF is a parallelogram. From these, we conclude

(i) MP = QF = HQ, (ii) GP = PF = MQ, (iii) $\angle MPF = \angle FQM$. Note also that

$$\angle FPG = 2 \angle PBG = 2 \angle DBA = 2 \angle DCA = 2 \angle HCF = \angle HQF.$$

Together with (iii) above, this yields

 $\angle MPG = \angle MPF + \angle FPG = \angle FQM + \angle HQF = \angle HQF + \angle FQM = \angle HQM.$ Together with (i) and (ii), this proves the congruence of triangles MPG and HQM.

Remark. Because MPG and HQM are congruent triangles, their circumcircles, namely, (MPGN) and (MQHN) are congruent (see Figure 4).

Reference

[1] R. A. Johnson, A Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle, Houghton Mifflin, Boston, 1929.

Cătălin Barbu: Vasile Alecsandri College, Bacău, str. Iosif Cocea, nr. 12, sc. A, ap. 13, Romania *E-mail address*: kafka_mate@yahoo.com

Ion Pătrașcu: Frații Buzești College, Craiova, str. Ion Cantacuzino, nr. 15, bl S33, sc. 1, ap. 8, , Romania

E-mail address: patrascu_ion@yahoo.com