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Non-Euclidean Versions of
Some Classical Triangle Inequalities

Dragutin Svrtan and Darko Veljan

Abstract. In this paper we recall with short proofs of some classical triangle
inequalities, and prove corresponding non-Euclidean,i.e., spherical and hyper-
bolic versions of these inequalities. Among them are the well known Euler’s
inequality, Rouché’s inequality (also called “the fundamental triangle inequal-
ity”), Finsler–Hadwiger’s inequality, isoperimetric inequality and others.

1. Introduction

As it is well known, the Euclid’s Fifth Postulate (through any point in a plane
outside of a given line there is only one line parallel to thatline) has many equiv-
alent formulations. Recall some of them: sum of the angles ofa triangle isπ (or
180◦), there are similar (non-congruent) triangles, there is the area function (with
usual properties), every triangle has unique circumcircle, Pythagoras’ theorem and
its equivalent theorems such as the law of cosines, the law ofsines, Heron’s for-
mula and many more.

The negations of the Fifth Postulate lead to spherical and hyperbolical geome-
tries. So, negations of some equalities characteristic forthe Euclidean geometry
lead to inequalities specific for either spherical or hyperbolic geometry. For exam-
ple, for a triangle in the Euclidean plane we have the law of cosines

c2 = a2 + b2 − 2ab cos C,

where we stick with standard notations (that isa, b andc are the side lengths and
A, B andC are the angles opposite, respectively to the sidesa, b andc).

It can be proved that the following Pythagoras’ inequalities hold. In spherical
geometry one has the inequality

c2 < a2 + b2 − 2ab cos C,

and in the hyperbolic geometry the opposite inequality

c2 > a2 + b2 − 2ab cos C.

In fact, in the hyperbolic case we have

a2 + b2 − 2ab cos C < c2 < a2 + b2 + 2ab cos(A + B).

See [13] for details.
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On the other hand, there are plenty of interesting inequalities in (ordinary or
Euclidean) triangle geometry relating various triangle elements. In this paper we
prove some of their counterparts in non-Euclidean cases.

Let us fix (mostly standard) notations. For a given triangle△ABC, let a, b, c
denote the side lengths (a opposite to the vertexA, etc.),A,B,C the corresponding
angles,2s = a+ b+ c the perimeter,S its area,R the circumradius,r the inradius,
andra, rb, rc the radii of excircles.

We use the symbols of cyclic sums and products such as:
∑

f(a) = f(a) + f(b) + f(c),
∑

f(A) = f(A) + f(B) + f(C),
∑

f(a, b) = f(a, b) + f(b, c) + f(c, a),
∏

f(a) = f(a)f(b)f(c),
∏

f(x) = f(x)f(y)f(z).

2. Euler’s inequality

In 1765, Euler proved that the triangle’s circumradiusR is at least twice as big
as its inradiusr, i.e.,

R ≥ 2r,

with equality if and only if the triangle is equilateral.Here is a short proof.
R ≥ 2r ⇔ abc

4S
≥ 2S

s
⇔ sabc ≥ 8S2 = 8s (s− a)︸ ︷︷ ︸

=x

(s− b)︸ ︷︷ ︸
=y

(s − c)︸ ︷︷ ︸
=z

⇔
∏

(s− x) ≥

8
∏

x⇔ s
∑

xy−
∏

x ≥ 8
∏

x⇔
∑

x·
∑

xy ≥ 9
∏

x⇔
∑

x2y ≥ 6
∏

x
A−G⇐⇒∑

x2y ≥ 6(
∏

x2y)
1

6 = 6
∏

x. 1 The equality case is clear.
The inequality8S2 ≤ sabc (equivalent to Euler’s) can also be easily obtained

as a consequence (viaA−G) of the ”isoperimetric triangle inequality”:

S ≤
√

3

4
(abc)

2

3 ,

which we shall prove in§4.
The Euler inequality has been improved and generalized (e.g., for simplices)

many times. A recent and so far the best improvement of Euler’s inequality is
given by (see [11], [14]) (and it improves [17]):

R

r
≥ abc + a3 + b3 + c3

2abc
≥ a

b
+

b

c
+

c

a
− 1 ≥ 2

3

(
a

b
+

b

c
+

c

a

)
≥ 2.

Now we turn to the non-Euclidean versions of Euler’s inequality. Let k be the
(constant) curvature of the hyperbolic plane in which a hyperbolic triangle△ABC
sits. Letδ = π− (A + B + C) be the triangle’s defect. The area of the hyperbolic
triangle is given byS = k2δ.

1Yet another way to prove the last inequality:x
2
y + yz

2 = y(x2 + z
2) ≥ 2xyz, and add such

three similar inequalities.
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Theorem 1 (Hyperbolic Euler’s inequality). Suppose a hyperbolic triangle has a
circumcircle and letR be its radius. Letr be the radius of the triangle’s incircle.
Then

tanh
R

k
≥ 2 tanh

r

k
. (1)

The equality is achieved for an equilateral triangle for anyfixed defect.

Proof. Recall that the radiusR of the circumcircle of a hyperbolic triangle (if it
exists) is given by

tanh
R

k
=

√
sin δ

2∏
sin(A + δ

2)
=

2
∏

sinh a
2k√

sinh s
k

∏
sinh s−a

k

(2)

Also, the radius of the incircle (radius of the inscribed circle) r of the hyperbolic
triangle is given by

tanh
r

k
=

√∏
sinh s−a

k

sinh s
k

(3)

See,e.g., [5], [6], [7], [8], [9]. We can takek = 1 in the above formulas. Then it is
easy to see that (1) is equivalent to

∏
sinh(s− a) ≤

∏
sinh

a

2
,

or, by putting (as in the Euclidean case)x = s− a, y = s− b, z = s− c, to
∏

sinhx ≤
∏

sinh
s− x

2
. (4)

By writing 2x instead ofx etc., (4) becomes
∏

sinh 2x ≤
∏

sinh(s− x) =
∏

sinh(y + z).

Now by the double formula and addition formula forsinh, after multiplications we
get

8
∏

sinhx·
∏

cosh x ≤
∑

sinh2 x sinh y cosh y cosh2 z+2
∏

sinh x
∏

cosh x.

Hence,

6
∏

sinhx ·
∏

cosh x ≤
∑

sinh2 x sinh y cosh y cosh2 z. (5)

However, (5) is simply theA − G inequality for the six (nonnegative) numbers
sinhx, cosh x, . . . , cosh z. The equality case follows easily. This proves the hy-
perbolic Euler’s inequality. �

Note also that (5) can be proved alternatively in the following way, using three
times the simplestA−G inequality:

sinh2 x sinh y cosh y cosh2 z + cosh2 x sinh y cosh y sinh2 z

= sinh y cosh y[(sinh x cosh z)2 + (cosh x sinh z)2]

≥ 2 sinh y cosh y sinhx cosh z cosh x sinh z.
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In the spherical case the analogous formula to (2) and (3) andsimilar reasoning
to the previous proof boils down to proving analogous inequality to (4):

∏
sin x ≤

∏
sin

s− x

2
(6)

But (6) follows in the same manner as above. So, we have the following.

Theorem 2(Spherical Euler’s inequality). The circumradiusR and the inradiusr
of a spherical triangle on a sphere of radiusρ are related by

tan
R

ρ
≥ 2 tan

r

ρ
. (7)

The equality is achieved for an equilateral triangle for anyfixed spherical excess
ε = (A + B + C)− π.

Remark.At present, we do not know how to improve these non-EuclideanEuler
inequalities in the sense of the previous discussions in theEuclidean case. It would
also be of interest to have the non-Euclidean analogues of the Euler inequality
R ≥ 3r for a tetrahedron (and simplices in higher dimensions).

3. Finsler–Hadwiger’s inequality

In 1938, Finsler and Hadwiger [3] proved the following sharpupper bound for
the areaS in terms of side lengthsa, b, c of a Euclidean triangle (improving upon
Weitzenboeck’s inequality):

∑
a2 ≥

∑
(b− c)2 + 4

√
3S. (8)

Here are two short proofs of (8). First proof ([10]): Start with the law of cosines
a2 = b2 +c2−2bc cos A, or equivalentlya2 = (b−c)2 +2bc(1−cos A). From the
area formula2S = bc sin A, it then followsa2 = (b− c)2 + 4S tan A

2 . By adding
all three such equalities we obtain

∑
a2 =

∑
(b− c)2 + 4S

∑
tan

A

2
.

By applying Jensen’s inequality to the sum
∑

tan A
2 (i.e., using convexity oftan x

2 ,
0 < x < π) and the equalityA + B + C = π, (8) follows at once.

Second proof ([8]): Putx = s− a, y = s− b, z = s− c. Then
∑

[a2 − (b− c)2] = 4
∑

xy.

On the other hand, Heron’s formula can be written as4
√

3S = 4
√

3
∑

x
∏

x.

Then (8) is equivalent to
√

3
∑

x ·
∏

x ≤
∑

xy, and this is equivalent to
∑

x2yz ≤
∑

(xy)2, which in turn is equivalent to
∑

[x(y − z)]2 ≥ 0, and
this is obvious.

Remark.The seemingly weaker Weitzenboeck’s inequality
∑

a2 ≥ 4
√

3S

is, in fact, equivalent to (8) (see [17]).
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There are many ways to rewrite Finsler–Hadwiger’s inequality. For example,
since ∑

[a2 − (b− c)2] = 4r(r + 4R),

it follows that (8) is equivalent to

r(r + 4R) ≥
√

3S,

or, sinceS = rs, it is equivalent to

s
√

3 ≤ r + 4R.

There are also many generalizations, improvements and strengthening of (8) (see
[4]). Let us mention here only two recent ones. One is (see [1]):

∑
(b + c) ·

∑ 1

b + c
≤ 10− r

s2
[s
√

3 + 2(r + 4R)],

and the other one is (see [15])
∑

a2 ≥ 4
√

3S +
∑

(a− b)2 +
∑

[
√

a(b + c− a)−
√

b(c + a− b)]2.

The opposite inequality of (8) is (see [17]):
∑

a2 ≤ 4
√

3S + 3
∑

(b− c)2.

Note that all these inequalities are sharp in the sense that equalities hold if and only
if the triangles are equilateral (regular).

For the hyperbolic case, we need first an analogue of the area formula2S =
bc sin A. It is not common in the literature, so for the reader’s convenience we
provide its short proof (seee.g., [5]).

Lemma 3 (Cagnolli’s first formula). The areaS = k2δ of a hyperbolic triangle
ABC is given by

sin
S

2k2
=

sinh a
2k

sinh b
2k

sinC

cosh c
2k

(9)

Proof. From the well known second (or “polar”) law of cosines in elementary hy-
perbolic geometry

cosh
a

k
=

cos A + cos B cos C

sin B sin C
,

we get

cosh
a

2k
=

√
sin
(
B + δ

2

)
sin
(
C + δ

2

)

sin B sinC
, sinh

a

2k
=

√
sin
(

δ
2

)
sin
(
A + δ

2

)

sin B sin C
.

(10)
By multiplying two expressionssinh a

2k
· sinh b

2k
, and using (10) we get

sinh
a

2k
· sinh

b

2k
=

sin δ
2

sin C
cosh

c

2k
.

This implies (9). �
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Theorem 4(Hyperbolic Finsler–Hadwiger’s inequality). For a hyperbolic triangle
ABC we have:

∑
cosh

a

k
≥
∑

cosh
b− c

k
+ 12 sin

S

2k2

∏
cosh

a

2k
tan

π − δ

6
(11)

The equality in(11) holds if and only if for any fixed defectδ, the triangle is equi-
lateral.

Proof. The idea is to try to mimic (as much as possible) the first proofof (8). Start
with the hyperbolic law of cosines

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cos A.

By adding and subtractingsinh b
k

sinh c
k
, we obtain

cosh
a

k
= cosh

b− c

k
+ sinh

b

k
sinh

c

k
− sinh

b

k
sinh

c

k
cos A

= cosh
b− c

k
+ sinh

b

k
sinh

c

k
· 2 sin2 A

2

= cosh
b− c

k
+ 4 sinh

b

2k
sinh

c

2k
cosh

b

2k
cosh

c

2k
· 2 sin2 A

2
.

By Cagnolli’s formula (9), substitute here the partsinh b
2k

sinh c
2k

to obtain

cosh
a

k
= cosh

b− c

k
+ 4cosh

a

2k
cosh

b

2k
cosh

c

2k
sin

S

2k2
tan

A

2
. (12)

Apply to both sides of (12) the cyclic sum operator
∑

, and (again) apply Jensen’s
inequality (i.e., convexity oftan x

2 ):

1

3

∑
tan

A

2
≥ tan

(
1

3

∑ A

2

)
= tan

π − δ

6
.

This implies (11). The equality claim is also clear from the above argument. �

The corresponding spherical Finsler–Hadwiger inequalitycan be obtained mu-
tatis mutandis from the hyperbolic case. The areaS of a spherical triangleABC
on a sphere of radiusρ is given byS = ρ2ε, whereε = A + B + C − π is the
triangle’s excess. The spherical Cagnolli formula (like 9)reads as follows:

sin
S

2ρ2
=

sin a
2ρ

sin b
2ρ

sin C

cos c
2ρ

. (13)

So, starting with the spherical law of cosines, using (13) and Jensen’s inequality,
one can show the following.

Theorem 5 (Spherical Finsler–Hadwiger’s inequality). For a spherical triangle
ABC on a sphere of radiusρ we have
∑

cos
a

ρ
≥
∑

cos
b− c

ρ
+ 12 sin

S

2ρ2
cos

a

2ρ
cos

b

2ρ
cos

c

2ρ
tan

ε− π

6
. (14)

The equality in(14) holds if and only if for any fixedε, the triangle is equilateral.
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Remark.Note that both hyperbolic and spherical inequalities (11) and (14) reduce
to Finsler–Hadwiger’s inequality (8) whenk → ∞ in (11), orρ → ∞ in (14).
This is immediate from the power sum expansions of trigonometric or hyperbolic
functions.

4. Isoperimetric triangle inequalities

In the Euclidean case, if we multiply all three area formulas, one of which is
S = 1

2bc sin A, we obtain a symmetric formula for the triangle area

S3 =
1

8
(abc)2 sin A sin B sin B. (15)

By using theA−G inequality and the concavity of the functionsin x on [0, π] (or,
Jensen’s inequality again), we have:

sin A sin B sin C ≤
(

sin A + sin B + sinC

3

)3

≤
(

sin
A + B + C

3

)3

= sin3 π

3
=

3
√

3

8
.

This and (15) imply the so called “isoperimetric inequality” for a triangle:

S3 ≤ 3
√

3

64
(abc)2, or in a more appropriate form

S ≤
√

3

4
(abc)

2

3 . (16)

Inequality (16) andA−G imply thatS ≤
√

3
36 (a + b + c)2, and this is why we call

it the “isoperimetric inequality”.
By Heron’s formula we have(4S)2 = 2sd3(a, b, c), where2s = a + b + c and

d3(a, b, c) := (a+ b− c)(b+ c− a)(c+ a− b). By [11, Cor. 6.2], we have a sharp
inequality

d3(a, b, c) ≤ (2abc)2

a3 + b3 + c3 + abc
. (17)

From Heron’s formula and (17) it easily follows

S ≤ 1

2
abc

√
a + b + c

a3 + b3 + c3 + abc
. (18)

We claim that (18) improves the “isoperimetric inequality”(16). Namely, we claim

1

2
abc

√
a + b + c

a3 + b3 + c3 + abc
≤
√

3

4
3
√

(abc)2. (19)

But (19) is equivalent to
(

a3 + b3 + c3 + abc

4

)3

≥ (abc)2
(

a + b + c

3

)3

. (20)
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To prove (20) we can takeabc = 1 and prove

a3 + b3 + c3 + 1

4
≥ a + b + c

3
. (21)

Instead, we prove an even stronger inequality

a3 + b3 + c3 + 1

4
≥ 3

√
a3 + b3 + c3

3
. (22)

Inequality (22) is stronger than (21) because the means are increasing,i.e.,

Mp(a, b, c) ≤Mq(a, b, c) for a, b, c > 0 and0 ≤ p ≤ q,

whereMp(a, b, c) =
[

(ap+bp+cp)
3

] 1

p
. To prove (22), denotex = a3 + b3 + c3 and

consider the function

f(x) =

(
x + 1

4

)3

− x

3
.

Since (byA − G) x
3 ≥ abc = 1, i.e., x ≥ 3, we considerf(x) only for x ≥ 3.

Sincef(3) = 0 and the derivativef ′(x) ≥ 0 for x ≥ 3, we concludef(x) ≥ 0 for
x ≥ 3 and hence prove (19).

Putting all together, we finally have a chain of inequalitiesfor the triangle area
S symmetrically expressed in terms of the side lengthsa, b, c.

Theorem 6(Improved Euclidean isoperimetric triangle inequalities).

S ≤ 1

2
abc

√
a + b + c

a3 + b3 + c3 + abc
≤ 1

4
6

√
3(a + b + c)3(abc)4

a3 + b3 + c3
≤
√

3

4
(abc)

2

3

(23)

We shall now make an analogue of the “isoperimetric inequality” (16) in the
hyperbolic case.

Start with Cagnolli’s formula (9) and multiply all such three formulas to get
(sinceS = δk2):

sin3 δ

2
=
∏

sinh
a

2k

∏
tanh

a

2k

∏
sin A. (24)

As in the Euclidean case we have
∏

sin A ≤
(

sin A + sin B + sinC

3

)3

≤
(

sin
A + B + C

3

)3

=

(
sin

π − δ

3

)3

So, this inequality together with (24) implies the following.

Theorem 7. The areaS = δk2 of a hyperbolic triangle with side lengthsa, b, c
satisfies the following inequality

(
sin δ

2

sin π−δ
3

)3

≤
∏

sinh
a

2k
·
∏

tanh
a

2k
. (25)

For an equilateral triangle(a = b = c,A = B = C) and any fixed defectδ, the
inequality(25) becomes an equality(by Cagnolli’s formula (9)).
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The corresponding isoperimetric inequality can be obtained for a spherical tri-
angle:

(
sin ε

2

sin ε−π
3

)3

≤
∏

sin
a

2ρ
·
∏

tan
a

2ρ
. (26)

Remark. In the 3–dimensional case we have a well known upper bound of the
volumeV of a (Euclidean) tetrahedron in terms of product of lengths of its edges
(like (16)) :

V ≤
√

2

12

√
abcdef

with equality if and only if the tetrahedron is regular (and similarly in any dimen-
sion); see [12].

Non–Euclidean tetrahedra (and simplices) lack good volumeformulas of Heron’s
type, except the Cayley–Menger determinant formulas in allthree geometries. Ka-
han’s formula2 for volume of a Euclidean tetrahedron is known only for the Eu-
clidean case. There are some volume formulas for tetrahedrain all three geometries
now available on Internet, but they are rather involved. We don’t know at present
how to use them to obtain a good and simple enough upper bound.

In dimension2, Heron’s formula in all three geometries can very easily be de-
duced. A very short proof of Heron’s formula is as follows. Start with the triangle
area4S = 2ab sin C and the law of cosinesa2 + b2− c2 = 2ab cos C. Now square
and add them. The result is a form of the Heron’s formula(4S)2+(a2+b2−c2)2 =
(2ab)2. In a similar way one can get triangle area formulas in the non-Euclidean
case by starting with Cagnolli’s formula ((9) or (13)) and the appropriate law of
cosines.

The result in the hyperbolic geometry is the formula

(
4 sin

δ

2

∏
cosh

a

2k

)2

+

(
cosh

a

k
cosh

b

k
− cosh

c

k

)2

=

(
sinh

a

k
sinh

b

k

)2

or
(

4 sin
δ

2

∏
cosh

a

2k

)2

+
∑

cosh2 a

k
= 1 + 2

∏
cosh

a

k
.

Remark. In order to improve the non-Euclidean2–dimensional isoperimetric in-
equality analogous to (23) we would need an analogue of the function d3(a, b, c)
and a corresponding inequality like (17). This inequality was proved in [11] as a
consequence of the inequalityd3(a

2, b2, c2) ≤ d2
3(a, b, c), and this follows from

an identity expressing the differenced2
3(a, b, c) − d3(a

2, b2, c2) as a sum of four
squares. But at present we do not know the right hyperbolic analoguedH

3 (a, b, c)
or spherical analoguedS

3 (a, b, c) of the functiond3(a, b, c).

2see www.cs.berkeley.edu/w̃kahan/VtetLang.pdf, 2001.



206 D. Svrtan and D. Veljan

5. Rouch́e’s inequality and Blundon’s inequality

The following inequality is a necessary and sufficient condition for the existence
of an (Euclidean) triangle with elementsR, r ands (see [4]):

2R2 + 10Rr − r2 − 2(R− 2r)
√

R2 − 2Rr ≤ s2

≤ 2R2 + 10Rr − r2 + 2(R− 2r)
√

R2 − 2Rr. (27)

This inequality (sometimes called “the fundamental triangle inequality”) was
first proved byÉ. Rouché in 1851, answering a question of Ramus. It was recently
improved in [16].

A short proof of (27) is as follows. Letra, rb, rc be the excircle radii of the
triangleABC. It is well known (and easy to check) that

∑
ra = 4R+r,

∑
rarb =

s2 andrarbrc = rs2. Hencera, rb, rc are the roots of the cubic

x3 − (4R + r)x2 + s2x− rs2 = 0. (28)

Now consider the discriminant of this cubic,i.e., D =
∏

(ra − rb)
2.

In terms of the elementary symmetric functionse1, e2, e3 in the variablesra, rb, rc,

D = e2
1e

2
2 − 4e3

2 − 4e3
1e3 + 18e1e2e3 − 27e2

3. (29)

Sincee1 =
∑

ra = 4R + r, e2 =
∑

rarb = s2, e3 =
∏

ra = rs2, we have

D = s2[(4R + r)2s2 − 4s4 − 4(4R + r)3r + 18(4R + r)rs2 − 27r2s2].

From D ≥ 0, (27) follows easily. In fact, the inequalityD ≥ 0 reduces to the
quadratic inequality ins2:

s4 − 2(2R2 + 10Rr − r2)s2 + (4R + r)3r ≤ 0. (30)

The “fundamental” inequality (27) implies a sharp linear upper bound ofs in terms
of r andR, known as Blundon’s inequality [2]:

s ≤ (3
√

3− 4)r + 2R. (31)

To prove (31), it is enough to prove that

2R2 + 10Rr − r2 + 2(R− 2r)
√

R2 − 2Rr ≤ [(3
√

3− 4)r + 2R]2.

A little computation shows that this is equivalent to the following cubic inequality
(with x = R/r):

f(x) := 4(3
√

3−5)x3−3(60
√

3−103)x2+12(48
√

3−83)x+4(229−132
√

3) ≥ 0.

By Euler’s inequalityx ≥ 2, f(2) = 0 and hence clearlyf(x) ≥ 0 for x ≥ 2.
Yet another (standard) way to prove Blundon’s inequality (31) is to use the con-

vexity of the biquadratic function on the left hand side of the inequality (30).
Blundon’s inequality is also sharp in the sense that equality holds in (31) if and

only if the triangle is equilateral. (Recall by the way that atriangle is a right triangle
if and only if s = r + 2R).

Let us turn to non-Euclidean versions of the “fundamental triangle inequality”.
Suppose a hyperbolic triangle has a circumscribed circle. As before, denote

by R, r, andra, rb, rc, respectively, the radii of the circumscribed, inscribed and
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escribed circles of the triangle. Then by (2) and (3) we knowR andr, while ra

(and similarlyrb andrc) is given by

tanh
ra

k
= sinh

s

k
tan

A

2
, (32)

and by using

tan
A

2
=

√
sinh s−b

k
sinh s−c

k

sinh s
k

sinh s−a
k

. (33)

The combination of these two expressesra in terms ofa, b, andc. In order to obtain
for the hyperbolic triangle the analogue of the cubic equation (28) whose roots are
x1 = tanh ra

k
, x2 = tanh rb

k
, x3 = tanh rc

k
, we have to compute the elementary

symmetric functionse1, e2, e3 in the variablesx1, x2, x3. We compute first (the
easiest)e3. Equations (32), (33) and (3) yield

e3 =
∏

tanh
ra

k
= sinh2 s

k
tanh

r

k
. (34)

Next, by (32) and (33):

e2 =
∑

tanh
ra

k
·tanh

rb

k
= sinh2 s

k

∑
tan

A

2
tan

B

2
= sinh

s

k

∑
sinh

s− a

k
.

Applying the identity

sinh(x+y+z)−(sinh x+sinh y+sinh z) = 4 sinh
y + z

2
sinh

z + x

2
sinh

x + y

2
,

with x = s−a
2 , y = s−b

2 , z = s−c
2 , we obtain

sinh
s

k
−
∑

sinh
s− a

k
= 4

∏
sinh

a

2k
. (35)

And now from (2) and (3) we get

e2 = sinh2 s

k

(
1− 2 tanh

r

k
tanh

R

k

)
. (36)

Finally, to computee1, we use the identity

tan(x + y + z) =
tan x + tan y + tan z − tan x tan y tan z

1− tan x tan y − tan y tan z − tan z tan x
. (37)

By (32),e1 = sinh s
k

∑
tan A

2 . Now from (37):

∑
tan

A

2
= tan

A + B + C

2

(
1−

∑
tan

A

2
tan

B

2

)
+
∏

tan
A

2
,

tan
A + B + C

2
= tan

π − δ

2
= cot

δ

2
.

From (3), we have
∏

tan
A

2
=

tanh r
k

sinh s
k

.

By (33), (35), and (2), (3) it follows easily

1−
∑

tan
A

2
tan

B

2
= 2 tanh

r

k
tanh

R

k
sinh

s

k
.
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Finally, putting all together yields

e1 = tanh
r

k

(
1 + 2 tanh

R

k
sinh

s

k
cot

δ

2

)
. (38)

Equations (34), (36) and (38) yield viax3−e1x
2+e2x−e3 = 0 the cubic equation

x3 − tanh
r

k

(
1 + 2 tanh

R

k
sinh

s

k
cot

δ

2

)
x2

+ sinh2 s

k

(
1− 2 tanh

r

k
tanh

R

k

)
x− sinh2 s

k
tanh

r

k
= 0. (39)

This cubic (with rootstanh ra

k
etc.) reduces to the cubic (28) by lettingk → ∞.

This follows from the identity

sinh s
k
· tanh r

k

sin δ
2

= 2
∏

cosh
a

2k
.

If k →∞, then the right hand side tends to2 and therefore the coefficient byx2 in
(39) goes tor + 4R which appears in (28); similarly for the other coefficients.

Consider the discriminant of (39)

D =
∏(

tanh
ra

k
− tanh

rb

k

)2
.

Now, by applying (29) and (34), (36) and (38) we obtain the quartic polynomial (in
fact degree6) in sinh s

k
for an expressionD. By the following legend

r ←→ tanh r
k

δ←→ cot δ
2

R←→ tanh R
k

s←→ sinh s
k

(40)

we can writeD as follows (after some computation); note that it has almostdouble
number of terms than the corresponding Euclidean discriminant

D = s2[(r2R2δ2 + 4r4R4δ2 − 4r3R3δ2 − 1 + 6rR− 12r2R2 + 8r3R3)s4

+r2Rδ(1− 4rR + 4r2R2δ − 8r2R2δ2 + 9δ + 18rRδ)s3

+r2(r2R2 − 10rR − 12r2R2δ2 − 2)s2

−6r4Rδs − r4].
(41)

By definition D ≥ 0, so the quartic polynomial ins (in fact in sinh s
k
), i.e., the

polynomial in brackets in (41) is≥ 0.
So the hyperbolic analogue of the “fundamental triangle inequality” (27), or

rather degree–four polynomial inequality (30) is the quartic (in s) polynomial in-
equality D

s2 ≥ 0.

Theorem 8 (Hyperbolic “fundamental triangle inequality”). For a hyperbolic tri-
angle that has a circumcircle of radiusR, incircle of radiusr, semiperimeters,
and excessδ, we have

D

s2
≥ 0, (42)



Non-Euclidean versions of some classical triangle inequalities 209

whereD is given by(41) together with the legend(40). Whenk →∞, (42) reduces
to (30).

Blundon’s hyperbolic inequality can also be derived as a corollary of Theorem
8.

The spherical version of the “fundamental inequality” as well as the correspond-
ing spherical Blundon’s inequality can also be obtained, but we omit them here.

In conclusion, we may say that all these triangle inequalities give more informa-
tion and better insight to the geometry of 2– and 3– manifolds.
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[4] D. S. Mitrinović, J. E. Pečarić, V. Volenec,Recent Advances in Geometric Inequalities, Kluver

Acad. Publ., Amsterdam, 1989.
[5] N. M. Nestorovich,Geometricheskie postroenija v ploskosti Lobachevskogo, (in Russian) M.–

L.:GITTL, Leningrad, 1951.
[6] V. V. Prasolov, V. M. Tikhomirov,Geometry, Translations of Mathematical Monographs, AMS,

Providence, R.I., 2001.
[7] V. V. Prasolov,Geometrija Lobachevskogo, (in Russian) MCNMO, Moscow, 2004.
[8] V. V. Prasolov,Problems in Planimetry, (in Russian) MCNMO, OAO, “Moscow textbooks”,

Moscow, 2006.
[9] J. G. Ratcliffe,Foundations of Hyperbolic Manifolds, GTM, Springer Verlag, New York, 1994.

[10] J. M. Steele,The Cauchy–Schwarz Master Class, MAA, Cambridge University Press, Cam-
bridge, 2004.

[11] D. Svrtan, I. Urbiha, Verification and strengthening ofthe Atiyah–Sutcliffe conjectures for the
sine theorem and several types of configurations, arXiv:math/0609174

[12] D. Veljan, Inequalities for volumes of simplices and determinants,Lin. Alg. and its Appl., 219
(1995) 79–91.

[13] D. Veljan, Geometry and convexity ofcos
√

x, Amer. Math. Monthly, 111 (2004) 592–595.
[14] D. Veljan, S. Wu, Parametrized Klamkin’s inequality and improved Euler’s inequality,Math.

Inequalities Appl., 11 (2008) 729–737.
[15] Sh.–H. Wu, Generalizations and sharpness of Finsler–Hadwiger’s inequality and its applica-

tions,Math. Inequalities Appl., 9 (2006) 421–426.
[16] S. Wu, A sharpened version of the fundamental triangle inequality,Math. Inequalities Appl., 11

(2008) 477–482.
[17] Sh.–H. Wu, Zh.–H. Zhang, and Zh.–G. Xiao, On Weitzenboeck’s inequality and its generaliza-

tions,RGMIA Research Report Collection, 6(4), Article 14, 2003.

Dragutin Svrtan: Department of Mathematics, University ofZagreb,, Bijenička cesta 30, 10000
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