The Maltitude Construction in a Convex Noncyclic Quadrilateral

Maria Flavia Mammana

Abstract. This note is linked to a recent paper of O. Radko and E. Tsukerman. We consider the maltitude construction in a convex noncyclic quadrilateral and we determine a point that can be viewed as a generalization of the anticenter.

1. Introduction

In [5] it is investigated the perpendicular bisector construction in a noncyclic quadrilateral \(Q = Q^{(0)} = ABCD \). The perpendicular bisectors of the sides of \(Q \) determine a noncyclic quadrilateral \(Q^{(1)} = A_1B_1C_1D_1 \), whose vertices are the centers of the triad circles, i.e., the circles passing through three vertices of \(Q \). This process can be iterated to obtain a sequence of noncyclic quadrilaterals: \(Q^{(0)}, Q^{(1)}, Q^{(2)}, \ldots \).

All even generation quadrilaterals are similar, and all odd generation quadrilaterals are similar. Further, there is a point \(W \) that serves as the center of the spiral similarity for any pair of quadrilaterals \(Q^{(n)}, Q^{(n+2)} \). If \(Q \) is a convex noncyclic quadrilateral, the quadrilaterals \(Q^{(n)}, Q^{(n+2)} \) are homotetic, the ratio of similarity is a negative constant and the quadrilaterals in the iterated perpendicular bisectors construction converge to \(W \). In a convex noncyclic quadrilateral the limit point \(W \) can be viewed as a generalization of the circumcenter.

Publication Date: November 5, 2012. Communicating Editor: Paul Yiu.
2. Characteristic and affinity

In [3] it is proved that if \(Q \) is a convex quadrilateral, then \(Q^{(1)} \) is affine to \(Q \). It follows that, for any \(n \), \(Q^{(n+1)} \) is affine to \(Q^{(n)} \).

For the convenience of the reader, we give a proof of this property. In [2] it is defined the characteristic of a quadrilateral \(Q \) as follows. Let \(E \) be the common point of the diagonals \(AC \) and \(BD \) of \(Q \). For the ratios \(\frac{AE}{EC} \) and \(\frac{CE}{EA} \), let \(h \) be the one not greater than 1. Also for the ratios \(\frac{BE}{ED} \) and \(\frac{DE}{EB} \), let \(k \) be the one not greater than 1. The pair \(\{h, k\} \) is the characteristic of \(Q \). In [2] it is proved that two convex quadrilaterals are affine if and only if they have the same characteristic. We consider now the quadrilateral \(Q^{(1)} = A_1B_1C_1D_1 \). The line \(A_1C_1 \) is perpendicular to the radical axis \(BD \) of the circle passing through \(B, C, D \) and the circle passing through \(A, B, D \). Similarly, the line \(B_1D_1 \) is perpendicular to the line \(AC \). Further, the lines \(A_1B_1, B_1C_1, C_1D_1, D_1A_1 \) are perpendicular to the lines \(DC, AD, BA, CB \), respectively. It follows that, if \(E_1 \) is the common point of diagonals \(A_1C_1 \) and \(B_1D_1 \) of \(Q^{(1)} \), the triangle pairs \(ABE \) and \(C_1D_1E_1 \), \(BCE \) and \(A_1D_1E_1 \), \(CDE \) and \(A_1B_1E_1 \) are similar. Therefore we have

\[
\frac{AE}{BE} = \frac{E_1D_1}{E_1C_1}, \quad \frac{BE}{EC} = \frac{A_1E_1}{E_1D_1}, \quad \frac{EC}{ED} = \frac{B_1E_1}{A_1E_1},
\]

from which

\[
\frac{AE}{EC} = \frac{A_1E_1}{E_1C_1}, \quad \frac{BE}{ED} = \frac{B_1E_1}{E_1D_1}.
\]

Thus, \(Q \) and \(Q^{(1)} \) have the same characteristic and are affine.

3. Maltitudes

In [3] it is considered also the quadrilateral \(Q_m \) determined by the maltitudes of a convex noncyclic quadrilateral \(Q \). A maltitude of \(Q \) is the perpendicular line
The maltitude construction in a convex noncyclic quadrilateral through the midpoint of a side to the opposite side [1]. In [4] it is proved that the maltitudes are concurrent in a point, called anticenter, if and only if Q is cyclic.

In [3] it is proved that the quadrilateral $Q_m = A'_1B'_1C'_1D'_1$ is the symmetric of $Q^{(1)}$ with respect to the centroid G of Q. This property follows from the fact that the maltitudes of Q are transformed into the perpendicular bisectors of Q in the half-turn about G.

The existence of the point W, as the limit point in the iterated perpendicular bisectors construction, implies that the symmetric W' of W with respect to G is the limit point in the iterated maltitudes construction. Furthermore, in a convex noncyclic quadrilateral the limit point W' can be viewed as a generalization of the anticenter.

We observe that in a cyclic quadrilateral the circumcenter and the anticenter are symmetric with respect to the centroid. If Q is a convex noncyclic quadrilateral, in analogy with the case of a cyclic quadrilateral, we call the line containing G, W and W' the Euler line of Q.

References

Maria Flavia Mammana: Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 5, 95125, Catania, Italy

E-mail address: fmammana@dmi.unict.it