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Generalization and Extension of the Wallace Theorem

Gotthard Weise

Abstract. Inthe Wallace theorem we replace the projection direst{aititudes
of the reference triangle) by all permutations of a geneir@ction triple, and
regard simultaneously the projections of a pditb each sideline. Introducing a
pair of Wallace point@and a pair ofVallace triangleswe present their properties
and some connections to the Steiner ellipses.

1. Introduction

Most people interested in triangle geometry know the Wal&imson Theorem
(see [2], [3] or [4]):
In the euclidean plane ba BC' a triangle andP a point not on
the sidelines. Then the feet of the perpendiculars fi@rto the
sidelines are collineaMV{allace-Simson lineif and only if P is a
point on the circumcircle oA BC.

This theorem is one of the gems of triangle geometry. For rtiane two centuries
mathematicians are fascinated about its simplicity andityeand they reflected
on generalizations or extensions up to the present time.

O. Giering [1] showed that not only the collinearity of theg pedals, but also
the collinearities of other intersections of the projeatlmes (in direction of the
altitudes) with the sidelines of the triangle are interagin this respect.

In a paper of M. de Guzman [2] it is shown that one can takesats@altitude
directions a general tripley, 3, +) of projection directions which are assigned to
the oriented side tripl¢a, b, c). One gets instead the circumcircle a circumconic
for which it is easy to construct three points (apart frdmB, C') and the center.

In this paper we aim at continuing some ideas of the aboveiqailins. We
consider the permutations of a triple of projection direas simultaneously, and
the concept§Vallace pointsandWallace trianglesyield new interesting insights.

2. Notations

First of all, we recall some concepts and connections of thodidean triangle
geometry. Detailed information can be found, for instamedhe books of R. A.
Johnson [4] and P. Yiu [7], or in papers of S. Sigur [5].

Publication Date: January 31, 2012. Communicating EdRawl Yiu.



2 G. Weise

Let A = ABC be a triangle with the verticed, B, C, the sidess, b, ¢, and
the centroid5. For the representation of geometric elements we use hameogs
barycentric coordinates.

SupposeP = (u : v : w) is a general point. Reflecting the tracBs P, F.
of P in the midpointsG,, G, G. of the sides, respectively, then the points of
reflectionP?, P?, P? are the traces of thésptomi9 conjugateP® = (1 : 1. 1)
of P.

The line[2 : 1 : L]is thetrilinear polar (tripolar) £+ £+ 2 = 0 of P, the line
[u : v : w] is thedual (the tripolar of the conjugate) a? andCp : % + st s =
0 is a circumconic ofA with perspectorP (P-circumconi¢g. A perspector of a
circumconicC is the perspective center &f and the triangle formed by the tangents
of CatA, B, C. The centetM p of Cp has coordinates

(u(v+w—u):v(w+u—v):wu+v—w)). 1)

The point by point conjugation afp yields the dual line ofP. The duals of all
points ofCp form a family of lines whose envelope is the inconic assedab the
circumconicCp.
The points of the infinite liné,, satisfy the equatiom + y + z = 0.
Themedialoperationm and thedilated (antimediallpperationd carry a pointP
to the imagesnP = (v+w:w+u:u+v)anddP = (v4+w—u:w+u—v:
u+ v — w), respectively, which both lie on the lin@P:

P G mP dP
2 1 3

Figure 1. Medial and dilated operation

The point(u : v : w) forms together with the point® : w : u) and(w : u : v)
aBrocardian triple[6]; every two of these points are the right-right Brocardand
the left-left Brocardian, respectively, of the third point

The Steiner circumellips€s of A has the equation

yz +zx +zy = 0, (2)
and theSteiner inellipsds described by
2?2 +y? 4 22 — 2z — 222 — 20y = 0. 3)

The Kiepert hyperbolais the (rectangular) circumconic & throughG and the
orthocenterH .

3. Direction Stars, Projection Triples and their Normalized Representation

Let us call adirection stara set{«, 3, ~} of three pairwise different directions
a, B, v not parallel to the sides @k. It is described by three points

a=(ar:a:a3), B=Br:02:03), v=1:72:73)
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on the infinite line. Their barycentrics (different from agform a singular matrix

a1 G2 Qa3

D=5 B2 B3
M2 3

of rank 2. Since the coordinates of each point are defined except fonazero
factor, we can adjust by suitable factors so that all cofactd D are equal to
unity. We call such representation of a direction standemalized representation
In this case not only the row sums Bfvanish, but also the column sums, and

fo—y3=71—a2=a3— [ = A, (4)
13— a1 =ag — B3 =1 — 72 = Ay, (5)
ap—fa=P03—m=72—a3=:A3 (6)
and
B3 —v2 =7 —a3=a— [ =, (7)
Yo — a1 =az— 2= (1 — 73 = 2, (8)
a1 — f3= P2 —y1 =73 — az = 3. 9)
Here is an example of a normalized representation of a direstar:
1 2 -3
D=1 3 -4
-2 -5 7

We will see below that two other matrices with the same eldmas inD (but
in other arrangements) are also involved. The row®aof (D._ ) consist of the
elements of the main (skew) diagonal and their parallels:

ar B2 3 ap 2 B3
D=5 v a3], D_ = a2 73
m o B3 M P2 oz

From a direction star we forrd! = 6 ordered direction triples (permutations
of the directions), which we can interpret as projectiorections on the sidelines
a, b, ¢ (in this order). We denote thepeojection triplesby

Q= (Oé, 57 7)7 Qe = (Oé, Vs B)a
f=(8, 7, @), Be=(B a, 7);
V— = (’77 a, B)? Ve = (77 67 Oé).

The arrows indicate whether the permutation is even or attdrpreting as a map,
for instancea. (P) is a triple (Paq, Py, Pg.) of feet in which the first index
indicates the projection direction, and the second onesédethe side on whicl®
is projected.

The square matriceB, D_, andD._ all have rank. Their kernels represent
geometrically some points in the plane&f The kernel ofD is obviouslyG =
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(1,1,1). ForketD_, =: (p— : q— :r—)and keD_ =: (p_ : g— : r—) we find

p— = aoas — (372 = (283 — Y302 = Y2y3 — a3l (10)

q— = azay — f1y3 = P31 — a3 = 371 — 1 B3, (11)

r— = — foy1 = B1fB2 — 200 =172 — a2f, (12)
and

P = aoag — foy3 = 283 — Y203 = Y2y3 — a2f33, (13)

q— = azay — fB371 = P31 — y3a1 = 371 — a3, (14)

re =aae — f1y2 = f1B2 — na2 = 7172 — a1, (15)

These satisfy

Po —Pe =G— — G =7 —T =1, (16)
Pl +qor +rp —p —q —7_ =0, (17)
Peqe—+q-r—+r_p_+p_+q_+r_=0. (18)

Let us denote by, the line with directiong through a pointQ). Then the
direction stars localized at the verticels B, C' are described by the following
lines:

laa =1[0:as:—as], flpa=I[-a3:0:aq], log = [ag: —ay : 0];

lag=10:B3: =B, Llpg=[-B3:0:0],  Log=I[B2:—p1:0];
bay=[0:v3: =],  lpy=[-:0:m] Loy,=[r:—7:0]

Next we want to assign each projection triple to a specifie. liWe begin with
the construction of such a ling,_, for the projection triplex_,. Let

Py = lpyNlog = (B < B : Brs), (19)
Py i= Loa Nlay = (1201 : 7202 1 730), (20)
Py = Lag N lpa = (0103 : azfa 1 a3fs). (1)

Their conjugates are

PP = (Bay3 : 173 : fan),
Py = (y3az : y3a1 @ 201), (22)
P = (a3fs - a103 : a1f2).

In view of (4), (5), (6) itis clear thadet(P}, Ps, P3) = 0. Hence, these points
are collinear and lie on the line

lors = [0 : B2 : 73], (23)

which intersects the infinite line if\; : A2 : A\3). By cyclic interchange ofi, 3, v
we find

U =[P : 72t as), lyesi=[71: a2t B3], (24)
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and the intersection§\s : A1 : A2) and (A2 : Az : A1) with the infinite line,
respectively. The barycentrics of these three lines fomrrdiws of the matridxd-_, .
In a similar fashion we find the lines

loe = [ag : 2 : B3], lg = [B1: o : 73], by =[71:P2:a3] (25)
whose coordinates form the rows Bf_. From these we have the theorem below.
Theorem 1. The lines/,,., ¢3_., {,_. are concurrent at the point

We =((p—:q- 1),
Likewise, the lineg,., {3, ¢, are concurrent at
WS =(p—:q_:r_).

Recall that the conjugates of the points of a line lie on aucirconic of A.
Hence the conjugates of the six lines in (23) - (25) are theupiiconics

a a a
Co: L P2 D Cg_ﬁﬁ—l-ﬁ—l——:a:o, Cn,_>:£+—2+@:0,
T Yy z r oy z T Yy z
(26)

a a (0%
Co: 2 2 Py C@_:ﬁ+—2+ﬁzo, CW_:£+@+—3:0
T Yy z T Yy z Tz oy z

(27)
I pad
| s
4d

Figure 2.



6 G. Weise
Theorem 2 below follows easily from Theorem 1.

Theorem 2. The circumconic§,_., Cs_.,, C,— (red in Figure 2Zhave the common

point
. _(1 1 1>
To\rs g )

the circumconic®,, Cs—, C,— (blue in Figure 2have the common point

1 1 1
W<_:<—:—:—>.
P G T

Hence, their perspectors are collinear on the tripolard®f, and ofW_, respec-
tively. These lines are parallel and they intersect the it&iline at the point

Weo =(q— —7— 175 —p i pm — q-)
and define a direction.

In the special case of altitudes¥iE_, the Tarry point and¥._ the orthocenter
of A. The circumconid’,_. is the circumcircle. In [1]C3_, andC,_. are called
the right- and left-conics respectively.

4, Wallace Points

In[2] itis shown that in the case of three directiansg, ~ the pointsPy, P, P
constructed for the projection tripte_, lie on a circumconic with the property that
for a point P on this circumconic the feet of the projectionsto a, b, ¢ in direc-
tion o, 3, v, respectively, are collinear. Now we want to look at thiseyatization
of the theorem of Wallaceimultaneouslyor all 6 projection triples belonging to
the direction stafa, 3, ~}.

Theorem 3. The respective three feet of the three projection triplegW_.), 5. (W_,)
and~_, (W_,) localized atiV_, are collinear on the Wallace lines,_., ws—_., w,—,
respectively; there is analogy for the feetcof (W._), S_(W_), v—(W_). We
shall call the pointsiV_, and W_ the Wallace-right- and Wallace-left-points re-
spectively of the direction stdky, 3, v}.

Proof. Letg,—., gs—, g,— be the lines throughl’_, in directiona, 3, v, respec-
tively. To simplify the equations we make use of the quaattiti

X1 = agq— — agr— = 37— — V1P— = P1p— — Peq—
Xy = 52Q—> — 637”_, = 03T — 1P = Y1P— — V24—
X3 = Y2q— — 37— = B3r— — f1p— = a1p— — Q2q—.
These satisfy
X2 — XoX3 = X2 — X3X| = X7 — X1 Xy, (28)
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and yield the equations of the lines
oo = [p=X1 : ¢ Xo : 7 X3]
98— = [p—X2 1 ¢ X3 : 7 X1]
Gy = [P X3 g X1 7 X0
These projection lines intersect the sidelines in the point
Qaa=0:7.X3:—9.X5), Qpa=0:7-X1:-¢-X3), Qva=0:7r_Xo:—¢_X1);

Qab = (—r-X3:0:p_X1), Qpp=(—r-X1:0:p_X3), Qu=(-r-X2:0:p_X3);
Qac = (q_)Xg P—p_ X1 O), Qﬁc = (q_>X3 P —p_Xo: O), QVC = (q_,Xl P —p_Xs3: 0)

The feetQ.., Qp», Q- Of the projection triplen_, are collinear because their
linear dependent coordinates. They yield a Wallace line

Wa— = Qaalpy = [P— X2 X3 1 ¢ X1 X2 : 7 X3X1].
Analogously it follows from the collinearity aD ., Qgc, Q~a r€sSP.Qac; @ga: Qb
wg_) = [p_>X1X2 : q_,XgXl : T‘_,XQXg], wfy_> = [p_,XgXl : q_>X2X3 : T‘_,Xng].
The proof for the other Wallace point is analogous. O
5. Some circumconics gener ated by the Wallace points

The Wallace points generate some circumconics with nofaioleerties:

We, -circumconic  Cye : — + — + — =0, (29)
T Y z
. , P Qe T
W2 -circumconic  Cye : — + — + — =0, (30)
x Y z
. . 1 1 1
W_,-circumconic  Cwy—, : + + =0, (31)
PTGy TZ
. . 1 1 1
W_-circumconic  Cy— : + + =0, (32)

P Gy TZ
circumconic throug_, and W_,
circumconics with the centersIV_, resp.mW_,
circumconics of the medial triangle efBC with the centersn?1W_, and
m2W._ respectively.

Theorem 4. (a) The circumconicgyy« andCyy. intersect at the points := WS,
on the Steiner circumellipse.

(b) The circumconic throught_, and W.__ has perspectoiV,,. Hence it is the
circumconicCyy,_,

O N r— —p— — Y-
g e (33)
x Y z
passing througltz. Its centerM,, lies on the Steiner inellipse. The Wallace points
are antipodes.
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Proof. (a) The conjugates of the circumconi€g-. andCyy. , that are the lines
[p— : ¢— : r—] and[p— : q— : r_], respectively, intersect on the infinite line at
the pointl¥/,,. Hence its conjugate lies on the Steiner circumellipse.

(b) The line through the conjugates of the Wallace points is

g —r—:ro —pip. —qo]
Its conjugate (a circumconic) has the perspeétqy. The pointG = (1 :1: 1)
obviously satisfies the circumconic equation (33). Theereof thelV, - circum-
conic according to (1) is
My = ((g— —71-)": (rm = p=)?: (p— — q-)?). (34)
It satisfies equation (3) of the Steiner inellipse and is - bo@ finds out by a longer

computation in accordance with (17) - collinear with the Wallace points, hence
they must be antipodes. O

In the special case of the altitude directions the p6inis the Steiner point of
ABC andCy . is the Kiepert hyperbola.

An interesting property of (31) and (32) is presented in Tago7 below.

The following theorem involves circumconics that are inmection with thes
centers of the circumconics (26), (27).

Figure 3.

Theorem 5. (a) Suppose the Wallace poilit_, (respectivelV. ) is reflected in
the centers of the three circumconics in (26) (respectiy2k)). Then the three
reflection points lie on a circumconic throudh.  (respectivelyiV_.). Its center is
Q_. = mW_, (respectitvely).. = mW_). These two circumconigghick red and
blue respectively in Figure 3htersect the Steiner circumellipse at poit/..
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(b) The centers of the three circumconics in (26) (respecti(2ly) lie on a cir-
cumconic of the medial triangle through._ (respectively)_.) with centerX ., =
m2W_, (respectivelyX_ = m?W._). Both circumconicgred and green respec-
tively in Figure 3)intersect on the Steiner inellipse at poilt,..

6. Wallace Triangles

The Wallace linesw,—., ws—., w,—. belonging toWW_, form a triangleA_,
(Wallace-right-triangl¢ and the Wallace lineg, ws._, w.,— belonging tolV_
form a triangleA . (Wallace-left-trianglé.

Theorem 6. Each of the Wallace triangles anl are triply perspective.
(a) The 3 centers of perspective df,(A_.) are collinear on the tripolar oft/_..
(b) The 3 centers of perspective &,(A. ) are collinear on the tripolar ofV/_.

Proof. With (28), the vertices of the Wallace-right-triangte . are

1 1 1
A_ = : : , 35
<p—>X1 (]—>X3 T—>X2> ( )
1 1 1
B_, = : : , 36
<p—>X3 (]—>X2 T—>X1> ( )
1 1 1
C_, = : : . 37
<p—>X2 q—X1 7”—»aXi’)> ( )
The triple perspectivity ofA andA_, follows from the concurrency of the lines
AA_., BB, CC_. at (ﬁ : & : &> =: Py,
P— g T
X3 X1 X
AB_,, BC., CA. at <—3 g —2> =: Pp_,
P g T,
Xy X3 X
AC_, BA_., CB_. at (—2 e —1> = Po_.
P— g T

These three centers of perspectivity are obviously callirmn the linglp_., : ¢_, :
r_.], which is the tripolar of ;& : L L) =W,
The proof forA._ is analogous. O

Theorem 7. The vertices ofA_, and A_ lie on theWW_, - circumconic and on the
W - circumconic, respectively.

Proof. Easy verification. a

7. Direction Star and Steiner Circumellipse

Each of the 6 circumconics in (26) and (27) assigned to atibrestar has a
fourth common point§,,—., ...,S,—) with the Steiner circumellipse. These points
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Figure 4. The triangleaS_, andAS—

form two trianglesAS_, andAS_ (Figure 4). The point5,_, is the conjugate of
the intersection of,,_, with the infinite line, thus according to (4) - (6) follows

1 1 1 1 1 1
Sams = : : =(—:—:—], 38
(52—73 V3 — aq 041—52) (>\1 A2 >\3> (38)
for the other vertices of the triangl®S_, we find
< 1 1 1 > < 1 1 1
Sg_ = : : = —:—:—
Y2o—az az— 31 [iL— 7 A3 A1 Ao

1 1 1 1 1 1
Sy = : : =(—:—=:—=]. 40
! <<¥2 -B3 B3—711 m —Oé2> </\2 A3 /\1> (40)

The coordinates of these points are connected by cycliccimmge. Hence they
form a Brocardian triple [6]. The same is valid for the trilng\S. .

) . (39)

Theorem 8. (a) The trianglesAS_, and AS_ have the centroids.

(b) The 6 sidelines of these triangles are the duals of the résjgegpposite ver-
tices and hence tangents at the Steiner inellipse. The gaihtontact are the
midpoints of the sides of these triangles.

(c) The trianglesAS_. and AS_ have the same area lika BC, because each
Brocardian triple with vertices on the Steiner circumetigphas this property.

Theorem 9. The trianglesA, AS_. andAS._ are pairwise triply perspective. The
9 centers of perspective lie on the infinite line, and the S axgerspective pass
throughG.
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Figure 5. Triple perspectivity oA andAS_.

We omit the elementary but long computational proof. Figuitustrates the
triple perspectivity ofA andAS_,.
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Characterizations of Orthodiagonal Quadrilaterals

Martin Josefsson

Abstract. We prove ten necessary and sufficient conditions for a copuadri-

lateral to have perpendicular diagonals. One of these ista gew eight point
circle theorem and three of them are metric conditions awriieg the nonover-
lapping triangles formed by the diagonals.

1. A well known characterization

An orthodiagonal quadrilaterals a convex quadrilateral with perpendicular di-
agonals. The most well known and in problem solving usefalratterization of
orthodiagonal quadrilaterals is the following theorenveFather different proofs
of it was given in [19, pp.158-159], [11], [15], [2, p.136]caM, p.91], using
respectively the law of cosines, vectors, an indirect praajeometric locus and
complex numbers. We will give a sixth proof using the Pytlraga theorem.

Theorem 1. A convex quadrilateral BC' D is orthodiagonal if and only if

AB? + CD? = BC? + DA?.

Figure 1. Normals to diagonalC

Proof. Let X andY be the feet of the normals frof and B respectively to
diagonalAC' in a convex quadrilateradl BC' D, see Figure 1. By the Pythagorean
theorem we hav8Y 2+ AY? = AB?, BY?+CY? = BC? DX?+CX? = CD?

Publication Date: February 22, 2012. Communicating EdRaul Yiu.



14 M. Josefsson

andAX?+ DX? = DA?. Thus
AB? + CD? — BC? — DA?
= AY? - AX? 4 CX? - CY?
= (AY + AX)(AY — AX) + (CX + CY)(CX — CY)
= (AY + AX)XY + (CX + CY)XY
(AX +CX + AY + CY)XY
= 2AC - XY.
Hence we have
AC L BD & XY =0 & AB? + CD? = BC? + DA?
sinceAC > 0. O

Another short proof is the following. The area of a convexdrilateral with
sidesa, b, ¢ andd is given by the two formulas

K = %pqsin@ = %\/4p2q2 —(a? — b2+ % — d?)?

wheref is the angle between the diagonglandg.! Hence we directly get

H:g = a+E=0+d?
completing this seventh prodf.

A different interpretation of the condition in Theorem 1h tfollowing. If four
squares of the same sides as those of a convex quadrilateerkeated on the sides
of that quadrilateral, then it is orthodiagonal if and orfljhie sum of the areas of
two opposite squares is equal to the sum of the areas of tee twth squares.

2. Two eight point circles

Another necessary and sufficient condition is that a convgddlateral is or-
thodiagonal if and only if the midpoints of the sides are thdiges of a rectangle
(FFGH in Figure 2). The direct theorem was proved by Louis Brandhegroof
of the theorem about theight point circlein [5], but was surely discovered much
earlier since this is a special case of the Varignon pacgtam theoreri. The
converse is an easy angle chase, as noted by “shobber” imp@&sét [1]. In fact,
the converse to the theorem about the eight point circlesis ttle, so we have
the following condition as well A convex quadrilateral has perpendicular diag-
onals if and only if the midpoints of the sides and the feetefrhaltitudes are

IThe first of these formulas yields a quite trivial charaaation of orthodiagonal quadrilaterals:
the diagonals are perpendicular if and only if the area ofjtndrilateral is one half the product of
the diagonals.

2This proof may be short, but the derivations of the two aremfdas are a bit longer; see [17,
pp.212-214] or [7] and [8].

3The midpoints of the sides in any quadrilateral form a patadjfram named after the French
mathematician Pierre Varignon (1654-1722). The diagoimatBis parallelogram are the bimedians
of the quadrilateral and they intersect at the centroid efothadrilateral.
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eight concyclic pointé,see Figure 2. The center of the circle is the centroid of the
guadrilateral (the intersection &fG and F'H in Figure 2). This was formulated
slightly different and proved as Corollary 2 in [10].

C

E

Figure 2. Brand’s eight point circle and rectan§lé’'G H

There is also a second eight point circle characterizatibefore we state and
prove this theorem we will prove two other necessary andcseiffi condition for
the diagonals of a convex quadrilateral to be perpendicwlaich are related to the
second eight point circle.

Theorem 2. A convex quadrilateral BC'D is orthodiagonal if and only if
/PAB+ /PBA+ /PCD+ /PDC =7
whereP is the point where the diagonals intersect.
Proof. By the sum of angles in triangle$B P andC D P (see Figure 3) we have
/PAB+ /PBA+ /PCD+ /PDC =271 — 20,

wheref is the angle between the diagonals. Hefiee 7 if and only if the equation
in the theorem is satisfied. O

Problem 6.17 in [14, p.139] is about proving that if the diagis of a convex
quadrilateral are perpendicular, then the projectionhefpoint where the diago-
nals intersect onto the sides are the vertices of a cyclidrijageral® The solution
given by Prasolov in [14, p.149] used Theorem 2 and is, afthouot stated as
such, also a proof of the converse. Our proof is basicallys#mee.

4A maltitude is a line segment in a quadrilateral from the midpof a side perpendicular to the
opposite side.

SThe quadrilateral formed by the feet of the maltitudes iteckthe principal orthic quadrilateral
in [10].

6in [14] this is called an inscribed quadrilateral, but tsadnother name for a cyclic quadrilateral.



16 M. Josefsson

K
Figure 3. ABCD is orthodiagonal iffk’ LM N is cyclic

Theorem 3. A convex quadrilateral is orthodiagonal if and only if theop@ctions
of the diagonal intersection onto the sides are the vertifescyclic quadrilateral.

Proof. If the diagonals intersect i, and the projection points aAB, BC, C'D
and DA are K, L, M and N respectively, thel K PN, BLPK, CMPL and
DN PM are cyclic quadrilaterals since they all have two opposifletangles (see
Figure 3). Thev PAN = /PKN, /PBL = /PKL, /PCL = ZPML and
/ZPDN = /ZPMN. QuadrilateralABC D is by Theorem 2 orthodiagonal if and
only if

£ZPAN + /PBL + /PCL+ ZPDN =1
< LPKN+/ZPKL+/ZPML+ ZPMN =7
& LLKNA+ ZLMN =7

where the third equality is a well known necessary and safiiccondition for
K LM N to be a cyclic quadrilateral. O

Now we are ready to prove the second eight point circle theore

Theorem 4. In a convex quadrilateral BC' D where the diagonals intersect &
let K, L, M and N be the projections of onto the sides, and le&®, S, T andU
be the points where the linds P, LP, M P and N P intersect the opposite sides.
Then the quadrilaterald BC D is orthodiagonal if and only if the eight poinfs,
L,M,N,R,S,TandU are concyclic.

Proof. (=) If ABCD is orthodiagonal, ther, L, M and N are concyclic by
Theorem 3. We start by proving thatl’M N has the same circumcircle &SLM N.
To do this, we will prove that M N K+ /M T K = m, which is equivalent to prov-
ingthatZMTK = ZANK+ /DN M sinceZAN D =  (see Figure 4). In cyclic
quadrilateralAN PK and DN PM, we have/ANK = ZAPK = /TPC and
/DNM = /M PD. By the exterior angle theoremM/ TP = /TPC+ /ZTCP.
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In additonZMPD = ZTCP sinceCPD is a right triangle with altitude\/ P.
Hence

LMTK = /ZTPC + /TCP = ZANK + ZMPD = ZANK + ZDNM

which proves thafl’ lies on the circumcircle o\ LM N, since K, M and N
uniquely determine a circle. In the same way it can be prolwati?, S andU lies
on this circle.

(<)If K,L, M, N, R, S, T andU are concyclic, thenVMTK is a cyclic
quadrilateral. By using some of the angle relations fronfitlsé part, we get

/MTK =7 — /MNK
= /IMTP=/ANK+ /DNM
= /TPC+/TCP=/APK+ /MPD
= LTCP=/ZMPD.
Thus triangles\f PC' and M D P are similar since angl&/ D P is common. Then
ZCPD =/PMD =73

soACLBD. O
c
- L
M S
D
N
U
-
A K - B

Figure 4. The second eight point circle

In the next theorem we prove that quadrilateR7TU in Figure 4 is a rectangle
if and only if ABC D is an orthodiagonal quadrilateral.

Theorem 5. If the normals to the sides of a convex quadrilatefdBC D through
the diagonal intersection intersect the opposite sideskinS, T' and U, then
ABCD is orthodiagonal if and only iRSTU is a rectangle whose sides are par-
allel to the diagonals oA BC' D.
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Proof. (=) If ABCD is orthodiagonal, thetVT'M N is a cyclic quadrilateral ac-
cording to Theorem 4 (see Figure 5). Thus

LMTU = £ZDNM = ZMPD = ZTCP,

soUT || AC. In the same way it can be proved thaf | AC, UR || DB and
TS | DB. HenceRSTU is a parallelogram with sides parallel to the perpendicu-
lar linesAC andBD, so it is a rectangle.

(<) If RSTU is arectangle with sides parallel to the diagon&fs and BD of
a convex quadrilateral, then

ZDPC = ZUTS = 3.
HenceAC 1 BD. O

Figure 5. ABCD is orthodiagonal iffRST'U is a rectangle

Remark.Shortly after we had proved Theorems 4 and 5 we found out iat t
direct parts of these two theorems was proved in 1998 [2Q}sTin [20] Zaslavsky
proved that in an orthodiagonal quadrilateral, the eiglmtgox, L, M, N, R, S,

T andU are concyclic, and thaRSTU is a rectangle with sides parallel to the
diagonals. We want to thank Vladimir Dubrovsky for the heliivthe translation
of the theorems in [20].

Let’s call the eight point circle due to Louis Brand tfirst eight point circleand
the one in Theorem 4 treecond eight point circleéSinceRSTU is a rectangle, the
center of the second eight point circle is the point wheredibgonals inRSTU
intersect.

Theorem 6. The first and second eight point circle of an orthodiagonadyilat-
eral coincide if and only if the quadrilateral is also cyclic
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Proof. Since the second eight point circle is constructed fromdegments through
the diagonal intersection, the two eight point circles cwla if and only if the four
maltitudes are concurrent at the diagonal intersectiore mhltitudes of a convex
guadrilateral are concurrent if and only if the quadrilatés cyclic according to
[12, p.19]. O

Figure 6. The two eight point circles

That the point where the maltitudes intersect (the antegim a cyclic orthodi-
agonal quadrilateral coincide with the diagonal intefisectvas proved in another
way in [2, p.137].

3. A duality between the bimedians and the diagonals

The next theorem gives an interesting sort of dual connett&ween the bime-
dians and the diagonals of a convex quadrilateral. The frsiga characterization
of orthodiagonal quadrilaterals. Another proof of (i) usirectors was given in [6,
p.293].

Theorem 7. In a convex quadrilateral we have the following conditions:
(i) The bimedians are congruent if and only if the diagonals amgendicular.
(ii) The bimedians are perpendicular if and only if the diagoraaks congruent.

Proof. (i) According to the proof of Theorem 7 in [9], the bimediansandn in a
convex quadrilateral satisfy

4(m? —n?) = =2(a®> = b* + & — d?)
wherea, b, c andd are the sides of the quadrilateral. Hence
m=n & A+ =0+ &
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which proves the condition according to Theorem 1.

(i) Consider the Varignon parallelogram of a convex quatkral (see Fig-
ure 7). Its diagonals are the bimediamsandn of the quadrilateral. It is well
known that the length of the sides in the Varignon paralleogare one half the
length of the diagonalg andq in the quadrilateral. Applying Theorem 1 to the
Varignon parallelogram yields

2 2
mln o 2(23) zz(g) s p=g
2 2
since opposite sides in a parallelogram are congruent. a

Figure 7. The Varignon parallelogram

4. Three metric conditionsin the four subtriangles
Now we will use Theorem 1 to prove two more characterizati@sgmbling it.
Theorem 8. A convex quadrilateral BC' D is orthodiagonal if and only if
m% + m% = m% + mﬁ

wherem1, ms, ms andmy are the medians in the trianglesBP, BCP, CDP
and D AP from the intersectior of the diagonals to the side$B, BC, C' D and
D A respectively.

Proof. Let P divide the diagonals in parts, x andy, z (see Figure 8). By applying
Apollonius’ theorem in trianglest\ BP, CDP, BCP and DAP we get

m% —|—m§ = m% —|—m§1
& 4m? +4Am? = 4m3 + 4m]
e 2w’ +9?) —a? + 22+ 22 -2 =202 + 2%) — ® + 2(22 + w?) — &P
s a4+ E =0+ d

which by Theorem 1 completes the proof. d
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Figure 8. The subtriangle medians,, m2, ms andmu

Theorem 9. A convex quadrilateral BC' D is orthodiagonal if and only if
R?+ R2=R3+R?

whereR;, Ry, R3 and R, are the circumradii in the triangleslBP, BCP,CDP
and D AP respectively and’ is the intersection of the diagonals.

Proof. According to the extended law of sines applied in the fourtrsatgles,
a=2R;sinf,b = 2Rysin (7 — ), c = 2R3 sinf andd = 2Ry sin (7 — ), see
Figure 9. We get

a’+c® —b* —d* = 4sin*0 (R + R — R3 — R})
where we used thain (7 — §) = sin . Hence
a? 4% =b* + d? & R? + R} = R3 + R}
sincesinf > 0 for 0 < 0 < . O

When studying Figure 9 it is easy to realize the followingutgesvhich gives a
connection between the previous two theorems.

Theorem 10. A convex quadrilaterad BC' D is orthodiagonal if and only if the
circumcenters of the triangled BP, BCP, CDP and D AP are the midpoints of
the sides of the quadrilateral, whereis the intersection of its diagonals.

Proof. The quadrilaterad BC'D is orthodiagonal if and only if one of the triangles
ABP, BCP,CDP and DAP have a right angle aP; then all of them have it.
Hence we only need to prove that the circumcenter of onedieais the midpoint
of a side if and only if the opposite angle is a right angle. Big is an immediate
conseguence of Thales’ theorem and its converse, see [18]. a

The next theorem is our main result and concerns the alstudiae four nonover-
lapping subtriangles formed by the diagonals.
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Figure 9. The circumradiR:, Rz, Rs andR4

Theorem 11. A convex quadrilaterad BC' D is orthodiagonal if and only if
1 n 11 n 1
hioohi h3 o hg
whereh, ho, hg and hy are the altitudes in the triangled BP, BCP, CDP and
D AP from the intersectiorP of the diagonals to the side$B, BC,C'D and DA
respectively.

Proof. Let P divide the diagonals in parts, z andy, z. From expressing twice
the area of trianglel B P in two different ways we get (see Figure 10)

ahy = wysin 6
wheref is the angle between the diagonals. Thus
1 a? _w2+y2—2wycost9_ 1 1 1 2cos 6
h?  w?y?sin’0 w?y? sin? 9 C\y? 2
where we used the law of cosines in trianglé P in the second equality. The
same resoning in triangl€ D P yields

1 /1 n 1 1 2cos 6
hg_ 22 22 )sin%260  xzsin?6

In trianglesBC' P and D AP we have respectively

1 /1 . 1 1 . 2cos 0
R \2?  y?/)sin?0  ywsin®6

w? /sin?6  wysin?0
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and
1 1 1 1 2 cos 0
h_i - <E + ;> sin? § * 2w sin? 0

sincecos (m — ) = — cos 6. From the last four equations we get

1 1 1 1 2cosf [ 1 1 1 1

RO e )
Hence

hi%+hi§:hi§+hii & cosf =0 & H:g

since(sin ) =2 # 0 and the expression in the parenthesis is positive. O

Figure 10. The subtriangle altitudés, h2, hs andhg

5. Similar metric conditionsin tangential and orthodiagonal quadrilaterals

A tangential quadrilateral is a quadrilateral with an ind#r A convex quadri-
lateral with the sides, b, c andd is tangential if and only if

at+c=b+d

according to the well known Pitot theorem [3, pp.65—67]. he@rem 1 we proved
the well known condition that a convex quadrilateral with Hidesu, b, c andd is
orthodiagonal if and only if

a’ +c =bv*+ d°.

Here all terms are squared compared to the Pitot theorem.
From the extended law of sines (see the proof of Theorem 9)awe that

a+c—b—d:2sin9(R1+R3—R2—R4)
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whereR;, Rs, R3 and R4 are the circumradii in the triangle$BP, BCP, CDP
and DAP respectively,P is the intersection of the diagonals aéds the angle
between them. Hence

a+c=b+d & Ri+R3=Ry+ Ry
sincesin 6 > 0, so a convex quadrilateral is tangential if and only if
R1 + Rs = Ry + Ry.
In Theorem 9 we proved that the quadrilateral is orthodiaydgrand only if
R} + R3 = R3 + R}

All terms in this condition are squared compared to the tatiglecondition.
In [16] and [13] it is proved that a convex quadrilateral isgantial if and only
" 1 11 1
s Ry
wherehy, hs, hg andhy are the same altitudes as in Figure 10. We have just proved
in Theorem 11 that a convex quadrilateral is orthodiagdrehd only if

1 N 11 N 1
hi o hy  hi o Ay

that is, all terms in the orthodiagonal condition are sgdammpared to the tangen-
tial condition. We find these similarities between these types of quadrilaterals

very interesting and remarkable.
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Morelnteger Triangleswith R/r = N

John F. Goehl, Jr.

Abstract. Given an integer-sided triangle with an integer ratio & thdii of
the circumcircle and incircle, a simple method is presefioedinding another
triangle with the same ratio.

In a recent paper, MacLeod [1] discusses the problem of fintliteger-sided
triangles with an integer ratio of the radii of the circunatérand incircle. He finds
sixteen examples of integer triangles for values of thi® ta¢tweenl and999. It
will be shown that, with one exception, another trianglewtite same ratio can be
found for each.

Macleod shows that the ratidy, for a triangle with sidesg, b, andc is given by

2abc
- N. 1
(a+b—c)la+c—Db)(b+c—a) @)
Definea =a+b—c,6=a+c—b,andy =b+c—a. Then
(a+B) B+ +a)
dafy
Let o’ and’ be found from any one of MacLeod’s triangles. Then (2) may be
used to findy’. But notice that (2) is then a quadratic equationor
(@ +8)(a +7) (6 +7) =4Na'F'y. (3)
One root is the known value;, while the other root gives a new triangle with
the same value foN. Note that the sum of the two roots iso’ — 3" + 5%
Since one root ig/, the other is given by

— N. )

AN/ 3
O/ _|_ ﬁ/ :

ForN =2,a=b=c=1;s0a’ = =+ =1andy = 1. No new triangle
results.

ForN =26,a=11,b=39,c=49;s0d =1, =21,y =77 andy = 1—31
Scaling by a factor of1 givesa’ = 11, 3 = 231, andy’ = 3. The sides of the
resulting triangle are’ = 121, & = 7, and¢’ = 117.

7:_0/_/3/_7/+
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The first few values and the last value &fgiven by Macleod along with the
original triangles and the new ones are shown in the tabteabel

(Nl a [ b | c [ a] ¥ [ |
T 1] 1 T | 1 ] 1 1
26 | 11 | 39 | 49 | 7 | 117 | 121
74 | 259 | 475 | 729 | 27 | 1805 | 1813
218 || 115 | 5239 | 5341 | 763 | 12493 | 13225
250 | 97 | 10051 | 10125 || 1125 | 8303 | 9409
866 || 3025 | 5629 | 8649 | 93 | 73177 | 73205

Table 1. Macleod triangles and the corresponding new ones
(sides arranged in ascending order).

Reference
[1] A.J. MacLeod, Integer triangles witR/r = N, Forum Geom., 10 (2010) 149-155.

John F. Goehl, Jr.: Department of Physical Sciences, Bamiyesity, 11300 NE Second Avenue,
Miami Shores, Florida 33161, USA
E-mail address: j goehl @i | . barry. edu
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The I sosceles Trapezoid and
its Dissecting Similar Triangles

Larry Hoehn

Abstract. Isosceles trapezoids are dissected into three simitargkés and re-
arranged to form two additional isosceles trapezoids. Bh@e triangle centers,
one from each similar triangle, form the vertices of a certiangle which has
special properties. For example, the centroidal triangtescongruent to each
other and have an area one-ninth of the area of the trapezdidseas, the cir-
cumcentric triangles are not congruent, but still have kgreas.

1. Introduction

If you were asked whether an isosceles trapezoid can bectiissanto three
similar triangles by a point on the longer base, you wouldpldy reply initially
that it is not possible. However, it is sometimes possible the search for such a
point was the gateway to some other very interesting results

Theorem 1. If the longer base of an isosceles trapezoid is greater than the sum of
the two isosceles sides, then there exists a point on the longer base of the trapezoid
which when joined to the endpoints of the shorter base divides the trapezoid into
three similar triangles.

Or——————-—

Figure 1.

Proof. To begin our construction we consider isosceles trapeZoitC D with
longer based D and congruent sided B andC'D as shown in Figure 1. Addi-
tionally we letx = AB =CD,b= BC,e= AD,y= BE,andz = CFE.

We propose that the poidf can be located od D by letting

2
_ (f) _ a2,
2

e
2
e e\ 2
ED=c=2 (-)-2.
c 2+ 5 x

AE = a =
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Then,
AE _a _ac x2

ED ¢ ¢ 2
Therefore 2 = Z or 4£ = 8. Since/BAFE andZCDE are base angles of the
isosceles trapezoid, then triang®A E is similar to triangleE DC.
Next we consider triangle€QF and CQD where( is the intersection of a
perpendicular dropped froffi to baseAD. If CQ = h, thenQD = &5 = &t¢=b
so thatEQQ = ED — QD = %“’ By the Pythagorean Theorem for triangles

CQE and CQD respectively, we have? = h? + (C‘#““’)2 andz2 = h? +
(%‘j‘b)2 By subtracting these equations we obtain

2 2
22 <%+b> B <%c—b> b — ac.

Since = Z (see above), we adef = acto 22 — % = bc — ac to obtainz? = be.
Rewriting this as; = £, or equivalentlyg—g = g—g, and noting tha EC' B and
ZDEC are alternate interior angles of parallel lines, we havettienglesEC' B
and DEC are similar. By transitivity, or by repeating the method ahowe get

that all three triangles are similar to each other. This gsotheorem 1. O

There are some excellent books on dissection, but mostvievdissecting a
polygon and rearranging the pieces into one or more othgmgpak. However,
none of these references consider isosceles trapezoidsiraildr triangles. See
[1] and [4].

Theorem 2. Using the notation introduced above we have the following equalities:
(i) y? = ab, 22 = ac, 2% = be;

(i) a:%,b:%,c:%;

(iii) zyz = abc, and

(iv) theareaof ABCD = Sh(a+b+c).

Proof. The first three follow immediately from the similar dissegtitriangles, and
(iv) follows directly from the formula for the area of a tregméd. O

Theorem 3. Using the notation introduced above, the length of a diagonal, d, is
given by

d=ac+ab+bc = /a2 +y2 + 22.
Proof. By the law of cosines for triangled BC' andC' D A, respectively, in Figure
1, we have
d* = AC?* = 2* + b* — 2zbcos ABC
= 22 + (a+¢)? — 2z(a + ¢) cos(180° — ABC)
= 2%+ (a +¢)* 4 2z(a + ¢) cos ABC.

Therefore,
e+ —d® 2+ (a+c)?—d?

cos ABC = 2bh a —2z(a + ¢)
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After some simplification and Theorem 2(i) this becomes
d* = 2® + ab + bc = ac + ab + bc = 2* + y* + 2%
O

Theorem 4 (Generalization of the Pythagorean Theoretd¥ing the notation in-
troduced above, y? + 22 = b(a + c).

Proof. Since the triangles are similar, the ange&C, BAFE andC' DE are con-
gruent. By Theorem 2(i),

y* + 2% = ab+ be = b(a + ¢) = b,
where the last equality holds wheneveBAE = 90°. O

This result appeared previously in [2].

Next we consider triangles whose vertices are specificgléacenters for each
of the three dissecting triangles of Figure 1. Since theeeoger a thousand iden-
tified triangle centers, we restrict our discussion to twdhaf most well-known;
namely, the centroid and circumcenter. We will refer to ¢hasw triangles as
centroidal and circumcentric, respectively.

2. TheCentroidal Triangle

It is well-known that the centroid of a triangle is the intrton of the three
medians of a triangle and that the centroid is the centeradfityrfor the triangle.
We denote the centroids of our three similar triangle&asG;, andG,. as shown
in Figure 2.

A A/ E D/ D

Figure 2. The centroidal triangle

Theorem 5. Using the notation already introduced,

() Triangle G,GyG. isisosceles with G, Gy, = GGy, = %x/ab + bc + ca,

(ii) the base of G,G. of triangle G,GyG. is parallel to AD and its length is
GoGe = %(a+b+c),and

(iii) the area of triangle G, GG, is % of the area of trapezoid ABC'D.
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Proof. We consider triangl€z,G,G. whose vertices are the respective centroids
G, Gy, andG. of trianglesBAE, CEB andDEC. Let A’, B’, C', andD’ be the
respective midpoints afl£, BE, CE, and DE. By the midsegment, or midline
theoremthe line segment joining the midpoints of two sides of atriangle is parallel

to and half thelength of the third side. Therefore, quadrilateral’ B’C’ D’ has sides
parallel to and one-half the corresponding sides of quatdrihll ABC' D, and the
quadrilaterals are similar. In particular, quadrilate#aB’C’ D' is isosceles.

Since the centroid of a triangle divides each median in @ @ft2 : 3 of the
median from the vertex and : 3 from the midpoint of the corresponding side,
GoGy = 2A'C' for triangle BA'C’ andG. Gy, = 2B'D’ for triangleC B'D’. Since
trapezoidA’ B'C' D' has a similarity ratio ofs with isosceles trapezoid BC'D,
GoGp = 2A'C' = 2. 1AC = 1 AC. In the same manne¥.G, = 1+ BD. Since
diagonalsAC and BD are congruent(z,G;, = G.G, and triangleG,GyG. is
isosceles. Note that,G, = G.Gp = %x/ab + be + ca, which is one-third of the
length of the diagonal of the trapezoid.

The basd~,G. of triangleG,G,G. is parallel toAD and its length is7,G. =
2A'D' + 1 BC in trapezoidBC D' A’ so that

2/a ¢ 1 1
GaGe =3 (5+5) +3b=5la+b+o.

3\2 2 3
Finally, the area of trianglé/,G,G.. = & x basex height= 3-1(a+b+c) & =
s 3h(a+b+c) = $x area of trapezoidd BCD. O

3. The Circumcentric Triangle

Next we consider the circumcenters of each of the three disggetriangles of
Figure 1. A circumcenter is the intersection of the thregeedicular bisectors
of the sides of any triangle. The circumradius is the radiughe circumcircle
which passes through the three vertices of the particutngle. For our example
in Figure 3, triangleABE has circumcente®),, and circumradius?, (= AO, =
BO, = CO,). Similar statements hold fap,, O., R, andR..

Figure 3. The circumcentric triangle
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Theorem 6. Using the notation already introduced for triangle 0,00,
(i) O,0b = R.and 0.0, = Ry,

(i) 0,0, = \/22 +2R? — R}, and

(i) the area of triangle O, 0,0, = % — %_I;Lc

Proof. Let A’ and B’ be the feet of the perpendicular bisectors of two sides of tri
angleABE. Since triangleAO, E is isoscelesAO, A’ and EO, A’ are congruent
right triangles. Note thaD, is the vertex of three isosceles subtriangles in triangle
ABE, and also a vertex of six right triangles which are congruergairs. For
convenience we label the angles away from ce@tgnumerically (see Figure 4)
as

/BAE = ~ = /1+ /2,
/BEA= a=/2+ /3,
/ABE = 3= /1+ /3.

Figure 4. Numbered angles of isosceles and similar triangle

In the same manner corresponding congruent angles areedeindtigure 4 for
the similar triangles” BE and DEC.

In particular, we note that in quadrilater&l EC’ O, which has two right angles,
we have

ZB'0,C" = 360° —90° —90° — £2 — /1 =180° — v = a + .
Also,
LO,EO, = /34 (L2+ L1)+ /3= (L34 22)+ (L1+ £3) =a+ 6.

Therefore, one pair of opposite angles of quadrilatéraD,O.E are congruent.
Since

/E0,0p = /EO,B" =90° — /3,
/FEO0.Oy = /EO.C’ =90° — /3,
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the other pair of opposite angles of quadrilatevalD,O.F are congruent. Hence
quadrilateralO,0, O E is a parallelogram. Therefor€),O, = EO. = R. and
0.0y, = EO, = R,. This proves (i).

Since the sum of the squares of the diagonals of a paralietogs equal to the
sum of the squares of the four sides, we have

0,02 + OyE? = 0,0} + 0,02 + O.E? + EO? = 2R? + 2R2.

Therefore0,0? = 2R? + 2R2 — RZ. From this (ii) follows.
If we use the formul&k = 4~C;L°l\)riza for the circumradius of a triangle with sides of
lengthsa, b, ¢ (see [3] and [4]), then for triangld BE

2
R2 _ axy B x2q? _ac-ab a’be
© \4-3an ) —an® — 4an?  4n?’

with similar results forkR? and R2. Therefore,

2a2bc . 2abc®  ab’c
4h? 4h2 4h2’

0,0? = 2R? + 2R2 — R} =

0,00 = \/abc(2a2}—li— 2¢ — b)'

Since the opposite sides of a parallelogram are parallel,

LEOyO, = LOyEO, = L3+ £2 = «a,
LOWEO, = L1+ /3 =0.

This implies thatZ0,O.FE = ~. Therefore, triangleF 0,0, is similar to the
original three similar dissecting triangles. Sifce, is a diagonal of parallelogram
0,0,0.E, similar statements hold for triange, O, E. Finally,

area0,0,0,. = % - area of parallelograr®,0,0.F = area ofEO, 0.

Using the basic formula for the area of a triangle we have

area ofO,0,0.F = area ofO,0,F + area ofE0,0,.
1

- -. 4 L2
= 9 Oa0b+2 2 ObOc

1
yRC+ Z ‘ZRa.

= =N =
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Recalling the formula? = ;%< from above, we have
1

area of0,0,0. = =(yR. + zR,)

( czx n axy)

Y- R h
4% 4- %

1 rzyz xyz)

8 ( 2h * 2h

xyz  abc

~ 8 8h

| = 0o

Corollary 7. If the dissecting triangles are right triangles, then
() c=a+b,and
(ii) the area of triangle 0,0, 0. is one-eighth the area of trapezoid ABCD.

Figure 5. Circumcentric triangle with similar right trideg

Proof. For a right triangle the circumcenter is the midpoint of tgpdtenuse of the
right triangle. Therefore;? = 22 + 2?2 in triangle BEC in Figure 5. Substituting
22 = ac andz? = be yields ¢? = ac + be. From this the first result follows. Note
that

1
area of0,0,0,. = area ofEFO,0O. = 1 area of EC' D
1 1 1 1 1
= Z . 5 'hC— Z . §h(a—i—b) = Z -al’eaOfABCE.

It also follows thatE'C' separates the trapezoid into two parts with equal aréa.

4. TheThree | soscelesTrapezoids

We return to the dissection @fL.. Since we started with a dissection problem
it surely occurred to the reader that we might be able to aege the dissected
trapezoid into another configuration. That is indeed the.cahe three similar
triangles can be rearranged as follows:
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Theorem 8. If theisosceles trapezoid is literally cut apart, then the similar trian-
gles can be rearranged to form two additional isosceles trapezoids which meet the
same dissection criteria, have the same area, and have the same diagonal lengths
astheoriginal trapezoid.

Proof. With the trapezoid cut apart and reassembled we get the ¢hases shown
in Figure 6 below. The triangles are numbered #1, #2, and #3daity.

|

|

|

|

|

|

|
|
(o]

|

|

|

|

|

|

|
l
(@]

Figure 6(ii) Trapezoid with rearranged triangles

Figure 6(iii) Trapezoid with rearranged triangles

Note that the area of each of the three trapezoidshi& + b + ¢) regardless
of shape. In Theorem 3 the length of the diagonals for the tiiegtezoid was
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given by the formulal = v/ab + bc + ca = /22 + y2 + 22. Since the formula is

symmetric in the variables, the formulas hold for the latter cases as well. This
can also be seen as a proof without words in Figure 7 whereotiteddsegments are
the diagonals of the three respective trapezoids. Sincdidigenals of an isosceles
trapezoid are congruent, we have

AC=BD, BD=FEF, FEF=CG.
Hence all are equal in length.

Figure 7. Proof without words: Congruent diagonals

Since many of the formulas derived in the theorems aboveyanengtric in vari-
ablesa, b, ¢, x, y, andz, these particular properties also hold for the two addition
trapezoidal arrangements of similar triangles. For examrghce two sides of the
centroidal triangle of the original trapezoid are given%ayab + bc + ca and the
third side by%(a + b+ ¢), the three centroidal triangles of all three trapezoids are
also isosceles and congruent. Additionally the areas di eathese triangles is
one-ninth of the areas of the trapezoids.

Since the sides of the circumcentric triangle of the origtrepezoid are given

by circumradiiR,, R., and\/2R3 +2R2 — Rg, the circumcentric triangles of the

other two trapezoids are not isosceles and are not congfoetite three trape-
zoidal arrangements. However, the areas of the three carentmic triangles are
the same and are given Bjfz = %c.

There are some excellent books on dissection, but mostvievdissecting a
polygon and rearranging the pieces into one or more othggpok. For example,
see [1] and [5]. However, none of these references considscéles trapezoids
and similar triangles as presented in this paper. d

5. More Study

There are some additional questions that might be worthumgsuch as: What
properties follow from other centric triangles such as imees, orthocenters, etc.?
Under what conditions are the three Euler lines of the dissgdriangles con-
current or parallel? Under what conditions are the thregle centers for the
dissecting triangles collinear? Will any of the centri@aihgles be similar to the
dissecting triangles? Do comparable properties hold whesceles trapezoid is
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replaced by isosceles quadrilateral? Finally, is theredargnsional analog for
these properties?
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Synthetic Proofs of Two Theorems Related to
the Feuerbach Point

Nguyen Minh Ha and Nguyen Pham Dat

Abstract. We give synthetic proofs of two theorems on the Feuerbautt pba
triangle, one of Paul Yiu, and another of Lev Emelyanov artéhila Emelyanova
theorem.

1. Introduction

If Sis a point belonging to the circumcircle of triangd&3C, then the images of
S through the reflections with axd3C', C'A and AB respectively lie on the same
line that passes through the orthocenteA&fC. This line is called the Steiner line
of S with respect to trianglel BC.

If aline £ passes through the orthocentetdd8C, then the images of through
the reflections with axe®C, CA and AB are concurrent at one point on the
circumcircle ofABC. This point is named the anti-Steiner point®fvith respect
to ABC. Of course,L is Steiner line ofS with respect toABC' if and only if S
is the anti-Steiner point of with respect toABC'. In 2005, using homogenous
barycentric coordinates, Paul Yiu [5] established an egeng theorem related to
the Feuerbach point of a triangle; see also [3, Theorem 5].

Theorem 1. The Feuerbach point of triangld BC is the anti-Steiner point of the
Euler line of the intouch triangle o BC with respect to the same triangfe.

In 2009, J. Vonk [4] introduced a geometrically synthetiogdrof Theorem 1.
In 2001, by calculation, Lev Emelyanov and Tatiana Emelyar{d] established
a theorem that is also very interesting and also relatedeté-guerbach point of a
triangle.

Theorem 2. The circle through the feet of the internal bisectors ofrigee ABC
passes through the Feuerbach point of the triangle.

In this article, we present a synthetic proof of Theorem lictvhis different
from Vonk’s proof, and one for Theorem 2. We uge), I(r), (XY Z) to denote
respectively the circle with centé?, the circle with centef and radius-, and the
circumcircle of triangleXY Z. As in [2, p.12], the directed angle from the line

Publication Date: March 22, 2012. Communicating EditoCHris Fisher.
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IThe anti-Steiner point of the Euler line is called the Eutdtaction point in [3].
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a to the lineb denoted by(a, b). It measures the angle through whigtmust be
rotated in the positive direction in order to become par#dieor to coincide with,
b. Therefore,

(i) —90° < (a, b) < 90°,

(i) (2, b) = (a, ©) + (c, b),

(i) If a’ andb’ are the images of and b respectively under a reflection, then
(37 b) = (b/7 a/)'

(iv) Four noncollinear points!, B, C, D are concyclic if and only if AC, AD) =
(BC,BD).

2. Preliminary results

Lemma 3. Let ABC be a triangle inscribed in a circl¢O), and £ an arbitrary
line. Let the parallels of through A, B, C intersect the circle aD, F, F' respec-
tively. The lines,, £y, L. are the perpendiculars t8C, CA, AB throughD, FE,

I respectively.

(@) The linesC,, Ly, L. are concurrent at a point on the circle(O),

(b) The Steiner line of with respect taA BC' is parallel to L.

Figure 1.

Proof. Let S be the intersection of, and(O). Let/ be the line througlD per-
pendicular ta (see Figure 1).

(a) Becaused, B, andC' are the images ab, E, andF’ through the reflections
with axis £ respectively,

(FE,FD) = (CA,CB). 1)
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Therefore, we have
(SE,AC) = (SE,SD) + (SD,BC) + (BC, AC)
= (FE,FD)+90° + (BC, AC) (F € (SDE),SD 1L BC)
= (CA,CB)+90° + (BC, AC)
= 90°.
Therefore,SE coincidesly, i.e., S lies onL,. Similarly, S also lies onZ.., and the
three linesC,, Ly, L. are concurrent at on the circle(O).
(b) Let By, (1 respectively be the images 6fthrough the reflections with axes
CA, AB. Let By, Cy respectively be the intersection points$B;, SC; with AC,

AB (see Figure 2). Obviously3s, Cs are the midpoints of B, SC; respectively.
Thus,

ByCs//B1Ch. (2)
SinceS Bq, SCs are respectively perpendicular &, AB,
S e (ABQCQ) 3)

Figure 2.
Therefore, we have
(B1C1, L) = (B1C1, AD) (L//AD)
= (ByCy, AD) (by (2)
= (B2C3, ACs) + (AB, AD) (B € ACy)
= (B3S,AS) + (AB,AD) (by (3))
= (ES,AS) + (AB,AD) (E € B3S)
= (ED,AD)+ (DA,DE) (D € (SEA))

= 0°.
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Therefore,B,C;//L. This means that the Steiner line®fwith respect to triangle
ABC'is parallel toL. g

Before we go on to Lemma 4, we review a very interesting congeplane
geometry called the orthopole. Let triangleBC and the linel. A’, B’, C’ are
the feet of the perpendiculars frorh, B, C' to £ respectively. The line,, Ly,

L. pass throughd’, B’, C’ and are perpendicular t8C, C' A, AB respectively.
ThenL,, Ly, L. are concurrent at one point called the orthopole of thedivath
respect to trianglel BC. The following result is one of the most important results
related to the concept of the orthopole. This result is oftitnbuted to Griffiths,
whose proof can be found in [2, pp.246-247].

Lemma 4. Let ABC be a triangle inscribed in the circléO), and P be an ar-
bitrary point other thanO. The orthopole of the lin® P with respect to triangle
ABC belongs to the circumcircle of the pedal triangle@fwith respect tcd BC.

Lemma5. Let ABC be a triangle inscribed ifO). A, By, C; are the images
of A, B, C respectively through the symmetry with cerder A,, Bs, Cs are the
images ofD through the reflections with axdsC, C A, AB respectively.As, B3,
Cj3 are the feet of the perpendiculars fra) B, C' to the linesO Ay, OBy, OCy
respectively. Then,

(a) The circles(OA1Ay), (OB1Bs), (OC,C>) all pass through the anti-Steiner
point of the Euler line of triangled BC' with respect to the same triangle.

(b) The circle(A3B3Cs3) also passes through the same anti-Steiner point.

Proof. (a) Let H be the orthocenter ol BC'. Take the points), S belonging to
(O) suchthatAD//OH andDS L BC (see Figure 3).

According to Lemma 3, the Steiner line 8fwith respect taA BC' is parallel to
AD. On the other hand, the Steiner line$vith respect taA BC' passes through
H. HenceOH is the Steiner line of with respect taA BC'. In other words,

S is the anti-Steiner point of the Euler line dfBC' with respect to the same triangle
(4)
Let S, be the intersection &3 D andO H. By (4), S, is the images of through
the reflection with axisBC'. From this, note that, is the image oD through the
reflection with axisBC, we have:

0OA,SS, is an isosceles trapezium withAs/ /S, . (5)
Therefore, we have
(420, A28) = (5,0, 5.9) (by (5))
= (DA,DS) (DA//S,O andD € S,S)
= (A14,A19) (A; € (DAS))
= (410, A,S) (O € AL A).

It follows that S € (OA;Az). Similarly, S € (OB1Bz) andS € (OC1Cy).
Therefore,

the circles(OA; Ay), (OB; Bs), (OC,Cs) all pass througlt. (6)
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Figure 3.

From (4) and (6), we can deduce thH& A, As), (OB Bs), (OC1C>) all pass
through the anti-Steiner point of the Euler line of trianglBC with respect to
ABC.

(b) Take the pointsdg, By, Cy such thatd, B, C are the midpoints 0B3yCy,
CoAy, AgBy respectively. LetM be the mid-point ofBC' (see Figure 4). Since
AB/]CAyand AC//BAy, ABAyC is a parallelogram. On the other hand, not-
ingthatHB 1 AC andCA; 1L AC, HC 1 AB,andBA; L AB, we have
HB//CA;, HC//BA,. This means thatf BA,C is a parallelogram. Thusj,,
A, are the images ofi, H respectively through the symmetry with centef.
Therefore, the vectord; Ao and AH are equal.

On the other hand, sincéH S, D is a parallelogram, the vectoBBS, and AH
are equal.

Hence, under the translation by the vecAdH, the pointsA,, D are transformed
into the pointsAy, S, respectively. This means thdyS,//A; D.

From this, noting thatlD L A; D andAD//OH, we deduce that

AypS, L OH. (7)
On the other hand, becauSé¢, | BC andBC//ByCy, we have
5SS, L ByCo. (8)

From (7) and (8), we see that the orthopole(@H with respect to triangle
AgByCy lies on the lineSS,. Similarly, the orthopole ofDH with respect to
AgByCy also lies onS'S, andS'S,., whereSy, S. are defined in the same way with
S,. Thus,

S is the orthopole 0©) H with respect to trianglely By Cp. 9
It is also clear that{ is the center of the circled,ByCy) and
A3B3C} is the pedal triangle ab with respect to trianglelg By Cy. (10)
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Figure 4.
From (9) and (10), and by Lemma 4, we have (A3B3Cs). O

Lemma 6. If any of the three points i¥, B, C, D are not collinear, then the
nine-point circles of trianglesBCD, CDA, DAB, ABC all pass through one
point.

Lemma 6 is familiar and its simple proof can be found in [2 42

3. Main results

3.1 Asynthetic proof of Theorem Assume that the circlé(r) inscribed inABC
touchesBC, CA, AB at Ay, By, C, respectively. Letd, By, Cy be the images
of Ay, By, Cy respectively through the symmetry with cenfelLet As, B, C5 be
the images of through the reflections with axé%Cy, CyAg, Ao By respectively.
Let A3, Bs, C3 be the mid-points ofAl, BI, CI respectively (see Figure 5).
Under the inversion in/(r), the pointsA,, By, Co are transformed into the
pointsAs, Bs, Cs respectively. As aresult, the circlebA; As), (IB1Bs), (1C1C5)
are transformed into the lined; A3, B1Bs, C1C5 respectively. According to
Lemma 5(a),
the circles(1A; As), (IB1B2), (IC1Cy) all pass through one point lying on the
circle (1), the anti-Steiner point of the Euler line of triangle BoCj, with respect
to the same triangle. We call this poiht (11)
Hence,A; A3, B1 B3, C1C45 are also concurrent &f. (12)
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Becaused,, By, C1 be the images ofly, By, C respectively through the sym-
metry with center, A, B1, A1C are parallel todg By, AoCy respectively.

From this, noting thatdg By, AqCy are perpendicular téC, I B respectively,
we deduce that

A1 By, A1C1 are perpendicular téC', I B. (13)

Let M be the mid-point ofBC. Noting thatBs, C's are the mid-points oB/,
C1 respectively, we have

IC//MBs and IB//MCs. (14)
Therefore, we have
(F'Bs, F'C3) = (FB1,FCh) (by (12))
= (AlBl,AlCl) (Al c (FBlCl))
= (IC 1B, (by (13))
= (MBs, MCs) (by (14)).

From this,F € (M B3C3), the nine-point circle of trianglé BC'.

Similarly, F' also belongs to the nine-point circles of triangl€sA, TAB.

Thus, from Lemma 6F' belongs to the nine-point circle of triangleBC'. This
means that

F is the Feuerbach point of triangeBC. (15)

From (11) and (15)F is not only the anti-Steiner point of the Euler line of
Ao BoCy with respect tady By Cy, but also the Feuerbach point 4iBC.

Thus, we can conclude that the Feuerbach poiat Bt is the anti-Steiner point
of the Euler line ofdy By ().
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3.2 A synthetic proof of Theorem Zuppose that the inscribed cirdér) of tri-
angle ABC touchesBC, C A, AB at Ay, By, C, respectively. Letd’, B/, C' be
the intersections ofi/, BI, C'I with BC, C A, AB respectively;A”, B”, C" be
the feet of the perpendiculars frody, By, Cy to AI, BI, CI respectively and”
be the Feuerbach point egfBC' (see Figure 6).

Figure 6.
From Lemma 5(b) and Theorem K, < (A" B"C"). (16)
On the other hand, under inversion in the inciréle’), F', A”, B”, C" are
transformed intd?, A’, B’, C' respectively. a7

From (16) and (17), we can conclude that In conclusion, theunicircle of
A'B'C’ passes through the Feuerbach pdintf ABC.
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Properties of Valtitudes and Vaxes of
a Convex Quadrilateral

Maria Flavia Mammana, Biagio Micale, and Mario Pennisi

Abstract. We introduce the vaxes relative to a v-parallelogram aridrdene
several properties of valtitudes and of vaxes. In particul@ study the quadri-
lateral detected by the valtitudes and the one detectedebyatkes.

Given a convex quadrilater&), we call maltitude ofQ the perpendicular line
through the midpoint of a side to the opposite side. Malégitdave been investi-
gated in several papers (see, for example, [2, 7, 8]). Inqudatt in [7] it has been
proved that they are concurrent in a point, called anticeint§d], if and only if
Q is cyclic. Valtitudes relative to a v-parallelogram of a gex quadrilateralQ
were defined in [7]. This definition generalizes the one oftituales. Moreover
the problem of concurrency of valtitudes relative to a vaflatogram of a convex
guadrilateralQ was investigated. In this paper we introduce the notion afsva
relative to a v-parallelogram and we determine severalgtms of valtitudes and
vaxes. In particular, we study the quadrilateral detectethb valtitudes and those
detected by the vaxes.

1. v-paralldlograms

Let A1 A5 A3 A, be aconvex quadrilateral, that we denotehyA v-parallelogram
of Q is any parallelogram with vertices on the side<pand sides parallel to the
diagonals ofQ.

Ay
Vi

%
Ay !

V3

A3 Vz A2

Figure 1.

To obtain a v-parallelogram &) we can use the following construction. Fix an
arbitrary pointl; on the segmenti; A,. Draw fromV; the parallel to the diagonal
A1 Az and letV; be the intersection point of this line with the sidg As. Draw
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from V5 the parallel to the diagonad; A4 and letVs be the intersection point of
this line with the sidedsA4. Finally, draw fromVs the parallel to the diagonal
A1 Az and letV} be the intersection point of this line with the segmdnt4,. The
qguadrilateral; Vo V3V, is a v-parallelogram [7] and, by movirig on the segment
A1 As, we obtain all possible v-parallelograms@f(see Figure 1).

In the following we will denote byV a v-parallelogram ofQ, with V; (i =
1,2,3,4), vertex ofV on the side4; A;, (with indices taken moduld) and with
G’ the common point to the diagonals ®. Observe thalV is orthodiagonal.
The v-parallelogram\iy My M3 My, with M; midpoint of the sided; A, 1, is the
Varignon parallelogram of. In this particular casé’ is the centroid= of Q. We
recall that if M5 and Mg are the midpoints of the diagonals A3 and A, A4 of
Q respectively, the segmenits Mg, that we call thethird bimedianof Q, passes
throughG that bisects this segment ([1, 5]).

Theorem 1. The locus described by the common point of the diagonals ef a v
parallelogramV of Q by varyingV is the third bimedian 0€).

Proof. Let V be any v-parallelogram of) and let /Ny No N3N, be the Varignon
parallelogram oV, with midpointV; of V;V;., (see Figure 2).

Ay
7
Vy /
/
! N,
7 Vi
A4 /
N3 M5
</
’ \\
Gy (N
M RN
Vs \\\
\\
N2 N
Az Vo Az
Figure 2.

The trianglesd; A; A3 andV; A3V, are correspondent in a homothetic transfor-
mation with centerd,. It follows that
AVi AsVa )
A1Ay  AsAs
Moreover, M5 and/N; are collinear with4,. Analogously,Mg andN,4 are collinear
with Al.

Let G} andGY, be the common points of the line5 Mg with N7 N3 and Na Ny,
respectively. Because the trianglé& G} N, and M;Mg A, are similar, as are
Vo Ao Ny andA3A2M5, we have

MsG|  MsNy A3V )
MsMg — MsAy — AxAjz’
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Analogously, because the trianglgé& G, N, and M5 Mg A, are similar, as are
A1V1 Ny and A As Mg, we have
M5G/2 . A1N4 . A1V1 (3)
M5M6 B A1M6 B A1A2‘

From (1), (2) and (3), it follows thafieci = 5% Hence G = G = @,
andG’ lies on the bimedian/5 M.

Conversely, fix a poinP on the bimedian/; Mg. Let NV be the common point
to the line A5 M5 with the parallel line tad; A4 passing throughP. Let V; be the
common point to the linel; A5 with the parallel line tod; A3 passing througiv; .
V1 detectS a v-parallelograi that hasP as common point of its diagonals. [J

2. Valtitudes

Let V be a v-parallelogram of) and H; be the foot of the perpendicular to
A;10A;1 3 fromV;. The quadrilateraH; H, H3 H, is called theorthic quadrilateral
of Q [6], and we will denote it byH. The linesV; H; are called thevaltitudesof Q
with respect toV (see Figure 3).

Figure 3.

In the following the valtitude/; H; will be denoted byh;. Observe thaH can
be a convex, concave, or crossed quadrilaterdV. i the Varignon parallelogram,
the quadrilateraH is called the principal orthic quadrilateralof Q and the lines
M; H; are the maltitudes df).

Given a v-parallelogranV, if the valtitudes ofQ with respect tov are concur-
rent, thenQ is cyclic or orthodiagona[7]. Moreover,if Q is cyclic or orthodiag-
onal, there is only one v-parallelograivi* with respect to which the valtitudes are
concurrent Precisely,

(a) If Q is cyclic, V* is the Varignon parallelogram &) and then the valtitudes
that are concurrent are the maltitudespfmoreover the concurrency point of the
maltitudes is the anticentéf of Q; H is the symmetric of the circumcenter O with
respect to the centroi@ of Q and the line containing the three poif{s O andG

is the Euler line ofQ (see Figure 4).

The line through the midpoint/5 of the diagonald, A5 of Q perpendicular to
the diagonald; A4 and the line through the midpoidts of A; A4 perpendicular



50 M. F. Mammana, B. Micale and M. Pennisi

Figure 4.

to A, A3 are concurrent irHH [6]. Observe thaty is the midpoint of the segments
OH andM;5Mg, then the quadrilaterd Ms H Mg is a parallelogram witldr as the
common point to the diagonals.

(b) If Q is orthodiagonalV* is the v-parallelogram detected from the perpen-
diculars to the sides &) through the common poiri” of the diagonals o€}, that
is then the concurrency point of the valtitudes (see Figiwre 5

Ay

Hj

A4 A2

Vs

Va

Hy
As

Figure 5.
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3. Vaxes

Let Q be a convex quadrilateral and a v-parallelogram o0€).
We call thevaxisrelative to the sidel; A, the perpendicular td; A; 1 through
V; and denote it by;.

Theorem 2. If V is a v-parallelogram 0fQ and G’ is the common point of the
diagonals ofV, in the symmetry with cent&¥’ the valtitudes relative t&/ corre-
spond with the vaxes relative ¥.

Ay

|4}
H

Hj

Figure 6.

Proof. In fact, V; andV;. , are symmetric with respect @’ (see Figure 6). Then
the vaxisk; and the line parallel to it passing throuh, ., i.e., the valtitudeh, ; o,
are correspondent in the symmetry with cergiér O

From Theorem 2 it follows that given a v-parallelogravh the vaxes olQ
relative to'V are concurrent if and only if the valtitudes @f relative to'V are
concurrent

Then, from the concurrency properties of valtitudes, itofek thatif the vaxes
are concurrent, therq) is cyclic or orthodiagonal Moreover,if Q is cyclic or or-
thodiagonal, there is only one v-parallelograwi* such that the valtitudes relative
to it are concurrent Precisely,

(@) If Q is cyclic, V* is the Varignon parallelogram &), and the vaxes that are
concurrent are the axes 6f and the concurrency point is the circumcenteof

Q.

(b) If Q is orthodiagonalV* is the v-parallelogram detected by the perpendicu-
lars to the sides of) through the common poirft of the diagonals of) and the
concurrency point of the vaxes is the poiit symmetric of K with respect taG’
(see Figure 7).
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Ay

Ho // 4

Ay g3 A3

Vs

H;y

Hy
A3z

Figure 7.

4. Thequadrilateral of valtitudes and the quadrilateral of vaxes

Let Q be a convex quadrilateral and a v-parallelogram of).

Let B; be the common point to the valtitudésandh,; 1. We call B; Bo B3 B,
thequadrilateral of the valtitudesnd denote it by),.

Let C; be the common point of the vaxésandk;,;. We callC;CyC5C;y the
quadrilateral of the vaxeand denote it byl (see Figure 8).

A
H>
B
-
H;y ///
o B2
\%
As

Figure 8.

If V is the Varignon parallelogram, the linés are the maltitudes an@;, is
called thequadrilateral of the maltitudesf Q [4]. The linesk; are the axes of),
C; is the circumcenter of the trianglé; A;11 A;1+0 andQy, is called thequadrilat-
eral of the circumcentersf Q [4]. Observe that whelV is the Varignon parallel-
ogram, ifQ is cyclic, thenQ;, andQ;, are reduced to a point.
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The theorem below follows from Theorem 2.

Theorem 3. If V is a v-parallelogram ofQ and G’ is the common point of the di-
agonals ofV, the quadrilateral of the vaxes and the quadrilateral of tadtitudes
are symmetric with respect @'

Proof. In fact, the valtitudeh; 5 is the correspondent of the vaxisin the sym-
metry with centeiG’, and the poiniB, ;5 is the correspondent of the poift. [

Corollary 4 ([4, p.474]) If V is the Varignon parallelogram of), the quadri-
lateral of the circumcenters and the quadrilateral of theltihades are symmetric
with respect to the centroi@ of Q.

Let K and K’ be the common points of the diagonals@fand of Q,, respec-
tively.

Lemma 5. If Q is orthodiagonal, the trianglesi; A;+1 K and C;C;. 3K, (i =
1,2, 3,4) are similar.

Proof. SinceQ is orthodiagonal, the verticeB; of Q;, lie on the diagonals of)
[6]. The diagonals of);, and those of) lie on the same lines (see Figure 9). It
follows thatQ;, is orthodiagonal. Then, by Theorem Q,, is orthodiagonal as
well, and the diagonals &), are parallel to those d@. Then, the lines’; C5 and
CyCy are perpendicular to the line$; A3 and A; A4 respectively. Moreover, the
line C1Cy is perpendicular tol; A;. Therefore, the triangled; A K andC;C, K’
are similar, because they have equal angles. Analogotgysiinilarlity of each
of the pairsA,AsK, CoC1K'; AsA4K, C3CoK'; and A4 A K, C4,C3K' can be

established. O
Ay
B>
Ca
Vy Vi
4 B3 \/ o 2
V3
4 Va
Cy
As
Figure 9.

Let us make some preliminary remarks.
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For the two ratiosg~ and 22K let » be the one not greater than Also, for
3 1

the two ratios??—jj andf}‘*—ﬁ, letr’ be the one not greater thanThe pair{r, '} is
called the characteristic @). In [3] it was proved that two quadrilaterals are affine
if and only if they have the same characteristic.

Theorem 6. If Q is orthodiagonal andV is a v-parallelogram ofQ, the quadri-
lateral of the vaxes and the quadrilateral of the valtitudes affine toQ.

Proof. From Lemma 5, we have

LR L @
A K CyK"’
Ay K CyK! (5)
AsK C1 K"’
Lk _ Gl ©
A4K CQK/.
By multiplying (4) and (5), and also (5) and (6), we obtain:
AlK o CQK/
AsK — C4K"’
AQK . CgK/
AK ~ C K"
Thus the quadrilateral® and Q; have the same characteristic, and therefore are
affine. From theorem 3, al9Q,, is affine toQ. O

Lemma 7. If Q is cyclic, the angles o, are equal to those of). Precisely,
LCiCip1Ciqo = LA;_1A;Ai11 (iF1,2,3,9).

Figure 10.
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Proof. Let us prove tha C,C>Cs = £ A4 A1 Ay (see Figure 10). The other cases
can be established analogously. Sikges cyclic, LA4A1 A and£A;A3A, are
supplementary angles. Moreover, the angledsaand V, of the quadrilateral
V3C5 V5 Ag are right angles. Therefore,C;C>C3 and £ A5 A3 A, are supplemen-
tary angles. It follows thar C1CoCs = LA4 A1 As. O

Theorem 8. If Q is cyclic, then the quadrilateral of the vaxes and the quatiral
of the valtitudes are cyclic.

Proof. Since Q is cyclic, ZA4A1As and LA, A3A, are supplementary angles.
Therefore, from Lemma 7£CC5C5 and ZC,C4Cy are supplementary angles.
Then,Qy, is cyclic and, from Theorem 3);, is cyclic as well. O

Theorem 9. If Q is cyclic and orthodiagonal and is a v-parallelogram 01Q,
the quadrilateral of the vaxes and the quadrilateral of tiadtitudes are similar to

Q.

Ay
\ /
N\ /-
-
N v
N\ ////
N \
N NN
V
N SN
N K /
A4 < \1 A2
C;—\
- \ K’ /\01
- N
~
- N
- V2 N\
// \
\
<
C“/ N \
/ N \\
/ N
y N
/ N
, N
As
/
Figure 11.

Proof. From Lemma 7,Q and Q; have equal angles. Let us prove now that
the sides ofQ are proportional to those d@;. Consider the triangleg; A, As
andC>,C3C; (see Figure 11). From Lemma 5 the triangesAs K and C,C3 K’
are similar, and/ KA1 4; = ZK'CyC5. Since, from Lemma 7/A41 4345 =
£LC5C3CYy, the trianglesAd A, A3 andCy,C3Cy are similar.

Analogously, the similarity of each of the following pair toangles can be
established:A2A3A4, 030401; A3A4A1, 040102; and A4A1A2, 010203. It

follows that
A1A2 - A2A3 - A3A4 - A4A1

CoC3  C3Cy  CuCr C1Cy’
and the sides of) are proportional to those @y.
Therefore Q;. is similar toQ, and from Theorem 3, is also similar toQ. [
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Lemma 10. If V is a v-parallelogram ofQ and J; is the midpoint of the side
A;A;10fQ (1 =1,2,3,4), then

AV AV Azl A3V 7)
AM, A My AsM,  AsMy’

AVi AV AV A4V ®)
A My N Ao Mo N AsM;3 N AsMy

Ay

As Vo My Az
Figure 12.

Proof. In fact, since the triangled,V;V, and A; M, M, are similar, as are trian-
gles A3V, V3 and A3 Mo Ms (see Figure 12), we have
AV AV WV AsVa  AsVs  WKl3
A My AlMy o MMy AsM, — AsMs  MyMs'
SinceV 1V, = VoVs andM My = Mo Ms, (7) holds.
Analogously, since the triangles, V1 V5, and A, My Mo are similar, as ard4 V3V,
and A, M3 My, (8) also holds. O

Theorem 11. If Q is cyclic, the diagonals of the quadrilateral of the vaxesl an
those of the quadrilateral of the valtitudes are paralletie diagonals of).

Proof. Let O be the circumcenter o) (see Figure 13). Le€) andC} be the
common points of the linel; O with the vaxesk; and k4 respectively. Since the
trianglesA, V1 C}, and A1 M; O are similar, as are triangle$, V,C/ and A1 M,0,
we have

AVi A Ve A
A1M1 N A10’ A1M4 N A10 '
From (7), we havé“All—CO4 = éjl—co‘*. ThereforeCy = C} = Cy, andCy lies on the

line A;0. Moreover,
A1Cy AV A )
A0 T AM; AMY
Analogously, it is possible to prove th@t lies on the lined;O and
A3Cy A3V A3V

AsO  AsMy  AsMs’

(10)
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\ Ay

Figure 13.

From (9), (7) and (10), it follows that
A1Cy A3C
A0 A30°
Thus, the triangle®C>C, andO A, A are similar, and the diagonéhCy of Qy,
is parallel to the diagonal; A5 of Q.
Analogously, by using (8), it is possible to prove that thanglesOC,C5 and
0OAs Ay are similar, and the diagonél, Cs of Q. is parallel to the diagonal, A4
of Q. Since, from Theorem 3); andQ;, are symmetric with respect to a point,
the diagonals of);, are parallel to the diagonals @J;. and thus they are parallel
to the diagonals of). O

Figure 14.
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Theorem 12. If Q is cyclic andV is a v-parallelogram ofQ, the quadrilateral of
the vaxes relative t& has the same circumcenter Qf

Proof. From Theorem 8Q); is cyclic. The axes of segmentsC, andC,C35 meet

at the circumcenter d@;. The trianglexDC>C4 andO A, A5 are correspondent in
a homothetic transformation with center the circumcettasf Q, because, from
theorem 11, the line€>Cy and A; A5 are parallel (see Figure 14). It follows that
the axes of segmen(s,Cy and A; A3 coincide. Analogously, the axes of segments
C1C5 and A, A4 coincide. Then it follows tha® is the circumcenter of;,. O

Theorem 13. If Q is cyclic, all the quadrilaterals of the vaxes Qfhave the same
Euler line.

Figure 15.

Proof. Consider two v-parallelogram¥ and V' and their quadrilaterals of the
vaxesQj, and Q). respectively (see Figure 15). The vertic€sand C; of Q;
and Qj, respectively lie on the lin®A;,, and the ratio betwee®C; and OC/

is equal to the ratio between the circumradii@f, andQj.. Then,Q; and Q)
are correspondent in a homothetic transformation withezseit From Theorem
12, the Euler line o, passes througty, therefore it is fixed in the homothetic
transformation. It follows tha®;, andQ). have the same Euler line. O

We call thek-line of Q (cyclic) the Euler line of all the quadrilaterals of the
vaxes ofQ.

Theorem 14. If Q is cyclic andV is a v-parallelogram ofQ, the quadrilateral of
the valtitudes relative t&/ has the same anticenter &.
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Figure 16.

Proof. Let H be the anticenter d. Let B} and B} be the common points of the
line A1 H with the valtitudesh,; andhy, respectively (see Figure 16).
Since the trianglesl; V4 B and A, M1 H are similar, as aré; V, B} andA; M, H,
we have
A1V1 o A1B4/1 Al‘/4 N AIBZ
AlMl N AlH’ A1M4 N AlH ’

From (7) it follows that

AB,  AB!
AH . AH

Therefore,B) = B = B, andB; lies on the lined; H. Analogously it is possible
to prove thatB, lies on the lineds H.

Now consider the third bimediai/s Mg of Q, with M5 and Mg the midpoints
of the diagonalsd; A3 and A, A4 of Q respectively. Lets be the perpendicular
to the line Ay A4 through the poinf\/; and lethg be the perpendicular to the line
A As through Mg. The lineshs and hg pass throughd (see§2). The triangles
HB,B, andH A A3 are correspondent in a homothetic transformation withezent
H, because, from Theorem 1B, B, and A; Az are parallel. It follows thatis
passes through the midpointBf B, and itis perpendicular tB; B3, then it passes
through the anticenter @;,. Analogouslyhg passes through the anticenter@j
as well, thenH is the anticenter of),. O

Theorem 15. If Q is cyclic, all the quadrilaterals of the valtitudes €f have the
same Euler line.
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Proof. Given a v-parallelogranV and the quadrilateral®; andQ;, relative to it,
from Theorem 3, the Euler line @, is the symmetric of the Euler line @, with
respect to the poin&’, common point to the diagonals &. Then, the theorem
follows from Theorem 13. O

We call theh-line of Q (cyclic) the Euler line of all the quadrilaterals of the
valtitudes ofQ.

Theorem 16. If Q is cyclic, the h-line and the k-line @) are parallel and are
symmetric with respect to the line containing the third kiiaa of Q.

Figure 17.

Proof. From Theorems 3, 13 and 15 it follows that the h-line and tHmé-of
Q are symmetric with respect #6’, common point of the diagonals of any v-
parallelogram ofQ. Therefore, in particular, they are parallel. Moreoveonir
Theorem 1, the point&’ lie on the third bimedian o€, then the h-line and the
k-line of Q are symmetric with respect to the line containing the thirddalian of
Q (see Figure 17). O
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Similar Metric Characterizations of Tangential
and Extangential Quadrilaterals

Martin Josefsson

Abstract. We prove five necessary and sufficient conditions for a coguadri-
lateral to have an excircle and compare them to similar ¢mmdi for a quadri-
lateral to have an incircle.

1. Introduction

There are a lot of more or less well known characterizatidnarmential quadri-
laterals! that is, convex quadrilaterals with an incircle. This @rid tangent at the
inside of the quadrilateral to all four sides. Many of theseassary and sufficient
conditions were either proved or reviewed in [8]. In this @ape shall see that
there are a few very similar looking characterizations fopavex quadrilateral to
have arexcircle This is a circle that is tangent at the outside of the quaignial
to the extensions of all four sides. Such a quadrilaterahied anextangential
quadrilateralin [13, p.44]? see Figure 1.

Figure 1. An extangential quadrilateral and its excircle

We start by reviewing and commenting on the known chara@gons of extan-
gential quadrilaterals and the similar ones for tangemjigdrilaterals. It is well
known that a convex quadrilateral is tangential if and ohtiae four internal angle

Publication Date: April 4, 2012. Communicating Editor: P#iu.
IAnother common name for these is circumscribed quadrilhter
2Alexander Bogomolny calls them exscriptible quadrilatetd?2].
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bisectors to the vertex angles are concurrent. Their compoant is the incen-
ter, that is, the center of the incircle. A convex quadriialtés extangential if and
only if six angles bisectors are concurrent, which are therival angle bisectors
at two opposite vertex angles, the external angle biseetattse other two vertex
angles, and the external angle bisectors at the angles dowhere the extensions
of opposite sides intersect. Their common point is the ebecdl in Figure 1).

The most well known and useful characterization of tangéuadrilaterals is
the Pitot theorem, that a convex quadrilateral with sidés ¢, d has an incircle if
and only if opposite sides have equal sums,

at+c=b-+d.

For the existence of an excircle, the similar charactadnagtates that the adjacent
sides shall have equal sums. This is possible in two difftensays. There can
only be one excircle to a quadrilateral, and the charaetgoiz depends on which
pair of opposite vertices the excircle is outside of. It isyet realize that it must
be outside the vertex (of the two considered) with the biggesgle3 A convex
quadrilateralA BC D has an excircle outside one of the vertieksr C' if and only
if

a+b=c+d 1)
according to [2] and [10, p.69]. This was proved by the Swiagh@matician Jakob
Steiner (1796-1863) in 1846 (see [3, p.318]). By symmeéiry( d), there is an
excircle outside one of the verticésor D if and only if

at+d=b+ec )

From (1) and (2), we have that a convex quadrilateral witlessid b, ¢, d has an
excircle if and only if

la —c| =|b—d|
which resembles the Pitot theorem. There is however ongpégoeo these char-
acterizations. The existence of an excircle is dependetti@fact that the exten-
sions of opposite sides in the quadrilateral intersectmitse the circle can never
be tangent to all four extensions. Therefore there is nadedio either of a trape-
zoid, a parallelogram, a rhombus, a rectangle or a squaretaeegh (1) or (2)
is satisfied in many of them, since they have at least one paiposite parallel
sides?

In [8, p.66] we reviewed two characterizations of tangérdizadrilaterals re-
garding the extensions of the four sides. Let us take anddb&rat them here. If
ABC D is a convex quadrilateral where opposite sidd$ andC' D intersect atF,
and the sidesl D and BC intersect af’ (see Figure 2), thed BC' D is a tangential
guadrilateral if and only if either of the following conditis holds:

AE + CF = AF + CE, (3
BE + BF = DE + DF. (4)

SOtherwise the circle can never be tangent to all four exterssi

4The last four of these quadrilaterals can be considered textmngential quadrilaterals with
infinite exradius, see Theorem 8.
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Figure 2. The extensions of the sides

The history of these conditions are discussed in [14] tagyethth the correspond-
ing conditions for extangential quadrilaterals. In ouratins, ABC' D has an
excircle outside one of the verticesor C if and only if either of the following
conditions holds:

AE + CE = AF + CF, (5)
BE + DE = BF + DF. (6)

These conditions were stated somewhat differently in [14h wther notations.
Also, there it was not stated that the excircle can be outdidlestead ofC', but
that is simply a matter of making the chande— C'in (5) to see that the condition
is unchanged. How about an excircle outsiddsoér D? By making the changes
A« DandB < C (to preserve thal B and C'D intersect atF) we find that
the conditions (5) and (6) are still the same. According #,[tonditions (3) and
(5) were proved by Jakob Steiner in 1846. In 1973, Howard &nas (see [5])
contributed with the two additional conditions (4) and (6).

From a different point of view, (3) and (5) can be considerelde necessary and
sufficient conditions for when eoncavequadrilateralA EC'F' has an “incircle” (a
circle tangent to two adjacent sides and the extensionseobther two) or an
excircle respectively. Then (4) and (6) are necessary dffidisat conditions for a
complexquadrilateralBEDF to have an excirclé.

Another related theorem is due to the Australian mathematigl. L. Urquhart
(1902-1966). He considered it to be “the most elementargréme of Euclidean
geometry”. It was originally stated using only four intezeg lines. We restate it
in the framework of a convex quadrilaterdlBC D, where opposite sides intersect
atE andF, see Figure 2. Urquhart's theorem states thdtif+ BC = AD+ DC,
thenAE + EC = AF 4+ FC. In 1976 Dan Pedoe wrote about this theorem (see
[12]), where he concluded that the proof by purely geomaitmcethods is not el-
ementary and that he had been trying to find such a proof tdahali involve a
circle (the excircle to the quadrilateral). Later that ydéaan Sokolowsky took up

5Equations (4) and (6) can then be merged into ongsds — DF| = |BF — DE|.
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that challenge and gave an elementary “no-circle” prooflbl.[ In 2006, Mowaf-
faq Hajja gave a simple trigonometric proof (see [6]) tha ttvo equations in
Urguhart’s theorem are equivalent. According to (1) andt{®y are both charac-
terizations of an extangential quadrilateraBC' D.

2. Characterizations with subtriangle circumradii

In[9, pp.23—-24] we proved that if the diagonals in a convexdyiiateralA BC' D
intersect atP, then it has an incircle if and only if

Ri+R3 =Ry + Ry

whereR1, Ry, R3 and R, are the circumradii in the triangle$BP, BCP,CDP
and D AP respectively, see Figure 3.

Figure 3. The subtriangle circumcircles

There are the following similar conditions for a quadritaldo have an excircle.

Theorem 1. Let Ry, Ro, R3, R4 be the circumradii in the triangled BP, BCP,
CDP, DAP respectively in a convex quadrilateral BC'D where the diagonals
intersect atP. It has an excircle outside one of the verticé®sr C' if and only if

Ri+ Ry = R3+ Ry
and an excircle outside one of the vertiddor D if and only if
Ri + Ry = Ry + Rj3.

Proof. According to the extended law of sines, the sides satigfies2R; sin 6,
b=2Rysinf, c = 2R3 sin @ andd = 2R, sin 6, wheref is the angle between the
diagonal€ see Figure 3. Thus

a—l—b—c—dz2sin9(R1—|—R2—R3—R4)

Swe used thatin (m — 0) = sin 0 to get two of the formulas.
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and
a—l—d—b—c:2sin9(R1+R4—R2 —Rg).
From these we directly get that
a+b=c+d & Ri+Ry=R3+ R4

and
a+d=b+c & R +Ri=Ry+R3
sincesin 6 # 0. By (1) and (2) the conclusions follow. O

3. Characterizations concerning the diagonal parts

In [7] Larry Hoehn made a few calculations with the law of s to prove that
in a convex quadrilaterad BC' D with sidesa, b, ¢, d,

efgh(a+c+b+d)(a+c—b—d) = (agh+cef+beh+df g)(agh+cef—beh—df g)

wheree, f, g, h are the distances from the verticds B, C, D respectively to the
diagonal intersection (see Figure 4). Using the Pitot thear+ ¢ = b + d, we get
that the quadrilateral is tangential if and only if

agh + cef = beh + df g. (7)

Now we shall prove that there are similar characterizationshe quadrilateral to
have an excircle.

Theorem 2. Lete, f, g, h be the distances from the verticdsB, C, D respectively
to the diagonal intersection in a convex quadrilaterBC' D with sidesa, b, ¢, d.
It has an excircle outside one of the verticésr C if and only if

agh + beh = cef + dfg

and an excircle outside one of the vertidgr D if and only if
agh + df g = beh + cef.

Proof. In [7] Hoehn proved that in a convex quadrilateral,

efgh (a® + ¢ —b* — d®) = a®g°h* + *e* f2 — b?e*h? — &> fg>.
Now addinge f gh(—2ac + 2bd) to both sides, this is equivalent to
efgh ((a—c)® — (b—d)?) = (agh — cef)? — (beh — dfg)?
which is factored as
efgh(a—c+b—d)(a—c—b+d) = (agh—cef+beh—df g)(agh—cef—beh+df g).

The left hand side is zero if and onlydf+b = ¢+ d ora+d = b+ c and the right
hand side is zero if and only ifgh + beh = cef + df g or agh + df g = beh + cef.

To show that the first equality from both sides are conneatekdlzat the second
equality from both sides are also connected, we study aapease. In a kite
wherea = d andb = ¢ and alsof = h, the two equalitiest + b = ¢+ d and
agh + beh = cef + df g are satisfied, but none of the others. This proves that they
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are connected. In the same way, using another kite, the ttlveare connected
and we have that

a+b=c+d <& agh+beh=cef+dfg

and
a+d=b+c < agh+dfg=beh+ cef.
This completes the proof according to (1) and (2). d

Remark.The characterization (7) had been proved at least thresrelift times be-
fore Hoehn did it. It appears as part of a proof of an inversadin characterization
of tangential quadrilaterals in [16] and [17]. It was alsoyad in [11, Proposition
2 (e)]. All of the four known proofs used different notations

4. Characterizations with subtriangle altitudes

In 2009, Nicusor Minculete gave two different proofs (s&#]] that a convex
guadrilateralABC D has an incircle if and only if the altitudés, ho, h3, hy from
the diagonal intersectio® to the sidesAB, BC, CD, DA in trianglesABP,
BCP,CDP, DAP respectively satisfy

— ==t (8)

This characterization of tangential quadrilaterals hashiqgroved as early as 1995
in Russian by Vasilyev and Senderov [16]. Another Russiaoifpwas given in
2004 by Zaslavsky [18]. To prove that (8) holds in a tangémgieadrilateral (i.e.
not the converse) was a problem at the 2009 mathematics @gnip Germany
[1]. All of these but the 1995 proof used other notations.

Figure 4. The subtriangle altitudés, h2, hs andhg

Here we will give a short fifth proof that (8) is a necessary anfficient con-
dition for a convex quadrilateral to have an incircle using tharacterization (7).
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By expressing twice the area diBP, BC P, CDP, DAP in two different ways,
we have the equalities (see Figure 4)

ahy = efsin#,
bhy = fgsin#,
chs = ghsin 0,
dhs = hesin 6 (9)

wheref is the angle between the diagonaldence

_+____i Sin@_i+£_i_i_agh+cef—beh—dfg
hi  hy hy g “ef gh fg he efgh '

Sincesin § # 0, we have that

1 1 1 1
T e h =beh +d
I + T & agh +cef = beh +dfg

which by (7) proves that (8) is a characterization of tanigéuadrilaterals.
Now we prove the similar characterizations of extangempigddrilaterals.

Theorem 3. Let hq, ho, h3, hy be the altitudes from the diagonal intersectiéh
to the sidesdAB, BC, CD, DA in the trianglesABP, BCP, CDP, DAP re-
spectively in a convex quadrilateral BC'D. It has an excircle outside one of the
verticesA or C if and only if

L o1 1. 1
hi  hy  hy hy
and an excircle outside one of the vertidgdor D if and only if

1 1 1 1

Wi hy Ry

Proof. The four equations (9) yields

1,1 1 1\, oa b e d_aghtbeh—cef —dfg
hi ~ hy hy ha “ef fg gh he efgh '
Sincesin # # 0, we have that

1 1 1 1
hy ho hs hy @9 ¢ e g

which by Theorem 2 proves the first condition in the theorehe Jecond is proved
in the same way. d

"Here we have used thait (m — 0) = sin 0 in two of the equalities.
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5. losifescu’s characterization for excircles

According to [11, p.113], Marius losifescu proved in 1954tth convex quadri-
lateral ABC' D has an incircle if and only if

tan = tan = = tan 2 tan —
an B an ) = tan 5 an B
wherex = LZABD,y = LADB, z = Z/ZBDC andw = ZDBC, see Figure 5.

That proof was given in Romanian, but an English one was giv@#, pp.75-77].

Figure 5. Angles in losifescu’s characterization

There are similar characterizations for a quadrilaterdlatee an excircle, which
we shall prove in the next theorem.

Theorem 4. Letx = LABD,y = ZADB, z = Z/ZBDC andw = ZDBC'ina
convex quadrilaterad BC' D. It has an excircle outside one of the verticésr C
if and only if
tan d tan v = tan Y tan z
2 2 2 2
and an excircle outside one of the vertidgr D if and only if

tanx tany = tan ztanw
2 2 2 2"

Proof. In [8], Theorem 7, we proved by using the law of cosines that

(d+a—q)(d—a+q) (a+q+d)(a+q—d)

1—cosz = , l4coszx = )
2aq 2aq
d— —d d d —
1_Cosy:(a+ Ola—d+q) 1Jrcosy:( tataldt+g—a)
2dq 2dq
1_COSz:(b—|—c—q)(b—c+q)’ l_i_cosz:(c%—q—l—b)(c—l—q—b)’
2cq 2¢cq
| s = CFb=ale=brqg) o (btgt)bta—c)

2bq ’ 2bq ’
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wherea = AB,b = BC,c = CD,d = DA andq = BD in quadrilateral
ABCD. Using these and the trigonometric identity

tan2 & — 1—cosu
2 1+4cosu’

the second equality in the theorem is equivalent to
(d+a—qgPd—-at+q)la—d+q)(ct+qg+b)*(c+qg—Db)(b+qg—c)

16abcdq*
Cbte—qPb—c+qgc—b+q)lat+q+d)?(a+q—d)(d+q—a)
N 16abcdg* ’
This is factored as
4qQi(a+d—b—c) ((a+d)(b+c)—¢*) =0 (10)

where
(a—d+q)(d-—a+q)(b—c+q)lc=b+q)

@ = 16abcdqg*
is a positive expression according to the triangle inegyualiVe also have that
a+d>qandb+ c > q,so(a+d)(b+c) > ¢*. Hence we have proved that

tangtan%:tangtan% S a+d=b+ec

which according to (2) shows that the second equality intieertem is a necessary
and sufficient condition for an excircle outside®for D.
The same kind of reasoning for the first equality in the theoygelds

49Q2(a+b—c—d) ((a+b)(c+d) —¢*) =0 (11)
where(a + b)(c + d) > ¢ and
(@a—b+qg)b—a+q)d—c+q)(c—d+q)

= > 0.
@ 16abedq?
Hence
x w Y z
tanﬁtang :tanitani & a+b=c+d
which according to (1) shows that the first equality in theotken is a necessary
and sufficient condition for an excircle outside Afor C. O

6. Characterizations with escribed circles

All convex quadrilateralsA BC'D have four circles, each of which is tangent
to one side and the extensions of the two adjacent sides. riargle they are
called the excircles, but for quadrilaterals we have rexkihat name for a circle
tangent to the extensions of all four sides. For this reaserwill call a circle
tangent to one side of a quadrilateral and the extensiorsedfito adjacent sides
anescribed circlé® The four of them have the interesting property that theiteen
form a cyclic quadrilateral. IfABC D has an incircle, then its center is also the
intersection of the diagonals in that cyclic quadrilatgdalpp.1-2, 5].

8in triangle geometry the two names excircle and escribadiecare synonyms.
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First we will prove a new characterization for when a conveadyilateral has
an incircle that concerns the escribed circles.

Theorem 5. A convex quadrilateral with consecutive escribed circlesadii R,
Ry, R. and R, is tangential if and only if

RoR. = RyRy.

Figure 6. The four escribed circles

Proof. We consider a convex quadrilatetdBC' D where the angle bisectors inter-
sect atl,,, I, I. andl,. Let the distances from these four intersections to thesside
of the quadrilateral be,, ry, . andry, see Figure 6. Then we have

A B A B
re | cot —+cot — | =a =R, tan§+tan§ ,
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From two of these we get

tB—I— tO tA—I- tD
TpTd co2 co2 co2 co2

= RyR, <tan E +tan€> <tané + tan Q) ,

2 2 2 2
whence
A D
- cos 5 sin & 2 + sin £ 2 COS 35 CcoS 2 sin % 2 + sin = 2 CcoS 2
sin £ 2 sin = 2 sin 2 sin 2
sin g cos 5 +cos 5 sm% sin 2 cos 5 —i—cos 5 sm%
= RyRq B C A D
COS 3 COS & COS 5 COS 5
This is equivalent to
ryrd B D
= tan — tan — tan — tan —. 12
Ry Ry 2 2 2 2 (12)
By symmetry we also have
ToT A B C D
R:RCC = tan 3 tan 5 tan o) tan 55 (13)
S0 ol TyT
alc bld
= . 14
R, R, RyR, (14)

The quadrilateral is tangential if and only if the angle bises are concurrent,
which is equivalent td, = I, = I. = I;. This in turn is equivalent to that
re = 1 = r. = rq. Hence by (14) the quadrilateral is tangential if and only if
RoR. = RyRg. O

We also have the following formulas. They are not new, andezgily be de-
rived in a different way using only similarity of triangles.

Corollary 6. In a bicentric quadrilateraP and a tangential trapezoid with consec-
utive escribed circles of radi®,,, Ry, . and 4, the incircle has the radius

r =+v/ReR. = \/RyRq.

Proof. In these quadrilateralsd + C =nr =B+ DorA+ D =7 = B+ C (if
we assume thad B || DC). Thus

tangtang :tangtang =1
or

tan;tan; :tangtani =1.
In either case the formulas for the inradius follows dingdtbm (13) and (12),
sincer = r, = r, = r. = rg When the quadrilateral has an incircle. O

Hhisis a guadrilateral that has both an incircle and a cidgtote.
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In comparison to Theorem 5 we have the following characéons for an
extangential quadrilateral.

Theorem 7. Let a convex quadrilaterall BC'D have consecutive escribed circles
of radii R,, Ry, R. and R4. The quadrilateral has an excircle outside one of the
verticesA or C'if and only if

RoRy, = R.Ry
and an excircle outside one of the vertidgér D if and only if
Ry,Rq = RyR..

Figure 7. Intersections of four angle bisectors

Proof. We consider a convex quadrilaterdlBC' D where two opposite internal
and two opposite external angle bisectors interseét attr., £, and E4. Let the
distances from these four intersections to the sides ofubadrijateral be,, p., pp
andp, respectively, see Figure 7. Then we have

b <tan§—cot%> =b=Ry <tan§+tan§ ,

Pe <tan9 — cot 9) =c=R, <tan—+tan2>
2 2 2 2 )7

Pd <coté—tan2> =d= Ry <tan9+tané>.
2 2 2 2
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Using the first two of these, we get

té—tnE tnE— tg
papbco2a2 a2co2

A B B C
= R, Ry (tan o) + tan —> <tan — + tan —> ,

2 2 2
whence
cosécos% —singsing sin%sin% —cos%cos%
PaPb . A B B - C
sin 5 cos 5 cos 5 sin 5
sinécos%—kcosésing sin%cos%—i—cos%sin%
= Ro Ry A B B C :
COS 5 COS 5 oS 5 COS 5
This is equivalent to
cos#(—cos%) _RER sinAJrTBsinBTJrC
PaPb sin % cos? % sin % T s % cos? % coS % ’
which in turn is equivalent to
A+ B B+C A C
ngg’b = —tan —g tan ;_ tan 3 tan 3 (15)
By symmetry B < D), we also have
A+ D D+C A C
nggd = —tan —; tan ; tan 3 tan 5 (16)
Now using the sum of angles in a quadrilateral,
A+ B D+C
tan = —tan
2 2
and
B+C A+ D
tan = —tan .
2
Hence
A+ B B+C A+ D D+C
tan tan = tan tan
2 2 2 2
so by (15) and (16) we have
PaPb PcPd
= . 17
R,Ry, R.Ry (17)

The quadrilateral is extangential if and only if the intdraagle bisectors atl and
C, and the external angle bisectorsfabnd D are concurrent, which is equivalent
to £, = Ey, = E. = Ey4. This in turn is equivalent to that, = pp, = pe = pq.
Hence by (17) the quadrilateral is extangential if and ohlgJR, = R.Rg.

The second conditio®, R; = Ry R, is proved in the same way. O
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We have not found a way to express the exradius (the radiuseirexcircle)
in terms of the escribed radii in comparison to Corollary Bstéad we have the
following formulas, which although they are simple, we oainfind a reference

K

for. They resemble the well known formulas= £ = ;% for the inradius in a

tangential quadrilateral with sidesb, ¢, d and areak..

Theorem 8. An extangential quadrilateral with sides b, c andd has the exradius

B K B K
CJa—c  |b—d|

p

whereK is the area of the quadrilateral.

Proof. We prove the formulas in the case that is shown i Figure 8. Té® af the
extangential quadrilateral BC D is equal to the areas of the triangld$3 F and
ADF subtracted by the areas BIC F andCDE. Thus

K = %ap—k%dp— %bp— %cp: %p(a—i—d—b—c)
where the exradiug is the altitude in all four triangles. Hence

B 2K K K
a—c+d—b a—c d-0b

p

since here we hawe+b = c+d (the excircle is outside af'), that isa —c = d—b.
To cover all cases we put absolute values in the denominators O

Figure 8. Calculating the area dfBC D with four triangles

This theorem indicates that the exradii in all parallelogga(and hence also in
all rhombi, rectangles and squares) are infinite, sincelinfahemaa = ¢ and
b=d.



Similar metric characterizations of tangential and exéntigl quadrilaterals 77

References
[1] 48. Mathematik-Olympiade, 4. Stufe, Klasse 12-13 (im@a&n), 2009, available at
http://www.mathematik-olympiaden.de/aufgaben/48/4/A 48134a.pdf
[2] A. Bogomolny, Inscriptible and exscriptible quadriaals,Interactive Mathematics Miscellany
and Puzzles
http://www.cut-the-knot.org/Curriculum/Geometry/Pit ot.shtml

[3] F.G.-M.,Exercices de Geomeétri€inquieme édition (in Frenchiditions Jaques Gabay, 1912.
[4] D. Grinberg, A tour around Quadrilateral Geometry, éalalie at
http://www.cip.ifi.Imu.de/ ~grinberg/TourQuadriPDF.zip
[5] H. Grossman, Urquhart’s quadrilateral theordthe Mathematics Teaches6 (1973) 643-644.
[6] M. Hajja, A very short and simple proof of “The most elentemy theorem” of Euclidean ge-
ometry,Forum Geom.6 (2006) 167—169.
[7] L. Hoehn, A new formula concerning the diagonals andsiofea quadrilateraForum Geom.
11 (2011) 211-212.
[8] M. Josefsson, More characterizations of tangentiatiglaterals Forum Geom.11 (2011) 65—
82.
[9] M. Josefsson, Characterizations of orthodiagonal gladrals,Forum Geom.12 (2012) 13—
25.
[10] K. S. KedlayaGeometry Unbound2006, available at
http://math.mit.edu/ ~ kedlaya/geometryunbound/
[11] N. Minculete, Characterizations of a tangential qilateral, Forum Geom.9 (2009) 113-118.
[12] D. Pedoe, The Most “Elementary Theorem” of Euclidearo@etry, Math. Mag, 4 (1976)
40-42.
[13] M. Radit, Z. Kaliman and V. Kadum, A condition that a ¢gemtial quadrilateral is also a chordal
one,Mathematical Communication&2 (2007) 33-52.
[14] L. Sauvé, On circumscribable quadrilaterasux Math, 2 (1976) 63—67.
[15] D. Sokolowsky, A “No-circle” proof of Urquhart’s theem, Crux Math, 2 (1976) 133—-134.
[16] I. Vaynshtejn, N. Vasilyev and V. Senderov, Problem M%4Kvant (in Russian) no. 6, 1995,
pp. 27-28, available at
http://kvant.mirrorl.mccme.ru/djvu/1995_06.djvu
[17] W. C. Wu and P. Simeonov, Problem 106@28ner. Math. Monthly105 (1998) 995; solution,
ibid., 107 (2000) 657—658.
[18] A. Zaslavsky, Problem M188Kvant(in Russian) no. 3, 2004 p. 19, available at
http://kvant.mirrorl.mccme.ru/djvu/2004_03.djvu

Martin Josefsson: Vastergatan 25d, 285 37 Markaryd, Swede
E-mail addressmartin.markaryd@hotmail.com






Forum Geometricorum
Volume 12 (2012) 79-82.

FORUY GEOM

ISSN 1534-1178

A New Proof of Yun'sInequality for
Bicentric Quadrilaterals
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Abstract. We give a new proof of a recent inequality for bicentric qulaterals
that is an extension of the Euler-like inequalRy> /2r.

A bicentric quadrilateral ABC D is a convex quadrilateral that has both an in-
circle and a circumcircle. In [6], Zhang Yun called theseuble circle quadrilat-
erals” and proved that

r\/§<1 A B_I_,B C_I_,C D+,D A 1

R =73 S B COS B) Sin B COS B) S B COS B Sin B COS B) <

wherer and R are the inradius and circumradius respectively. While haop

mainly focused on the angles of the quadrilateral and how #ine related to the
two radii, our proof is based on calculations with the sides.

Figure 1. A bicentric quadrilateral with its inradius andccimradius
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In [4, p.156] we proved that the half angles of tangent in atiicc quadrilateral
ABCD with sidesa, b, ¢, d are given by

\/T; C

2 )

cd D
ab

We need to convert these into half angle formulas of sine asthe. The trigono-
metric identities

LT tan 3
sin— = ——=——,
2 tan? s+1
x 1
CoS — = ———
2 tan? £ +1
yields
A be C
in = — = - 1
MY T Vadtbe P (1)
A | ad C
2 = sin — 2
€08 2 ad + be St 2 (2)
and

B D
== - 3
sin 2 ab—l—cd - (3)
Q

B ab (@)

2TV ab+ed
From the formulas for the inradius and C|rcumrad|us in anftite quadrilateral
(these where also used by Yun, but in another way)

2V abed
a+b+c+d

1 \/ (ab + cd)(ac + bd)(ad + be)
R="
4 abed

= sin

we have

rv2 8v/2abed

R (a+b+c+d)\/(ab+ cd)(ac + bd)(ad + be)
< 8v/2abed
~ 4v/abedy/(ab + cd)(ad + be) v/ 2V acbd
2v/abed
N V/ (ab + cd)(ad + be)
where we used the AM-GM inequality twice.
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Let us for the sake of brevity denote the trigonometric esgimn in the paren-
thesis in Yun’s inequality by.. Thus
B B C C D D A

E:SiHECOSE+Sin§COSE+Sin§COS§+Sin§COSE

and the half angle formulas (1), (2), (3) and (4) yields

_ Vab?c+ Vberd + Vaed? + Va2bd  (Vab+ Ved)(vVad + Vbe)
V/(ab + cd)(ad + be) V(ab +cd)(ad +be)
Using the AM-GM inequality again,

(Vab + Ved)(Vad + Vbe) > 2/ Vabved - 2y/vadv/be = 4v/abed,

Hence

b

rv2 < 2v/ abed
R = \/(ab+ cd)(ad + bc)
This proves the left hand side of Yun's inequality.
For the right hand side we need to prove that

(Vab 4+ Vcd)(Vad + Vbe)
V/(ab + cd)(ad + be)
By symmetry it is enough to prove the inequality

Vab+Ved <3
vab+ ed

Since both sides are positive, we can rewrite this as

(Vab+Ved)? < 2(ab+cd) <  2Vabed < ab+ cd

which is true according to the AM-GM inequality.

This completes our proof of Yun’s inequality for bicentriaaglrilaterals. From
the calculations with the AM-GM inequality we see that thisrequality on the left
hand side only when all the sides are equal since we wselH- ¢+ d > 4v/abed,
with equality only ifa = b = ¢ = d. On the right hand side we have equality only
if ab = cd andad = bc, which is equivalent taa = ¢ andb = d. Since itis a
bicentric quadrilateral, we have equality on either sidenidl only if it is a square.

It can be noted that since opposite angles in a bicentricrdatatal are supple-
mentary angles, Yun's inequality can also (after rearmaggine terms) be stated as
either

ﬂ < l (simésimE —l—singsing —I—Singsing —|—SiHQSiné> <1

R — 2 2 2 2 2 2 2 2 2) =

3.

<

1
2

<2

or

rv2 < 1 n N C D n D A <1

_— — | COS — COS — COS — COS — COS — COS — COS — COS — .
R —2 2 2 2 2 2 2 2 2)~
We conclude this note by a few comments on the simpler inéguil> /2r.

According to [2, p.132] it was proved by Gerasimov and Katiil©64. The next
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year, the American mathematician Carlitz published a pgjevhere he derived a
generalization of Euler’s triangle formula to a bicentricagrilateral. His formula
gaveR > /2r as a special case. Another proof can be based on Fuss’ theswem
[5]. The inequality also directly follows from the fact thie areak of a bicentric
quadrilateral satisfiedR? > K > 42, which was proved in [1].
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Reflection Triangles and Their Iterates

Grégoire Nicollier

Abstract. By reflecting each vertex of a triangle in the opposite site @btains
the vertices of the reflection triangle of the given triangige analyze the for-
ward and backward orbit of any base triangle under this ridlegrocess and
give a complete description of the underlying discrete dyical system with
fractal structure.

1. Introduction

We consideffinite triangles as well agfinite triangles with a finite side, a ver-
tex at infinity and two semi—infinite parallel sides. By refieg each vertex of a
triangle in the opposite side one obtains the vertices oféHection triangleof
the given triangle. A degenerate triangle is thus its owrecotifbn triangle — in-
cluding by convention triangles with two or three coincitleartices. The reverse
construction of an antireflection triangle is in general possible with compass
and ruler only [2]. By using interactive geometry softwaresees how erratic
the behavior of a, say, four times reflected triangle can lle kespect to the base
triangle (Figure 1).

Figure 1

We give a complete description of the dynamical system géeerby this re-
flection process and we reduce the part concerning the ndae-&gangles to a
symbolic system. Eacproper triangle {.e., each finite nondegenerate triangle) is
the reflection triangle of, 6 or 7 differently placed triangles #when the triangle
is equilateral or nearly equilateral (Figure 2). Each degate triangle with three

Publication Date: April 13, 2012. Communicating EditorChris Fisher.
The author thanks the Communicating Editor for his manyfékuggestions.
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By

A =C

Figure 2. Isosceles triangle with equfl°—angles and degenerate reflection tri-
angle; ther triangles with the same equilateral reflection triangle

distinct vertices is the reflection triangle of exadliriangles. Each nondegenerate
infinite triangle is the reflection triangle of exactlyinfinite triangles. We prove
that all finite acute and right—-angled triangles tend to amlaigral limit if one
iterates this reflection map, and we describe the fractattire of the triangles
having an equilateral or degenerate limit. If one represtg set of triangles up to
similarity by the se (., 8) | 0° < 8 < a < 90° — g} in the Euclidean plane, the
triangles with equilateral limit form a dense open subdget;ttiangles with degen-
erate limit form a countable union of maximal path—conngciegbsets with empty
interior; the triangles without equilateral or degenetatdt form an uncountable
totally path—disconnected subset; any neighborhood aéiagie without equilat-
eral limit contains uncountably many triangles with ecgital limit, with degener-
ate limit, and with neither equilateral nor degeneratetlivdie show that there are
up to angle similarity four finite and two infinite triangleisndlar to their reflection
triangle (among them the degenerate and equilateral teantheheptagonal tri-
anglewith anglesZ, 2= and“Z, and the rectangular infinite triangle). We exhibit
the ten2—cycles — three of them for infinite triangles — and the fatgycles —
eight of them for infinite triangles. If one identifies sinmifiangles, the set of
non-acute triangles contains (finitely many) cycles of argdifinite length — they
are always repelling — and uncountably many disjoint digatgorward orbits for
both finite and infinite triangles. We exhibit some explictamples and describe
symbolically the periodic and divergent forward orbitsislpossible to design di-
vergent forward orbits with almost any behavior: such antardn for example
approximate any periodic orbit of non-acute, nondegeeerangles during any
finite number of consecutive reflection steps before leatig cycle, or it can
even be dense in the space of triangles without equilatiendl IIf one identifies
similar triangles, infinite triangles having a degeneratet lare countably dense in
the set of infinite triangles; this is also the case for thébacd orbit of any nonde-
generate infinite triangle; the backward orbit of a finitarigle without equilateral
limit (and not reduced to a single point) is dense in the saildfiangles without
equilateral limit.
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Properties of finite reflection triangles can be found in B,%] and [3, pp. 77—
80]. The reflection triangle of a proper triangleis homothetic — in ratiat with
respect to the centroid df — to the pedal triangle of the nine—point centéf5],
i.e.,, to the triangle with vertices on each side A&fhalfway between the side’s
midpoint and the altitude’s foot. By the Wallace—Simson drieen [10, p. 137] the
reflection triangle of a proper triangl® — being similar to the pedal triangle of
—is degenerate if and only i¥ lies on the circumcircle of\: this is the case if and
only if the sidesz, b, c of A satisfya? +b? + ¢ = 5R?, R being the circumradius.
Thus, by the sine law, the reflection triangle of a propentyia with anglesy, 5,
~ is degenerate if and only if

sin? a + sin? § + sin?y = %. (@8]
We mainly use a method developed by van 1Jzeren [9] for sglthe problem of
finding all triangles with a given finite reflection trianglé/e reformulate, extend
and fully exploit van IJzeren’s results and prove them bseghe original proof
(in Dutch) is partly incomplete and sometimes approximakbe key paper [9]
was preceded by another van 1Jzeren’s paper [8] and by jptiblis of Dutch
mathematicians on the same subject [2, 11].

2. Van IJzeren coordinates of a triangle

We identify triangles that have the same angless, ~ to get the set/” of
similarity classes. We then speak oftaangle) classof 7 and writeA € T
or {a, 8,7} € 7. lItis both natural and convenient to assign andle$, 7
to all degenerate trianglesd,, to triangles with collinear vertices) and to lump
them together into a single clag? of 7. The classes of infinite triangles are
I, = {a, 7 — a,0}, 0 < a < 7, these are the classes of triangles having as
vertices one point at infinity and two different finite poingd as sides one line
segment and two half-lines (which are parallel). Note that= II,_, and that
11 contains the infinite rectangular triangles. We denoté e isosceles class
of the finite triangles with anglegy, o, 7 — 2a}, 0 < o < 5. We often identifyZ”
with {(a, 8) | 0° < 3 < a < 90° — 2} (Figure 4).

For both the clas&\ = {«, 3,7} € 7 and a triangleA with these angles, we
define the sum(A) = sin? a+sin? 3+sin? +, the producp(A) = sin? a-sin? 3-
sin? v and thevan 1Jzeren map

V(A) = A" = (s(A),p(A))

giving thevan IJzeren coordinatesf A. s(A) runs from0 for a degenerate triangle
to % for an equilateral triangles(A) is > 2, = 2 or < 2 if A is acute, right—
angled or obtuse, respectivep(A) runs from0 for a degenerate or infinite triangle
to ?).—Z for an equilateral triangle. A gives(A) or p(A) determines the curve of
admissible valuesa, 3) for two acute angles ah (Figure 3).

Lemma 1. The polynomiak?® — su? 4 du — p has rootsu; = sin® a, us = sin? 3,
u3 = sin? v for some{a, 3,7} € T ifand only ifs,p € R,p > 0,d = % +pand
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Figure 3. Level curvesin® a+sin® 3+sin”(a+3) = s (plain, thick fors = 2)
andsin? a-sin® 3-sin?(a+6) = p (dashed). Pointéx, 3) corresponding to the
two smallest angles, 3 of a triangle lie in the squai@ < «, § < 7 south-west
of or on the thick dotted line.

D(s,p) = (9 —4s)3 — (8p + 25> — 185 + 27)% > 0. {«, 8,7} is then unique and
s> 0.

Proof. If d = % + p, %D(s,p) is the polynomial’s discriminant: fos € R and
p > 0 one has therD(s,p) > 0 if and only if the roots are real; for € R and
p = 0 the roots are thefi and$ (double) andD(s, 0) = 4s°(2 — s) is > 0 if and
only if s € [0, 2].
(=) s, dandp are the roots’ sum, the sum of products of two roots and this'roo
82

product, respectively. Hencgp € R, p > 0, andD(s,p) > 0if d = 3 + p. We

have to prove thal = % + p. If no angle i90, divide the cosine law by the squared
circumdiameter to get

2sin asin 3 cos y = sin® a + sin? § — sin? 4. (2)
If the triangle is degenerate or infinite, (2) becores 0 and is true also. Square
(2) to getdujus(1 — usz) = (s — 2u3)?, i.e,

dujuo — 4dp = s? — 4sus + 4u§ =s? - duqug — dusgug, i.e., 4d — 4dp = s2.

(<) The polynomial’s rootsu;, ug, ug are real. Sincel = % + p, one has
u? — su® + du — p = u(u — $)* + p(u — 1): no root can be> 1 or < 0 if p > 0;
if p = 0, the roots aré and § € [0,1] since D(s,p) > 0. One can thus write
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uy = sin? ay, ug = sin’ By, uz = sin? y; for someas, B1,71 € [0, Z]. As above,
4d — 4p = s? if and only if dujua(1 — ug) = (s — 2u3)? = (u1 + uz — u3z)?, i.e,
if and only if 4uyus — dujusus = u3 — 2(u1 + ug)uz + (u1 + ug)?, i.e, if and
only if

ug — 2(u1 + ug — 2uyug)ug + (ug — uQ)2 =0. 3
Sinceuy + uy — 2uiuy = ’LL1(1 — ’LLQ) + (1 — ul)U2 andu; — ug = u1(1 —
ug) — (1 — w)ug, (3) is equivalent to(uz — (u1(1 — ug) + (1 — ul)UQ))2 =
4u1(1 — U2)(1 — ul)u2, e,

us = sin® ay cos? By 4 cos? aq sin? By £ 2sin ay cos By cos aq sin fy,

which issin? 7, = sin® (()q:l:ﬁl) If sin?y; = sin®(ay+/51), takea = a1, 3 = B,
y=7—a—f. Ifsin?y; = sin?(a; — B;), supposer; > 1 without restricting
the generality and choose= a1 — g1, 8 =pranda=n— 3 —v=7 — a3.

D(s,p) = —64p? +p (—32s® + 288s — 432) —4s* +8s® shows thaiD(s, p) <
0 for p > 0,s < 0. Two triangle classes with the samend the same have
necessarily the same= % -+ p and are equal since they correspond to the same
rootssin? «, sin? 0, sin? . O

Theorem 2. The van |Jzeren map is a bijection framto
T* = {(s,p) | D(s,p) = (9 — 4s)* — (8p + 25* — 185+ 27)* > 0,5 > 0,p > 0}
with inverseV —1: 7* — T given by

(s,p) — {arcsin y/uy , arcsin \/ug , m — arcsin \/uj — arcsin y/ug }

whereu; < uy < ug are the solutions of® — su? + (s> + p)u — p = 0.

For (s,p) € T* the discriminant{% D(s,p) of the above polynomial im is 0
if and only if there are multiple roots amoBin? o, sin? 3 andsin?~, i.e., if and
only if (s,p) = II%, for p = 0 or (s,p) = I} for D(s,p) = 0 — in addition to
(s,p) =0O* orll7 in both cases.

The curveD(s,p) = 0, s > 0, p > 0, is theroof A of T* (Figure 4) and
is constituted byO*, 1% /2 and the images of the isosceles classes: the point
{a,a,m =20}, 0<a < F, 0r

A(t) = (2t(3 —2t),4t°(1 —¢)), 0 <t =sin*a < 1, (4)
travels along\ from the originO* to 1‘[*/2 (2,0).

The pointsA(t) \f, 13,3, 2 24V3 and1 are O* = (0,0),

(5=2v3 1= 4f) (0.384, 0001) I = (4,64) It,, = (2,}), the roof

= (523 T3 . (2.116,0.218)

I:/lZ

4 )
top 1} 5 = (%, 87) = (2.25,0.421875), IF ,, =
andIT” /2 = (2,0), respectively.

For3 <t < 2 the pointsA(¢) of the left roof section and (2 — ¢) of the right
roof section have the same abscissa.




88 G. Nicollier
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Figure 4.7 as{(a, 8) | 0° < 8 < a < 90° — £} and roof of7* with points
corresponding t@, to the isosceles classés for a = 15°, 30°, 45°, 60° (the
maximal value of3 and ofp), 75°, and tollygo

O* and the images of the classes of infinite trianglas0, 7 — a}, 0 < a <
5, form theground I' of 7 on the s—axis represented by the curye,p) =

(2t,0),0 <t =sina < 1.
The vertical segment in Figure 4 betweé;p/4 and H;/Q corresponds to the
curve
(5,p) = (2,t(1 — 1)), 4 <t =sin®a <1,

constituted by the images of the right-angled clagses; — o, 5}, § < a < 3.
The images of the obtuse triangle classes are to the lefto$#igment, the images
of the acute classes to the right.

3. Coordinates of the reflection triangle

Since the elementary symmetric polynomials= uy + us 4+ us, d = ujus +

uouztusui, p = uiusug have by Lemma 1 the propertly= %—l—p if u; = sin? a,

uy = sin? 3 andug = sin? y for some{a, 3,7} € T, every symmetric polynomial
in u1, ug, ug can then be expressed witlandp only:

{a, 8,7} G’Z':>Zsin2asin2[3:d=§+p,

cyclic

Zsin4oz:s2—2d:§—2p,

cyclic

Zsin4asin4[3 =d?—2sp = (% —I—p)2 — 2sp,

cyclic
Z sin” asin® B(sin® a + sin? B) = sd — 3p = 5743 + sp — 3p.
cyclic
)
Theorem 3. If r(A) denotes the reflection triangle (class)Af the map

p: T* =T (s,p) =A% — r(A)
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induced byr is given byp(I;:/G) = (0,0) and by

s+16p)(4s—5)2 45—5)6 .
p(syp) = (pl(svp)7p2(87p)) = (41(31_14-%)41(112(43_)7)7 (4S+lp—i(-64p(4)s—7))2) OthErW|Se.
(6)
Further,
S§— 6 s— S— 2
D(p(s,p)) = D(s,p) (45—5)% (45 —1464p(45—9)) @)

(4s+1+64p(4s—7))%

if p(s,p) is defined,i.e., for all (s,p) € R2 not lying on the hyperbola =
—64%3’1:_17). This hyperbola is tangent to the roof &t /6 and is otherwise exte-
rior to 7*.

Proof. Consider the proper triangla = ABC with anglesa, 3, and oppo-
site sidesu, b, ¢ and reflectA in all its sides to get the reflection triangle; =
A1B1Cy. Let (s,p) and (S, P) be the van 1Jzeren coordinates Afand Ay, re-
spectively. Suppose first that; is proper and consider the trianglg B, C with
anglemin(3v, |20 — 3v|) at C. The cosine law, the formuleosy — cos 3y =
4sin? y cos v and the sine law give

&2 = ¢ + 2ab(cos y — cos 37) = ¢*(1 + 8sin asin 3 cos ) and thus by (2)
R?sin? 4, = R%sin? (1 + 4s — 8sin® ), whereR, R, are the circumradii. (8)
The cyclic sum of (8) gives with (5)
R3S = R*(s(1 + 4s) — 4(s*> — 4p)) = R*(s + 16p). (9)
Multiplying >° . sin® oy sin® 3; = 5% 1 P by R} and using (8) for each angle
of A4, (5) and (9), one gets
RiP= R! Z sin? asin? B(1 + 4s — 8sin® a)(1 + 4s — 8sin® §) — R%STQ

cyclic
= R'p(4s — 5)°. (10)

Note that (10) proves once again (see (1)) that all propangies withs = %

have a degenerate reflection triangle.
The product of the three formulas (8) gives together with (5)

R8P = ROp(1 + 45 — 8sin® a)(1 + 4s — 8sin? B)(1 + 4s — 8sin® )
— ROp((1+ 4s)® — 8(1 + 4s)% + 64(1 + 4s) (5 +p) —512p)  (11)
= RSp (45 + 1+ 64p(4s — 7)) .
Use now the relations
R?S-RiP=25.R¢Pand(RiP)’ = P. (R$P)?

between the left sides of (9)—(11) to combine their righesith the same way,
simplify the powers ofR and get(S, P) = p(s,p) whenA and A, are proper
triangles. Sincep(0,0) = (0,0), the formula is also correct whef is degen-
erate. Theorem 4 will prove the formula whéyy is degenerate and proper.
A limit argument establishes the validity of the formula the infinite casdl, =
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lim. o+ {a—e, m—a—e,2¢}. Theorem 7 gives(II,,) explicitly and computes its
coordinates directly. The proof of (7) follows from (6) byube computation. [

We denote by™ andr™, m € Z, themth iterate ofp andr, respectively, and
speak of descendants (child, grandchild, ...) or ancegpanents, grandparents,
..) of apoint(s, p) or of a triangle (class). By (7)S, P) € 7*\ A has no parents
(s,p) € R? outside7* since D(S, P) > 0 and D(s,p) < 0 are incompatible.
Note also that by (7) a non-isosceles parentop(or a parent o0*, II* /2 that is

not on the roof) has coordinatés p) with s = (see Theorem 4) gr = 51 43489)
(see Theorems 8 and 11).

Several angles play a special role in our story. We denote thev indexed by
the rounded angle measure in degrees:

w19 = arcsin 4/ ?’%ﬁ ~ 12.148° wsg = arcsin 4/ 29_278\/6 ~ 57.7435°

wa1 = arcsin \/g ~ 20.705° we2 = arcsin 4/ M ~ 62.364°

wsg = arcsin \/g ~ 37.761° wee = arcsin(\/§ - —) ~ 66.09°
wag = arcsin % ~ 48.59° wgg = arcsin Y——— Vo 68.2238°
wsp = arcsin 7”;”/5 ~ 50.976° wy] = arcsin \/ M ~ 70.666°
ws1 = arcsin @ ~ 51.332° wro = arcsin \/1— ~ 71.565°

wsg = arcsin \/g = 90° — w3g ~ 52.2388°

4. Degenerate reflection triangles
We provide here some of the details behind (1).

Theorem 4. The reflection triangle of a nondegenerate triangies degenerate if
and only ifs(A) = 2, i.e,, if and only if the poin{c, 3) formed by the two smallest
angles ofA lies on the ovakin? o + sin? 3 + sin(a + 3) = 2 through (%, )
cutting the positive axes ats, (Figure 3) Triangle A is then obtuse with obtuse
angle betweer%ﬂ (fora = B8 = §) and 7 — ws (infinite triangle)

Proof. Let first ABC' be a proper triangle with opposite side9, ¢, circumcenter
O, circumradiusR, nine—point centeiN, centroidG and mediansn,, my, m., and
let X be a point (not necessarily coplanar wHtBC). [10, p. 174] proves
XA+ XB? 4+ XC? = GA? + GB? + GC? + 3X G~ (12)
By usingm2 + mj + m? = 2(a® + b + ¢?) (an immediate consequence of the
median theorem [10, p. 68]), taking = O and usingODN = %OG, (12) becomes
3R = 4(a® + 0% + %) + 0N (13)

The homothetyh(G, 1) with centerG and ratiol transformsr(ABC) into the
pedal triangle ofV [5]. By the Wallace—Simson Theorem [10, p. 13TRBC) is
thus degenerate if and only i¥ lies on the circumcirclei.e., if and only if (13)
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becomes:? + b% + ¢ = 5R?, i.e, if and only if s(ABC) = 2 by the sine law.
Theorem 7 proves the result for infinite triangles. O

Here is an even shorter proof using an idea of [3, p. 78] (tle®fpthere is
flawed): whenA is a proper triangle, the trilinear vertex matrix:dfA) is

—1  2cosy 2cosf
2cosy -1 2cosa| ;
2cos 8 2cosa -1

its determinant i§ if and only if r(A) is degenerate; the determinant can be written
asds(A) — 5 since one gets(A) = 2 + 2 cos a cos 3 cos v by expandingcos v =
—cos(a + ).

Theorem 3 tells us that iR?2 the parentp—! (O*) of O* = (0,0) are the origin
itself and all the point§2,p), p € R: only the origin and the point2, p), 0 <
p < %, lie in 7.

Consider a proper triangl& with coordinates(s,p) and its reflection trian-
gle Ay = A;B;C; with sidesay, by, ¢; and coordinatessS, P). (8), (9) and
(11) are then also true wheh, is degenerate if one replaces their left sidechy

212 .2
a? + b2 + ¢ anda2b3c2, respectively: thus2 + b2 + 2 £ 0 and —15L, - —

(af+bi+ci)?

p(64”8‘§;2;;45+1). Suppose now thak, is degeneraté,e., s = 2, with ¢; = a; +
o . a?b?c? _ 128p(3—64p) _  (z—2?)?

is given as a function gf or = by Figure 5 with maximum&l—4 forp = 6i4 and for

T = %, i.e., for a parent with angle{g, arcsin 4/ 3_Tﬁ’ T — arcsin 4/ 3+Tﬁ} =

{45°, w12, 135° — w12}, and with minimumO for I, ;. The following theorem is
proven.

2l
‘

1 .
54

p : X

N =
'_\

3
64

2l |

. 28p(3—64 z—az?)?2
Figure 5. Graphs of (6Z;+5)3p) and 8(iz,w+)1)3

Theorem 5. A finite degenerate trianglé\; with three different vertices is the
reflection triangle of exactly triangles. If the midpoint of the longest side is not
a vertex, thesé triangles are the degenerate triangle itself, a pair of remilar
non-isosceles triangles and their mirror images in the lof€\,. If the midpoint
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of the longest side is the third vertex, théskiangles are the degenerate triangle
itself, a non-isosceles triangle with angle$s°, w2, 135° — w2}, its mirror image

in the line of Ay and their reflections in the midpoint of the longest side. The
corresponding coordinate, p) of the nondegenerate parents are giversby %

: : 128p(3—64 —z2)?
and by the two (possibly equal) solutions |0, 2 [ of (6?;(p+5)j’) — 8(;_?1)3,
wherez is the ratio of the shortest side df; to the longest sidéigure 5)
A finite degenerate triangle with only two different versige the reflection tri-
angle of exacthy2 triangles: itself by convention and an isosceles triangighw

equal angles;. A point is the reflection triangle of itself only.

Figure 6. Construction of an inscribed triangld3C' with degenerate reflection
triangle A1 B1C:. The dotted curve is the locubof A; as function ofA.

Here is a construction of alh € 7 with s = % that is simpler than the cor-
responding construction of [5]. Take a poifitand a circleO(R) of radius R
centered a0 (Figure 6). Choosé&V € O(R) and reflectO in N to get the ortho-

— — — —
centerd. We search fold, B,C € O(R) with OH = OA + OB + OC'. Choose
anyA € O(R) with HA < 2R, takeM, given byOM, = %ﬁ and construct the
chorda = BC with midpoint M, to get — if not degenerate — a triangdd3C' with
s = 2. N(£) is then the nine—point circle of BC. In the four cases whet¢BC
degenerates into a chord (see below), one gets an infirarggta with anglevss
at the double vertex ol BC' by taking a triangle’s semi—infinite side alodgBC
and a finite side on the tangent@{R). WhetherABC' is degenerate or not, one
has then als®M;, — %B—fl andOM, — %(7[

There is an even simpler determination/df,: construct the centroidr given
by OG = %O—N and get)/, as the intersection oG and N (£) on the other side
of G.

Let A, B1C4 be the degenerate reflection triangle. The ind3,C goes through
the reflectionD’ of O in H [5, without proof]: we give here a demonstration by the
author, D. Grinberg (personal communication). The Sim&wa éf any pointX
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of the circumcircle bisectX H [7, p. 46], hence the Simson line 6f goes in our
case through the midpoidt/y; of N H; the homothetyh(G, 4) that transforms
the pedal triangle aiV into the reflection triangle sends thiisy ;7 to a point of the
line A, B;Cy; but this point is on the lin© N at distanc& R+4(3R—2R) = 4R
from O and is thug)'.

Let £ be the locus ofd; as function ofA. The side midpoints ofi BC lie on the
nine—point circleN (£) inside O(R), and this arc is the locus d/, as function
of A. As A moves on the portion of(R) inside H(2R), I,,, is represented
at the arc’s extremitie&;, with ZNOE, = *arccos 1 &~ £75.523° and atL,
given byO(R) N N (&) N L with ZNOL+ = +2arcsin § ~ +28.955°. I /g is
represented at NOA = 0°,4+60°. Any otherA € 7 with s = % is represented
six times (once in each of the intervals delimited by the seaggles above) by a
triply covered triangle (with each vertex in turn getting tlabel A) and its triply
covered image under reflection in the li@&V. The corresponding six degenerate
reflection trianglesd, B;Cy occupy only two positions symmetrically to the line
ON and each vertex in turn id;; the situation is similar for the infinite triangle
and for the isosceles casg:contains thus als@; andC; (on the corresponding
altitudes ofABC).

Place the isosceles triangle = ABC of Figure 2 with equaB0°—angles and
its degenerate reflection trianghe B4 into Figure 6, withB at V; let then A
and B glide towardsL _ (andC towardsF, ) on the nine—point circle of Figure 6
in such a way that the reflection trianglg B, C; remains degenerate: the angle
at A grows from30° to ws2, the coordinategs, p) of A travel on the lines = %
from (5, 2) = I3, on the roof to(3,0) = II;_, on the ground and the ratio
x = A1C1 : B1Cq runs from0to 1 in Figure 5.

The homothetyh(G, —2) sendsN (%) to O(R) and thusL. to E+ (hence
{G} = E;L_nN E_L,). By considering a degenerate triangld3C' with ver-
ticeskE.,L_ or E_, L, (infinite triangle’s case), one sees that the antipbte
of L_ on N(%), being at distancé® from H, is the midpoint ofHE, : L_ lies
on the circleL’ (R) with diameterH E. The tangents ta at H form a60°—
angle because they are the tangent9 (&) corresponding to the isosceldBC
representing’;. .

In a cartesian coordinate system with orighand N = (R, 0), the locusL of
A, as function ofA = (R cos ¢, Rsin ¢) is the curve

2R(7 — 2 1 2Rsinp(2cosp — 1 !
4 ( cos ) (1 — cos <P)’ sin p(2cos p — 1) , || < arccos ~.
5—4cos 5—4dcosy 4

(14)
(14) gives alsoB; and Cy from the polar coordinates dB and C, respectively.
The range of the polar angle & andC' is smaller than ford: when A goes from
E_toE,, Band(C start atl, go toF. in opposite directions and come back to
L_.
The end points of. are the midpoints of the segmerL.. Indeed, sinced;
is the upper end poiril/ of £ for the infinite triangle’s casel = £, B = C =

By = Ci = Ly = (LR, ¥IR), one hat/ = (3R, YI5R) by (14). The line
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UL, is tangent tal at L. since it would be the line of the degenerate reflection
triangle in the infinite triangle’s case.

Theorem 6. Let A be an proper triangle with degenerate reflection triandie.
The following properties are equivalent.

(1) A has two equal sides and three different vertides, A has anglest5° and
w12.

(2) The middle vertex ad\; is halfway between the corresponding vertexAaind
the orthocenter of\, i.e., on the nine—point circle oA but not on its circumcircle.

Proof. (2)=>(1): (14) shows that the upper partofcutsN (£) atC; if and only if
the polar angle of is arccos £ (infinite triangle’s case) airccos 3: in this second
caseC; = (YR, gR) is the midpoint ofH C. By computing then with (14) the
intersections of the lin®’C; and of £, one gets the polar anglasccos 5+T‘ﬁ R~
17.114° for A (say) and— arccos 5‘8ﬁ ~ —T72.886° for B, henceLAOB =

90° and ZCOA = arccos Y7, thus LZACB = 45° and ZABC = wy, by the
inscribed angle theorend; is the midpoint of4; B; by Theorem 5.

(1)=(2): there is only one position on the upper partfoivhere both shorter
sides ofA; are equal. a

5. Infinite reflection triangles

Theorem 7. The action ofr on a class of infinite triangles is given byll,) =

H(2a+arctan(3tana)) mod » (Figure S)andT(Ha)* = (8(32;?)27()) for0 <a< %1

wheres = s(Il,) = 2sin? a.

Proof. The theorem is true forr = 7. Take an acute angte, consider a triangle
with an angle2a between sides of lengthand?2 and define) as the acute or right
angle formed by the bisector & and the opposite side. Using the angle bisector
theorem and setting = 2sin? « one getsin? § = 2% and thustan § = 3tan o,

8542
i.e, 6 = arctan(3tanc«). A figure shows that the formula for(Il,) is exact.
Developingr(Il,)* = (2sin®(2a + §),0) leads to the expression in O

Note thatr(I1, 5) = I, /3. When restricted to the-axis,p is given byp(s, 0) =

(2U==22 0): the fixed points ar0,0), (3,0) = IT7,,, and(2,0), they lie on the
groundI™ and are repelling ilR2. Since an infinite triangle has an infinite reflec-
tion triangle,p mapsI' to I" (Figures 7 and 8)p|r is a triple covering of". Since
no point of " \ {(0,0)} has parents outside by the formula forp and by (7), the
backward and forward orbit underof (s,0), s € ]0,2], remains in[’. p"|p is

a 3"—fold covering ofl" with 3™ fixed points for every integer > 1 (Figure 7).
Since3™ > 3+ 32 + .- + 3" forn > 1, p|r hasn—cycles for alln > 1, i.e,,
cycles ofminimal periodn. The length of the longest monotonicity interval of the
first coordinate ofp”|r tends to0 for n — oo. Each periodic or infinite forward
orbit has a countable backward orbit. The following theorgiproven.
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Figure 7. First coordinate Figure 8.y = a;(c) given
of p|r (plain) and ofp?|r by [, = r(Il.) and its iter-
(dashed) ate (in°)

Theorem 8. (1) The two or three parentén R2) of anyIl¥ = (5,0),0 < S < 2,
all lieonT \ {(0,0)} and their abscissae are the solutionsi"’éﬁi‘r—?2 = S. The
parents oflT; , = (2,0) are thus itself andi,0) = IIy, . 1%, = (2,0) and

w21” w52

(0,0) are the only parents df0, 0) on thes—axis and their abscissae are the solu-

tions ofs(jij)Q =5 =0.

(2) The backward orbit of anji, underp lies inT" and is countably dense in
(3) p|r has a nonzero finite number ofperiodic points for all integers, > 1.

(4) There are uncountably many disjoint infinite forward orlf|r.

(5) Every nondegenerate infinite triangle has exagtlyarents sincdl,,,, gener-

ates two inversely similar parents of a given rectanguldinite triangle.

Figure 7 shows that|r has thre@—cycles. Since the abscissagfs, 0)— (s, 0)
is
8s(s — 2)(4s — 3)(8s2 — 125 + 1)(256s5* — 8325 + 83252 — 260s + 13)
(45 + 1)2(64s3 — 16052 + 1045 + 1) ’

the points(%ﬁ,o), which arell}, , andIl}s., , ., are exchanged by, as are

the points(% (13 VI3 V/18 - 2\/13),0), i.e, IT%, oo andITig, o, and
(% (13 + VI3 £ V/78+2V13),0) e, g 650 andITGy g o; these2—cycles

are repelling inR2. Notice thatw, already appeared in Theorem 5. The in-
finite triangle and its grandchild are directly similar wheorresponding to the
first 2—cycle and inversely similar in the two othercycles. p|r has eight3—
cycles, they are all repelling ilR2. Four 3—cycles are given by the roots of
16777216512 —167772160s +720371712510 —17351311365" + 2569863168 5° —
241301913657 + 1429815296s° — 5169090565° + 1068802565 — 114062725 +
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54331252 — 8820s + 21, approximately

0.00285317 0.0702027 1.22068
0.0254111  0.553455 1.33684
0.145175 1.7937 1.03778
0.336812 1.91456 1.56253

and the four othe3—cycles consist of the roots ©67772165'2 — 1635778565 +
686817280510 —162529280057 4238197145658 —223684198457 41345982464 5% —
504474624s° + 110822912s* — 1284716853 + 67059252 — 120285 + 31, approx-
imately

0.00307391 0.0755414 1.28031

0.028553  0.61172  1.15683

0.172455  1.89595  1.47455

0.409917  1.75352  0.887586.

There are no other fixed points ¢ or 3—cycles on the—axis if one allows € C.

6. Fixed points and2—cycles ofp

Since

[ 4(—48ps+100p+4s3—1152+65)
p(s,p) — (s,p) = < 256ps—448p+4s+1 )

_ 8p(4s—T7)(32p—852+165—9)(64ps—112p+16s3 —60s2+765—31) (15)
(256ps—448p+4s+1)2 )

the 7 fixed points ofp in C* areO*, I o, I- ,, {7, 3, 4} = ({. 57), 1L, =

(2,0), (845, 85T ~ {0.297,0.561,2.284}* ~ {17.027°,32.132°, 130.84°}*
in 7+ and (855, =17-8V5) ¢ R2\ T*. The eigenvalues of the Jacobian matrix of
p atthe fixed points show thdf /3 is attracting inR2 and that all other fixed points

are repelling. The critical points gf form the lines = % and their image is the
origin. A triangleA and its reflection triangle are directly similar whérs degen-
erate, equilateral, infinite rectangular or heptagonal, they are inversely similar

* ia TT* 6—/5 8v/5-17 6—v5 8/5-17
whenA* is IT7,  or (8522, 82AT) - (82 SVoLT) seems to correspond to a

new special triangle, whose angles are probably not rdtiondiples of r. Note

thats({Z,Z, 1}) is also®=Y3,

Due to the location of the fixed points and to the shap@afwhich is closed,
every forward orbit with both rightward and upward direatioght froms = % is
forced to converge t@* /3 aswe will show, this is the case when the class of the
base triangle lies in a dense open subséf abntaining among others the classes
of acute and right-angled triangles as well as the obtuszées classes that are
not I s or one of its ancestors.

There are24 2—cycles ofp in C2: three have already been described and lie in
I, seven lie in7* \ T'; the others are extraneous with thredRA \ 7* and eleven
outsideR?2. The sever2—cycles in7* \ T all correspond t@—cycles of obtuse
triangles in7, whose acute angles are approximately
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{8.0763°,3.79275°}  and {38.5099°,17.99879°}

{31.70115°,9.19698°}  and {32.64671°,21.218476°}
{38.47736°,31.19757°} and {65.27712°,13.75689° }
{8.92974° 4.0548°}  and {42.23276°,19.04471°}
{28.3017°,21.20007°}  and {53.85134°,16.98919°}
{28.56877°,8.60948°}  and {41.35919°,23.72889°}
{28.43994°,23.62517°} and {60.10737°,12.60168° }

A triangle is directly similar to its grandchild in the firsha in the last twa2—
cycles, and inversely similar in the other ones. All thesees@—cycles are re-
pelling since all eigenvalues of the produp(si,p1) - Dp(s2,p2) of the Jaco-
bian matrices have, for each cycle, a modulusl. These2—cycles are found
by factoring the resultants of the two polynomial equatigiés,p) = (s,p).
The first2—cycle above is given by the real rootsof 655365 — 55705657 +
195788855 —36556805° 4-38727685* — 230540853 +7247685% — 1087605 +4631.
The two following2—cycles and @—cycle ofR2 \ T* are given by the real roots
5 0f 104857650 — 13107200s° + 7071334458 — 21548236857 + 40692121655 —
49045913655 43731594245 — 16964300853 +405134885% — 37901205+ 124099.
For all these four cycles,

p = (1/337368791278296246393273057280) -

(5697378387575131871164499329286144 521 — 15488948644016017105047725014620569652°

+ 19698155561589446782907701825330216965'9 — 15566445671068280089872392791655448576518
+85631462714487625678783595000448942080s 7 —348112463554334373128224482745250742272516
+1083507345888748869781387484631673077760s'% —2639517092099238037040386587357479960576.54
+5101110411405362920907743213057415839744513 —7879598682568490824891500098264963743744512
+9755010920158666665095433559290717143040s 1 —9665123390396900965289298855291498004480510
+76217237651008641978858306230869845606405° —4736932616001461404053670419403437375488 58
+2286117650306026795884571720542890491904s7 —8389130810195779080088620793717668577285°
+22731532051568076294652715993661837619255 — 436538007212937413379450471669442931205*

+ 560270257133815609539380747902469913653 — 44129457199947896062469685192827276852

+ 19005387969579097545642865154748404s — 340848826010088138830599778323827) .

The two following2—cycles and &—cycle ofR?\ 7* are given by the real roots
s 0of 104857650 — 125829125 + 6547046455 — 19378995257 + 35932569655 —
43242700855 4-3378836485% — 16632192053 +4809908852 — 70292965 +326343.
The last two2—cycles and the lag-cycle ofR2 \ 7* are given by the real roots
of 104857650 — 120586245% + 59965440s% — 16862412857 + 293994496s° —
327127040s° + 2296545285* — 9629926453 + 2125745652 — 18678645 + 56317.
For all these six cycles,
p = (1/4567428188341362809789303424452351253020672) -
(—36698931238245649527233362547878693259349852160523
+ 984810666870471120012672280485882885859228778496522
— 12470437758739421776652337771814086850631568457728521
+99105170498836558716042634538353704493085448208384.520
— 5545566897331913553085834326521498284313203672350725s1°
+ 23233400008287614849438488925482510754779130956349445'8
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— 7564960112634217226649274510083987727875628771311616517
+ 1961255676155016260674915953008358404990950123451187256
— 4114028898746633377800580148689773100591690869322547251
+ 70558385413803161958940236549368891637028689744494592514
— 995606991942202606093195271142128127017881132911820805"3
+ 1158993561685706740067680634372957511447676583055196165'2
— 11126423723841509264289535056918622777839126723113779251
+ 877791761550178830598378508783982109252697791198658565 0
— 565235541635947626833543380496064230575257769827368965°
+ 2939392159275296696302864316150431030580115482804224055
— 1215728600680476212100449827557050577608253440945356857
+ 39145923003886730525275404552483531816888842032619525°
— 952555899422406409637309239532608077882495981792256 55
+ 1679907831223641096945404158728443989793641164654085*
— 2022738340710644889253022923501410415636491246163253
+ 152639405542006627130546881452200767864557711252852
— 63861725292150155008281030050782500647383181532:
+ 1122971671566516289006707431478378061492442587) .

Whenp is replaced by one of the given polynomials, the correspangblyno-
mials fors can be indeed factored out in both coordinateg®®, p) — (s, p). Two
of the2—cycles ofp outsideR? are the cycle

_ (54ity/—1-8i —19—22iF+/—56+202
(s4,p5) = Z ) 64

and its complex conjugate cycle; the remaining nine statycles are given by
the non-real roots of the above polynomialssiwith the corresponding above
formulas forp.

In Section 10 we will prove that there are cycles of any firétegth in7 \ T

7. Isosceles triangles

Since the reflection triangle of an isosceles triangle isdstesp maps the roof
A of Figure 4 to itself. Plug the parametric representatigrof4\ into formula (6)
to obtainp(A(t)). An investigation of this function (Figure 9) and its detiva
proves that, ag; travels onA from the origin to(2,0), p(1};) moves continuously
as follows: start at the origin, left roof section up fbox o < {5, right roof section
down for% <a<g, right roof section up fo% <a< g, avery short down and
up round trip on the left roof section near the top oK o < %7? — with turning

(deepest) point

" _ 3(135664v/6—326751
2, = (Hoeprast ASOWERTONY o (9.945,0.417)

for « = wgg — and final descent of the right roof section f%m < a < 3 with
arrival at the bottomiI* /- Not to forget: p(I* /6) has been instantly catapulted

from (2, 0) to the origin!
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It is now easy to count the isosceles parents of the isoscilssl,, 0 < a < 3
(Figure 10): one iD < a < wsg, two if & = wsg and three otherwise. The three
isosceles parents @f /3, for example, ard; 3, I/12 and s, 12 (Figure 2).

S
2.25¢
2 &
| 1 3 t
0.04 2 2 1

1y _

Figure 9. Abscissa(t) of p(A(t)) as a function of = sin® oz S(0) = S(3) =
0, S(0.04) > 2andS’(t) > 10 on|[0,0.04]. The ordinate op(A(t)) increases
and decreases withi(¢).

1
90+

60F - f-———-- o oA

‘ ‘ ‘ ‘ Lo
15 30 60 75 90

Figure 10. a1 = a1(«) given byl,, = r(ls) (in °)

&

If the abscissa of; is > I,i.e, if o > arcsin Y°2¥= ~ 39.024°, and ifa
is different from %, p(1;) lies on the roof strictly right from and abovg — as
an investigation ofp(A(t)) — A(t) shows (Figure 11). The forward orbit df;
converges then to a fixed point thaustbe the roof top. But ad’ with smaller
abscissa> 0 will also be stretched over = g by some iterate™ of p (Figure 9):
the orbit will thus also converge to the top unlggg 1) transits througri'[;kr/2
with immediate transfer to the origin. The latter configimatis only possible if
I belongs to the backward orbit dS7fT/6: when limited toA, this orbit has no bi-
furcations and is thus an infinite sequerige;, 15, | ~ Ig330, 15 , = I a690, - -
with & > a_; > a_2 > --- tending to0. The following theorem is proven.
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\/\ t 1 1 t
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Figure 11. Abscissa and ordinatep of p(A(t)) — A(t) as functions of with
non-negative ordinate fo}jl—ﬂ <t<1

Theorem 9. The iterated reflection class of an isosceles base trianiglssd,,
converges to an equilateral limit unle¢s belongs to the backward orbit df; /
and converges thus to a degenerate limit in a finite numbetegfssi.e., unless

Ia = dr/6s [6.33...01 [1.269...07 . WhereI,T/6 = T([6_33___0), .
See [4] for another proof, which iterates the formula
2 (4 cos? o — 3)2
cos? ay = cos® a4 cos® a — 3)

1+ 16cos? o — 16 cost

for a nondegeneratg( 1) = I,, and shows thdim,,_,, cos a;, = % unless some
Q1S F.

8. Parents

p maps the poin(Z,p) of the vertical lines = I horizontally to the point
(8p + §,p) of the oblique lines = 8p + L.

p maps the vertical segmemt: 14+ Y07 ~ 2,031, —105+28V/17— 71685 BVIT

< _105+28‘ﬁ+16*’ 95-23V1T ' qelimited by the roof onto the vertical segment

s = % ~ 2.171, % <p< MTW delimited by the roof between
I andl;_ . Asp grows on the first segment,

w71

VI ) = <5+3m7P: (VIT-1)% ) 16
g ) 8 (64(\m—i’»)szrx/ﬁJrs)2 (16)

travels on the second segment from the bottom up and badtinggthe left roof

section forp = 4+‘ﬁ (Figure 12). This gives two acute isosceles parents,qf
and one acute non -isosceles parent,Qf .
We define thevan IJzeren rational function

(s) = (45 —5)2 ((4s — 5)2 —4S(4s — 7)) (s(4s — 5)? — S(4s + 1))
vls) = —16 (1652 — 325 — 1)?

17)

ﬁ

with parameterS, double zero as = % and double poles at = 1 +
2.031 (If S # 5+3\/_) and ats = 1 — £ ~ —0.031 (If S 5— 3\/_) For

~
~
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0.25}

0.15¢

Figure 12. p—values as function aP in (16) and (19)

S = %ﬁ v(1 + @) = %ﬁgﬁ ~ 0.283 by continuous extension;

the situation is analogous fof = %ﬁ v(s) is obtained from (6) by solving
S = pi(s,p) for p and replacing thep in pa(s, p) (= P).

Theorem 10 (Parents) The parentsp~!(A%) (in R2?) of any A} = (S, P) €
7*\ {(0,0)} are the pointys, p) € R? with

€10, 2]\ {3}, s # 71 (5, P) = (2,0), v(s) = P,
s(4s —5)% — S(4s + 1)

= 18
—16((4s — 5)2 — 4S5(4s — 7)) (18)
or
_F\6
SZM’ S:1+\/ﬁ’ p(4s — 5) - P, (19
8 4 7 (4s+1+64p(4s —7))2
ie.,
B 8(\/ﬁ+1)P+65\/ﬁ—297:|:\/128(101—29\/ﬁ)P—38610\/ﬁ+160034
p= 512(3v/17-13) P
with two values forP? < %8701 and one forP = 181\/1278‘701 (Figure 12)

The denominators are never zero. All between three and ggvrents of S, P)
€ T7*\ T lie in 7% \ I except the rightmost parerff + sin a, ﬁ) of I
for wge < a < g

Note that the parents ¢F,0) € I\ {(0,0)} have already been described —in a
simpler way — in Theorem 8.
The children(S, P) = p(so, p) of the points(sg, p) € 7* with constant abscissa

s0 €10, 9]\ {4, 514 \/_} constitute a parabola are = v(sg) with end points
onT"UA. If s > Z’ there is one pointsg,pg) € 7* \ A whose child is on the
roof: the parabola arc is then tangentht@t p(sg, po) (See curved in Figure 34).
If s = 1, the parabola arc is tangentoat (2, 0).

Choose anys € ]0, 2] asS = 2¢(3 —2t), 0 < ¢t < 2, and draw the curvg =
v(s); choose then ang € [Py, Prax] = [max (0, 4(2 —t) (t—3)),4t3(1—1)]:
by Theorem 10 the paren(s, p) of (S, P) for whichs # 1 + % have the same
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abscissae as the points with ordingte: P on the curvey = v(s), s € |0, 3]\ {3}
with s # % if (S, P) = (2,0) — and each such abscissa corresponds to only one
parent!

The (not included) start value = 0, the transition valueg = 1, 2=¥17 ~

0.61, V2 — 3 ~ 0.664, 250¥6 ~ (.715 and the end value = 3 delimit open
subintervals where the curge= v(s) has constant characteristic features. These

t—values correspond = 0, 2, %\/ﬁ ~ 2171, 12¢/2-2 ~ 2,221, W

~ 2.245 and%. Each of the figures 14-26 has to be read as follows for the-corr
spondingS € |0, 7]: the abscissaeof the curve points at the altitude > 0, P €
[Pmin, Pmax], tell whether the corresponding parefisp) of (S, P) = A} € T\I'
are the coordinates of obtuse, right—-angled or acute mafeonf A, (except when
(s,p) ¢ T); filled circles on the boundary = Py, Pmax Mark the abscissa of

an isosceles pareiit,, an empty square indicates a paréntp) outside7 * or the
exceptional cases f&f = &S\/ﬁ and the dashed line=1 + @ goes through
the pole. In Figure 14-17 — whefec |0, 2] — the parentss, 0) of (.S, 0) are given
by v(s) = 0, s €]0,2] \ {2}: empty circles mark the other zeros. Bore 10,2
andP — 0, the parentgs, p) of (S, P) with s — 2 tend toI  sincep — 2 by
(18).

1.25 2 2.25
|
|
|
|

Figure 13.y = v(s) for S = 0 with simple root ats = 0 and sextuple root at
s = 2, which are the abscissae of the parent§0of)) in R?

0.004y

Figure 14..5 = 0.56, top for I o5 = Iig 4350, bottom forIl . = ——0
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0.047

0.38 | 175 | 2 225

Figure 15. S = %, top for 13,0, bottom forlI;,

w52

0.15

]
|
|
|
|
|
|
|
|
| o o
0.38 125 2 2.25

Figure 16. S = I, top forI* Neevia I35 3560, bottom forllgge .

arcsin

2

‘ <
0.38 1.25

Figure 17.S = 2, transition case of the right-angled triangles, top foy,,
bottom forll7 ,. A raising bump culminates a&, 0). The right-angled\; =
{Z,a, % — a} corresponds t@ = 1 sin® 2a.

© s
35

Proof of Theorem 10 and of Figures 13-Zbheorem 10 is already proven except
for the number of parents ¢f, P) € 7*\ T, their location and the aspect of the
curvey = v(s) given by (17). The derivative af(s) can be factored as(s) =

(45—5)(1925% —5285%+5(1285+100)+1365+125) (25651 —12805°+201652 — 10405+645+25)
—16(1652—325—1)°

(20)
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0.299 l

0.171 ‘ % ? 'F

Figure 18. .5 = 2.09, top for* o5 ~ Liz.g70, bottomforly . oo

arcsin

137 o790, O parent outsidg

—

0.354

[

[

; ; ! S
0.38 1.25 2 225

I
[
I
I
0
I
|
0.309 *
I

—

Figure 19. 5 = +3Y17 ~ 2171, transition case, top faf’, ,, bottom for/. .

O There aretwo parents withs = 1 + @ (pole) if P € [Pumin, Pmax[ and
one forP = Pnax; both such parents df.., are isosceled There is a parent
outside7 *.

0.366 J\/\
0.335 =
1 ‘

. ‘ s
0.38 1.25 2 225

Figure 20. S = 2.1875, top for I}, bottom forIg. O parent outsidg *

527 —wa21’

with 3rd degree factogs(s) and4th degree factog,(s) (Figure 27).
ForS = 2t(3 — 2t), t € R, which is invariant undet — % — t, one has

q4(s) = (165> — 40s — 16t + 25)(16s* — 40s — 16(3 — t) + 25) (21)
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V\

— | ™
0.38 1.25 2 225

0.394;

i — 59 iti ~
Figure 21.S = 12v/2 T~ 2.221, transition case, top fdi:msin\/m ~
15, 5870, bottom forl,,. The rightmost root 0f(s) = Puin is triple.

0.412¢

—

0.41¢

03 1.25 2l25

N

Figure 22..5 = 2.24, topfor I} . 5= =~ I36.7s00, OttOM forzy .= o= Igs 4350

0.415%- :
|
|
|
|
|
0.414z [

‘ ‘ S A

0.38 1.25 2 225

Figure 23.S = 2.2436, top for I;rcsinm ~ I}; 4170, bottom for

I ~ I
arcsin v/0.79 ~ 162.725°

andu(s) — 4t*(1 —t) =

(1652 —40s—16t+25) 2 (165%+52 (6412 —96t—40 ) +5(—96t2+176t+25 ) — 44> —6t )
—16(1652—325—1)2

(22)

with numerator's squarezhd degree factofQ(s))? and3rd degree factor
Qs(s) = 165> +5? (64t — 96t — 40) +s (—96t> + 176t + 25) —44t> —6t. (23)
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I
0.4167F : I
I
I
I
I
0.4161: :
‘ ‘ ‘ .
0.38 1.25 2'2.25
Figure 24. S = W ~ 2.245, transition case, top faf}_,, bottom for
I, (S, P) has7 parents for allP € | Prin, Pmax/.
I
T
|
0.4201+ |
I
I
I
I
L L \I s
0.38 1.25 2'2525
Figure 25.5 = 2.2484, top for I;rcsin o R IZg 69a0, bottom for
I;rcsin\/ﬁ ~ 151‘3420
|
I
I
|
27 . e
64 |
I
0.2+ |
0.1 |
| L | | S
0.38 1.25 2 2.25

Figure 26.t = 2,5 = 3, end case folgy. v(s) — 2 has triple roots at

s = 2228 and a simple root at = 2.

Since fort > 0
Qg(s):16(s—%—\/l_f)(8—2+\/i), (24)
one can factor (21) further f& = 2¢(3 — 2¢), t € [0, 3]:

qa(s) = 256(s— 3 V) (s—24+VEt) (s=2—/3 —t)(s—3+/3 —t). (25)
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O
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yla

1.25

Figure 27. Poles and real zeroswfs) as a function ofS with constant zerg,
thick curve for the zeros afs(s), plain curve for the zeros af.(s) and vertical
lines atS = 122 — 22 and S = 2

t
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- ~
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Figure 28. At height, solutionss of v(s) = 4t3(1 — t) for S = 2t(3 — 2t),

s # 1+ YIT: roots of (Q2(s))? on the parabold = (s — 3)? and roots
of Q3(s) on the bold curve (with one simple and one double roottfet 0,
29-6v/6 3417 and1); abscissae of the parents &f at heightt = sin? « for

0 < a < %, with parents outsidg ™ on the right parabola section under the

bold curve
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Fort € [0,3] andS = 2t(3 — 2t) € [0, 9], the roots of (22) are thus — except
s=1+ % fort =3+ \/_8‘ —the rootss = 2 /% of (Q2(s))? on the parabola
t = (s — 2)2 and the real roots afs(s) (Figure 28): ift = sin? a € ]0, 1], these
roots, in particulas = % + sin «, are the abscissae of the parentdpf The pole
5= 1+ \/1_ is equal toj +sin a for t = %—@ and to adouble root @p;(s) for
t=1% S 4 \ﬁ 3. 1% andl}_ have no parent with = 1+ @ from these sources.

ws1

The parent of/> with abscissa = % +sina # 1+ ‘ﬁ has the ordinate =

sin o 2605204 1)*(2 cos2a—4sina
§I0usy according to (18). One get®(s,p) = ( +1)6((1 o) +5),

whichis< 0 for o > wgg (parent outsid€ ™), = 0 fora = % ora = wege (|sosceles
parent ofl,) and> 0 otherwise (non-isosceles parent[gi): this parent is obtuse
for o < arcsin 2 = wyg, right-angled folx = wag and acute fowsy < o < weg;
it is the acute clasgrse for « = 5. The parent with abscissa = % — sina

has the ordinate = ﬁ and D(s,p) is then= 0 for a = Z and> 0
otherwise: the corresponding parentigfis always obtuse since< 2. Since the
number of real roots afs(s) counted with their multiplicity (Figure 28) coincides
with the number of isosceles parentsigffor all o # wsg, we have the following

result: with the only exception of the rightmost solutiondf) = P, for S =

W (giving an isosceles parent @f..), double roots of (the denominator
of) v(s) — Ppax OF of v(s) — Ppin, Puin > 0, cOrrespond to non-isosceles parents

of the considered isosceles triangle class (unlegs) lies outside7 *), and simple

or triple roots correspond to isosceles parents. Notekéﬁe@]‘—187 is the abscissa

of the end/;,_, of the appendix formed by the roof under the reflection map
For S € [0, 4] the growth ofv(s) on R\ {1 + @} is given by the sign of
v'(s) according to (20), (21) and Figure 27. If one considgre ]0, % [ writes
itasS = 2t(3 — 2t) with t € ]0, 2[ and excludes partly the transition values
‘= % 9—§ﬁ, V2 — §’ 29— 6\f e, S =2, 5+38ﬁ’ 122 — %, 168\{50—187,1}(3)
has exactly two Iocal extrema (always maxima) at heiBht, = 4t3(1 —t) —
fors = % + /t — and exactly two local extrema (a minimum on the left) at heig

4(3-t)3(1—(3—t))—fors = 2+£,/3 — t. Note thatd(3 —t)3(1— (3 —t)) = Puuin
fort € [, 2] and that and§—t are symmetrrc with respect tpin Figure 28. [

Theorem 11. The parents ir?” of I,,, o # %, are — up to the exceptions mentioned
below —the two non-isosceles clas$es$ , 5., /. } given by the non-obtuse angles

/I T [}
ap = 7+3,

1 2
B} = arccot 2(:osa+2\/2 — <§ :tsina) ,

1 2
v, = arccot | 2cos a — 2\/2 — <§ =+ sina)
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in ]0, 7[ — with coordinates(2 + sina, Eﬁﬂ#) € T* — and the isosceles
(1—sin” )

triangle classes with coordinatés, p) (automatically on the roofyorresponding
to each real roots of Q3(s) given by(23) for ¢ = sin? o, with p as in Theorem 10.

For a = wgg the triangle clasq ¢/, , 7,7, } is isosceles with equal angles
and corresponds to the triple roet= v/2+ 2 of v(s) = Py, for § = 12¢/2— 22,
For o > wes the non-isosceles clags’, , 3, ,~/ } doesn't exist: it corresponds to
the parent outsidg ™ and 3, , 7/, ¢ R.

Proof. Parts of this theorem have been already demonstrated inrdoé gf The-

_ 5 o« _ 1-—sina ;
orem 10. Theorem 2 fos = 7 —sina, p = Gi(Ttsma) JIVES an obtuse parent

{«/,3',~'} of I, with sin? o/ = 1_5% i.e., sina = cos2a/ = sin(% — 20/),

3+sina—2sin2a—cosa\/7+4sina—4sin2a

2 0
sin” § = 8(1 4 sina)

)

3+sina —2sin?a + Cosa\/7 +4sina — 4sin’ «
8(1 + sina) '
Becausein?y’ > sin o/, sin? #'for0 < a < Z, o/, 8’ are acute, thus’ = 2—2,
and~’ is obtuse. One gets
1
sin? 3/

sin?y/ =

cot?f =

2
—1= <2cosa+ \/7+4sina—4sin2a)

2
and, with negative parenthesisit? v = (2 cos a — \/7 + 4sin o — 4 sin? a)

_ 5 : _ 14sina H 02 1 l4sina
Fors = 3 +sina, p = Fi(i—sina) ONe gets similarlsin“ o’ = 574, i.e,
. o ’ e /T 2 3—sin a—2sin? a—cos ay/ 7T—4sin a—4sin?
sinow = — cos 2 = sm(2a —5),sm G = S(1—sina)
. —sin a—2sin? \/ 7+4 sin a—4 sin? . . . .
andsin? 4/ = 3=sina-2sin a;'(io_sgna? SRa” 2o @ with sin? 4/, sin? o/ > sin? 3/

for 0 < o < wge andsin?+/ > sin? o/ for 0 < a < wyg, i.e, when{o’, 3',~7'} is
obtuse or right-angled. Sineé is always acute’ = Z + . One getsot? 3’ =

2
(2 cosa + \/7 — 4dsina — 4sin? a> and, with parenthesis changing sigrat

2
wyg from < 0to > 0, cot2’y/ = (2008(1— \/7—4sina—4sin2a> . O

Fora = 0, a triangle with anglega, B+,v+} = {45° wia, 135° — wya} is
the parent of an isosceles degenerate triangle with thiféeratit vertices from
Theorem 5. Fon = 3, {a_,3-,7-} is the parentl,,, of Il ;. The points

(14sin )?
? 64(1—sin? a)
s < 9, which starts o, is tangent to\ at I*
betweens = /2 + 2 and the poles = 2.

One gets the following non-isosceles parents of isoscabeggtes with integer
angles (see curvé in Figure 34):{42°,12°,126°} for s, {36°,12°,132°} for
I1ge, {60°,15°,105°} for Iz, {66°,18°,96°} for I e, {72°,24°,84°) for Inye,
{54°,48°,78°} for I and{18°,6°,156°} for Irgo.

(s,p) = (§ £sina ) constitute the hyperbola agc= ﬁ, ;<

and[* and lies outsideT *

/12 5m/12



110 G. Nicollier

0.42¢

0.4+

‘ L g
2.23 2.25

Figure 29. Curve of the coordinates of the hexageneratadgies

The isosceles parent of the right-angled, is I, with

. 1 13 3/ o
a—arcsm\/ﬁ<8——— 73—6\/@) ~ 10.1986°.

/73 — 6/87

The two isosceles parents 6f., have equal anglesrcsin 4/ % ~ 14.191°
and wgg (corresponding to the rightmost double rootudk) = P for S =
W), respectively.

Consider(S, P) € T* neither on the roof nor on the ground. Figures 14-26

show that(S, P) hass parents ifS < 12v/2 — 22 and7 parents ifS > W

whereas the interval2y/2 — 2 < S < W assures the mutation from
“pentagenerated” to “heptagenerated” non-isoscelesetasf7 : in this last case,
the number of parents ¢, P) depends orP and jumps (oves at the levelF)
from 7 near the botton®,,;,, to 5 near the topP,,.x, and the ordinatés = P(S) of
the hexagenerated triangle class climbs with growih@ his mutation is achieved

at the absciss& = W of the endI};__ of the appendix formed by the roof

under the reflection map Triangle classes have thus infinitely many or exattly
6, 5, 4, 3 or 2 parents irnZ_ but never only one parent!

For12y2—2 <5< W the largest of the three real roctef

g3(s) = 19253 — 52852 + 5(1285 + 100) + 136S + 125

in (20) is the abscissa of the first maximumgfs) left from %: this gives the
ordinateP; of the hexagenerated triangle class exactly (Figures 2and80).
Figures 14—17 show that finite obtuse or right—angled ttesigave only obtuse
parents.
All acute triangles with abscissa s(1,,,,) = 16% = 2.109375 have both acute

and obtuse parents. The coordinatésP) = r({a, § — o, 3})" of the triangles

with right—angled parents form the parabola &e= v(2) = &(5 — 2)(2 — 9),
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70[
65
o 60;

55|

50}

Figure 30. Level curves(A) = 12v/2 — 52 ands(A) = 188V0-187 jp the

af-plane for two anglea, g (in °) of the triangleA: the curve of the hexagen-
erated triangles separates the pentagenerated from ttegkaprated ones. The
pentageneratedusps correspond th,, , the three other points th,.

2<85< % = 2.16, given by (17):S grows witha from 2 for (Il j5) = T,
to 2.16 for r(I;/4), Which is I, .5/ 45 = Lo, Since@s(s) = 2 if and only
if t € {%, 1}. The parabola arc starts and ends on the right roof sectidrisan
tangent to the left roof section faf = % atl;, . Acute triangles with abscissa
> 2.16 have thus no right—angled parents.

A non-isosceles parent of an isosceles class= 7 generates two different
parents of a corresponding given isosceles triangle. Bgidering congruent non-
identical triangles as different, we have proven the foilmywesult.

Theorem 12. Let ABC be a proper triangle with verticesl, B, C' and angles
a, 3, v. Let

2 2

S = sin? o + sin? 8 + sin? vy, P = sin? a - sin? § - sin? 4.

ABC is the reflection triangle of betweénand7 parents.
(1) If ABC is obtuse and non-isosceles, it has exaétlgarents, which are all
obtuse, non-isosceles and pairwise non-similar.
(2) If ABC is acute and non-isoscel¢Bigure 30) it has betwees and7 parents
depending onS and P. These parents are all non-isosceles and pairwise non-
similar:
@2<S5< % = 2.109375: 5 parents,4 of them obtuse and the last one
obtuse, right-angled or acute according Bs% 8L(S—2)(2 - 9);
(b) 2.109375 < § < % = 2.16: 5 parents,3 of them obtuse, one acute and
. . <
the last obtuse, right-angled or acute accordinga§ (S —2)(§ - 5);

(€) 2.16 < S < 12V2 — % ~ 2.221: 5 parents,3 of them obtuse an?lacute;
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(d) 12v2 — 32 < § < 188V6-18T  9945: 5, 6 or 7 parents,3 of them
obtuse,2 acute and zero, one or two additional acute parents accord-
ing as P % Ps = Ps(S) given by Figure 29;P; grows with .S from
371 16765 3(135664v/6—-326751)

W — ~e1 ~ 0.383 to 10000 ~ (0.417.

(e) W < S < 2: 7 parents,3 of them obtuse andl acute.

(3) If ABC is isosceles with equal angles it has5 parents except forv = wsg
(6 parentg and forwss < a < wge (7 parents:

() 0° < & < wygg: ONe isosceles obtuse parent, a pair of non-similar non-
isosceles obtuse parents and their mirror images in the @xisBC;

(b) a =wyg (5 = %): one isosceles obtuse parent, one non-isosceles obtuse
and one non-isosceles right—-angled parent and their miimaiges;

(c) wye < o < wsg: One isosceles obtuse parent, one non-isosceles obtuse

and one non-isosceles acute parent and their mirror images;

(d) o = wss (S = W) one isosceles obtuse and one isosceles acute
parent, one non-isosceles obtuse and one non-isoscelés patent and
their mirror images;

(e) wss < a < wgg, a # 60°: one isosceles obtuse and two non-similar
isosceles acute parents, one non-isosceles obtuse andoohRisasceles
acute parent and their mirror images;

(H a = 60°: one equilateral parent, three congruent isosceles paravith
equal angled 5° and three with equal angleg° (Figure 2)

(@) wes < a < wre (S =12v2 — 2 for a = weg): one isosceles obtuse and
two non-similar isosceles acute parents, one non-isosaabtuse parent
and its mirror image;

(h) o = wra: three isosceles parents (one obtuse, one right—-angledoaed
acute), one non-isosceles obtuse parent and its mirror @nag

(i) wre < o < 90°: a pair of non-similar isosceles obtuse parents, one acute
isosceles parent, one non-isosceles obtuse parent andrits image.

In order to count and describe the parents of the correspgncibordinates
(S,P) € T*\T in Theorem 12, one has to neglect the mirror images and tiee rep
titions of congruent triangles and to add one exterior gaoefy; for wes < a < 3.

9. Convergence to an equilateral or degenerate limit

After continuous extension, all level curves @f and of po given by (6) are
tangent toA at I o = (5,2). By (15) one hag; (s, p) = s for (s,p) # I if
and only ifp = %: this curve lies ir7 * if and only if s € {0} U [2,2] U

{2} and is tangent ta\ atly .. One hags(s,p) = pfor (s,p) # I3 ifand only

ifp=0ors=Torp=1(s—1)2+Lorp= %: both last curves are

tangent toA at I;/ﬁ from outside7 * and the parabola has no other pointif.

The arrows,”, "\, ./, \ in Figure 31 show the constant quadrant of the vector
p(s,p) — (s,p) in each of the zones & * delimited by the curveg;(s,p) = s
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andpy(s,p) = p, whose intersections are the fixed pointpoNote that zone VII

is the thin region bounded below by = s and above by the curved branch of
p2 = p and by the roof. Since(s, p) lies strictly eastwards and northwards from
(s,p) forall (s,p) € T*with2 < s < §, p > 0, the sequencép”(s,p))neN
for such an(s, p) converges to or reachds /3 with strictly increasing coordinates.

The first part of the following theorem is proven.

2l~

2le

Figure 31. Quadrant of the vectp(s,p) — (s,p) depending on the zone of

(s,p) € T* with curvesp; = s (black, thick),p1 = p (magenta, thick)p: = %
(dashed, orange) and, fer> %, p1 = I (dot-dashed, bluey; = 2 (dotted,

— 1
red), p2 = prop (thin)

Theorem 13. (1) An acute or right—angled proper triangle has always an acute
reflection triangle and its iterated reflection triangle e@mges to an equilateral
limit with strictly growing coordinates.

(2) An acute or right—angled triangle becomes equilateral rafté&nite number of
reflection steps if and only if its class is an isosceles aantgestor oflgy- given

by the infinite sequence of successive parégs I7s0, Is4.658s...05 188.205...05 - - -
whose equal angles grow towargig®.

Proof. (2) Eachl, with o > 75° has exactly one acute or right—angled parent: an
isosceles one with equal angleso (Figure 10). O

Theorem 14. (s,p) € 7*\ (T U {(, &) }) converges td , under iteration ofy
(with strictly growing coordinates except possibly for fhst reflection step) when
(1) (s,p) is in zone | of Figure 31 with boundarye., s > I andp(s,p) > s, or
(2) pi(s,p) > % and pa(s,p) > prop Wherepgo, ~ 0.11118 is the ordinate of the
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0.01r

1074 ¢

Figure 32. Detailed views of the left part of Figure 31. In tight figure, the
intersection points of the roof (black, thick) with (s, p) = 2 (dotted, red) and
pi(s,p) = % (dashed, orange) give the coordinates of the isoscelestpaot
I./s and I, s, respectively(%, 0) is the parentl?,,, of 07 /5.

w21

maximum point of the curvg (s, p) = s (Figures 31 and 32)pr

(3) p1(s,p) = 2.
Note that576p;.,, is the middle root 0p3 — 294p? + 13209p + 97200.

Proof. We only have to prove that the corner of zone | near the heptddoxed
point (%, 6—74) is mapped by to zone | and not to zone lll, and this is true: the
points withpy(s,p) = s, s > % p > 0, are mapped upwards lpyandaa—f(s,p) =

(5__4(223(?55_(47;2;41‘33_1) is strictly positive in the rectangle < s < 2, & < p <

containing the maximum point of the curpe(s, p) = s.

O

Theorem 14 gives Figure 33 where edeh /3) is identified with the triangle
class{«, 3,180° — o — 3} € 7. The large points are the fixed pointsgfthe
small points ardge, its isosceles parent and grandparent and the pakgptof
IIgpo. The squares mark the right—-angléd- and its isosceles parent on the thin
dotted curvep;(s,p) = 2. The curves = % is dot—-dashed and goes through
Ispo = (30°,30°); its parent curves are dashed: one of them goes through the
parent(60°, 15°) of I3g. corresponding tds, p) = (%, %). There are points with
p1(s,p) > 2inzones |, I, VIl and VI of Figure 31; there are points wjth(s, p) >

% andpa(s,p) > piop in zones |, 11, 1l and VI. Note that every neighborhood of
the heptagonal fixed poir(t2%2-, 180°) contains triangle classes with equilateral
limit. Because the leftmost roots ofs) = P for S = 2 are almost equal for all
P, the inner branch of parents o= % that passes through 33. o in Figure 33 is
nearly a level curve of; furthermore, the nearby arc of the cupvg s, p) = 2 that
joins the pair of points representiidy,,, is almost parallel to the square diagonal
s = 2: the fractal structure is born.
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Figure 33. Convergence to an equilateral limit is ensureérwtwo angles
(a, B) of the base triangle are in the zone enclosed by or northfeastthe
plain curve, or on this curve, filled points excepted.

We now describe the set of triangles with equilateral or deggte limit system-
atically. We denote by,, andD,, the set of classes ifi that become acute and
degenerate after exacttyapplications of the reflection mapn € N. A andD;,
are the corresponding subsets7df. A%, n > 1, consists of the pointss, p) € T*
for which the first coordinates gf*~!(s,p) and of p"(s,p) are < 2 and > 2,
respectively. Sinc&* is a repelling fixed point op, the basins of attraction of
I, andO* in T* are the disjoint unionst* = J,,~, A}, andD* = U, D,
respectively. Figure 34 shows the “Wintgj’i:1 A, with skeletorUf’L:1 D,,, where
(a, B) represent§c, 3,180° —a — B} € 7.

The boundary curve oft’, n > 1, consists of the following points:

(1) the points(s,p) € T* for which the first coordinate g§"~!(s, p) or of
p"(s,p) is 2
(2) the members q&‘k(I;:/G) (lying thus onD;_ ) for0 <k <n—1
(3) the members of " ( ;/2) = Uo7 ( jr/z) (lying thus onl)
(4) the roof section between the roof membenof™~") (I ,) and its roof
parent.
A%, n > 1, is composed of"~! + 1 maximal simply connected subset&* \
Ur_o A:, n > 0, consists of2#2 maximal simply connected components —
the overline denoting set closure. Feor> 1, 3”7‘1 such components are jux-
taposed arches whose feet are #ig! members ofp~" (I /2) onI'. Starting
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0 10 20 30 40 50 60 70 80 90

Figure 34. Wing of the obtuse triangles that become acuée afte (41, green),
two (blue) or three reflection steps (red) with curves of tlengles that become
degenerate after on@(, dot—dashed), two (dashed) or three reflection steps

(dotted)

from the rightmostl’ ,, the members of)—”(er/2) and the2“~1 members of
Uiz p~ (11, ) alternate orf'. Each member of—* (II%_, ) — lying between the
leftmost member op~(II; ,) and the leftmost member pf (™+1(II% ), say
—is the starting point of one of tH#¥ curves ofD; . after continuous extension at
some points of J§_, p~* (I;/6) this curve ends at the roof memberof™ 7r/6)

One has furtheD;, = D;, U UpZy p* (17 ) and A 0 Dy = UpZg p 7% (17 6),
n>1.

Figure 34 shows the frontier lin@ of the non-isosceles parents of the isosce-
les triangle classes given by Theorem 11. The same classesmesented two
times on the branches issued from the left bifurcation,ehimes after the right
bifurcation. ® cuts the dot-dashed middle curize at (45°,w;2): a triangle with
these angles is the parent of an isosceles degenerateldriarg a segment and
its midpoint). The intersection point @ with the line 3 = « corresponding to
the roof is the isosceles pareht- of I and its left end is the paremt,,,, of
IIgpo. @ intersects the line = 2 at the right—angled paref90° — w1, wsa) Of
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1,4, the right bifurcation point is the isosceles parént of Iso- and the end of
the following left branch is the isosceles parént, of the end clasg,,.

Consider Figure 34 filled witbtd andD. Let P,, n > 1, be the closure of the
component of4,, with a boundary segment on the “roo#’= « together with the
underlying arch bounded by the-axis. LetS,, n > 1, be the following subset of
‘P1: the closure of both pairs of components4f., connecting thex—axis with
I30- on both sides of the middle cun®@, together with both underlying arches
and enclosed bubbles. L&f°, S, S andS!! be the left bottom, left top, right
bottom and right top parts df,, delimited by® left and right fromD; .

Every class of proper non-acute and non-isosceles triarigle exactlys par-
ents, every class of infinite triangles excéptc has exacthy3 parents, and every
1., 0° < a < 45°, has exactly one isosceles and two non-isosceles pareats. H
are these mappings.

The reflection map- is a bijective fractal blow—up of,.1, n > 1, to P,
i.e., every component, boundary or point df., Dy, ... in P,11 is blown up
bijectively for allk > n+1 (with appropriate orientation—preserving distortion and
translation) to the geographically corresponding compgr@undary or point of
Ag_1, Di—1, ... inP,. ris a bijective fractal blow—up or blow—down 8, of
S’ and of SY flipped about a vertical axis. Andis a bijective fractal blow—up or
blow—down toP,, without a—axis ofS"* \ {I50- } flipped about the lingg = « and
of S! \ {I30-} after a half-turn. Note that the top &f and of S has first to be
stretched aftefs;go has been removed!

Every point ofP,,, n > 1, has thus one parent,,, and all its other parents in
‘P1, more precisely it5,,. If one identifies the set of classes of infinite triangledwit
the interval[0°, 90°] of the a—axis, the action of on the infinite classes consists
of three bijective fractal blow—ups {0°,90°]: one of[0°,wa1], one of[wa;, ws2]
after a flip and one offvs, 90°].

For a global description of the reflection magve identify 7 in Figure 35 with
{(e,8) | 0° < B < a < 90° — 2} and consider the séf of the non-acute,
nondegenerate classes and the/seadf the non-obtuse classes/;-and7; sharing
the set7, of the right—angled classes. The zones i—v &Adof 7 are delimited
by the following plain curves:

(1) the curveD; of the nondegenerate classes that degenerate at the fijest sta

(2) the curve of the parents of the right—angled classes,se/hsegments
without I350 — between zones and v,2 and iv,3 and iii, 5 and ii,4 and i,
respectively — are each mapped bijectivelyftoor 7, \ {IIgg- },

(3) the curved of the non-isosceles parents of the isosceles classes,

(4) the curve between zogeand zone (from 1, to I,,.,) that corresponds to
the rightmost parents of the hexagenerated point&*adind whose dotted
child curve (froml,, to I,.,) is the thick line of hexagenerated triangles
of Figure 30.

The reflection map can be described as follows if one considers zones i—iv witho
D;: the curveD; and (0,0) are mapped t@0, 0); zone i, zone iv flipped about a
vertical axis and zone v without origin are each scaled twely and fractally to
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Figure 35. Decomposition of the reflection mamto bijective submappings

71; zone ii flipped about the ling = « and zone iii after a half—turn are each
scaled bijectively and fractally t@; without a—axis. Zonel, zone2 flipped about
a vertical axis and zon¢ are each scaled bijectively and fractally g, zone3
without I3 after a half—turn and zongwithout 5¢- flipped about the lingg = «
are each scaled bijectively and fractallyZg without IIgg.. Note that the upper
border section of zoné from I;5. to I3go is mapped to the whole right “roof”
section fromlIggo to Ilgge. Zone6 after a half-turn and zone flipped about a
vertical axis are each scaled bijectively and fractallyhe heptagenerated tip of
5.

The triangle classes({c, 90° — o, 90°}) with right-angled parents constitute
the dashed curve(7, ) of Figure 35 joining with decreasingthe fixed pointilyy.
tor(Lase) = Loy, OVerr({90° — wor,war,90°}) = L,,,. Their coordinatess, P)
form the parabola ar® = £ (S —2)(2 — 5),2 < 5 < 2.16.

A class of non-isosceles finite triangles in Figure 35Hdsor 7 parents when it
is located below, on or above the upper dotted curve, respsgtit has (exactly)
one right—angled parent if and only if it is o7 ); exactly3, 4 or 5 of its par-
ents are obtuse when it is located on or above the upper seuftio7, ), below
this section but not below the bottom section, or belg@, ), respectively. The
preceding sentence is also true for finite isoscéfesgles except that triangles
in the classl,,, have only5 parents (instead df) and that triangles in the class
1,,,, have two right—angled parents (instead of one acute andgime-angled) and
three obtuse parents.
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10. Periodic orbits

We use the notations of Section 9.

Theorem 15. p

7-\r hasn—periodic points for all integers. > 1.

Proof. Consider the bottom haX* of S'* delimited by® and by the upper parent
curve of®. ™ is a bijective continuous mapping frogf' to the topr™ (Sifl) of
7, delimited by®, and the inverse mapping is continuous also. Sirde, ') is

homeomorphic to a closed disk and sin¢dS, ") > Si*, Sii* contains a fixed

point of »™ by the Brouwer Theorem. For > 2, UZ;} rk (Sffl) doesn't intersect
St all fixed points ofr™ in SY have thus orden. O

The same argument is valid f¥;"*. For S andSr? the fixed point can be a
class of infinite triangles (we will show that it is always bBuz class). Fon = 1
there is exactly one fixed point efin Si, SI*!, S andS7?: the triangle class
with coordinates(%, %) the heptagonal clas$l,,., andIlyy., respec-
tively. (39.952203015767141115...°,18.346346518943955680 . ..°) in Si is
for example &—periodic triangle class. All computations in this sectiogre done
with 1000—digit precision.

The following construction generates all cycles for classifinite triangles in
71, as we will show in Section 11: take any fractal ancestor €bp§yP; \ a—axis
that is included irf?; and not bordered by the-axis; the outer layer af belongs
to A,1 for some uniquen > 1; cut away the part of beyond the ancestor
curve of® through( that is as far as possible from andyenerations older than
the ancestor curve ob borderingC (this ancestor may bé& here); denote by
R the rest ofC; take the smallest intege¥ > 1 with »V(R) D R: one has
N < nsincer™(R) > R; rV is then a bijective continuous mapping fraR
to rV(R) D R with continuous inverse and there is at least dnecycle as in
the proof of Theorem 15 sindg, ;' 7*(R) doesn't intersecR if N > 2. This
N-—cycle is unique and the same cycle is generated in this wapfimytely many
different fractal copies dP; \ a—axis inP; (see Section 11).

(25.478876347440316089 .. .° , 3.6818528532788970876 . . .°)
(62.431567122689586325 .. .°,12.276789619498866686 . . .°)
(32.460249346540695688 . . ., 24.998279789538063086 . . .°)

is a3—cycle not leavings;.

(37.865926747917574986 . . .° ,18.061811244908607526 . . .°)
(10.468235814868372615 .. .°,4.8401011494351450701 . . .°)
(48.638604189899250723 .. .°, 22.211186045240131467 . . .°)

is a3—cycle of triangle classes in order &y, P, andS;*.
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(42.090874141099660640 . . .° , 15.557122843876427568 . . .
(1.2635523114915185243 .. .°,0.8247788078196525102.. . .
(6.3075862480243139879 .. .°,4.1172394455012728648 . . .
(30.390568589226577771 .. .°,19.80309296896 7591208 . . .

is a4—cycle of triangle classes in order &, Ps, P, andS.

(37.247939372886625265 . . .°,19.189939461450692321 . . .
(10.723421490339811872...°,4.2741308209904622975 . . .
(49.920751710266512618 .. .°,19.633287363391045768 . . .
(30.697646461742403045 .. .°,17.370185973399543132.. ..

is a4—cycle of triangle classes in order&y, P,, S;* andS!.

NN AN N

is a5—cycle of triangle classes in orderd, P,, SJ, St andSt.

(37.930269796367360642 . . .°,18.102923174699484745 . . .
(10.135362642153623417 .. .° , 4.6659841044983596966 . . .
(47.278732653265572140 . . .° , 21.526719537744220795 . . .
(32.908073875879027270 .. .°,15.212876460421699178 . . .
(27.941680542770112113...°,18.655538982479742580.. . .
(48.659125226707857104 . . .° ,22.220242130215287975 .

is a6—cycle of triangle classes in orderd§, P,, S, Sit, St andS

N AN AN N N N

37.630255649010598209 . . .°,18.570369773326372964 . . .
10.420573639194774736 .. .°,4.5115591822140415293 . ..
48.550547727001821453 .. .°,20.765781310885329500. . .
32.363595430957208503 . . .°, 16.384331092939721789 . ..
(30.729181801658592737 .. .°, 17.688152298022029834 . . .
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39.305662309899846302 . . .°,17.677017538458936691 . . .
5.7747047491290930782 . .., 2.8485972409982163053 . . .
28.121014496985812289 . ..° , 13.853288022731393651 . ..
36.786251566382858823 .. .7, 31.096467455697263241 . . .
66.202454138266987877...°,11.299882269350171350.. ..
38.901818026182387037 . ..°,25.434990337954490686 . . .
(30.886718722856714101 ...°,7.0225504408166614203 .

o

o

o

o
— N N N N N

o

o

)

is a7—cycle of triangle classes in orderdy, Py, S, Sit, S1b, STt andS¥.

(38.468777685667500548 .. .°,18.102890974997997195 . ..
(8.0151057516993356943 . . .°, 3.7150704462974721546 . . .
(38.254172619328622821 .. .°,17.649186686577651211 . ..
(9.7328922219345150314 . . .°,4.7538361797984130640 . . .
(45.519097683522135284 .. .° , 22.022284341558206040 . . .
(31.297303214442445113 .. .°,13.020261718008364724 . . .
(28.711664232298528730 . . .° , 25.939377664641886290 . . .
(66.695344715752296964 . . .° , 8.3394888580526813797 . . .

o o o

o

o o

o

o
— N N N S N N
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is a8—cycle of triangle classes in orderdy, Py, S, Py, Stt, Si, St andST.

As for S and S’?, any fractal ancestor copy of P; that is bordered by the
a—axis and included ifP; is covered for the first time by™(C) for somen > 1,
r™ is then a bijective continuous mapping frafrto »"(C) O C with continuous
inverse and — sinc@ﬁ;} r*(C) doesn't intersect for n > 2 — there is at least one
n—cycle. We show in Section 11 that thiscycle is unique and consists of classes
of infinite triangles and that each cycle of such classes eageberated in this way

by infinitely many different fractal copies @, bordered by the—axis inP;.

Theorem 16. 7 \ (AU D) is totally path—disconnected F = {(«, 3) | 0° <
B<a<90° 21

Proof. Otherwise some fixed continuous curve between two diffepemits of
T \ (AU D) would be included in each member of an infinite nested farrfily o
shrinking fractal ancestor copies Bf or of P; \ a—axis whose diameters tend to
0, a contradiction. O

11. Reflection triangles as symbolic dynamics

We use the notations of Section 9. Referring to Figure 36¢kwis based on
Figure 8, we code a clad$,, of infinite triangles by the infinite sequenae=
x1x923 . .. ofdigitszy € {0, 1,2} giving the position ofvin “base3” with respect
to the fractal subdivision of°, 90°] induced by the monotonicity intervals pfr
and its iterates. Ifc is eventually periodic we overline the period’'s digits. We
identify the end$)2 and10 as well asl2 and20. For a class of infinite triangles
or for the zero sequenaecoding O, the reflection class(x) is then given by a left
shift whenz; = 0 or 2 and a left shift with permutatiofh «<» 2 in x whenz; = 1.
Note thatr(z) = xp41... Or 7" (x) = (Tp41 ... )owe according ase; ...z,
contains an even or odd numberics.

One has® = 0, I,,, = 10, My, = 1, I, = 20, andIl,, = 2. The
lexicographic order of two sequences is the same as the arder3 < 7 for
the corresponding infinite triangld$, andIlz. The parents of areOz, 2z and
1zg.2 (if one neglects the parents of= O that are classes of finite triangles). A
sequence is an ancestor(of0 included) if and only if it contains an even number
of 1’s with end0 or an odd number of’'s with end2. A sequence is an ancestor of
2 (2 included) if and only if it contains an even numberlaf with end2 or an odd
number ofl’s with end0. The three2—cycles are generated bg = I1,,,, 0121
and1012. (See the discussion after Theorem 8.)

x generates a periodic orbit if and only if the sequence ioperi if v (z) = x
forsomen € N\{0}, one hasindeed =71 ... Z,0rz = 21 ... (1 ... Tp)ow2
according ag; . .. x, contains an even or odd number1d$; conversely, ifx =
T1..- T, one has”(z) = z orr"*(z) = x¢_o and thus™(x) = x or r?*(z) = z:
the orbit is periodicz generates an infinite forward orbit if and only if the sequeenc
never becomes periodic.

We code a class of non-acute nondegenerate triangéesa class of7;) by
a nonempty sequence = wiyjways ... Of digits wy € N\ {0} andy, €
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90k ,

Figure 36. Fractal subdivision ¢#°, 90°] induced byll., = r(Il,) and its iterates

{D, E,i,ii,i,iv} with the following property: ifz is a finite sequence, it ends
with E — for “exterior” — or with D — for “becoming degenerate” — and these are
the only occurrences @b andE. At each zooming stage(see Figures 34 and 35),
wy, numerates the side—by-side fractal copie®pbr P; \ a—axis (starting from
the border ind;) andy;, locates the triangle class in this cop#:. if the triangle
class is on the midline that becomes eventually degenekaifet is in one of the
two components ofd bordering this copy and i, i or v if it is in the bottom
right, top right, top left or bottom left inside quarter (hut midline), respec-
tively. The triangle classes & correspond for example to sequences beginning
with 1iv2. ..

All triangle classes on the same midline section are thugdadentically, as
are the triangle classes in the componentgldfordering the same copy. The infi-
nite sequences containing neitheii nor iz code the classes of infinite triangles
that don’t become degenerate. An infinite sequencentaining onlyy;. € {i,iv}

FE or D have two representations when they are on the curve sepgamtarter;
from ¢ or i7i from ¢v at the last stage{60°,15°) is for exampleli1D or 1ii1D.
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Classes of infinite triangles ending In— exceptz = 1i — or in 17v have a second
representation ending v or 17, respectively.

We consider the following involutive permutations ©f i, iii, iv}: o; is the
identity, o;; interchanges <« i andiii < iv, oy; interchanges < i and
it < v andoy, interchanges « iv andii < 7. These permutations form a
dihedral group’; x C5 under composition — with;;; o 0;; = 0y; 0 04 = 04, @and
cyclically. The reflection clasg(z) is then given by the following transformation
of z = wiyrways - - - € Ip:

1) ifwy; > 1,7r(2) = (w1 — )yrways . ..,

(2) r(1F) = acute triangle outsidé;,

(3) 7(1D) = degenerate triangl@°, 0°) outsideT;,

(4) r(lyrways . ..) = oy, (ways...) for y; € {i,1i, i, 50} except when all

IT, /5 under iteration of if and only if its code ends if: or in Tiv. The fixed points
of r in 7; are the heptagonal cla$sils, the triangle clas$iiili with coordinates
(0=5, 8Y5ATY 11, = Tivli andIl, j, = Ti.

If r"(2) causes a left shift dm digits, m > 1, one has

r"™(2) = 0y ((Wmt1 — V)Yms1 Wint2Ym2 - - )

wherey € {i,ii,iit,iv} is given byty = y1, tip1 = 0o, (y,)(tk) fOr 1 <
k<m-1,y = t, and wherev is an integerc [0, w,,+1 — 1]; one hasn =
v+ W
Theorem 17. (1) The following situations are equivalent:

(@ n>1,r"(z) = zandr"(z) causes a left shift afm digits.
(b) m =1,

z = (w1 — V)Y1W2Y2 - . - WinYm Uy(w1y1w2y2 e Wi Ym) WIYLWRY2 -+« WinYm,
(26)
for some integer € [0,w; — 1], n = >_/" , wy, andy is given byt; =y,
tp11 = JUtk(yk+1)(tk) forl<k<m-—1,y=tn.

The forward (periodic) orbit ot is then generated by

T (2) = wiyiways - - WinYm Oy (W1Y1W2Y2 - - WinYim) (27)

and the sequenceis periodic if and only ifv = 0.

(2) For each integerN > 1 the number ofV—periodic orbits is finite and nonzero

for both finite and infinite triangles.

(3) A triangle class of7; belongs to the backward orbit of a periodic orbit &f

if and only if its sequence is eventually periodic and contains infinitely many
Yk € {i,z’v}.

(4) A triangle class of7; belongs to an infinite divergent forward orbit if and only
if its sequence is infinite, never becomes periodic and contains eithernce
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(5) Every periodic orbit in7; is repelling. An infinite forward orbit iri/; is thus
never asymptotically periodic.

Proof. (1) By settingr™(z) = z in the paragraph preceding the theorem.

(2) There is at least on&—periodic orbit for classes of both finite and infinite
triangles by Theorems 15 and 8 and there are finitely manyesegs with the
necessary form (27) fot = V.

(3) The ancestors of a generator (27) of a periodic orbit eeateally periodic
sequences.

Conversely, if the sequenesis eventually periodicy* (z) is periodic for infin-
itely manykq. Fix such a with 7% (2) = wigrwagz - wargar. fn = So0r | wy,
the sequences™ ™" (z), ¢ € N, are thervy, (r*(z)) for somey, € {i, ii, iii, iv}:
since there are two equ@l in {7, ..., %4} some descendantot*(z) of z with
0 < ¢ < 3 generates a periodic orbit.

(4) follows from the preceding results.

(5) We already know that the fixed poit, , is repelling. Consider another
periodic orbit: it is generated as in (27) by a sequence

20 = WIY1W2Y2 - - - WinYm Oy (W1Y1W2Y2 - . . WinYm)

with 7™ (zp) = zo for n = 3 ;" wy, that corresponds to the triangle cladg #
Il /5. Lete > 0 be the distance betweek, and.A,, in 7;. We consideA # Ag
in thee—neighborhood o\ with sequence. If z is finite, some descendant Af
will be degenerate or acutee., somer‘”(A) will be outside thee—neighborhood
of ron(Ag) = Ag. If A ¢ AU D the first2m digits of z and z coincide. Let
ko € [lom, (¢y + 1)m] with £, € N\ {0} be the index of the first different digit.
Thenrfom(z) andrf™(zy) = z, differ in one of the firsm digits: 7" (A) is
outside thee—neighborhood ofo™(A() = A, the periodic orbit is repelling. O

Note that the forward orbit of in (27) may have less tham points, even if
y # 1. for example

1212214e1¢12 14 Jy(liliiliililz’lz’i) = Izleileile = 1ilag ag(lz’lz’z’)
sincey = § = ii.

We now analyze the construction of Section 10. Suppose ufittestricting the
generality that a cycle is generated by (26). This cycleaiosta triangle class of
P1 beginning withlywoys . . . wyaymwy. Take the fractal copg of P; with this
address (conversely, the addrégswsys . . . wy,ymwy Of any fractal copyC of P;
in 1 can be chosen as begin of (26)). Suppose that the cyclévisgycle with
2M shifts: note thatV = Zﬁil wy, dividesn = Y_;* | wg. The given cycle (26)
is then generated by

z = lyrwaye . .. wyynm og(W1Y1W2Y2 - - - WALYM) WIYI1W2Y2 - . - WMYM

and is exactly the cycle generated (yn the construction of Section 10 since the
addresses ofk(C), 0 <k < N —1, are correct: there is thus only one such cycle.
The same cycle is also generated by
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Lyiways - . - WinYm Oy (W1Y1W2Y2 - . . Wi Y ) W1Y1W2Y2 - - - Wi Y 0y (w1 headw, head
head

and the segment, (wiyi1ways . . . WimYm) W1Y1W2Y2 - . . WY CaN be concate-
nated any finite number of times in the head: this gives addeesf infinitely
many nested generating the same cycle. The more concatenations ofejis s
ment the head contains, the more the star@ingnd its first/V — 1 descendants
r(C), ..., rV=1(C) converge to the orbit points.

The three2—cycles for classes of infinite triangles are generatefiby 11,,,,,
2iv21 and 1i1ivlivli. In the same order as in Section 6 the se%eaycles for
classes of finite triangles are generatedby2i, 14iiliilivli, 1iliiliild, 24i27,
lizilivliile, licliselivle and1idilidilils.

Table 1 contains the fundamental periods of periodic geoeyaf the40 differ-
ent3—cycles. The expliciB—cycles of Section 10 are generated in ordeBfy3i,
13144¢14314i14v1s and24i1iv24iili. The explicit8—cycle is generated by

2ii2iv14iliv1ivlii oy (20412iv1iilivlivlid) = (8.015...°,3.715...°).

Theorem 18. Under the reflection map, there are in7; uncountably many dis-
joint infinite forward orbits of classes of both finite and mitfé triangles.

Proof. The infinite sequence = _1¢ 1414 1414 14414 141414 ... codes a class of
~~ ~~ ——

1x 2X 3%
finite triangles with unique representation and generateimfaite forward orbit

in P;: z begins indeed with one copy af, r3(z) with two copies,r”(z) with
three copiesy!?(z) with four copies and so on. The backward orbit of this (and
of every) infinite forward orbit is countable. One can thuglaee the occurrence
numbersl, 2,3,4,... of 1i in the successive groups (separatedibit:) by the
successive digits of uncountably many irrational numbersuch a way that all
generated forward orbits, which are infinite, are disjoBy. replacingii by iv in

z one gets an infinite orbit of infinite triangles. Note that @aa also consider the
infinite trianglex = 021102021102020211 ... O

z = wiyr1ways ... Withwy, = kforall & > 1 and(yx)x>1 = ¢, 4t, i14, 7v gener-
ates an infinite forward orbit of classes of finite trianglkes (with accumulation
point O).

Theorem 19. A is a dense open subsetbf= {(a,ﬂ) |0° <8 <a<90° —§ .
Any neighborhood of a point & \ A intersects countably many periodic orbits
and uncountably many disjoint divergent forward orbitse tlest of the neighbor-
hood consists of uncountably many point®ptincountably many points gf and
countably many other points that become eventually peariodi

Proof. A point of A,,, n € N, has some neighborhood i, U A,, if one sets
A_1 = Ap. The rest follows from the fact that every neighborhood obapof
7 \ A contains (infinitely many) fractal copies % \ a—axis: take such a copy and
letwy, ... wys be its address; this head can be prolonged to get the givebharum
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1:141e31041e01s

191414941430 10941% -

13141evlivlivle
1214714

121421442 144e14v1s -
131e3lsvlivlaeile -

19143314

1:143¢1421441501% -
1:1d3elivlivliile -

1314013

191ev14414e14e91e -

lilivwlidelideliels -

1941431942 14v 109417 -
19i1319v1ldelevle -

1i¢14e014

1e¢140¢100141501% -

1iiliv1s

liilivlieleldeile -
leee1elivliilivli -

1ee91ee1e0e1eldv1s -

2i1i
2ivli
3i
3iv3i

(77.992, 5.4261),
(77.137,5.2765),
(78.072,0.0000),
(77.538,5.7639),
(64.111,12.369),
(76.703, 5.5669),
(63.351,7.1712),
(62.432,12.277),
(61.950, 7.8678),
(69.448,0.0000),
(63.532, 6.4266),
(62.337,6.7728),
(45.654,26.671),
(53.737, 20.669),
(39.242, 25.752),
(36.334, 27.318),
(53.953, 18.520),
(47.415,21.434),
(31.077, 14.761),
(31.634, 24.738),
(17.076, 0.0000),
(14.181,2.6145),
(13.882, 2.5866),
(15.623, 0.0000),
(10.110, 5.3306),
(8.2127,6.0759),
(8.3357,5.7834),
(10.468, 4.8401),
(6.3707,4.0384),
(6.4310, 4.7667),
(6.2608, 4.8616),
(6.2109, 4.2180),
(6.8623, 0.0000),
(6.2470,1.7815),
(6.1133,1.7573),
(6.4721, 0.0000),
(2.2468, 0.0000),
(1.7190, 0.7883),
(1.6847,0.7779),
(2.1646, 0.0000),

(61.422, 14.969),
(59.569, 14.357),
(62.116, 0.0000),
(60.431, 15.811),
(35.593, 26.667),
(58.628, 15.057),
(31.121, 13.087),
(32.460, 24.998),
(28.710, 13.651),
(41.773,0.0000),
(31.070, 11.546),
(28.805, 11.523),
(50.356, 18.460),
(39.419,24.424),
(34.431,7.9491),
(36.353,5.6518),
(33.152, 22.790),
(32.805, 15.325),
(32.071, 23.138),
(35.739,5.4231),
(76.815, 0.0000),
(64.753,11.579),
(63.564, 11.512),
(71.266, 0.0000),
(46.937,24.481),
(38.467, 28.345),
(39.101, 27.004),
(48.639,22.211),
(30.697,19.423),
(30.826,22.812),
(30.025, 23.283),
(29.925,20.291),
(33.576, 0.0000),
(30.485, 8.6796),
(29.860, 8.5706),
(31.739, 0.0000),
(11.207, 0.0000),
(8.5745, 3.9322),
(8.4041, 3.8806),
(10.798, 0.0000),

G. Nicollier

(32.443,31.271)
(28.774,27.798)
(24.228,0.0000)
(32.623,31.329)
(24.946, 3.6423)
(28.720,27.668)
(29.183,26.185)
(25.479, 3.6819)
(35.158,30.232)
(26.919,0.0000)
(29.295,26.539)
(34.391,30.234)
(27.406,16.857)
(25.777,6.4984)
(28.909, 15.731)
(29.022,10.379)
(26.294, 5.8906)
(28.339,18.663)
(34.174,7.1741)
(30.966,10.501)
(59.165,0.0000)
(36.335,25.097)
(34.082, 23.968)
(46.083,0.0000)
(43.827,17.928)
(50.539,10.136)
(42.786,9.3457)
(37.866, 18.062)
(40.263,15.637)
(43.381,9.8110)
(49.365,10.426)
(44.884,15.582)
(49.511,0.0000)
(36.590, 21.684)
(38.323,22.175)
(54.842,0.0000)
(53.139,0.0000)
(40.696, 18.552)
(39.952, 18.346)
(51.375,0.0000)

Table 1. Periodic generators of the foRycycles with their approximate an-
gles (in°) and the approximate angles of their child and grandchilorder (—
denotes classes of infinite triangles)

T
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of points of the desired type in the same copy; the given m@idiood cannot
contain uncountably many eventually periodic triangletsiole A U D since their
total number inZ is countable. O

One can construct codeswith almost any behavior under iteration of the re-
flection map, as for the sequences of pedal triangles [1]. &#&yd for example
a codez whose forward orbit is dense I \ .A: write all wordsw.y; ... w.y. of
finite length with digitsw € N \ {0} andy € {i,,4ii, iv}; order these words
by lexicographic order of the’s and then of the,’'s for each suni, 2, 3,... of
thew’s; concatenate the words and submit each of them in orden &ppropri-
ate permutation; ;; ;i i» Such that the original word will appear as head of the
corresponding descendant of

Theorem 20. The backward orbit of a class of proper triangles®f\ A is dense
in7 \ A.

Proof. Consider a class of proper trianglés € 7 \ A and suppose thak, €
Pn \ a—axis. Fix a neighborhood ak € 7 \ A and choose a fractal cogy of
P1 \ a—axis in this neighborhood. Take> 1 such that™ mapsC bijectively to
P, \ a—axis (such a exists) and take the coyf C C that is the inverse image of
S\ a—axis under this mapping:"*! maps therC’ bijectively to Py \ a—axis:
there is thus soma’ € ¢’ with "1 (A) = A,. O

Note that the backward orbit of the degenerate class cantlanbackward orbit
of I s — and of every clasa of proper triangles withs(A) = % —and is thus
also dense ir7 \ A. If Ay is a class of proper triangles outsideU D with
codez, the code of some ancestor 4f) in a fixed neighborhood ok € 7\ A
can be constructed as follows: take a fractal cOpyf P; \ a—axis with address
w1y ... wys N this neighborhood; take this address as head of a eoshose
tail is zy and fill the space between head and tail with éng, ii: or 7v in such a
way thatz, will appear as a descendant afthe triangle class with codeis an
ancestor of\q in the given neighborhood aX.
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Correction to Gr égoire Nicollier,
Reflection Triangles and Their Iterates,
Forum Geom., 12 (2012) 83-128.

Anerror wasregretfully introduced in the statement of Theorem 11 in the bottom
of p.108 during the typesetting process. Here is the corrected statement.

Theorem 11. The parents ir¥” of I, o # %, are — up to the exceptions mentioned
below —the two non-isosceles clas$es$ , 5., /. } given by the non-obtuse angles

1 2
7. = arccot <2cosa 2\/2— <§ :tsina) )

in ]0, 7[ — with coordinates(3 + sina, 6&%;?;&)) e T* — and the isosceles

triangle classes with coordinates, p) (automatically on the roof) corresponding
to each real roots of Q3(s) given by(23) for ¢ = sin? a, with p as in Theorem 10.

For a = wge the triangle clasq ¢/, , 7,7, } is isosceles with equal angles
and corresponds to the triple rost= /2 + 2 of v(s) = Py, for § = 12¢/2— 22,
For o > wge the non-isosceles clags’, , 7,7/, } doesn't exist: it corresponds to
the parent outsidg* and 3, , v/, ¢ R.

Publication Date: April 20, 2012. Communicating Editor: Paul Yiu.
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Three Conics Derived from Perpendicular Lines

Alberto Mendoza

Abstract. Given a triangleABC' and a generic poinP on its plain, we con-
sider the rectangular hyperbald which is the isogonal conjugate of the line
OP whereO is the circumcenter of the triangle. We also consider the Lin
perpendicular t@ P at the pointP, the conicE which is the isogonal conjugate
of this line and the inscribed parabdbatangent to the liné.. We discuss some
relations between this three conics.

Let ABC be a triangle with sides, b andc. Let P be a generic point with
homogenous barycentric coordinates: v : w) and

O = (a®S4 : b*Sp : 2S0),
the circumcenter of the triangléBC'. The lineOP is given by
Z (*Scv — b?Spw)x = 0. (1)

cyclic
Let us define
Po=—U+VF+wW, Pp=U—V+WwW, Pc=UuU-+v—w,
and
Aa =PbSB —pcScy, Ao =pcSc —PaS4, Ae=paSa—pySp.

Lemma 1. In terms of these expressions,
(a)the lineO P can be expressed as

> P+ ANz =0, 2)
cyclic
(b) the point at infinity of the line OP is given by
Iop =M Sp—AcSc : AeSc— Ao Sa: AaSa— N SB), 3)
(c) and the infinite point of perpendicular lines to OP is given by
I = (Ma: Ayt Ao). 4)

Publication Date: April 20, 2012. Communicating EditoruP4iu.
The author would like to thank the referee as his suggestamht improvements of the original
version of this paper.
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Equations (2), (3) and (4) follow easily from (1) and the di¢ifoms.
Let £ be the line perpendicular to the lid@P at the pointP, with equation
L Aev = pw)x+ Agw —Acw)y + (Apu— Agv) 2 = 0.

Next we shall consider the isogonal conjugates of the linésand L. The
isogonal conjugate of the lin@ P is the rectangular hyperbola

H: Z a® (62)\0 + 62)\5) yz=0.
cyclic

The fourth point of intersection of the hyperbdta with the circumcircle is the
isogonal conjugate of the poiifip p:

a® b2 c?
H = : : .
<AbSB—ACSc AeSc— Aa Sa /\aSA—/\bSB>
The centerM of H (on the nine point circle) is the midpoint of the poirisand
H', whereH is the orthocenter of the triangléBC,

M = ((0*Ae 4+ X)) Ao (PXa +a®Xe) Nyt (aP X +57Xg) Ae) -
The circumconic is the isogonal conjugate @f:

&: > a? (v = Xpw)yz = 0.
cyclic
The center of the circumcontitis the point
N = (a® (Aev — Xpw) (B2 — AXNv + ApAe) 1ot ).

The fourth intersection of with the circumcircle is the isogonal conjugate of
the point/
E = (a®XpAe 1 b2AcAq 1 PANp) -
The pointsH’ and E are antipodes in circumcenter being the isogonal conjsgate
of points at infinity on perpendicular lines.
Finally we will consider the inscribed parabola tangentilineL. This is the
parabola

P Z <)\§ Aev — Xy w)2z? — 20 Ae Mg w — Ae ) (Npu — )xav)yz) =0.
cyclic
The center of the parabofRis the infinite point
J=((Acv=Xpw)Ag: Agw — Acu) Ap: (Apu— Agv) Ae) .
The focus of? is the isogonal conjugate of
Fe < a’p Ao : b2 e Mg : A ha My >
AV =W AW — At Aph —Agv /)’

and the perspector %, on the Steiner circumellips&, is the isotomic conjugate
of J:

Do Mre dd Ak
A\ AW —Aeu Npu— AV )
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The point of contact betweeéhandX is the point

A S Y
AN =W A w—Aeu AU — AV /)

Figure 1. Three conics

Theorem 2. The tangent t& at £

(a) passes through the focusof P;

(b) is parallel to the tangent té at P*, the isogonal conjugate of the poify,
(c) has as its polds< with respect tdP on H.

Proof. (a) The tangenf to € at the pointE’ has the equation
()\cv—)\bw))\gx (Aaw — A u) (Abu—)\av))\gz

)\2
+ by +
a? b2 c2

=0. (5
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If (x : y : 2z) are the coordinates of the poift, the left hand side of the above
expression simplifies to a constant multiplied by + A\, + A.. But this sum is
equal to zero, verifying that the poit is on the tangert.

(b) The tangent t@ at the pointP* is given by

AcV — A 2 A W — Ae 2 AU — Ag 2
(Aev azbw)u$+( w b2 u)vy+( bU g v)wz:O.

The point of intersection of this line with the lirlemay be written as
(Aev+Mw)a®: Agw+ Acw) b : (Apu+ Agv) ?)
The sum of this coordinates gives
(D*Ae 4+ X)) u+ (Phg + a*Ae) v+ (a®Xp 4+ b7Xg) w.

The sum is equal to zero because this is the condition thgidime P is on the line
OP (2). This shows that the tangents&at £ and P* are parallel.
(c) The polarK of the lineT with respect to the parabola is given by

K (b* X + 2Np) a? ' (PXa + a®Xc) b? ' (a®Xp + b%XAq) 2
Tl Qe =Xw)Aa T Aaw—Acu) Xy (Apu— Agv) Ac

Inserting the coordinates of the poiftin the left hand side of the equation &f,
simplifies to

cyclic

b2\, + 2\ a2
(YH EACU+AbJ))Aa) S (v = M) M)
But the sum is zero the as it represent the fact that the paint A, : A.) is on the
line L. This shows that the poirt” is on the hyperbol&f. O
Corollary 3. The centerNV of the conic€ is the midpoint of the point®* and .
Corollary 4. The directrix of the parabola is the linH K.

Let R be the fourth intersection of the hyperbdta with the Steiner circum-
ellipse.

Theorem 5. The linesF'H’, EP* and QR concur at the poinK on J.
Proof. The equations of the line8 H' and E P* are given by

Aa
FH': Zﬁ(AbSB—)\CSc)()\Cv—)\bw)w:O
cyclic
and
Aa
EP*: Zl:p()\cv—)\bw)uw:&
cyclic

It is easy to verify that the cross product of the line cooatis of this lines are

proportional to the coordinates of the poisit The constant of proportionality is
>\a/\b>\c
2a2b%c?

(ut+v4+w)(Aev—=Aw) Ngw —Acu) (Apu— Agv).
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On the other hand, the equation of the liR& is given by
D aPha (PAe = Xp) (Aev — Npw) =0,

cyclic
Inserting the coordinates of the poift gives
a’ (b4)\3 — c4)\§) + ! (a4)\g — c4)\z) +ct (a4)\g + b4)\2) ,
which is clearly equal to zero. O

Let D be the fourth intersection of the confcwith the Steiner circum-ellipse
o,

S\ Qqw = Acw) b2+ Ngv—Xpu)c2 T '
Theorem 6. The pointD is on the lineE(Q).

Figure 2. Collinearities

Proof. The line EQ can be written as
Z Ao (Agw — Acu) b+ (Av— Npu)c?) Aev — Npw)x =0
cyclic

A direct calculation shows that, inserting the coordinaiéshe pointD in this
equation, simplifies to zero. O



136 A. Mendoza

Theorem 7. The following pairs of(perpendicula) lines are parallel to the asymp-
totes ofH:

(a)the axes o€,

(b) the tangents fronk to the parabol&p.

Proof. Let us denote with; and L, the points of intersection of the lin@ P with
the circumcircle of the triangle

L= (abc()\bSB—)\CSC)—|—a25AM;...;...)7
Ly = (abc()\bSB—)\CSC)—QQSAM;...;...)’

wherey = \/)\?L Sa+ A Sp+ A2 Sc.

(a) The isogonal conjugatds; and L3, are the points where the asymptotes of
the hyperboldH meet the line at infinity. The polars @f; and L with respect to
the conicé are diameters of the conic. If this diameters are conjugétenespect
to &, then they are orthogonal and are the axis of the said conpajje 220§297].
But the polar of a point is conjugate to the one of anothertgbthis last point is
on the polar of the first point. The polar of the pofrit is the line

Z b2 (A\pu — Agv) n b2c? (Mg w — Ao u) R
abc (Ae Sc — Ao Sa) +02Spp abe (Mg Sa — N Sp) + 2Scp N

cyclic
and a (not so short) calculation shows that, indégds on this polar. Thus the
diameters are orthogonal and conjugate, and are the axige abhice.

(b) As the pointK lies on the directrix ofP the tangents fromi to P are
perpendicular. Thus it suffice to show that the liié ] is tangent tdP. The line
K L7 can be expressed as

b2c (02)\a + a2>\c) bc? (a2/\b + bz)\a)
Z W z=0

AaWw — Acu) f(e,a,b) Ao (Apu— Agv) f(b,c,a)

cyclic
wheref(a,b,c) = bc (X Sp — AcSc) +a Sap. Along calculation shows that the
line K L7 is tangent tdp. O

Let S be the second intersection of the liBE”* with the circumcircle,

2 b2 2
5 a ' ' c
<(Acv—)\bw)u T(Aaw = Aeu)v ()\bu—)\av)w> '
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Figure 3. Asymptotes, axis and tangents

Theorem 8. The poleP’ of the linel is on the lineF'S.

Proof. The line F'S is given by
Ao (Aev — )\bw)zux n Ay (Agw — /\cu)zvy N Ae (Mt — Mg v)2w

a? b2 c2 2=0,
and the point”’ by
P = ((/\cv—/\bw)a2—(/\aw—)\cu)bz—()\bu—)\av)c2 Deeereee )l

Inserting the coordinates @t in the equation of the liné’S simplifies to

(H ()\cv)\bw)) Z (b2)\c+c2)\b)u

cyclic cyclic
and, as already seen, the sum is equal to zero. O

P is also the inverse in circumcircle of the poiRt If T, on the lineLl, is the
pole of the lineF'S it follows that pointsO, P, F, S, andT are concyclic.
The pointT’ can be expressed as

T— Aevt+Xpw)a® Agw+Acu)b?  (Npu+ Av)c?
T ev=2w) T Qaw —Aeu) T (Npu— Agv)
The pointT is also the center of a circlé through the point#’ andS. The circle
€ is orthogonal to the circumcircle.
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Theorem 9. Points onC are

(a) the pointK,

(b) the intersections of the lingé with the tangents from the poiif to the parabola
P.

Figure 4. Circles

Proof. (a) A long calculation allows one to show that indeed, thebiis equidis-
tant to the pointd’ and K. * The common distance of the poifitto the pointsF'
andsS can be expressed ds/(d2ds) where
dy = Z a4SA (b2w21/02 — 021)21/5)2,
cyclic

dy = (aPvyvevw + Vv vawu + vy vyuv)?,

2
a? (whp + Ve
@<Z (w2 j,

cyclic

and
Vg = AcU— AW, Vp =AW — AU, Ve=ApU— Ay .

IFor an equation of the distance of two points in barycenwoirdinates see [2, Chapter 7].
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(b) Consider the triangle whose sides are the linand the tangents to the
parabola from the poinf{. The three sides of this triangle are tangent to the
parabola. Thus the focus is on the circumcircle of this triangle and the center of
this circle is on the linel. But by part (a) of the proof, the only circle through the
points F' and K with center onl is the circleC. O

Interesting examples of the relations shown in this workeaif one takes the
point P as the inverse in circumcircle of the symmedian point of tiengle’,
the inverse in circumcircle of the orthocenter, or wheis the intersection of the
line OI, wherel is the incenter, with the radical axis of the circumcirclel dhe
incircle.
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On thelntersections of the Incircle and the Cevian
Circumcircle of the I ncenter

Luiz Gonzalez and Cosmin Pohoata

Abstract. We give a characterization of the other point of intergecif the
incircle with the circle passing through the feet of the tinté angle bisectors,
different from the Feuerbach point.

1. Introduction

The famous Feuerbach theorem states that the nine-poate oif a triangle is
tangent to the incircle and to each of the excircles. Of paldr interest is the
tangency between the nine-point circle and the incircleitfie this tangency point
among the four that is a triangle center in the sense of Kitmge[5]. Thus, it
is this point which was coined as tiieuerbach poinbf the triangle. Besides, its
existence, being perhaps one of the first more difficult tedhiat arise in trian-
gle geometry, has been the subject of many discussions lwwgetrs, and conse-
qguently, many proofs, variations, and related results bayeared in the literature.
A celebrated collection of such results is provided by Ermeby and Emelyanova
in [3]. In this note, we shall dwell on a particular theoremr, ¥hich they gave a
magnificient synthetic proof in [2].

A

r S—— 5

Figure 1

Theorem 1 (Emelyanov and Emelyanoval he circle through the feet of the inter-
nal angle bisectors of a given triangle passes through theeRgach point of the
triangle.

Publication Date: April 25, 2012. Communicating EditoruP4iu.
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We focus on the second intersection of the incircle with tleigan circumcircle
of the incenter. Following an idea of Suceava and Yiu [7],olke a natural char-
acterization of this point in terms of the reflections of aegivine in the sidelines
of the cevian triangle of the incircle. We begin with somdipraaries on thé”on-
celet pointof a quadrilateral and thenti-Steiner poinbf a line passing through the
orthocenter of the triangle.

2. Preliminaries

In essence, the result that lies at the heart of the theorptéfSaeiner point is
the following concurrency due to Collings [1].

Theorem 2 (Collings). If £ is a line passing through the orthocentér of a tri-
angle ABC, then the reflections df in the sidesBC, C A, AB are concurrent on
the circumcircle ofABC' at a point called thenti-Steiner poinof L .

Figure 2

The proof for this is quite straightforward and it consists.gimple angle chas-
ing (see [1] or [4]). Itis also well-known that the orthocentf the intouch triangle
lies on the line determined by the circumcenteand the incentef of the trian-
gle. This can be proved in many ways synthetically. The meaubful approach
however is by using inversion with respect to the incircles ngfer to [6] for this
proof. Given this fact, it is natural now to ask about the -&t&iner point ofO/
with reference to the intouch triangle. Suceava and Yiutkisl and obtained the
following result.
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Theorem 3 (Suceava and Yiu)The reflections of théI-line in the sides of the
intouch triangle ofABC' concur at the Feuerbach point efBC'.

Figure 3

We proceed to give a geometric characterization of the ‘fsdttmtersection of
the cevian circumcenter of the incenter with the incircfgarafrom the Feuerbach
point.

3. Themain result

Theorem 4. Let I be the incenter of triangled BC', and H; the orthocenter of
cevian triangled; B, C; of I. The anti-Steiner point of the ling{; (with respect to
A1 B, () is the “second” intersection of the incircle with the ceviaincumcircle
of I.

Figure 4
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In other words, the anti-Steiner point of the lihél; with respect to triangle
A1 B, C1 lies on the incircle ofABC. This is in general different from the Feuer-
bach point ofABC, unless the incircle and the cevian circumcircle of the mee
are tangent to one another.

We prove Theorem 4 synthetically, with the aid of a few lemmhasmma 5
provides more insight on the standard anti-Steiner poinfigaration.

Lemmab. Let P be a point in the plane of a given triangleBC' with orthocenter
H. Let Ay, By, C1 be the points where the line4P, BP, and CP, intersect
again the circumcircle. Furthermore, lets, By, Cs be the reflections aP across
the sidelinesBC, C A, and AB, respectively. Then, the circumcircles of triangles
ABC, PA1A;, PB1By, and PC,Cy are concurrent at the anti-Steiner point of
the line P H with respect to triangled BC.

Figure 5

—

Proof. The line AH cuts the circumcircle of triangld BC' again at the reflection
D of H acrossBC. Thus, the lineD A, is the reflection ofP H with respect to
BC and intersects the circumcircle of triangd&3C again at the anti-Steiner point
T of PH with respect taA BC. Since the directed angles

(TAl,TAQ) = (TAl,TD) = (AAl,AD) = (PAl,PAg) mod 1800,

it follows thatT" lies on the circumcircle oP A, A>. Similarly, T' lies on the cir-
cumcircles of triangle$’B; By and PC1Cs. O

Lemma 6 is a property of Poncelet points of general quadriég. By definition
(see [4]), the Poncelet poift associated with the four pointé, B, C, D is the
concurrency point oB circles: the nine-point circles of triangle$BC, BCD,
CDA, DAB, and the pedal circles of the points B, C, and D, with respect to
the trianglesBC D, CDA, DAB, andABC, respectively.
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Lemma6. Let P be a point in the plane of triangld BC' and P4 P P¢ its pedal
triangle with respect tod BC'. LetA’, B/, C’ be the midpoints of the segmeiftsl,
PB, and PC, respectively, and leP;, P, P; be the points where the ling3Py4,
PPg, PP; meet again the pedal circlB, Pz P-. Then, the line$ A’, P, B’, and
P3C’ concur at a point on the pedal circlBy Pg Pe.

Figure 6

Proof. Let U be the Poncelet point of the quadrilateraBC P. By definition, this
point lies on the pedal circle aP with respect to triangled BC. Now, let D be
the second intersection d#C with the pedal circleP,PgP- and letR be the
orthogonal projection oft on PC. We have that/ RA’C’ is the nine-point circle
of triangle APC'. Furthermore, we also get that
/DUC" = /DUPg — Z/C'UPg

= 180° — ZCPPg — /PRPg

= LPAC — ZCPPg

= /PAC — ZRAC

= 90° — LAPC.
Thus,
/DUA' = /DUC’' + LC'UA
= 90° — LAPC + ZAPC
= 90°.
Therefore, since DU P; = 90°, it follows thatU lies on the lineP; A’. Simi-
larly, P> B’ and P3C’ pass through the Poncelet poift O
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Finally, we prove the lemma which lies at the core of the probthe main
Theorem 4.

Lemma7. Given a triangleA BC with circumcenteO and medial triangleD E'F',
let P be a point with orthogonal projection®;, P», P; on these sides. Let’ be
the intersection of the line&'F and P, P;, and defineB’, C’ cyclically. Then,
the linesP, A’ P, B’ P3C’ concur at the intersection poirif of the circumcircles
PP, Py and DEF that is different from the Poncelet point df, B, C' and P.
Furthermore,U is the anti-Steiner point of the lin@ P with respect to the medial
triangle DEF.

c’

Figure 7

Proof. The orthogonal projectio” of A on OP is clearly the second intersection
of the circumcircles of the cyclic quadrilateratsP; AP; andOE AF with diam-
etersAP and AO, respectively. Also, note thaf is the Miquel point of the com-
plete quadrilateral bounded by the liné®, AC, E'F, andP, Ps. Thus, it follows
by the standard characterization of Miquel points idies on the circumcircle of
FA'P;.

On the other hand, |e® P, intersect the circled P, P again atl’. SinceAP is
a diameter ofAP, P3, ZATP = 90°, and AT is parallel toEF'. In other words,
EF is the perpendicular bisector @tP;, and/TAF = Z/AFE. We have shown
aboveV lies on the circumcircle of" A’ P;. Therefore,/ A’V P; = ZAFE, and
A’ lies onVT'. Furthermore, sincel’ lies on the radical axi$; P; of the circum-
circles AP, P; and P, P, P3, it also follows thatA’ has equal powers with respect
to AP, P; and P, P, P3. Consequently, if? A’ cuts the circleP; P, P3 again atl/,
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thenTUV Py is an isosceles trapezoid with badé® andT P;. Therefore,U is
the reflection ol acrosst'F'. Finally, since the circumcircled EF andDEF are
symmetric with respect t&' F', the pointU, which lies on the circumcircl® E'F,
is the anti-Steiner point a® P with respect to triangl E F. O

Now we conclude with a proof of Theorem 4.

Let DEF be the intouch triangle ol BC, and Ay By Cy the antimedial triangle
of DEF. Since the lined3¢Cy, CyAp, AgBy are perpendicular to the lindsA,
IB, IC respectively, the feet of the internal angle bisectets, B, C1, are the
poles of ByCy, Cy Ay, Ag By with respect to the incirclél). Therefore, by duality,
the points4y, By, Cy are the poles of the lineB,Cy, C1 Ay, A1 B; with respect to

().

C H
Co

Figure 8

Now, let the segmentsA, I B, IC intersect the cevian circumcirclel; B1C1)
of I at P, @, R respectively, and leX, Y, Z be the reflections of across the
lines B,C1, Cy1 Ay, and A, By, respectively. Inversion with respect () takesw
into the pedal circle.” of I with respect to trianglelo ByCy. Thus, the segments
IA, IB, IC cutw' at the inverse imageB’, ', R’ of P, Q, R respectively, and
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the midpointsX’, Y’, Z’ of I Ay, 1By, ICy are the inverse images &f, Y, Z. It
follows from Lemma 6 that”’ X', Q'Y’, R'Z’ all meet at the Poncelet poit’
of AgBoCyI, which, as a matter of fact, lies asf. On the other hand, by Lemma
5, the inverses of these lines are the cir@eX P), (IYQ), and(/ZR) concur-
ring at the anti-Steiner point df with respect to triangled; B;C;. Therefore, the
intersection points ofA; B;C) and the incirclg(]) are precisely the anti-Steiner
point £’ of I H, with respect to trianglel; B;C and the Feuerbach point dfBC.
Moreover, ifOyq is the circumcenter of triangld, ByCy, then according to Lemma
7, F' is in general different from the anti-Steiner pointi@, with respect to tri-
angleDEF. Thus, we conclude that the anti-Steiner pdihtof 7 H; with respect
to triangle A; B1C is indeed the intersection ¢f) N w, which is different from
the Feuerbach point, since by Theorem 3 the anti-Steinat pbf Oy with respect
to DEF is the Feuerbach point ABC.

This completes the proof of Theorem 4.

References

[1] S. N. Collings: Reflections on a triangle Math. Gazette57 (1973) 291-293.

[2] L. A. Emelyanov and T. L. Emelyanova, A note on the Feuelbgoint,Forum Geom.1 (2001)
121-124.

[3] L. A. Emelyanov and T. L. Emelyanova, Semejstvo Feuenbabatematicheskoe Prosveshje-
nie, 2002, 1-3.

[4] D. Grinberg, Anti-Steiner points with respect to a tigda available at
http://ww. cip.ifi.lmu. de/ grinberg

[5] C. Kimberling, Triangle centers and central triangl€yngressus Numerantiym29 (1998)
1-285.

[6] C. Pohoata, Homothety and Inversion, AwesomeMath YRaund Program material, 2012.

[7] B. Suceava and P. Yiu, The Feuerbach point and Eules JFrum Geom.6 (2006) 191-197.

Luis Gonzalez: 5 de Julio Avenue, Maracaibo, Venezuela
E-mail addressLui sgeonetri a@otmai |l . com

Cosmin Pohoata: 215 1938 Hall, Princeton University, USA
E-mail addressapohoat a@r i ncet on. edu



Forum Geometricorum
Volume 12 (2012) 149-152.

FORUM GEOM
ISSN 1534-1178

Some Properties of the Newton-Gauss L ine

Catalin Barbu and lon Patrascu

Abstract. We present some properties of the Newton-Gauss lines afdime
plete quadrilaterals associated with a cyclic quadritdter

1. Introduction

A complete quadrilateral is the figure determined by fougdimo three of which
are concurrent, and their six points of intersection. Feglirshows a complete
quadrilateralABC DEF, with its three diagonalsiC, BD, and EF' (compared
to two for an ordinary quadrilateral). The midpoint$, N, L of these diagonals
are collinear on a line, called tlidewton-Gauss line of the complete quadrilateral
([1, pp.152-153]). In this note, we present some propediglse Newton - Gauss
lines of complete quadrilaterals associated with a cyaladyilateral.

Figure 1.

2. An equality of angles determined by Newton - Gaussline

Given a cyclic quadrilaterall BC D, denote byF' the point of intersection at the
diagonalsAC' andBD, E the point of intersection at the linesB andC D, N the
midpoint of the segmenkt F', and M the midpoint of the segmem®C (see Figure
2).

Theorem 1. If P isthe midpoint of the segment BF', the Newton - Gauss line of the
complete quadrilateral EAF DBC' determines with the line PM an angle equal
to /EFD.

Proof. We show that triangle®’ PA and EDF' are similar.
SinceBE| PN andFC||PM, ZEAC = ZNPM and8£ = £C — 2,
In the cyclic quadrilateral BC' D, we have

LEDF = /EDA+ ZADF = ZABC + ZACB = ZEAC.

Publication Date: May 2, 2012. Communicating Editor: Paiul. Y
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Therefore/NPM = ZEDF.
Let R, and R, be the radii of the circumcircles of triangld$sE D and DFC
respectively. Applying the law of sines to these triangles,have

BE 2RysmEDB Ry 2RysmEBD  DE

FC ~ 2RysinFDC Ry  2RysnFCD  DF’

Since BE = 2PN and FC' = 2PM, we have shown thaff: = 2£. The
similarity of trianglesN PM and EDF follows, andZNMP = ZEFD. O

Remark. If @) is the midpoint of the segmei#tC', the same reasoning shows that
thatZNMQ = ZEF A.

B M C B M E C

Figure 2 Figure 3

3. A paralld to the Newton-Gaussline

Theorem 2. The paralld from E to the Newton - Gauss line of the complete
quadrilateral FAF DBC and theline EF areisogonal lines of angle BEC.

Proof. Since triangle DF and N PM are similar, we havee DEF = /PN M.

Let £’ be the intersection of the sid@C with the parallel of N M throughE.
BecausePN|BE andNM|EE', /BEF = /PNF and/ZFNM = /E'EF.
Thus,

/CEE' = /DEF — /E'EF = /PNM — /FNM = /PNF = /BEF.
(]
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4. Two cyclic quadrilaterals determined the Newton-Gauss line

Let G and H be the orthogonal projections of the poifiton the linesAB and
C D respectively (see Figure 4).

Theorem 3. The quadrilaterals M PGN and MQH N are cyclic.

Proof. By Theorem 1,/EFD = ZPMN. The pointsP and N are the cir-
cumcenters of the right triangleB F'G and EF'G, respectively. It follows that
/ZPGF = /PFGand£ZFGN = ZGFN. Thus,

/PGN + /PMN = (/PGF + /FGN) + /PMN

=/PFG+ /GFN+ /EFD

= 180°.
Therefore,M PGN is a cyclic quadrilateral. In the same way, the quadrilatera
MQ@HN is also cyclic. O

Figure 4 Figure 5

5. Two complete quadrilaterals with the same Newton-Gaussline

Extend the linesyF and H F to intersectEC' and EB at I andJ respectively
(see Figure 5).

Theorem 4. The complete quadrilaterals EGFHJI and EAF DBC have the
same Newton-Gauss line.

Proof. The two complete quadrilaterals have a common diagbi#al Its midpoint
N lies on the Newton-Gauss lines of both quadrilaterals. H@eV is equidistant
from GG and H since it is the circumcenter of the cyclic quadrilatefak F'H. We
show that triangles/ PG and HQ M are congruent. From this, it follows thaf
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lies on the perpendicular bisector GfH. Therefore, the line\/ N contains the
midpoint of GH, and is the Newton-Gauss line 8iGF H JI.

Now, to show the congruence of the trianglelsSPG and HQ M, first note that
since M and P are the midpoints oBF and BC', PMQF is a parallelogram.
From these, we conclude
() MP=QF = HQ,

(i) GP=PF = MQ,
(i) LZMPF = ZFQM.
Note also that
/FPG=2/PBG=2/DBA=2/DCA=2/HCF = /ZHQF.
Together with (iii) above, this yields
LMPG = ZMPF+/FPG = ZFQM+/HQF = ZHQF+/FQM = ZHQM.

Together with (i) and (ii), this proves the congruence @iriglesM PG andHQ M .
O

Remark. BecauseM PG and HQ M are congruent triangles, their circumcircles,
namely,(M PGN) and(MQH N) are congruent (see Figure 4).
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Har monic Conjugate Circles Relativeto a Triangle

Nikolaos Dergiades

Abstract. We use the term harmonic conjugate conics, for the ca@hi€s with
equationsC : fa? + gy + hz? + 2pyz + 29z + 2rzy = 0 andC* : fa? +
gy* + hz? — 2pyz — 2qz — 2rzy = 0, in barycentric coordinates becauselif,
A, are the points wheré meets the sidelin&C of the reference triangle ABC,
thenC* meets the same side at the points, A5 that are harmonic conjugates
of A1, Az respectively relative t&3C' and similarly for the other sides of BC
[1]. So we investigate the interesting case where BotimdC* are circles.

1. Introduction

We work with barycentric coordinates with reference to agiwiangleABC.
A conic C with matrix

froaq
M=|r g p
q p h
and equation
f;p2 + gy2 + h2? + 2pyz 4+ 2qzx + 2rzy =0 1)

intersects the sidelinBC of triangle ABC' at the points4d; = (0 : y; : 21) and
Ay = (0: 5 : 20) With y;, z; (i = 1, 2) satisfyinggy? +2pyz+hz? = 0. Similarly,
the conicC* with matrix

fo-r —q
M=|-r g -p
—q¢ —p h
and equation
fx? + gy? + h2® — 2pyz — 2qza — 2ray = 0 (2

intersects the sidelinBC of triangle ABC at the pointsd] = (0: —y; : 21) and

5= (0: —ya : z2). Fori = 1,2, the points4; and A; are harmonic conjugates
with respect toB and C. Similarly the intersections af andC* with the other
two sidesC' A, AB are also harmonic conjugates. We call these conics harmonic
conjugates relative to triangld BC' (see Figure 1), and it is very interesting to
consider their properties and construction if these coaiesboth circles. If the
conicC is a bicevian conic (passing through the vertices of theazetriangles of
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two pointsP, Q), then its harmonic conjugate conic is a pair of lines (thim&ar
polars of P and(Q).

Figure 1. Harmonic conjugate conics

2. Harmonic conjugate circlesrelativeto ABC
Theorem 1. The harmonic conjugate conic of the circle
a’yz + b2z + oy — (x+y+ 2)(Pr+ Qy+ Rz) =0 3
isacircleifand only if (P, Q, R) = m(S4, Sp, Sc) for some m.
Proof. The matrix of the circle (3) being

—2P 2-P—-Q bP—-R-P
c—-—P-Q —2Q a>—Q—-R|,
V-R-P a>-Q—-R —2R
its harmonic conjugate conic has matrix
2P —+P+Q —-V+R+P
—2+P+Q —-2Q —a*+Q+R
~V+R+P —-a’>+Q+R —2R

This is the conic
(2Q+2R—a*)yz+(2R+2P—b*)z2+(2P+2Q—c*)zy—(z+y+2)(Pr+Qy+R2) = 0.
Itis a circle if and only if
2Q0+2R—a?:2R+2P —b*:2P+2Q — & =a® : b* : 2,
i.e,
P:Q:R=0+—a®:+a®> -0 :a®>+0* -2 =S4:55: Sc.
This is the case if and only {fP, Q, R) = m(Sa, Sg, Sc) for somem. O
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Denote byC,, the circle with equation
a*yz + b*zx + xy — m(x + y + 2)(Sax + Spy + Scz) = 0.

A simple application of the formula in [310.7.2] shows that the center ©f, is
the point

Om = (1-m)a?Ss4+m-2Spc : (1—m)b*Sp+m-2Sca : (1—-m)c2Sc+m-2S4p),
which dividesOH in the ratio
00,,:0,H=m:1—m.

Proposition 2. If m # % the harmonic conjugate circle of C,, is the circle C,,,

/I _m
where m’ = 5.

Proof. By the proof of Theorem 1, the harmonic conjugate circlé,Qis the circle

(2m(Sp + Sc) — a®)yz + (2m(Sc + Sa) — b*)zz + (2m(Sa + Sp) — *)zy
—m(x+y+2)(Sax + Spy + Scz) =0,

namely,
2 2 2 m _
a‘yz + b*zx + c“xy — 2m_1($+y+z)(SA:E+SBy+Scz) = 0.
This is the circleC,,, with m’ = . O

Figure 2. Harmonic conjugate circles
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Remark. Form = 1, C,, is the nine-point circle, the bicevian circle of the cerdroi
and the orthocenter. Its harmonic conjugate conic is thegddines consisting of
the line at infinity and the orthic axis.

Proposition 3. The centers of a pair of harmonic conjugate circles divide the seg-
ment O H harmonically.

Proof. Let the harmonic conjugate circles 8g andC,,/, with m’ = 5. Their
centers are point®,,, andO,,,, satisfying

m  m-—1
2m—1 " 2m —1

00, :0pyH=m":1—-m'=
=m:—(1—m)
= 00y, : —OpH.

ThereforeO,,, andO,,,; divide O H harmonically. O
Sincem = m' if and only if m = 0 or 1, we have the following corollary.

Corollary 4. The circumcircle and the polar circle (with center H) are the only
circleswhich are their own harmonic conjugate circles.

Remark. The polar circle is real only when the triangle contains agl@i» 90°.
For the construction of the polar circle, sgk2 below.

3. Construction of coaxial circles

3.1 Prescribed center. Given a circleO(R) and a line£ generating a coaxial
family of circles, we address the construction problem ef ¢hrcle in the family
with a prescribed centd? on the line throughO perpendicular taC.

Any intersection ofL andO(R) is common to the circles in the coaxial family.
The construction problem is trivial whehandO(R) intersect.

Figure 3. Construction of circles in coaxial family
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SupposeC does not intersect the circle(R). Let H' be the orthogonal projec-
tion of O on the line£. Set up a Cartesian coordinates with originf&t y-axis
along £, and positiver-axis along the half-lineZ’O. If the pointO has coordi-
nates(ko,0) for kg > R, the circleO(R) has equatior(z — ko)? + y* = RZ,
or

a2 +y? — 2oz + k2 — R* = 0.
Construct the circlé H') orthogonal to/O). This circle has radiug/k3 — R2.

The real circles in the coaxial family have equations

2 +y’ —2%x+ kg —R*=0, kK >kj— R
Given the centeK (k, 0), here is a simple construction of the circle.
(i) Supposek > 0. Construct the circle with diametdi’ K to intersect the
circle (H') at a pointP. Then the circlek (P) is the one in the coaxial family with
centerK (see Figure 3).

(ii) Supposek < 0. Apply (i) to construct the circle in the family with center
(—k,0). Reflect this in the lineC to yield the circle with centek (k, 0).

3.2 Through a given point. Given a pointP not on the lineZ, to construct the
circle in the coaxial family which contain®, we need only note that this circle,
being orthogonal t¢H’), should also contain the inversive imageof P in (H').
The intersection of the perpendicular bisectora?’ and the perpendicular t6
from O is the centeti of the circle.

4. Harmonic conjugate circles for special triangles

4.1 Equilateral triangles. If ABC'is equilateral with circumcent&p and circum-
radiusR, the only harmonic conjugate circle pairs are concentrides atO, with
radii p andp’ related by

) ) - (o'

Figure 4. Harmonic conjugate circles of an equilaterahgla
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4.2 Nonacute triangles. If ABC contains an angle- 90°, then its orthic axis in-
tersects the circumcircle at real pointsTherefore the harmonic conjugate circles
pairs can be easily constructed knowing that their centere@monic conjugates

with respect taO H.

Figure 5. Harmonic conjugate circles of an obtuse triangle

5. Congruent harmonic conjugate circles

There is a unique pair of congruent harmonic conjugateeasrciTheir centers
on the Euler line are symmetric with respectd6. These two points are therefore
the intersection of the Euler line with the circle, cent&r, orthogonal to the circle

with diameterOH.

Figure 6. Congruent harmonic conjugate circles

Lif ABC contains a right angle, then the right angle vectex is on tlleimaxis (and the
circumcircle).
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The Perpendicular Bisector Construction, the Isoptic
point, and the Simson Line of a Quadrilateral

Olga Radko and Emmanuel Tsukerman

Abstract. Given a noncyclic quadrilateral, we consider an iterafivecedure
producing a new quadrilateral at each step. At each itevati® vertices of the
new quadrilateral are the circumcenters of the triad crofghe previous gener-
ation quadrilateral. The main goal of the paper is to proverabrer of interesting
properties of the limit point of this iterative process. Wew that the limit point
is the common center of spiral similarities taking any of thad circles into
another triad circle. As a consequence, the point has thmidéspropertyi.e.,
all triad circles are visible from the limit point at the sammegle. Furthermore,
the limit point can be viewed as a generalization of a ciroemter. It also has
properties similar to those of the isodynamic point of angi@. We also char-
acterize the limit point as the unique point for which the gdegliadrilateral is a
parallelogram. Continuing to study the pedal propertigk waspect to a quadri-
lateral, we show that for every quadrilateral there is a uaigoint (which we
call the Simson point) such that its pedal consists of foimgsmn a line, which
we call the Simson line, in analogy to the case of a triangleally, we define
a version of isogonal conjugation for a quadrilateral aral/prthat the isogonal
conjugate of the limit point is a parallelogram, while thatlee Simson point is
a degenerate quadrilateral whose vertices coincide attinfin

1. Introduction

The perpendicular bisector construction that we investigathis paper arises
very naturally in an attempt to find a replacement for a circenter in the case of a
noncyclic quadrilateraf)(!) = A, B;C; D;. Indeed, while there is no circle going
through all four vertices, for every triple of vertices thas a unique circle (called
thetriad circle) passing through them. The centers of these four triadesirchn
be taken as the vertices of a new quadrilateral, and the ggazan be iterated to
obtain a sequence of noncyclic quadrilater&)s?), Q2 , Q®), . . ..

To reverse the iterative process, one finds the isogonaligatgs of each of
the vertices with respect to the triangle formed by the reingivertices of the
quadrilateral.

It turns out that all odd generation quadrilaterals arelaimand all even gener-
ation quadrilaterals are similar. Moreover, there is a pthiat serves as the center
of spiral similarity for any pair of odd generation quadiéials as well as for any
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pair of even generation quadrilaterals. The angle of mtais 0 or = depending
on whether the quadrilateral is concave or convex, and tieerraf similarity is a
constant that is negative for convex noncyclic quadrit#gizero for cyclic quadri-
laterals, and> 1 for concave quadrilaterals. |lf| # 1, the same special point turns
out to be the limit point for the iterative process or for tegerse process.

The main goal of this paper is to prove the following theorem.

Theorem 1. For each quadrilateralQ") = A, B,C; D, there is a unique poinit’
that has any (and, therefore, all) of the following propesti

(1) W is the center of the spiral similarity for any two odd (eveepgration
guadrilaterals in the iterative process;

(2) Depending on the value of the ratio of similarity in the itéva process,
there are the following possibilities:

(@) If |r] < 1, the quadrilaterals in the iterated perpendicular bisasto
construction converge t@/;

(b) If |#| = 1, the iterative process is periodic (with periador 4); W
is the common center of rotations for any two odd (even) geioer
quadrilaterals;

(c) If |r| > 1, the quadrilaterals in the reverse iterative process (ofed
by isogonal conjugation) converge ¥,

(8) W is the common point of the six circles of similitude (o;, 0;) for any
pair of triad circles 0,05, 4,5 € {1,2,3,4}, whereo; = (D1 A1By),
09 = (AlBlCl), 03 = (Blchl)v 04 = (ClDlAl).

(4) (isoptic property) Each of the triad circles is visible froi#i at the same
angle.

(5) (generalization of circumcenter) The (directed) angleteatded by any of
the quadrilateral’s sides all” equals to the sum of the angles subtended
by the same side at the two remaining vertices.

(6) (isodynamic property) The distance frdiii to any vertex is inversely pro-
portional to the radius of the triad circle determined by theenaining three
vertices.

(7) W is obtained by inversion of any of the vertices of the oribmaadrilat-
eral in the corresponding triad-circle of the second gettiera

W = Inv0§2>(A) = |nVOg2)(B) = |nVOg2)(C) = |nV0512) (D),
Whereogz) = (DQAQBQ), 0&2) = (AQBQCQ), 0&2) = (BQCQDQ), 0512) =
(CQDQAQ).

(8) W is obtained by composition of isogonal conjugation of aeeln the
triangle formed by the remaining vertices and inversiorh tircumcircle
of that triangle.

(9) W is the center of spiral similarity for any pair of triad cires (of possibly
different generations). That i$|” € CS(oZ(k), o§l)) forall ¢, 4, k, 1.

(10) The pedal quadrilateral of¥ is a (nondegenerate) parallelogram. More-
over, its angles equal to the angles of the Varignon paradjedm.
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Many of these properties & were known earlier. In particular, several authors
(G. T. Bennett in an unpublished work, De Majo [11], H. V. Msdin [12]) have
considered a point that is defined as the common center afl spinilarities. Once
the existence of such a point is established, it is easy tolgda that all the triad
circles are viewed from this point under the same angle ighige so-calledsoptic
property). Since it seems that the oldest reference to the point with an isoptic
property is to an unpublished work of G. T. Bennett given byFHBaker in his
Principles of Geometrwolume 4 [1, p.17], in 1925, we propose to call the center
of spiral similarities in the iterative proceB&nnett’s isoptic point

C. F. Parry and M. S. Longuet-Higgins [14] showed the existesf a point with
property 7 using elementary geometry.

Mallison [12] defined/” using property 3 and credited T. McHugh for observing
that this implies property 5.

Several authors, including Wood [19] and De Majo [11], hawekked at the
properties of the isoptic point from the point of view of theique rectangular
hyperbola going through the vertices of the quadrilatenad] studied its properties
related to cubics. For example, P.W. Wood [19] considereddibmeters of the
rectangular hyperbola that go through B, C, D. Denoting by A, B,C, D the
other endpoints of the diameters, he showed that the isbgonaugates of these
points in trianglesBC D, CAD,ABD, ABC coincide. Starting from this, he
proved properties 4 and 7 of the theorem. He also mentionsetl@sal of the
iterative process using isogonal conjugation (also foar{d9], [17], [5]). Another
interesting property mentioned by Wood is th#tis the Fregier point of the center
of the rectangular hyperbola for the codd&BC DO, whereO is the center of the
rectangular hyperbola.

De Majo [11] uses the property that inversion in a point ondinele of simili-
tude of two circles transforms the original circles into & jpé circles whose radii
are inversely proportional to those of the original circlesshow that that there
is a common point of intersection of dlcircles of similitude. He describes the
iterative process and states property 1, as well as sevirat properties oV
(including 8). Most statements are given without proofs.

Scimemi [17] describes a Mobius transformation that otterezesiV: there
exists a line going through” and a circle centered & such that the product of
the reflection in the line with the inversion in the circle rmaach vertex of the first
generation into a vertex of the second generation.

The question of proving that the third generation quadikdtis similar to the
original quadrilateral and finding the ratio of similarityag/first formulated by J.
Langr [8]. Independently, the result appeared in the forna groblem by V.V.
Prasolov in [15, 16]. The expression for the ratio (undetaierconditions) was
obtained by J. Langr [8] , and the expression for the ratiolénicertain conditions)
was obtained by D. Bennett [2] (apparently, no relation td @ennett mentioned
above), and J. King [7]. A paper by G. C. Shepard [18] foundxaumession for the
ratio as well. (See [3] for a discussion of these works).

Properties 9 and 10 appear to be new.
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For the convenience of the reader, we give a complete andamtined exposi-
tion of all the properties in the Theorem above, as well asfgrof several related
statements.

In addition to investigating properties @f , we show that there is a unique point
for which the feet of the perpendiculars to the sides lie aneaght line. In analogy
with the case of a triangle, we call this line tBenson lineof a quadrilateral and
the point — theSimson pointThe existence of such a point is stated in [6] where it
is obtained as the intersection of the Miquel circles of teplete quadrilateral.

Finally, we introduce a version of isogonal conjugation &oguadrilateral and
show that the isogonal conjugate 1¢f is a parallelogram, and that of the Simson
point is a degenerate quadrilateral whose vertices ardfinitynin analogy with
the case of the points on the circumcircle of a triangle.

2. The iterative process

Let A1 B,C1 D be a quadrilateral. 14, B;C1D; is cyclic, the center of the
circumcircle can be found as the intersection of the foupgedicular bisectors to
the sides of the quadrilateral.

Assume thaQ)) = A, B;C, D is a noncyclic quadrilaterdl.Is there a point
that, in some sense, plays the role of the circumcenter®)%t= A, B,C, D5 be
the quadrilateral formed by the intersections of the pedmemar bisectors of the
sides ofA; B1C1Dy. The vertices4s, By, Cs, Do of the new quadrilateral are the
circumcenters of the triangld3, A1 B, , A1 B1Cy, B1C1D; andC; D A, formed
by vertices of the original quadrilateral taken three atreeti

B B

C
Ag
Do
C2
D

Figure 1. The perpendicular bisector construction @, Q®, Q®.

Iterating this process.,e., constructing the vertices of the next generation quadri-
lateral by intersecting the perpendicular bisectors tositles of the current one,
we obtain the successive generatio@s?) = A3B;C5Ds, QW = A4B,CyDy
and so on, see Figure 1.

1Sometimes we drop the lower index when denoting vertices of)"’, so ABC'D and
A1B1C1 D, are used interchangeably throughout the paper.
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The first thing we note about the iterative process is thatntlme reversed using
isogonal conjugation. Recall that given a triangl8C and a pointP, theisogonal
conjugateof P with respect to the triangle (denoted by Jsg-(P)) is the point
of intersection of the reflections of the lings?, BP andCP in the bisectors of
anglesA, B andC respectively. One of the basic properties of isogonal amatjon
is that the isogonal conjugate éfis the circumcenter of the triangle obtained by
reflecting P in the sides ofABC (see, for example, [5] for more details). This
property immediately implies

Theorem 2. The original quadrilateral4d, B;C; D, can be reconstructed from the
second generation quadrilateral; BoCs Do using isogonal conjugation:

A = ISOp, 4, B, (02)7
By = ISOA23202(D2)>
C1 = 150B,¢,0,(A2),
Dy = 1s0¢,p,4, (Ba).

The following theorem describes the basic properties oitédnative process.

Theorem 3. Let Q") be a quadrilateral. Then

(1) Q@ degenerates to a point if and onlyGf!) is cyclic.
(2) If QW is not cyclic, the corresponding angles of the first and sdayen-
eration quadrilaterals are supplementary:

LA+ LAy = LBy + 4By = LC + LCy = LD + £Dy = 7.

(3) If Q1 is not cyclic, all odd generation quadrilaterals are sinmil® each
other and all the even generation quadrilaterals are simitaeach other:

QW ~ QB ~ QB ~ ...,
Q¥ ~ QW ~ QO ~ ...
(4) All odd generation quadrilaterals are related to each othéx spiral sim-
ilarities with respect to a common center.
(5) All even generation quadrilaterals are also related to eater via spiral
similarities with respect to a common center.
(6) The angle of rotation for each spiral similarity is (for a convex quadri-
lateral) or a0 (for a concave quadrilateral). The ratio of similarity is

r= %(cota + cot ) - (cot B + cot §), 1)

wherea = ZAq, 8 = /By, v = ZC7 andé = £/ D, are the angles of
QW.

(7) The center of spiral similarities is the same for both the add the even
generations.

Proof. The first and second statements follow immediately from #@fendion of
the iterative process. To show that all odd generation djasehals are similar
to each other and all even generation quadrilaterals aréasito each other, it is
enough to notice that both the corresponding sides and thesponding diagonals
of all odd (even) generation quadrilaterals are pairwisalfs.
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LetW; := A, A3N B, B be the center of spiral similarity takir@") into Q3.
Similarly, letW, be the center of spiral similarity takir@® into Q*). Denote the
midpoints of segmentd; B, and A3 B3 by M; andM;3. (See fig. 2). To show that
Wy and W, coincide, notice thaB; M1 A, ~ B3MsA,. Since the corresponding
sides of these triangles are parallel, they are related Ipjral similarity. Since
B1Bs N MMz = Wy and M M3z N BoBy = W, it follows thatiV;, = W5, Let
now W5 be the center of spiral similarity that takés®) into Q(®). By the same
reasoning)V, = W3, which implies thatl; = W3. Continuing by induction, we
conclude that the center of spiral similarity for any paiodtl generation quadrilat-
erals coincides with that for any pair of even generatiordgiserals. We denote
this point byW. O

Figure 2. W as the center of spiral similarities.

From parts (2) and (3) of Theorem 3 we obtain the followingotary.

Corollary 4. The even and odd generation quadrilaterals are similar tcheather
if and only ifQ() is a trapezoid.

The ratio of similarityr = r(«, 3,7, d) takes values iff—oco, 0] U [1,00) and
characterizes the shape@f!) in the following way:
(1) r < 0ifand only if Q) is convex. Moreover; = 0 if and only if Q! is
cyclic.
(2) » > 1if and only if Q! is concave. Moreover; = 1 if and only if Q(!)
is orthocentric(that is, each of the vertices is the orthocenter of the {rian
gle formed by the remaining three vertices. Alternatively,orthocentric
guadrilateral is characterized by being a concave quaghdhfor which
the two opposite acute angles are equal).

For convex quadrilaterals,can be viewed as a measure of how noncyclic the orig-
inal quadrilateral is. Recall that since the opposite angfea cyclic quadrilateral
add up tor, the difference

[(a+7) == =](8+0) -l )
can be taken as the simplest measure of noncyclicity. Thésare, however, treats
two quadrilaterals with equal sums of opposite angles aallgnoncyclic. The
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ratio r provides a refined measure of noncyclicity. For exampleafixed sum of
opposite anglesy +v = C, f + § = 27 — C, whereC € (0,27), the convex
quadrilateral with the smallegt| is the parallelogram withy = v = % 6 =29.
Similarly, for concave quadrilaterals,measures how different the quadrilateral
is from being orthocentric.
Since the angles between diagonals are the same for allajemss; it follows
that the ratio is the same for all pairs of consecutive geiverst

Area Q")
Area QD)

Assuming the quadrilateral is noncyclic, there are thefaihg three possibilities:

= [rl-

(1) When|r| < 1 (which can only happen for convex quadrilaterals), the
guadrilaterals in the iterative process convergéto

(2) When|r| > 1, the quadrilaterals in the inverse iterative process agieve
toWw.

(3) When|r| = 1, all the quadrilaterals have the same area. The iterative
process is periodic with periotifor all quadrilaterals withr| = 1, except
for the following two special cases. @) is either a parallelogram with

angle? (so thatr = —1) or forms an orthocentric system (so that 1),
we haveQ® = QM) QW = Q®, and the iterative process is periodic
with period2.

By settingr = 0 in formula (1), we obtain the familiar relations between the
sides and diagonals of a cyclic quadrilatedgBC' D:

AC-BD = AB-CD+ BC-AD, (Ptolemy’s theorem) 3)
AC AB-AD+CB-CD

BD  BA-BC+DA-DC. ()

Since the vertices of the next generation depend only ondhegs of the pre-
vious one (but not on the way the vertices are connected)camsee thatl’ and
r for the (self-intersecting) quadrilaterais” BD and AC D B coincide with those
for ABCD. This observation allows us to prove the following

Corollary 5. The angles between the sides and the diagonals of a quatdlat
satisfy the following identities:

(cot v+ coty) - (cot B+ cotd) = (cot oy — cot fa) - (cot b2 — cot 1),
(cot v+ coty) - (cot B+ cotd) = (cotd; — cotag) - (cot B1 — cotya)

wherea;, 5;,7v:,9;, i = 1,2 are the directed angles formed between sides and
diagonals of a quadrilateral (see Figure 3).

Proof. Since the (directed) angles d{C BD are—a;, 32,71, —62 and the directed
angles ofACDB areas, (1, —2, —01, the identities follow from formula (1) for
the ratio of similarity. O
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D

B2 Y1
B C

Figure 3. The angles between the sides and diagonals of ailqiecl.

3. Properties of the center of spiral similarity

We will show thatW/, defined as the limit point of the iterated perpendicular
bisectors construction in the case that < 1 (or of its reverse in the case that
|r| > 1), is the common center of all spiral similarities taking asfythe triad
circles into another triad circle in the iterative process.

First, we will prove that any of the triad circles of the firgrgration quadrilat-
eral can be taken into another triad circle of the first ger@rdy a spiral similarity
centered atV (Theorem 9). This result allows us to vidW as a generalization of
the circumcenter for a noncyclic quadrilateral (Corollaf/and Corollary 13), to
prove its isoptic (Theorem 11), isodynamic (Corollary 14l enversive (Theorem
15) properties, as well as to establish some other resulsthéh prove several
statements that allow us to conclude (see Theorem 24}iths¢rves as the center
of spiral similarities for any pair of triad circles of anydvgenerations.

Several objects associated to a configuration of two cirgleshe plane will
play a major role in establishing propertiesldf. We will start by recalling the
definitions and basic constructions related to these abject

3.1 Preliminaries: circle of similitude, mid-circles and tiredical axis of two cir-
cles. Let 0; andos be two (intersectini:) circles on the plane with cente¢¥ and
O, and radiiR, and R, respectively. Letd and B be the points of intersection of
the two circles. There are several geometric objects aasalio this configuration
(see Figure 4):

(1) Thecircle of similitudeC'S(o01, 02) is the set of points” on the plane such
that the ratio of their distances to the centers of the grideequal to the
ratio of the radii of the circles:

P01 . R1

POy Ry
In other words,C'S(01,02) is the Apollonian circle determined by points
01, 05 and I’atiORl/Rg.

2Most of the constructions remain valid for non-intersegtaircles. However, they sometimes
have to be formulated in different terms. Since we will ongabwith intersecting circles, we will
restrict our attention to this case.
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(2) Theradical axisRA(o1,02) can be defined as the line through the points
of intersection.

(3) The twomid-circles(sometimes also called tharcles of antisimilitudg
MC4(01,02) and M Cs(01,02) are the circles that inver; into oy, and

vice versa:
|nVMCi(017O2)(01) = 02, 1=1,2.
RA
MCq
cSs MCy
1 (2

Figure 4. Circle of similitude, mid-circles and radical sxi

Here are several important properties of these objects¢$emd [4] for more
details):

(1) CS(01,09) is the locus of centers of spiral similarities takinginto os.
ForanyE € CS(o1,02), there is a spiral similarity centered At that
takeso; into o,. The ratio of similarity isR2/R; and the angle of rotation
is ZO1EQOs.

(2) Inversion with respect t6'S(o1, 02) takes centers af; andos into each
other:

INVE5(01,00)(O1) = O2.

(3) Inversion with respect to any of the mid-circles exchemthe circle of
similitude and the radical axis:

|nVMCi(Ol7O2)(CS(01, 02)) = RA(Ol,OQ), 7= 1, 2.

(4) The radical axis is the locus of centers of all circlethat are orthogonal
to botho; andos.

(5) ForanyP € CS(o01,02), inversion in a circle centered &takes the circle
of similitude of the original circles into the radical axiétbhe images, and
the radical axis of the original circles into the circle ofmditude of the
images:

CS(01,02) = RA(0), 0h),

RA(o01,09)" = CS(0}, 0h).
Here’ denotes the image of an object under the inversion in a abete
tered atP € C'S(01,02).
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(6) LetK, L, M be points on the circles;, o2, C'S(01, 02) respectively. Then
/AMB=/AKB+ /ALB, (5)

where the angles are taken in the sense of directed angles.
(7) LetA; B, be achord of acirclé; andAs Bs be a chord of a circlé,. Then

A1, By, Ay, Byareonacircleifand only if Ay BiN Ay By € RA(k, k2).
It is also useful to recall the construction of the center epaal similarity given
the images of two points. Suppose thatand B are transformed intod’ and
B’ respectively. LetP = AA’ N BB’. The centerO of the spiral similarity
can be found as the intersectioh= (ABP) N (A’B’'P). (Here and henceforth
(ABP) stands for the circle going through, B, P). We will call point P in this
construction thgoint point associated to two given point, B and their images
A’, B" under spiral similarity.

There is another spiral similarity associated to the saméguration of points.
Let P’ = ABNA’'B’ be the joint point for the spiral similarity taking and A’ into
B and B’ respectively. A simple geometric argument shows that tikecef this
spiral similarity, determined as the intersection of theles (AA’P") N (BB'P’),
coincides withO. We will call such a pair of spiral similarities centeredlz¢ same
pointassociated spiral similarities

Let HZ”]/ be the spiral similarity centered &t that takeso; into o;. The fol-
lowing Lemma will be useful when studying properties of timit point of the
iterative process (or of its inverse):

Lemma 6. Let o; and o, be two circles centered &P, and O, respectively and
intersecting at pointsd and B. LetW, R, S € C'S(o01, 02) be points on the circle
of similitude such thaf? and S are symmetric to each other with respect to the
line of centers0,0,. Then the joint points corresponding to taking — O,

R — Ry := Hl"f’z(R) byHLW2 and takingOy — 01, S — Sy = H%’VJ(S) by
H3" coincide. The common joint point lies 6R O,.

Figure 5. Lemma 6.
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Proof. Perform inversion in the mid-circle. The image®©F (o, 02) is the radical
axis RA(o1, 02), i.e, the line through4 and B. The images ofR and S lie on
the line AB and are symmetric with respect fo.= AB N O;05. Similarly, the
images of0; andO, are symmetric with respect tfoand lie on the line of centers.
By abuse of notation, we will denote the image of a point undegrsion in the
mid-circle by the same letter.

The lemma is equivalent to the statement that= (WO, R)N 0104, lies on the
circle (IW02S). To show this, note that since R, O; and W lie on a circle, we
have|IP|-|IO;| = |IW|-|IR|. Since|IOz| = |I0:| and|IR| = |I5|, it follows
that |IP| - |[I02| = |IW| - |IS|, which implies thatiV, P, 04, S lie on a circle.
After inverting back in the mid-circle, we obtain the resoflthe lemma. O

Notice that the lemma is equivalent to the statement that
RRi2N 55271 = (WRO;[) N (WSO2) € 010;.

3.2 W as the center of spiral similarities for triad circles ¢§!). Denote by
01,02, 03 andoy the triad CirC|e${D1A1B1), (AlBlCl), (B1C1D1) and(ClDlAl)
respectively For triad circles in other generations, we add an upper irieix
cating the generation. For exampté?) denotes the first triad-circle in third
generation quadrilaterale., circle (D3A3Bs). Let Ty, T, T5 andTy be the triad
triangIeSDlAlBl, A1B1Cy, B1C{Dy andC1 D1 A respectively.

Consider two of the triad circles of the first generatiopando;, i # j €
{1,2,3,4}. The set of all possible centers of spiral similarity takingnto o; is
their circle of similitudeC'S(o;,0;). If QW) is a nondegenerate quadrilateral, it
can be shown that'S(o;, 02) andC'S(o1, 04) intersect at two points and are not
tangent to each other. L& be the other point of intersection 6fS (0, 02) and
CS(Ol, 04).4

Let H,‘f"; be the spiral similarity centered &’ that takeso, into o; for any
k.l e{1,2,3,4}.

Lemma 7. Spiral similaritiesHE/l have the following properties:

(1) H%(Bl) = A1<:>H;/Z1(A1) = (1.
(2) H%(Bl) = A1<:>H¥Z1(B1) = (1.

Proof. Assume thati}",(B;) = A;. Let P 5 := A By N Ay B> be the joint point
of the spiral similarity’ (centered &) taking B; into A; and A, into Bsy. Since
points By, P 2, W, A lie on a circle (see Lemma 6), it follows thatBW A; =
ABPLQAQ = 7T/2. Thus, A, B, is a diameter ok, := (Blpl,QWAg). Sinceo;

is centered atl,, the circleso; andk; are tangent aB;. It is easy to see that the
converse is also true: if; and(B; W As) are tangent aB, thenHIV,V?(Bl) = A;.

3In short, the middle vertex defining the cirale is vertex numbei (the first vertex beingd,
the second bein@, the third being”; and the last beind,).

4This will turn out to be the same point as the limit point of itezative process defined in section
2, so the clash of notation is intentional.
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SinceA;, Py o, W, B lie on acircle, it follows that/ A1 W By = LA Py 2By =
7/2. SinceB; — A; andAy — By underHyY, /BiW Ay = ZA{W By = /2.
This implies that the circles, := (A; P, oW Bs) ando, are tangent atl;. It is
easy to see that, is tangent ta. if and only if k; is tangent ta; .

Similarly to the above, leP, 4 := Ale(Al) N By D4, be the joint point of the
spiral similarity centered dt” and takingos into o4. ThenPs 4 € ky. Similarly
to the argument abové; is tangent tas if and only if k4 := (C1P>4W Dy) is
tangent tavs. This is equivalent td73" (A;) = Ci.

The second statement follows sinké", (B;) = H)V,oc H%,(B;) = H)V,(A;) =
C1. (Here and below the compositioris of transformations aae n'gHt to left).

O

Figure 6. Proofs of Lemma 7 and Lemma 8.

Notice that circles; andos have two common verticesl; and D;. The next
Lemma shows thati}", takesB; (the third vertex o) to C; (the third vertex on
04). This property is (/ery important for showing that any trizEictle from the first
generation can be transformed into another triad circlenftbe first generation
by a spiral similarity centered a’. Similar properties hold fo#}", and H}Y,.
Namely, we have 7 ’

Lemma8. H{";(B1) = C1, H{5(D1) = C1, H{%,(D1) = B.

Proof. Lemma 7 shows thatf{",(B,) = A, implies H{";(B;) = C;. Assume that
Hl"f’z(Bl) # A;. To find the image of3 underH{’fﬁl, represent the latter as the
compositionHy") o H{Y,. First, H{%,(B1) = Py 2B1 N (P12B:W), whereP, » is
as in Lemma 7, see Figure 6. For brevity, i&t, := HLWQ(Bl). (The indices refer
to the fact thatB » is the image ofB under spiral similarity taking; into o).

Now we construcH ", (B1) = Hj";(B12). By Lemma 6,H}"(B1) = P5 4B 2N
(WPy4D5), where P, 4 is as in Lemma 7. Applying Lemma 6 to the circle
(W P> 4D5), we conclude that it passes through Since by assumptioHLV"Q(Bl) +
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Ay, it follows that H3"; o H{%(B;) = C\. Thus,H}";(B;) = Ci. The other state-
ments in the Lemma can be shown in a similar way. O

The last Lemma allows us to show tHé&t lies on all of the circles of similitude

CS(OZ', Oj).

Theorem 9. W € CS(0;,0;) forall 4,5 € {1,2,3,4}.

Proof. By definition,IW € C'S(01,02) N CS(01,04) N CS(02,04). We will show
thatW € C'S(os,0;) foranyi € {1,2,4}. -

Recall thatB, € CS(o1,02) N CS(02,03). Let W be the second point in the
intersectionC'S (o1, 02)NCS (02, 03), S0 thatC'S(o1, 02)NC'S(02, 03) = {B1, W}.
By Lemma 8,H}%(D;) = Ci. SinceH}",(Az) = By, it follows thatH %, = H{",
which implies thal¥’ = W. Therefore ¥ is the common point for all the circles
of similitude C'S(0;,05), 4,5 € {1,2,3,4}. O
3.3 Properties of W.The angle property (5) of the circle of similitude implies

Corollary 10. The angles subtended by the quadrilateral’s sided/aare as fol-
lows (see Figure 7):

/AWB = /ACB+ /ADB,
/BWC = /BAC + /BDC,
/CWD = /CAD+ /CBD,
/DWA = /DBA+ /DCA.

A

Figure 7. ZCWD = ZCAD + ZCBD.

This allows us to viewV as a replacement of the circumcenter in a certain sense:
the angle relations above are generalizations of theoelatdOB = ZACB +
ZAD B between the angles in a cyclic quadrilatedgBC' D with circumcenteiO.

(Of course, in this special case ACB = ZADB).

SinceWW € CS(o;,0;) for all 4, j, W can be used as the center of spiral sim-
ilarity taking any of the triad circles into another triadate. This implies the
following
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Theorem 11. (Isoptic property) All the triad circles; subtend equal angles &v.

In particular,1¥ is inside of all of the triad circles in the case of a convexdyiza
lateral and outside of all of the triad circles in the case obacave quadrilateral.
(This was pointed out by Scimemi in [17]). W is inside of a triad circle, the
isoptic angle equals taTOT’, whereT and T’ are the points on the circle so
that 71" goes throughV and7TT’ L. OW. (See Figure 8, whergT; AsW and
/TyB>W are halves of the isoptic angle én ando,4 respectively). IfiV is outside
of a triad circle centered @ andW T is the tangent line to the circle, so thats
point of tangency/OTW is half of the isoptic angle. Inverting in a triad circle of
the second generation, we get that the triad circles areed@wvequal angles from
the vertices opposite to their centers (see Figure 8).

Figure 8. The isoptic angles before and after inversion.

Recall that thepower of a pointP with respect to a circle centered aO with
radiusR is the square of the length of the tangent fréhtio the circle, that is,

h = |PO|* — R?.
The isoptic property implies the following

Corollary 12. The powers o#/ with respect to triad circles are proportional to
the squares of the radii of the triad circles.

This property of the isoptic point was shown by Neville inJ18ing tetracyclic
coordinates and the Darboux-Frobenius identity.

Let a,b,c,d be sides of the quadrilateral. For amye {a,b,c,d}, let F, be
the foot of the perpendicular bisector of siden the opposite side. (E.gty, is
the intersection of the perpendicular bisector to the slde and the side’ D).
The following corollary follows from Lemma 8 and expressé&sas the point of
intersection of several circles going through the vertiock$he first and second
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generation quadrilaterals, as well as the intersectiotisegberpendicular bisectors
of the original quadrilateral with the opposite sides (sggife 9).

c

Figure 9. W as the intersection of circlésl; F. D2) and(B1 F.C?) in (6).

Corollary 13. W is a common point of the following eight circles:

(AlFbBQ)v (A1F0D2)7 (BlF002)7 (BleAg), (6)
(C1FyDs), (C1F,Bs), (D1F,As), (D1FCs).

Remark.This property can be viewed as the generalization of thewatig prop-
erty of the circumcenter of a triangle:

Given a triangled BC' with sidesa, b, c opposite to verticesl, B, C, let Fy,; de-
note the feet of the perpendicular bisector to gidm the sidd (or its extension),
wherek,l € {a,b,c}. Then the circumcenter is the common point of three cir-
cles going through vertices and feet of the perpendiculsedbors in the following
way >:

O = (ABFyFypo) N (BCFycFep) N (CAF o Foe), (7)
see Figure 10.

The similarity between (7) and (6) supports the analogy efshbptic point with
the circumcenter.

The last corollary provides a quick way of constructiig First, construct two
vertices (e.g.As and D,) of the second generation by intersecting the perpendic-
ular bisectors. Lef; be the intersection of the line$; Dy and B1C;. ThenW
is obtained as the second point of intersection of the twdesr B, F;, A2) and
(ClFng).

SNote also that this statement is related to Miquel's theoasnfollows. Take any three points
P, Q, R on the three circles in (7), so thdt B, C are points on the sideBQ, QR, PQ of PQR.
Then the statement becomes Miquel's theoremAGrR and pointsA, B, C on its sides, with the
extra condition that the point of intersection of the cisdl@ AC'), (QAB), (RBC) is the circum-
center ofABC.



176 O. Radko and E. Tsukerman

Figure 10. Circumcenter as intersection of circles in (7).

Recall the definition of isodynamic points of a triangle. l4tA, A3 be a tri-
angle with sidesiy, as, a3 opposite to the verticed, As, A3. For eachi,j €
{1,2,3}, wherei # j, consider the circle;; centered atd; and going through
Aj;. The circle of similitudeC'S(o;;, o) of two distinct circleso;; andoy; is the
Apollonian circle with respect to pointd;, A, with ratio r;;, = ‘;—k It is easy to
see that the three Apollonian circles intersect in two @iftand.S’, which are
called theisodynamic pointsf the triangle.

Here are some properties of isodynamic points (see, elg4[&for more de-

tails):

(1) The distances fron§ (andS’) to the vertices are inversely proportional to
the opposite side lengths:
1 1 1
|SAq|:|SAs|: |SAs| = o P— . (8)

az ag

Equivalently,
|SA;| : |SA;| =sinq; : sinay, i#je{l,2,3},

whereq; is the angleZA; in the triangle. The isodynamic points can be
characterized as the points having this distance propsitye that since
the radii of the circles used to define the circles of sindétare the sides,
the last property means that distances from isodynamidptaithe ver-
tices are inversely proportional to the radii of the circles

(2) The pedal triangle of a point on the planeAfAs As is equilateral if and
only if the point is one of the isodynamic points.
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(3) The triangle whose vertices are obtained by inversiodQfAds, As with
respect to a circle centered at a pafhis equilateral if and only if? is one
of the isodynamic points ofi; A, As.

It turns out thatV has properties (Corollary 14, Theorem 30, Theorem 27) amil
to properties 1-3 of.

Corollary 14. (Isodynamic property oft”) The distances froril’ to the vertices
of the quadrilateral are inversely proportional to the radf the triad-circles going
through the remaining three vertices:

r 1 1 1
Ry Ry Ry Ry
whereR; is the radius of the triad-circle;. Equivalently, the ratios of the distances
from W to the vertices are as follows:

|WA1| : |WB1| . |W01| : |WD1| ==

’WAl‘ : ’WBly = ]AlCllsin’y: ‘BlDl‘Sin(S,
WA : |WCy| = sinvy:sina,
[WBy|: [WDy| = sind :sinf.

From analysis of similar triangles in the iterative pro¢ess easy to see that
the limit point of the process satisfies the above distantdioas. Therefore,
W (defined at the beginning of this section as the second pbintersection of
CS(01,02) andC'S(o1, 04)) is the limit point of the iterative process.

One more property expressds as the image of a vertex of the first generation
under the inversion in a triad circle of the second genematdamely, we have the
following

Theorem 15(Inversive property of W)

W = |nVO(2)(A1) = Inv0<2)(Bl) = Invo<2)(Cl) = Invo<2)(D1). (9)
1 2 3 21
D
A
Co Bs
Dy
Az
B C

Figure 11. Inversive property 6t

Proof. To prove the first equality, perform inversion in a circle tzad atd,. The
image of a point under the inversion will be denoted by theeskatter with a prime.
The images of the circles of similitud&S (o1, 02), C'S(o4, 01) andCS(o2, 04) are
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the perpendicular bisectors of the segmet’,, D} Al, and B}, D}, respectively.

By Theorem 9, these perpendicular bisectors intersedt’in SinceW”’ is the

circumcenter ofD} A, B, it follows that Inv ., (W’) = A]. Inverting back in the
01

same circle centered &, we obtain Inv») (W) = A;. The rest of the statements
1
follow analogously. O

The fact that the inversions of each of the vertices in triadas defined by the
remaining three vertices coincide in one point was prove®&yy and Longuet-
Higgins in [14].

Notice that the statement of Theorem 15 can be rephrased myahat does
not refer to the original quadrilateral, so that we can ab#aproperty of circum-
centers of four triangles taking a special configurationtenglane. Recall that an
inversion takes a pair of points which are inverses of eabhrawith respect to a
(different) circle into a pair of points which are inversdsach other with respect
to the image of the circle, that is 8 = Inv,(7"), thenS’ = Invy/ (T"), where/
denotes the image of a point (or a circle) under inversiongivan circle. Using
this and property 2 of circles of similitude, we obtain thedlary below. In the
statementA, B,C, P, X, Y, Z, O play the role of4),, B}, D}, A,, B}, C}, D}, W]
in Theorem 15.

Corollary 16. Let P be a point on the plane o1 BC'. Let pointsO, X, Y and Z
be the circumcenters ABC, APB, BPC andC P A respectivelyThen

InVizox)(A) = Invxoy)(B) = InVy02z)(C) = Invxyz)(P).  (10)
Furthermore,
ISOZO)((A) = Y, ISOXoy(B) = Z, ISOyoz(C) = X.
A
Z Y
\O
1’3\
B e}
X

Figure 12. Corollary 16.

Combining the description of the reverse iterative pro¢gsgorem 2) and the
inversive property o (Theorem 15), we obtain one more direct way of con-
structingW without having to refer to the iterative process:
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Theorem 17. Let A, B, C, D be four points in general position. Then
W = Invy,olsor, (A1) = Inv,,0lsor, (B1) = Inv,, olsor, (C1) = Inv,,0lsor,(Dy),
whereo; is theith triad circle, andT; is theith triad triangle.

This property suggests a surprising relation between $imerand isogonal con-
jugation.

Taking into account that the circumcenter and the orth@reita triangle are
isogonal conjugates of each other, we obtain the following

Corollary 18. W is the point at infinity if and only if the vertices of the quidalr
eral form an orthocentric system.

3.4 W as the center of similarity for any pair of triad circle$o show thatliV’
is the center of spiral similarity for any pair of triad ciesl (of possibly different
generations), we first need to prove Lemmas 19—21 below.

The following lemma shows that given three points on a cireléwo fixed and
one variable — the locus of the joint points of the spiral &amities taking one
fixed point into the other applied to the variable point isreli

Lemma 19. Let M, N € oandW ¢ o. For every pointL € o, define
J:=(MWL)NNL.
The locus of pointd is a straight line going through’.

Figure 13. Lemma 19.

Proof. For each poinf € o, let K be the center of the circle := (MW L). The
locus of centers of the circlésis the perpendicular bisector of the segma&hntl/ .
SinceM € o Nk, there is a spiral similarity centered /&t with joint point L that
takesk into o. This spiral similarity takedX — O andJ — N, whereO is the
center ofo. Thus, MOK ~ MNJ. SinceM, O, K are fixed and the locus at
is a line (the perpendicular bisector), the locus of poihts also a line.

To show that the line goes throudi, let L = NW No. ThenJ = W. g
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In the setup of the lemma above, H{YN be the spiral similarity centered Bt
that takesL into N. Let M’ be the image of\/ under this spiral similarity. Then
J is the joint point for the spiral similarity taking — N andM — M’.

The following two results are used for proving thé&tlies on the circle of simil-

itude ofo3 andogm.

Lemma 20. Let AC, ZX be two distinct chords of a circle, andW be the center
of spiral similarity takingZ X into AC. LetHg/C be the spiral similarity centered

at W that takes a poinB € ointo C. Thean‘fC(Z) € o.

v

Figure 14. Lemma 20.

Proof. Let [ be the locus of the joint points correspondingito= Z, N = C'in
Lemma 19. Let/; be the joint point corresponding fo= B. ThenJ;, W € [.

Let J> be the joint point corresponding o/ = C, N = Z andL = B in
Lemma 19.

LetY = J,C N J1 Z. By properties of spiral similarityy” = HKC(Z).

Notice that by definition of/1, points.J;, B, C are on aline. Similarly, by defini-
tion of J,, points.J,, B, Z are on aline as well. By definition af, pointsY, J,, C
are on a line, as are points, Y, J;. The intersections of these four lines form
a complete quadrilateral. By Miquel’s theorem, the circuntes of the triangles
BJ,Z, BJ,C, JoY Z, C'J;Y have a common point, the Miguel point for the com-
plete quadrilateral. By definitions of; and.J; , (BJoC) N (BZJ,) = {B,W}.
Thus, the Miquel point is eitheB or . It is easy to see thaB can not be the
Miquel point (if B # C, Z). Thus,W is the Miquel point of the complete quadri-
lateral. This implies thatY'C'J;), (Y ZJ3) both go throughV'.

Consider the circleB; = (ZW oY) andky = (CW o B). ThenRA(k1, ka) =
. SinceZY N BC = J; € l = RA(k1,k2), by property 7 in section 3.1, points
Z,Y,B,C are on acircle. Thug, € o. O



The perpendicular bisector construction, isoptic poirt 8imson line 181

Remark.Notice that in the proof of the Lemma above there are thremlsgimi-
larities centered dil” that take each of the sides &fY Z into the corresponding
side of C BA. We will call such a construction @oss-spiraland say that the two
triangles are obtained from each other via a cross-spiral.

Lemma 21. Let PQ) be a chord on a circle centered av. If W ¢ (POQ), there
is a spiral similarity centered altV’ that takesP( into another chord of the circle
0.

Figure 15. Proof of Lemma 21.

Proof. Let HY,, be the spiral similarity centered & that takesP into another
PP p y

point P’ on circleo. As P’ traces oub, the images}) ., (Q) of @ trace out another
circle, og. To see this, consider the associated7spiral similarity raoteite that
HYo(P') = Q'. SinceP’ traces oub, Hp,(0) = oq. SinceQ = Hpp(Q) €
0@, itfollows that@ € oM og.

Suppose thab andog are tangent af). From Hp (o) = o it follows that
the joint point is@, and therefore the quadrilaterBlQWW O must be cyclic. Since
W ¢ (POQ), this can not be the case. Thus, the interseationg contains two
points, @ and@’. This implies that there is a unique choi,Q’, of o to which
PQ@ can be taken by a spiral similarity centeredfat O

Theorem 22. W € CS(os, of)).

Proof. We've shown previously tha¥’ is on all six circles of similitude ofi; B;C1 D;.
SincelV has the property that

H}X,BQ : C1— By, D1 Ay,
HELM : By — Ay, C1 — Doy,

it follows that
HE;CIHELM(BQ = Hgg,cl (Ay) = Dy.

6CIearIy, the sides of any triangle can be taken into the siflesy other triangle by three spiral
similarities. The special property of the cross-spirahattthe centers of all three spiral similarities
are at the same point.
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Since the spiral similarities centeredl&t commute, it follows that

Hp, o Hp, a,(B2) = H, 4, HE, 0, (B2) = H, 4,(Ch) = Da.
This means that there is a spiral similarity centeredVathat takesB; D, into
By Ds. Therefore,B1C1 D, and D5 As Bo are related by a cross-spiral centered at
w.

We now show that there is a cross-spiral that takesl; B into another trian-
gle, XY Z, with vertices on the same circle§2) = (DyA2B3). This will imply
that there is a spiral similarity centerediatthat takes3,C, D, into XY Z. This,
in turn, implies thatV is a center of spiral similarity taking; into ng)'

Assume thalV € (B2AsD2). Since inversion i(Dy Ay Bs) takesW into A;
and(Bs A3 D9) into By D, it follows that A; € ByDs. This can not be the case
for a nondegenerate quadrilateral. Thd,c (ByAsD>).

By Lemma 21, there is a spiral similarity centerediEtthat takes the chord
By D5 into another chordX Z, of the circle(D2A2Bs). Thus, there is a spiral
similarity taking B D> into X Z and centered df/.

By Lemma 20, there is a poifit € o§2> such thatX'Y Z andBy A5 D5, are related
by a cross-spiral centeredaf. (See also the remark after Lemma 20).

By composing the two cross-spirals, we conclude &hat”Z ~ D,Cy B;. Since

(XY Z) = ol? and(D1C1 By) = o3, it follows thatW € C5(0\?, 03). 0
Corollary 23. W € CS(o; (1) (k)) for anyi, 7, k.

Proof. Since there is a spiral similarity centered/étthat takes4, B; into Cy D5,
Theorem 22 implies tha” € CS(ol,of1 )) SinceW € CS(o1,02), it follows

thatWW e CS(of), 02). SincelV is on two circles of similitude for the second
generation, it follows that it is on all four. Furthermoreg wan apply Theorem 22
to the triad circles of the second and third generation tovghat 1V is also on all
four circles of similitude of the third generation.

Finally, a simple induction argument shows thidte C'S( Sl), E )) Assuming
W e CS(o; (1) ( )) Theorem 22 implies that” € C'S(o; (k= 1) (k)). Thus,
WeCﬂgkfh 0

Using this, we can show th&t’ lies on all the circles of similitude:

Theorem 24. W € CS(o, (k ) (l)) forall 7,5 € {1,2,3,4} and anyk, [.

Recall that theomplete quadranglis the configuration of lines going through
all possible pairs of given vertices.

Theorem 25. (Inversion in a circle centered df”) Consider the complete quad-
rangle determined by a nondegenerate quadrilateral. Isiogr in 1 transforms

¢ 6 lines of the complete quadrilateral into tléecircles of similitude of the
triad circles of the image quadrilateral;

e G circles of similitude of the triad circles into thelines of the image quad-
rangle.
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Proof. Observe that thé lines of the quadrangle are the radical axes of the triad
circles taken in pairs. SincE belongs to all the circles of similitude of triad
circles, by property 5 in section 3.1, inversion in a circeniered inl¥ takes
radical axes into the circles of similitude. This implies $tatement. O

4. Pedal properties

4.1 Pedal ofil¥ with respect to the original quadrilateralSincelV has a distance
property similar to that of the isodynamic points of a trienfsee Corollary 14), it
is interesting to investigate whether the analogy betwbkesd two points extends
to pedal properties. In this section we show that the pedatigiateral of 1/
with respect tod, B;C;D; (and, more generally, with respect to a@§™) is a
nondegenerate parallelogram. Moreovér,is the unique point whose pedal has
such a property. These statements rely on the factiihdies on the intersection
of two circles of similitude(”'S(o1, 03) andC'S (o2, 04).

First, consider the pedal of a point that lies on one of the@skes of similitude.

Lemma 26. Let P, P, P. P; be the pedal quadrilateral aP with respecttcABC D;.
Then

e P,P,P.P,is atrapezoid withP, P;|| P, P. if and only if P € C'S(02, 04);

e P,P,P.P,is atrapezoid withP, P, || P. P, if and only if P € C'S(o01, 03).
Proof. Assume that? € C'S(03,04). Let K = AC N P,P;andL = AC N B,P.,.
We will show that/ AK P; + ZC LP. = 7, which impliesP, P,|| P, P..

Letd = LZAPP,. SinceAP,PP;is cyclic, ZAP; P, = 0. Then

/AKP;j=m—oq1 — 0. (12)
Onthe other hand{CLP, = 71—~ —/LP.C. SinceP P,C P, is cyclic, it follows
thatZ/LP.C = /P,PC.

We now find the latter angle. Sinde@ € CS(o09,04), by property (5) of the
circle of similitude (se€3.1), it follows thatZAPC = 7w+ § + 8. SinceP, PP,B
is cyclic, /P, PP, = w — 3. Therefore/P,PC = § — 6. This implies that

LCOLP. =7 —~ —0+6. (12)
Adding (11) and (12), we obtaidtAK P; + ZCLP, = .
Reasoning backwards, itis easy to see ;|| P, P. implies thatP € C'S(0,04).
O

Let S be the second point of intersection@f(o1, 03) andC'S(o2, 04), SO that
CS(01,03) N CS(02,04) = {W,S}. The Lemma above implies that the pedal
guadrilateral of a point is a parallelogram if and only ifstipoint is eithed?” or S.

Theorem 27. The pedal quadrilateral of is a parallelogram whose angles equal
to those of the Varignon parallelogram.

Proof. SincelV € C'S(01,02)NCS(03,04), property (5) of the circle of similitude
implies that

/AWB = /ACB+ /ADB = + 6,
LCWD = LCAD+ ZCBD = oy + o,
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Figure 16. The pedal quadrilateral of a point@1§ (o2, 04) has two parallel sides.

whereq;, 5;, i, 0; are the angles between the quadrilateral’s sides and difggon
as before (see Figure 3). LetAW W, = x andZW W C = y. Since the quadri-
lateralsiW, W Wy A andW .WW,C are cyclic,/W,W4A = x andZW .W,C = y.

Therefore,
W WyB=/LAWB — ZAWW, =1 + 69 — x,

WWyD = LCWD — LWWC = a1+ P2 —y.
Finding supplements and adding, we obtain

LW W W+ LW WV W= (m—z—a1—fPo+y)+(m—y—m —da+2x)
=2r—a— P —m — 0
= 27— (2r — 2£LAIC) = 2LAIC,

where ZAIC is the angle formed by the intersection of the diagonals. sThu

W, W,W.Wy is a parallelogram with the same angles as those of the \@rign

parallelogramM, Mg M, M., where M, is the midpoint of sider, for anyz €
{a,b,c,d}. O

Wy ¢

Figure 17. The pedal parallelogram of W.

It is interesting to note the following
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Corollary 28. The pedal ofi with respect to the self-intersecting quadrilateral
ACBD (whose sides are the two diagonals and two opposite sidé®alriginal
quadrilateral) is also a parallelogram.

The Theorem above also implies that the pedalois nondegenerate. (We will
see later that the pedal 6f degenerates to four points lying on a straight line).
While examples show that the pedal 16f and the Varignon parallelogram have
different ratios of sides (and, therefore, are not simitegéneral), it is easy to see
that they coincide in the case of a cyclic quadrilateral:

Corollary 29. The Varignon parallelogramd/, M, M.M, is a pedal parallelogram
of a point if and only if the quadrilateral is cyclic and theipbis the circumcenter.
In this case M, My M .My = W, W, W .Wj.

Theorem 30. The pedal quadrilateral of a point with respect to quadme
ABCD is a nondegenerate parallelogram if and only if this poinths

Proof. By Lemma 26, ifP € C'S(01,03)NCS(02,04), then both pairs of opposite
sides of the pedal quadrilaterB), P, P.P, are parallel.

Assume that the pedal quadrilatefalP, P.P; of P is a nondegenerate parallel-
ogram. SinceP; AP, P is a cyclic quadrilateral,

PA
ppy = AL
2sin o
PC
pp) = L9
2siny

The assumption?, P;| = | P, P.— implies that| PA| : |PC| = sin~ : sina. Sim-
ilarly, | P, Py| = |P.Py| implies|PB| : |PD| = sind : sin 3, so thatP must be on
the Apollonian circle with respect td, C' with ratiosin v : sin « and on the Apol-
lonian circle with respect t&, D with ratiosin § : sin 5. These Apollonian circles
are easily shown to bé*S(ogo),o:(,)O)) and CS(ogo), 0510)), the circles of similitude
of the previous generation quadrilateral. One of the ietgtiens of these two cir-
cles of similitude isi¥. LetY be the other point of intersection. Computing the
ratios of distances fronr” to the vertices, one can show that the pedal’aé an
isosceles trapezoid. That is, instead of two pairs of egpipbsite sides, it has one
pair of equal opposite sides and two equal diagonals. Thiparticular, means
thatY does not lie orC'S (o1, 03) NC'S(02, 04). It follows thatTV is the only point
for which the pedal is a nondegenerate parallelogram. O

Remark.Note that another interesting pedal property of a quaéridgdtvas proved
by Lawlor in [9, 10]. For each vertex, consider its pedalrtgle with respect to
the triangle formed by the remaining vertices. The four ltesy pedal triangles
are directly similar to each other. Moreover, the centeiiroflarity is the so-called
nine-circle point denoted byi{ in Scimemi’s paper [17].

4.2. Simson line of a quadrilateralRecall that for any point on the circumcircle
of a triangle, the feet of the perpendiculars dropped froenpibint to the triangle’s
sides lie on a line, called th&imson linecorresponding to the point (see Figure
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18). Remarkably, in the case of a quadrilateral, Lemma 26Témerem 30 imply
that there exists a unique point for which the feet of the @ediculars dropped to
the sides are on a line (see Theorem 31 below).

In the case of a noncyclic quadrilateral, this point turns toube the second
point of intersection of”'S(o01,03) and C'S(o02,04), Which we denote bys. For
a cyclic quadrilateraldA BC'D with circumcenterO, even though all triad circles
coincide, one can view the circlés8OD) and (AOC) as the replacements of
CS(01,03) andCS (o2, 04) respectively. The second point of intersection of these
two circles,S € (BOD) N (AOC), S # W also has the property that the feet of
the perpendiculars to the sides lie on a line. Similarly ® tloncyclic case (see
Lemma 26), one can start by showing that the pedal quadgladé a point is a
trapezoid if and only if the point lies on one of the two cissleBO D) or (AOC).

In analogy with the case of a triangle, we will call the lifigs;S.S; the Simson
line and.S the Simson point of a quadrilaterakee Fig. 18.

Figure 18. A Simson line for a triangle and the Simson line qbiadrilateral.

Theorem 31. (The Simson line of a quadrilateral) The feet of the perpeudis
dropped to the sides from a point on the plane of a quadritdtée on a straight
line if and only if this point is the Simson point.

Unlike in the case of a triangle, where every point on theueircircle produces
a Simson line, the Simson line of a quadrilateral is uniqueheWthe original
guadrilateral is a trapezoid, the Simson point is the pdimtersection of the two
nonparallel sides. In particular, when the original quatkial is a parallelogram,
the Simson point is point at infinity. The existence of thignpds also mentioned
in [6].

Recall that all circles of similitude intersect Ht. The remaining($) = 15
intersections of pairs of circles of similitude are the Simgoints with respect
to the (2) = 15 quadrilaterals obtained by choosidgout of the lines forming
the complete quadrangle. Thus for each of thequadrilaterals associated to a
complete quadrangle there is a Simson point lying on a paircies of similitude.
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4.3. Isogonal conjugation with respect to a quadrilaterd&ecall that the isogonal
conjugate of the first isodynamic point of a triangle is thenka point,i.e., the
point minimizing the sum of the distances to vertices of tlagle. Continuing to
explore the analogy dfi” with the isodynamic point, we will now define isogonal
conjugation with respect to a quadrilateral and study tlupgrties ofiV and S
with respect to this operation.

Let P be a point on the plane A BCD. Letla, 3,10, lp be the reflections of
the linesAP, BP,CP, DP in the bisectors of A, ZB, ZC andZ D respectively.

Definition. Let P4y =1laNlip, Ps=IlgNlc, Po =lcNlip, Ppb =IpNli4. The
quadrilateralP4 Pg Po Pp will be called theisogonal conjugate oP with respect
to ABC'D and denoted bysoapcp(P).

Figure 19. Isogonal conjugation with respect to a quadidt

The following Lemma relates the isogonal conjugate and lpptidrilaterals of
a given point;:

Lemma 32. The sides of the isogonal conjugate quadrilateral and treapguadri-
lateral of a given point are perpendicular to each other.

Proof. Letb 4 be the bisector of the DAB. Letl = sNP,PyandJ = byNP,Py.
SinceAP, PP, is cyclic, it follows that/ P;AP = /P;P,P. SincePP, 1. P,A,
it follows that Al 1 P,P,;. Therefore,P4Pp L P,P;. The same proof works for
the other sides, of course. O

The Lemma immediately implies the following properties loé isogonal con-
jugates ofi¥ and.S:

Theorem 33. The isogonal conjugate &¥ is a parallelogram. The isogonal con-
jugate ofS is the degenerate quadrilateral whose four vertices cal@git infinity.

The latter statement can be viewed as an analog of the folipwroperty of
isogonal conjugation with respect to a triangle: the is@jaonjugate of any point
on the circumcircle is the point at infinity.
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Figure 20. Lemma 32.

4.4. Reconstruction of the quadrilaterallhe paper by Scimemi [17] has an exten-
sive discussion of how one can reconstruct the quadrildrem its central points.
Here we just want to point out the following 3 simple constiars:

(1) GivenW and its pedal parallelograbi, W, W.W  with respect tcd; B;C1 Dy,
one can reconstruet; B;C1 D, by drawing lines throughV,,, Wy, W, W,
perpendicular taVW,, WW,, WW., WW, respectively. The construc-
tion is actually simpler than reconstructiny B, C7 D, from midpoints of
sidesi.e., vertices of the Varignon parallelogram and the point oéliséc-
tion of diagonals.

(2) Similarly, one can reconstruct the quadrilateral frdra Simson pointS
and the four pedal points ¢ on the Simson line.

(3) Given three verticesly, B1,C7 andWW, one can reconstrudd;. Here is
one way to do this. The given points determine the cirales (A, B1C4),
05(02,01) = (A1WBl) and 05(02,03) = (Blwcl) Given oy and
CS(02,01), we construct the center of as Ay = INVog(o,,0,)(B2) (SEE
property 2 in the Preliminaries of Section 3). Similadis, = Vg4, ,04) (B2)-
Then Dy is the second point of intersection of (the circle centered at
A, and going through, B1) andos (the circle centered af';, and go-
ing through By, C4). Alternatively, one can use the property tHat =
Isor, o Inv,, ().
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A Highway from Heron to Brahmagupta

Albrecht Hess

Abstract. We give a simple derivation of Brahmagupta's area formolad
cyclic quadrilateral from Heron’s formula for the area ofiangle.

Brahmagupta’s formula

1
A:Z\/(—a+b+c+d)(a—b+c+d)(a+b—c+d)(a+b+c—d)

for the area of a cyclic quadrilateral is very similar to Hesoformula

A:i\/(a+b+c)(—a+b+c)(a—b+c)(a—|—b—c)

for the area of a triangle, which is itself a consequence ahBragupta’s formula
for d = 0. Although I have searched extensively (§B], [2, §9], [3], [4, The-
orem 3.22], [5, Theorem 109]), the following derivation bktarea of a cyclic
quadrilateral from Heron’s formula seems to be unknown.

Figure 1

Let ABC D be a cyclic quadrilateral with side4B = a, BC = b, CD = ¢,
DA = d. Brahmagupta’s formula is obvious if both pairs of opposittes are
parallel. We may assume thatB andC'D intersect at poinX and thatX D = z,
XB = y. Let Sy, Sy, S3, Sy be the four factors under the radical in Heron’s
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192 A. Hess
formula for the area of triangl&’ BC. Note that from the similarity of triangles
XBC and X D A (with ratio A),
4A = AA(XBC) — 4A(XDA)
= /51595354 — \/(AS1)(AS2)(AS3)(A\Sy)
= /(S1 — AS1)(S2 — AS2)(S3 + AS3)(Sy + \Sy).

Upon simplification,x andy vanish in these factors:
S1=AS1=(b+(c+z)+y)—(d+(y—a)+x)=a+b+c—d,
So—=ASy= (=b+(c+z)+y)—(—d+(y—a)+z)=a—-b+c+d,
S34+ASs3= (b—(c+x)+y)+(d—(y—a)+z)=a+b—c+d,
Si+ASy= (b+(c+z)—y)+(d+(y—a)—z)=—a+b+c+d,

and Brahmagupta'’s formula appears.

References

[1] C. A. Bretschneider, Trigonometrische Relationen oiven den Seiten und Winkeln zweier be-
liebiger ebener oder sphérischer Dreiedkechiv der Math., 2 (1842) 132-145.

[2] C. A. Bretschneider, Untersuchung der trigonometrsciiRelationen des geradlinigen Vier-
eckesArchiv der Math., 2 (1842) 225—-261.

[3] J. L. Coolidge, A historically interesting formula fohe area of a quadrilateramer. Math.
Monthly, 46 (1939) 345-347.

[4] H. S. M. Coxeter and S. L. Greitzegeometry Revisited, Math. Assoc. Amer. 1967.

[5] R. A. JohnsonAdvanced Euclidean Geometry, Dover reprint, 2007.

Albrecht Hess: Deutsche Schule Madrid, Avenida Conchartasp2, 28016 Madrid, Spain
E-mail address: al brecht . hess@nmai | . com



Forum Geometricorum
Volume 12 (2012) 193-196.

FORUM GEOM
ISSN 1534-1178

Alhazen’ sCircular Billiard Problem

Debdyuti Banerjee and Nikolaos Dergiades

Abstract. In this paper we give two simple geometric constructionswvaf ver-
sions of the famous Alhazen’s circular billiard problem.

1. Introduction

The famous Alhazen problem [2, Problem 156] has to do witmautar billiard
and there are two versions of the problem. The first case isitioati the edge of
the circular billiard two pointsB, C' such that a billiard ball moving from a given
point A inside the circle of the billiard after reflection &t C' passes through the
point A again (see Figure 1A). It is obvious thatifis the center of the circle and
the pointsO, A, B, C are collinear then the problem is trivial.

Figure 1A: The first case Figure 1B: The second case

The second case is, given two fixed poidtaind B inside the circle, to find a point
P on the edge of the circular billiard such that the ball movirgn A after one
reflection atP will pass from B (see Figure 1B). It is obvious again that if the
points A, B andO are on a diameter of the circle then the problem is trivial.

2. Alhazen’ sproblem 1

Given a pointA inside a circle(O), to construct point$3 andC' on the circle
such that the reflection ol B at B passes through' and the reflection oBC' at
C passes througH.

Since the radiD B andOC are bisectors of angleB andC of triangle ABC,
O is the incenter oA BC', which is isosceles wittldl B = AC' (see Figure 2). The

Publication Date: June 21, 2012. Communicating Editor] Fau



194 D. Banerjee and N. Dergiades

Figure 2.

points B and C are symmetric in0DA. The tangents to the circle & and C,
together with the perpendicular @A at A, bound the antipedal trianglé, B;C4
of O (relative to ABC). Hence,O is the orthocenter of trianglel; B,C1, and
BBy, CC are altitudes ofd, B;C; passing througl®. Therefore, to construct
the reflection point®3 and(, it is sufficient to construcB; andC.

Suppose the circleO) has radiusk andOA = d. If OB; = z, then from the
similar right trianglesB; AO and By BC, we have

BlA . BlB N BlA N x4+ R
BlO N BlCl x N QBlA.
SinceB; A? = x? — d?, this reduces ta(x + R) = 2(z? — d?), or
z* — Rx —2d*> = 0. (1)

This has a unique positive solutian This leads to the following construction.
(i) Let By be an intersection of the given circle with the perpendictdaO A at
A, O1 the symmetric ofO in A, and B, the symmetric ofBy in O;. Note that
01By = 0By = R.
(i) Construct the segmeid? B to intersect the given circle @2, and letD, be the
midpoint of D Bs.
(iii) Construct the circle with cente® to pass throughD;. The intersections of
this circle with the lineA B, are the points3; and(C}.

To validate this, le¥DD; = y. ThenOBy = 2y — R. Applying Apollonius’
theorem to the media@O; of triangle O By B>, we have

(2y — R)? + R* = 2(2d)* + 2R%.

This leads to
y? — Ry —2d* = 0. 2)
Comparison of (1) and (2) gives= x.
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3. Alhazen’sproblem 2

Given two pointsA and B inside a circle(O), to construct a poin® on the
circle such that the reflection &fP at P passes through.

It is well known thatP cannot be constructed with ruler and compass only; see,
for example, [3]. The analysis below leads to a simple caostin with conics.

Figure 3

Let A’ and B’ be the inverses oft and B in the circle(O). SinceOA - OA’ =
OP?, the triangles? A’O and APO are similar, and’ PA’O = ZAPO. Similarly,
/PB'O = ZBPO. SinceLAPO = ZBPO, we have/PA'O = ZPB’O. Con-
sider the reflections aP A’ and P B’ respectively in the bisectors of angldsand
B’ of triangleO A’ B'. These reflection lines intersect at the isogonal conjugate
of P (intriangleOA’B’). Note that P’A'B' = /PA'O = /PB'O = /P'B'A’.
Therefore,P’ is a point on the perpendicular bisector4¥fB’ (which contains the
circumcenter center aP’ A’ B’). It follows that P lies on the isogonal conjugate
of the perpendicular bisector of B’. This is a rectangular circum-hyperbola of
triangle OA’ B’, whose center is the midpoint &f B’. It also contains the ortho-
center of the triangle. This leads to the following condinrc of the pointP.

(i) Construct the orthocentdi’ of triangle O A’ B’ and complete the parallelogram
OA'O'B'.

(if) The point P can be constructed as an intersection of the given cirelewith
the conic (rectangular hyperbola) containitgA’, B’, H andO'.

We conclude with two special cases whéican be constructed easily with ruler
and compass.

3.1 Special case:A and B on a diameter.If the points A, B, O are collinear,
then the triangle) A’ B’ degenerates into a line. L&Y be the harmonic conjugate
of O relative to AB; see Figure 4. The poin® lies on the circle with diameter
00 ([1]).
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Figure 4 Figure 5

3.2 Special caseDA = OB. If OA = OB = d, thenOA’B’ is isosceles and
the rectangular circum-hyperbola degenerates into a pparpendicular lines, the
perpendicular bisector o B and the lined’ B’. The first line gives the endpoints
E and F of the diameter perpendicular tdB. The second lined’ B’ intersects
the circle (O) at two real points (solution to Alhazen’s problem) if andyoifl
ZAOB < 2arccos 4 (see Figure 5).
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Non-Euclidean Versions of
Some Classical Triangle Inequalities

Dragutin Svrtan and Darko Veljan

Abstract. In this paper we recall with short proofs of some classidahgle
inequalities, and prove corresponding non-Euclidean, spherical and hyper-
bolic versions of these inequalities. Among them are thd Wwedwn Euler's
inequality, Rouché’s inequality (also called “the fundantal triangle inequal-
ity”), Finsler—Hadwiger’s inequality, isoperimetric igeality and others.

1. Introduction

As it is well known, the Euclid’s Fifth Postulate (throughyapoint in a plane
outside of a given line there is only one line parallel to tived) has many equiv-
alent formulations. Recall some of them: sum of the angles tofangle ist (or
180°), there are similar (non-congruent) triangles, there ésafea function (with
usual properties), every triangle has unique circumgielghagoras’ theorem and
its equivalent theorems such as the law of cosines, the lasines, Heron'’s for-
mula and many more.

The negations of the Fifth Postulate lead to spherical ampetiplical geome-
tries. So, negations of some equalities characteristi¢th®rEuclidean geometry
lead to inequalities specific for either spherical or hypédgeometry. For exam-
ple, for a triangle in the Euclidean plane we have the law sfres

& = a4 % — 2abcos C,

where we stick with standard notations (that.j$ andc are the side lengths and
A, B andC are the angles opposite, respectively to the sidésandc).

It can be proved that the following Pythagoras’ inequditield. In spherical
geometry one has the inequality

& < a? 4 b% —2abcos C,
and in the hyperbolic geometry the opposite inequality
> a® +b? — 2abcos C.
In fact, in the hyperbolic case we have
a? +b% — 2abcos C < ¢ < a® + b* 4 2abcos(A + B).
See [13] for details.
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On the other hand, there are plenty of interesting inedealin (ordinary or
Euclidean) triangle geometry relating various trianglengnts. In this paper we
prove some of their counterparts in non-Euclidean cases.

Let us fix (mostly standard) notations. For a given triangld BC, let a, b, c
denote the side lengthg ¢pposite to the verteA, etc.),A, B, C' the corresponding
angles2s = a+ b+ cthe perimeters its area,R the circumradiusy the inradius,
andr,, rp, r. the radii of excircles.

We use the symbols of cyclic sums and products such as:

> fla)= fla)+ f(b) + f(c),
> #( f(A)+ f(B)+ £(O),

(A) = (
> fla,b) = fla,b)+ f(b,e) + f(c,a),
[1f@= f@r®)fe),
[[f@) = @) fwi).

2. Euler’s inequality

In 1765, Euler proved that the triangle’s circumradiiss at least twice as big
as its inradius, i.e.,
R > 2r,
with equality if and only if the triangle is equilateral.Heis a short proof.
R22r<:>‘fl—b§ > %@sab62852:8s(s—a)(s—b)(s—c)@H(s—aj) >
—— —— ——

=z =y =z

8Ha:<:>sza:y Ha: >8[[ze Y zday>9[[r e Y 2%y >6]]x =<
S22y > 6([] 22y)5 = 6 [ 2.  The equality case is clear.

The inequality8S? < sabc (equivalent to Euler's) can also be easily obtained
as a consequence (via— @) of the "isoperimetric triangle inequality”:

wll\.’)

V3
S < T(abc)

which we shall prove i34.

The Euler inequality has been improved and generalieeg, for simplices)
many times. A recent and so far the best improvement of Eulagquality is
given by (see [11], [14]) (and it improves [17]):

R _ abc+ a4+ b3 4¢3 b 2(a b ¢
= > - ——1>Z 424+ ) >2
ro 2abc b+ + . 3<b+c+a>_2

Now we turn to the non-Euclidean versions of Euler’s ineifyial et k be the
(constant) curvature of the hyperbolic plane in which a hlgpkc triangleAABC
sits. Letd = 7 — (A + B + C) be the triangle’s defect. The area of the hyperbolic
triangle is given byS = k26.

Lyet another way to prove the last inequalits®y + y2> = y(2® + 2%) > 22yz, and add such
three similar inequalities.
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Theorem 1 (Hyperbolic Euler’s inequality) Suppose a hyperbolic triangle has a
circumcircle and letR be its radius. Let be the radius of the triangle’s incircle.
Then

tanh % > 2tanh % (1)
The equality is achieved for an equilateral triangle for dmed defect.

Proof. Recall that the radiu® of the circumcircle of a hyperbolic triangle (if it
exists) is given by

sin % B 2 [[sinh 5
- 5N
[Isin(A+3) \/sinh 7 [Isinh 522

Also, the radius of the incircle (radius of the inscribectlg) » of the hyperbolic

triangle is given by
r|]Isinh*3#
tanh E = W (3)

Seee.qg, [9], [6], [7], [8], [9]- We can takek = 1 in the above formulas. Thenitis
easy to see that (1) is equivalent to

Hsinh(s —a) < Hsinh g,

or, by putting (as in the Euclidean case¥ s —a,y =s— b,z = s —¢, to

HsinhwﬁHsinhS;x. 4)

(2)

R
tanh = =
an 2

By writing 2z instead ofx etc., (4) becomes

H sinh 2z < H sinh(s —x) = H sinh(y + 2).

Now by the double formula and addition formula fonh, after multiplications we
get

8 H sinh a:H coshzx < Z sinh? z sinh y coshy cosh? z+2 H sinh x H cosh z.
Hence,
6 H sinhz - H coshz < Z sinh? 2z sinhy coshy cosh? z. (5)

However, (5) is simply thed — G inequality for the six (nonnegative) numbers
sinhz, coshz, ...,cosh z. The equality case follows easily. This proves the hy-
perbolic Euler’'s inequality. O

Note also that (5) can be proved alternatively in the follggwvay, using three
times the simplestl — G inequality:

sinh? z sinhy coshy cosh? z 4 cosh? z sinhy coshy sinh? z

= sinhy cosh y[(sinhz cosh z)? + (cosh z sinh z)?]

> 2sinhy coshy sinhx cosh z cosh z sinh z.
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In the spherical case the analogous formula to (2) and (3semidar reasoning
to the previous proof boils down to proving analogous indiuto (4):

HsinxSHsinS;$ (6)

But (6) follows in the same manner as above. So, we have tloviol.

Theorem 2(Spherical Euler’s inequality)The circumradiusk and the inradiug-
of a spherical triangle on a sphere of radigsare related by

tan R > 2tan r (7
p p
The equality is achieved for an equilateral triangle for diked spherical excess
e=(A+B+C)—m.

Remark. At present, we do not know how to improve these non-Euclicdealer
inequalities in the sense of the previous discussions iitletidean case. It would
also be of interest to have the non-Euclidean analogueseoEther inequality
R > 3r for a tetrahedron (and simplices in higher dimensions).

3. Finsler—Hadwiger’s inequality

In 1938, Finsler and Hadwiger [3] proved the following shapper bound for
the areaS in terms of side lengths, b, c of a Euclidean triangle (improving upon
Weitzenboeck’s inequality):

Y a® =) (b0 +4v3S. (8)

Here are two short proofs of (8). First proof ([10]): Starttwihe law of cosines
a? = b% +c? —2bccos A, or equivalentlya? = (b—c)? 4 2bc(1 —cos A). From the
area formul&S = besin 4, it then followsa? = (b — ¢)? + 4S5 tan 4. By adding
all three such equalities we obtain

S a? =3 b 45y tan .

By applying Jensen’s inequality to the simtan g (i.e., using convexity ofan g,
0 < z < m) and the equalitd + B + C' = m, (8) follows at once.
Second proof ([8]): Put =s —a,y=s—b,z=s—c. Then

Y= b—0=4> ay.

On the other hand, Heron’s formula can be writtent eSS = 4\/3295 Hw
Then (8) is equivalent tq /3> "z - [[= < >y, and this is equivalent to

> a?yz <) (xy)? which in tum is equivalent t& _ [x(y — 2)]* > 0, and
this is obvious.

Remark.The seemingly weaker Weitzenboeck’s inequality
> a® > 438

is, in fact, equivalent to (8) (see [17]).
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There are many ways to rewrite Finsler—Hadwiger’s inegqualiFor example,
since

Z:[a2 — (b—¢)?] = 4r(r + 4R),
it follows that (8) is equivalent to
r(r +4R) > /38,
or, sinceS = rs, it is equivalent to
sV3 <r+4R.
There are also many generalizations, improvements anogstrening of (8) (see
[4]). Let us mention here only two recent ones. One is (s€e [1]

1 T
> b+o)- Zm <10 — §[3\/§—|—2(r+4R)],
and the other one is (see [15])

ZaQ > 438 + Z(a —b)? + Z[\/a(b—H:— a) — v/b(c+a —b)]>.
The opposite inequality of (8) is (see [17]):

> a® <4vB3S+3) (-0

Note that all these inequalities are sharp in the sensedatiges hold if and only
if the triangles are equilateral (regular).

For the hyperbolic case, we need first an analogue of the areaufa2s5 =
besin A. It is not common in the literature, so for the reader’s comece we
provide its short proof (see.g, [5]).

Lemma 3 (Cagnolli’s first formula) The areaS = k2§ of a hyperbolic triangle
ABC'is given by

S sinh 57 sinh % sin C'
2%2 cosh o
Proof. From the well known second (or “polar”) law of cosines in ettary hy-
perbolic geometry

(9)

sin

cosh & — cos A + cos BeosC
k- sin Bsin C ’
we get
cosh = = sin (B + %) S%n (C+ %) , sinh a sin (%) Siu '(A + %) )
2k sin BsinC 2k sin Bsin C

(10)

By multiplying two expressionsinh 4 - sinh % and using (10) we get
ind
sinh 4. sinh i _ s ¢

2%k ok sinC 2k
This implies (9). O
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Theorem 4(Hyperbolic Finsler—Hadwiger’s inequality}or a hyperbolic triangle
ABC we have:
a b—c S a )
Z > in — —_
Z cosh e Z cosh B + 125sin 572 H cosh ok tan 5 (1)

The equality in(11) holds if and only if for any fixed defegt the triangle is equi-
lateral.

Proof. The idea is to try to mimic (as much as possible) the first pod¢8). Start
with the hyperbolic law of cosines

a b c .. b . ¢
cosh 7= cosh — cosh — — sinh Z sinh z cos A.

k k
By adding and subtractingnh £ sinh £, we obtain
cosh % = cosh b-c + sinh % sinh % — sinh % sinh % cos A
b—c .. b . . c .9 A
= cosh + sinh z sinh 7 2 sin 3
b—c .. b . ¢ b c .2 A
= cosh + 4sinh o sinh o cosh o cosh % 2sin 3
By Cagnolli's formula (9), substitute here the pgirth % sinh 5 to obtain
a b—c a b c S A
h — = cosh 4 cosh — cosh — cosh — sin — —. 12
cosh - = cosh — + 4 cos 57, Cosh o cosh o sin o tan 5 (12)

Apply to both sides of (12) the cyclic sum operajo), and (again) apply Jensen’s
inequality {.e., convexity oftan ):

1 A 1 A T—20
_E > _E ) = .
3 tan 5 > tan <3 2> tan 5

This implies (11). The equality claim is also clear from tlhheee argument. [

The corresponding spherical Finsler—Hadwiger inequality be obtained mu-
tatis mutandis from the hyperbolic case. The a$eaf a spherical triangled BC
on a sphere of radiug is given byS = p?c, wheree = A + B 4+ C — 7 is the
triangle’s excess. The spherical Cagnolli formula (like€ds as follows:

ca b -
in & sin 2~ sin
sini—s 55 Sil 55 C (13)
202 < '
p cos 5

So, starting with the spherical law of cosines, using (13) densen’s inequality,
one can show the following.

Theorem 5 (Spherical Finsler—-Hadwiger’s inequality}ror a spherical triangle
ABC on a sphere of radiup we have

b— S b €—
ZCOS%ZZCOS pc+12sin2—p2008%cosgcositan 67T. (14)

The equality in(14) holds if and only if for any fixee, the triangle is equilateral.
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Remark.Note that both hyperbolic and spherical inequalities (i) @4) reduce
to Finsler-Hadwiger’s inequality (8) whelh — oo in (11), orp — oo in (14).

This is immediate from the power sum expansions of trigortamer hyperbolic
functions.

4. Isoperimetric triangle inequalities

In the Euclidean case, if we multiply all three area formulase of which is
S = %bc sin A, we obtain a symmetric formula for the triangle area

S8 = ! abc)? sin A sin B sin B. (15)
8

By using theA — G inequality and the concavity of the functiein = on [0, 7] (or,
Jensen’s inequality again), we have:

. . . 3
sin A sin B sinC < <smA + SH;B * Smc)
_A+B+C\’ a1 3V3
< [sin—— | = — =
3 3 8
This and (15) imply the so called “isoperimetric inequdlifgr a triangle:
53 < %(abc)z, or in a more appropriate form

S < ?(abc)g. (16)

Inequality (16) andd — G imply thatS < %(a + b+ ¢)?, and this is why we call
it the “isoperimetric inequality”.

By Heron's formula we havé4S)? = 2sds(a, b, c), where2s = a + b + c and
ds(a,b,c) == (a+b—c)(b+c—a)(c+a—Db). By [11, Cor. 6.2], we have a sharp
inequality

(2abc)?
ds(a,b,c) < .
3(0:0:0) < B T B T abe

From Heron’s formula and (17) it easily follows
1 a+b+c
< —ab . 18
S_2ac\/a3+b3+c3+abc (18)
We claim that (18) improves the “isoperimetric inequalif{6). Namely, we claim
1 a+b+c V3.
—ab < ==/ (abc)?. 19
2ac\/a3+b3+c3+abc_ 4 (abe) (19)
But (19) is equivalent to

3 3 3 3 3
<a +b ZC —|—abc> > (abe)? <a+§+c> . (20)

(17)
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To prove (20) we can takebc = 1 and prove
A+ +S+1 - a+b+c
4 - 3 '
Instead, we prove an even stronger inequality

3,13, 3 31131 3
a+b:c+123/a+l;+c. 22)

Inequality (22) is stronger than (21) because the meansaredsingi.e.,
My(a,b,c) < My(a,b,c) fora,b,c>0and0 <p <gq,

(21)

1
whereM,(a,b,c) = [(“p“})ﬂ} ". To prove (22), denote = o> + b® + ¢ and

consider the function ,
z+1 T
fa)= (2 -1

4 3
Since (byA — G) § > abc = 1, i.e, x > 3, we considerf(x) only forz > 3.
Sincef(3) = 0 and the derivative’’(z) > 0 for > 3, we concludef(x) > 0 for
x > 3 and hence prove (19).
Putting all together, we finally have a chain of inequalifi@sthe triangle area
S symmetrically expressed in terms of the side lengtlis c.

Theorem 6 (Improved Euclidean isoperimetric triangle inequalities

3 4
Sg%abC\/ at+b+c <1§5/3(a+b+0) (abc) <\/§

ad+ b3 +c3+abe ~ 4 B+t T 4

(abc) 3
(23)

We shall now make an analogue of the “isoperimetric inetyia{iL6) in the
hyperbolic case.

Start with Cagnolli's formula (9) and multiply all such teréormulas to get
(sinceS = dk?):

1) a a
.. 3 . . .
sin” 5 = H sinh % H tanh o H sin A. (24)

As in the Euclidean case we have

. . . 3 3 3
HSiIlAS sin A+ sin B +sinC < sinA+B+C _ sinﬂ )

3 3 3

So, this inequality together with (24) implies the followin

Theorem 7. The areaS = 0k? of a hyperbolic triangle with side lengths b, c
satisfies the following inequality

5\ 3
( _Smé> < H sinh % . H tanh %. (25)
3

sin

For an equilateral triangle(a = b = ¢, A = B = C) and any fixed defe@, the
inequality (25) becomes an equalifppy Cagnolli’s formula (9))
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The corresponding isoperimetric inequality can be obthiioe a spherical tri-
angle:

( 51112 > <Hsm— Htan (26)

Remark.In the 3—dimensional case we have a well known upper bound of the
volumeV of a (Euclidean) tetrahedron in terms of product of lengthiséscedges
(like (16)) :

V< —\/abcde

with equality if and only if the tetrahedron is regular (amahigarly in any dimen-
sion); see [12].

Non—Euclidean tetrahedra (and simplices) lack good voliomeulas of Heron'’s
type, except the Cayley—Menger determinant formulas ithedle geometries. Ka-
han’s formula?® for volume of a Euclidean tetrahedron is known only for the Eu
clidean case. There are some volume formulas for tetraliedtthree geometries
now available on Internet, but they are rather involved. \&a'ttknow at present
how to use them to obtain a good and simple enough upper bound.

In dimension2, Heron’s formula in all three geometries can very easily &e d
duced. A very short proof of Heron’s formula is as followsai$tvith the triangle
areadS = 2absin C and the law of cosines’ + b? — ¢? = 2abcos C. Now square
and add them. The result is a form of the Heron’s fornful8) + (a2 4-b> —c?)? =
(2ab)?. In a similar way one can get triangle area formulas in the-Bodidean
case by starting with Cagnolli’s formula ((9) or (13)) ane thppropriate law of
cosines.

The result in the hyperbolic geometry is the formula

2 2 2
a b c C.a .. b
<4 sin — H cosh 5 k:) + (cosh Z cosh T cosh E) = (smh z sinh E)

or

<4sm Hcosh >—|—Zcosh2 —1—|—2Hcosh—

Remark.In order to improve the non-Euclide@+dimensional isoperimetric in-
equality analogous to (23) we would need an analogue of thetiin ds(a, b, ¢)
and a corresponding inequality like (17). This inequalitgswroved in [11] as a
consequence of the inequalit (a2, b?, c?) < d3(a,b,c), and this follows from
an identity expressing the differendg(a, b, c) — ds(a?,b?,c*) as a sum of four
squares. But at present we do not know the right hyperbobdoamed (a, b, c)
or spherical analogué; (a, b, ¢) of the functionds(a, b, c).

Zsee www.cs.berkeley.edwkahan/VtetLang.pdf, 2001.
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5. Rouche’s inequality and Blundon'’s inequality

The following inequality is a necessary and sufficient cbadifor the existence
of an (Euclidean) triangle with elements » ands (see [4]):

2R%? 4+ 10Rr — 2 —2(R — 2r)\/ R? — 2Rr < s°

< 2R? +10Rr — r* + 2(R — 2r)\/ R? — 2Rr. (27)

This inequality (sometimes called “the fundamental trianigequality”) was
first proved bny. Rouché in 1851, answering a question of Ramus. It wastigce
improved in [16].

A short proof of (27) is as follows. Let,,r;,r. be the excircle radii of the
triangle ABC. Itis well known (and easy to check) that r, = 4R+, 7,1y =
s? andrgryre. = rs?. Hencer,, 1, 7. are the roots of the cubic

23— (AR + )2’ + s’z —rs®> = 0. (28)
Now consider the discriminant of this cubice., D = [ (ra — 3)°.
In terms of the elementary symmetric functianse,, es in the variables, 1, re,
D = e%e% — 46% — 46‘;’63 + 18ejeq9e3 — 2763. (29)
Sincee; =Y r, = 4R+ 1,60 = > 1oy = 8%, e3 = [[ o = rs?, we have
D = s*[(4R +7)%s* — 45 — 4(4R + r)3r + 18(4R + r)rs* — 27r%s?%).
From D > 0, (27) follows easily. In fact, the inequalit) > 0 reduces to the
quadratic inequality i3?:
s —2(2R* + 10Rr — r%)s® + (4R + r)*r < 0. (30)

The “fundamental” inequality (27) implies a sharp lineapapbound of in terms
of r and R, known as Blundon’s inequality [2]:

5 < (3V3 —4)r + 2R. (31)
To prove (31), it is enough to prove that

2R% 4+ 10Rr — 12 + 2(R — 2r)v/ R2 — 2Rr < [(3V/3 — 4)r + 2R]?.

A little computation shows that this is equivalent to thddaling cubic inequality
(withz = R/r):

f(z) := 4(3v3-5)2®—3(60v/3—103)x> +12(48+/3—83)2+4(229—132V/3) > 0.

By Euler’s inequalityz > 2, f(2) = 0 and hence clearly (z) > 0 for z > 2.
Yet another (standard) way to prove Blundon’s inequalitl) (8 to use the con-
vexity of the biquadratic function on the left hand side & thequality (30).
Blundon’s inequality is also sharp in the sense that equiabtds in (31) if and
only if the triangle is equilateral. (Recall by the way th&tiangle is a right triangle
ifand only if s = r + 2R).
Let us turn to non-Euclidean versions of the “fundamentahtyle inequality”.
Suppose a hyperbolic triangle has a circumscribed circle. béfore, denote
by R, r, andr,, y, 1., respectively, the radii of the circumscribed, inscribed a
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escribed circles of the triangle. Then by (2) and (3) we kngwndr, while r,
(and similarlyr, andr,) is given by

. A
tanh % = sinh % tan 7 (32)
and by using
tan 2 = SRR E SR T (33)
2 sinh 7 sinh 7%

The combination of these two expressg terms ofa, b, andc. In order to obtain
for the hyperbolic triangle the analogue of the cubic equafP8) whose roots are
z1 = tanh ¢, 9 = tanh % r3 = tanh % we have to compute the elementary
symmetric functions, es, e3 in the variablesr,, z2, z3. We compute first (the
easiestks. Equations (32), (33) and (3) yield

B Ta . .28 r
e3 = H tanh - = sinh z tanh i (34)
Next, by (32) and (33):
s—a

_ "o tanh 0 — ginh? 2 A Gan S
eg—Ztanhk tanhk—smh thaD2taD2 —smthsmh o

Applying the identity

sinh(z+y+z)— (sinh z+sinh y+sinh z) = 4 sinh Y ; ® sinh ~ _; T sinh 2 ; y,
with z = 552,y = 52b > = 2=¢ e obtain
. S . S—a . a
sinh z Z sinh = 4 H sinh o (35)
And now from (2) and (3) we get
es = sinh? % (1 — 2tanh % tanh %) . (36)

Finally, to computes;, we use the identity

tan(z +y + 2) = tanx + tany + tan z — tanx tan y tan z . (37)
1 —tanztany — tan y tan z — tan z tan

By (32),e; = sinh § 3" tan 4. Now from (37):

A A+B+C A B A
Ztang = tanf <1—Ztan5tan5> +Htan5,

n7A+B+C—tanﬂ_5—coté
2 N 2 2

A tanhZI

From (3), we havd | tan = = k.
(3) ﬂanz sinh%

By (33), (35), and (2), (3) it follows easily

ta

A B r R . s
1-— Ztan;tan; = 2tanhEtanhEsth.
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Finally, putting all together yields

k 2
Equations (34), (36) and (38) yield vid — ;2% + eoxz — e3 = 0 the cubic equation

e = tanh% <1 + 2tanh % sinh 2 cot é) . (38)

0
% — tanh% <1 + 2tanh % sinh % cot 5) x2

o2 S (1 " tanh B 2 — sinh? S tanh - =
+ sinh ? <1 2 tanh 2 tanh k‘> x — sinh 2 tanh r = 0. (39)
This cubic (with rootsanh 72 etc.) reduces to the cubic (28) by lettikg— oo.
This follows from the identity

sinh 7 - tanh ¢ a
—r—F =2 h—.

s g H COS o
If k& — oo, then the right hand side tends2@nd therefore the coefficient by in
(39) goes ta" + 4R which appears in (28); similarly for the other coefficients.

Consider the discriminant of (39)
D ] Ta ] Ty 2
H (tan k tan k ) ’

Now, by applying (29) and (34), (36) and (38) we obtain thertia@olynomial (in
fact degree) in sinh 7 for an expressio. By the following legend

r «——tanhZ &+« cotl

R<—>tanh% s < sinh 7
we can writeD as follows (after some computation); note that it has alrdosble
number of terms than the corresponding Euclidean discamntin

D= s§%[(r’R?0% + 4r*R*6® — 4r3R36> — 1 4+ 6rR — 12r2R? + 8r3R3)s*
+72R6(1 — 4rR + 4r2R%25 — 8r? R%26% + 9 + 18rR6)s3
+r2(r2R? — 10rR — 12r2R?6% — 2)s?

—6r*Ros — 4.
(41)
By definition D > 0, so the quartic polynomial in (in fact insinh 7), i.e,, the
polynomial in brackets in (41) iz 0.
So the hyperbolic analogue of the “fundamental triangleyiradity” (27), or
rather degree—four polynomial inequality (30) is the guagiih s) polynomial in-
equality > 0.

Theorem 8 (Hyperbolic “fundamental triangle inequality”}or a hyperbolic tri-
angle that has a circumcircle of radiuB, incircle of radiusr, semiperimetes,
and excess, we have

>0

5 >0, (42)

S
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whereD is given by(41)together with the legen@0). Whenk — oo, (42)reduces
to (30).

Blundon’s hyperbolic inequality can also be derived as altany of Theorem
8.

The spherical version of the “fundamental inequality” adl &g the correspond-
ing spherical Blundon’s inequality can also be obtained vimiomit them here.

In conclusion, we may say that all these triangle ineqealigive more informa-
tion and better insight to the geometry of 2— and 3— manifolds
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Finding Integer-Sided Triangles With P? = nA

John F. Goehl, Jr.

Abstract. A surprising property of certain parameters leads to dlgms for
finding integer-sided triangles with? = nA, whereP is the perimeter is the
area, anch is an integer. Examples of triangles found for each of twaieslof
n are given.

1. Introduction

MacLeod [1] considered the problem of finding integer-sidedngles with
sidesa, b, andc and P2 = nA, whereP is the perimeterA is the area, and
is an integer. He showed that they could be found from soistiaf the equation:

16(a+b+c)® =n*la+b—c)a+c—b)(b+c—a). (1)
It was shown that must be an integer greater than or equdlioDefine
2a=a+b—¢c, 28=a+c—0b, 2y =b+c—a,

then
16(c + 8 +7)° = n*afy. 2

Note that the parametets 3, and~ are the lengths of the segments into which the
inscribed circle divides the sides.

2. Special case: n aprimenumber

Consider the special case whens a prime number. Thea + 5+ v = nw
for some integerw. So equation (2) becomd$nw?® = aBvy. Then one of the
parametersy, 3, or v must be divisible by.. Choosey = ny’ and sol6w® =
afy. Leta = 2oy, f = 296, andy’ = 2F~;, wherei + j + k = 4. Then
w3 = a1 /4171. Note that it can be assumed that, 3;, and~; have no common
factor since the sides of the corresponding triangle caredhaced by that factor to
an equivalent triangle with the sanf® /A ratio. Hencew = w’aq for somew’ and
a factor unique tev; soa; = of. Similarly, 3; = 83, 1 = 78, andw = apBo70-
Finally, the sides can be found from= 203, 3 = 2733, andy = 2kn~3.

Publication Date: July 6, 2012. Communicating Editor: Péul
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3. Algorithms
From equation (2)16(a + 8 + v)% = n2afy = n?2a27 332Fn~3, or
2'a + 27 83 + 2"y = nawBoo. 3)
First note that
2ag 4+ 2733 =nv (4)

for somewv. Equation (4) is used to find allowed integer valuesygf G5y, andv.
Then allowed integer values of are found from solutions of the cubic equation:

2648 — apfoyo +v = 0. %)

4. An example

Considem = 31. Values forag andgy up to600 resulted in the integer solutions
of equations (4) and (5) shown in Table 1. Solutions for whighand 5; have a
common factor result in duplicate triangles and have beeittenn Entries for,

0o, andv that result in duplicate triangles have also been omittadboith tables
that follow, the values fory, 3, and~y and the values of the corresponding sides,
a=a+03,b=a+~,andc = § + ~ have been reduced by the common factor.
The second solution in Table 1 is the triangle found by Macdl.eo

i | 4] 3] 3 3 3
il 0] 1 1 0 0
k| 0] 0] O 1 1
a0 | 2] 1 5 17 29
Bo| 3] 3] 13 18 35
v | 5| 2| 174| 1456 7677
| 1] 1 6 7 9
o [ 128 ] 8| 500 | 19652 | 195112
B | 27542197 | 2916 | 42875
~ | 31313348 [ 10633 | 45198
a | 155 | 62 | 2697 | 22568 | 237987
b | 159 | 39 | 3848 | 30285 | 240310
c | 58|85 |5545 | 13549 | 88073

Table 1

5. General case: n a composite number

Consider a possible factorization of n = ninsng. Similar arguments lead to
a=2n1a3, B = 2nyB3, andy = 2Fn3y3, wherei+ j +k = 4. All the MacLeod
triangles are of this form.
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6. General algorithm
With the above choices far, &, and~, equation (2) becomes
2in10 4+ 2na By + 2 navy = nanansaoBoo. (6)
First note that
2in1ag + 2jn2ﬁg’ = ngv (7)

for somewv. Equation (7) is used to find allowed integer valuesygf G5y, andv.
Then allowed integer values of are found from solutions of the cubic equation:

2598 — ninsaoBoyo +v = 0. (8)
7. An example

Considemn = 42. Integer solutions of equations (7) and (8) are shown inérabl
2. Note that the fourth entry in Table 2 is the triangle fougdiacLeod.

0 2 21 0] O 0 0
J 0 2 2| 2| 2 2 2
k 4 0 0] 2 2 2 2
ni 1 1 1| 2] 2 2 2
n9y 1 1 11 3] 3 3 3
ns 42 42 4211 7| 7 7 7
g 11 43 227 1| 4 92 109
Bo 19 47 4871 1] 1 53 121
v 195 | 17460 | 12114132 | 2|20 | 477700 | 3406970
Y0 3 9 120 1| 1 17 49
« | 1331 | 159014 | 23394166 | 1| 32| 389344 | 1295029
6| 6859 | 207646 | 231002606 | 6| 3 | 446631 | 10629366
~v | 18144 | 15309 | 45080469 | 14 | 7| 34391 | 1647086
a | 8190 | 366660 | 254396772 | 7 | 35| 835975 | 11924395
b | 19475 | 174323 | 68474635 | 15 | 39 | 423735 | 2942115
c | 25003 | 222955 | 276083075 | 20 | 10 | 481022 | 12276452

Table 2
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The Spheres Tangent Externally to the Tritangent Spheres
of a Triangle

Floor van Lamoen

Abstract. We consider the tritangent circles of a triangle as thetgriecles of
spheres in three dimensional space, and identify the sphangent externally
to these four spheres.

In the plane of a triangled BC we consider the tritangent circles, the incircle
and the three excircles. It is well known that the nine-pgintle is tangent to the
excircles externally and to the incircle internally. Tdugat with the sidelines of
ABC, considered as degenerate circles, this is the only ciarigant to all four
tritangent circles. Considering the tritangent circleshessections of spheres by
the plane containing their centers, we wonder if there anergs quadritangent to
these “tritangent spheres”, apart from the one contairtiegnine-point circle. In
this paper we identify the spheres tangent externally tddhetritangent spheres.
We use methods similar to [4]. By symmetry it is enough to @ersspheres on
one side of the plane.

Let us start with the excircle%, = 1,(r,), Cpy = I(r) @andC. = I.(r.), and the
excircle-spheres,, S;, S, in 3-dimensional space with the same centers and radii.
Consider a sphere with radiys and centerD at a distancel above the plane of
triangle ABC, and tangent to the three excircle-spheres. Clearly,Z, whereR
is the circumradius of triangld BC'. The orthogonal projection of the center onto
the plane is the radical center of the circlgér, +p), Iy (ry+p) andl.(r.+p). For
p= %, this is the nine-point cente¥. In general, this projection lies on the line
joining IV to the radical center of the excircles, namely, the SpiekaterS,,. The

power of S, with respect to each excircle IEZ—SQ, wherer ands are the inradius
and semiperimeter of the triangle (see, for example, [2pTdTa 4]).

Let P be the reflection of5, in N. A simple application of Menelaus’ theo-
rem (to trianglePIS,, with transversalz N H) shows that it is also the midpoint
between the incentdrand the orthocentell (see Figure 1).

Theorem 1. The sphere Q with radius R, and center at Y2222 ahove the point
P, istangent externally to the four tritangent spheres.

Proof. Consider triangld, PS, with medianZ,N. Note that/,N = & + r, and
NS, = 501, whereO is the circumcenter. It follows tha¥ 52 = } R(R — 2r) by
Euler's formula. Since the power 6f, with respect to each excircle §r? + s2),
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Figure 1.

1,5% = # + 72. Applying Apollonius’ theorem to trianglé, PS,, we have

1,P? = 2I,N” + 2N S — 1,5}

2 2 2
1
= 2<§—|—ra> +§R(R—2r)—r IS —r2

2
2 2
B g TS + 4Rr
= (R+r1,) —1
B g ab+bc+ca
= (R+r,) —

The last equality follows fronR = 4%, r = 2 and Heron's formula for the area
A. Similarly,

ab + be + ca
4

B ab + bc + ca

IbP2 = (R+ Tb)2 — 4

and I.P?=(R+r.)>

By letting D be the point at a distanag:= Yabthetea — VrZis?tdlir ghoyep,
we have

I.D=R+r,, LD=R+rmr,, I.D=R+r..

Therefore the spher@ with centerD, radiusR, is tangent to each &,, S, S..
Since the poinfP is also the midpoint of H, andI H? = 4R? + 4Rr + 3r% — s?
(see [1, p.50]), we have

7?2+ s +4Rr  AR? 4+ 4Rr + 3r? — §*
+
4 4
This shows thap is also tangent to the incircle-spheSe (]

DI? = = (R+r)*
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The pointP, which is the reflection of, in IV (also the midpoint of /1), is the
triangle center

Xoss = (a’(b+¢) + (b= )*(a” —a(b+c) = (b+0)") s )

in [3].

The orthogonal projections to the plane 4ABC' of the points of contact o
with the excircle-spheres form a triangléB’C’. The pointA’, for instance, is the
point that divides the segmef/, inratio R : ,. Let AA’ intersect the lind P at
Q (see Figure 2). Applying Menelaus’ theorem to trianglél,, with transversal
AXA’, we have

PQ I1A IA PQ —r r, PQ R

. . = — AR — LA

Ol Al, AP — 0l T R — 01 7
Similarly, the linesBB’ andC'C" intersectl P at the same poir®, which divides
PIintheratioR : r. This is the orthogonal projection of the point of tangenty o
Q with the incircle-spheré. It has barycentric coordinates

b+c o cta a-+b
b+c—a c+a—-b a+b—c)’

and is the triangle centeXyos in [3].

Figure 2.
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Sherman’s Fourth Side of a Triangle

Paul Yiu

Abstract. We give two simple ruler-and-compass constructions ofitleevhich,
like the sidelines of the triangle, is tangent to the in@r@hd cuts the circumcir-
cle in a chord with midpoint on the nine-point circle.

1. Introduction

Consider the sides of a triangle as chords of its circuneirélach of these is
tangent to the incircle and has its midpoint on the nine{poircle. Apart from
these three chords, B. F. Sherman [3] has established tbterse of a fourth
one, which is also tangent to the incircle and bisected byithe-point circle (see
Figure 1). While Sherman called this thaurth sideof the triangle, we refer to
the line containing this fourth side as the Sherman line efttiangle. In this note
we provide a simple euclidean construction of this Sherrrends a result of an
analysis with barycentric coordinates.

E
Figure 1. The fourth side of a triangle

2. Linestangent to theincircle

Given atriangled BC' with sidelengths:, b, ¢, we say that the line with barycen-
tric equatiorpz+qy+rz = 0 has line coordinatelp, ¢, r]. Aline pz+qy+rz =0

Publication Date: July 18, 2012. Communicating Editor: dléos Dergiades.
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is tangent to a coni@’ if and only if [p : ¢ : r] lies on the dual coni&™ (see, for
example, [4510.6]).

Proposition 1. If ¥ is the inscribed conic tangent to the sidelines at the trasfes

the point(2 : 1. 1) its dual conicg™ is the circumconic

u v w

—+-+—=0.

r Yy z
Proof. Since the barycentric equation @fis

uz? + ’uzyz +w?2? — 2vwyz — 2wuzz — 2uvzy = 0,

the conic is represented by the matrix
u2 —uv —uw
M=|-w v —ovw

—uw —ovw 'LU2

This has adjoint matrix

M* = Suvw -

SN
g of&
o8 e

It follows that the dual coni&™ is the circumconiayz + vzx + wxy =0. O

Applying this to the incircle, we have the following chamxization of its tan-
gent lines.

Proposition 2. Alinepx + qy + rz = 0 is tangent to the incircle if and only if
b+c—a+ cta—b a+b—c

+
p q r

0. 1)

3. Linesbisected by the nine-point circle

Suppose alingZ : px + qy + rz = 0 cuts out a chordv F' of the circumcircle.
The chord is bisected by the nine-point circle if and onlyhi pedal (orthogonal
projection) P of the circumcentet) on.Z lies on the nine-point circle. We shall
simply say that the line is bisected by the nine-point circle

Proposition 3. Alinepx + qy + rz = 0 is bisected by the nine-point circle if and
only if
a’(b? + c® — a?) N b2(c? +a® — b?) N A(a? +b* - ?)
p q r
Proof. The pedal oD on the linepx + qy 4+ rz = 0 is the point

=0. (2

P=—0¢ -2 + (b + & — 2a%)qr + a*rp + a*pq
— Ar? — a?p? + (P 4 a® — 26))rp + bPpq + bqr
: —a?p? — V@ + (a® + b2 — 2¢%)pq + Aqr + Frp.
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The superior of the pedd? is the point
Q =a’p* — a’qr + (b* — P)rp— (b — *)pq
0% —bPrp+ (¢ — a®)pg — (& — a®)gr
222 — Ppg + (a® — ¥)gr — (a® — b*)rp.

The linepx + qy 4+ rz = 0 is bisected by the nine-point circle if and onlyCi
lies on the circumcircle?yz + b?zx + c2xy = 0. This condition is equivalent to

2 2

a’(b*q” — b°rp + (¢ — a®)pg — (¢ — a®)qr)(V’¢" — b*rp + (¢° — a®)pg — (¢° — a®)qr)
2 2

+ 02 (%" — bPrp + (¢ — a®)pg — (¢ — a®)qr)(a®p® — a’qr + (b° — ¢*)rp — (b — ¢*)pq)

+ A(a’p” —alqr + (b° — P)rp — (B — *)pa) (°¢” — b*rp + (¢® — a®)pg — (¢

—a”)qr)

The quartic polynomial iy, ¢, r above factors as F' - G, where

F = a?(b?> 4+ — a®)gr + b*(c® + a® — b*)rp + *(a® + b — )pg,
G= a*p* + VP +*r? — (B* + 2 —a)gr — (¢ +a® = bH)rp — (a® + b* — *)pg.

Now G can be rewritten as
G =Salq—7r)>+ Ss(r —p)*+ Sc(p— q)*.

As such, it is the square length of a vector of compompentr along the respective
sidelines. Thereforg7 > 0, and we obtained” = 0 as the condition for the line
to be bisected by the nine-point circle. O

Corollary 4. A line is bisected by the nine-point circ(éV) if and only if it is
tangent to the inscribed conic with center the nine-poimitee/NV.

Proof. Let pz + qy + vz = 0 be a line bisected by the nine-point circle. By
Proposition 3, it is tangent to the inscribed conic with pexgor (1 : 1. 1),
where
w:v:w=a’(b?+c —a?) (A +a? -0 Aa® + 02 - A).

The center of the inscribed conic is

Vt+wWIw+UuUiuU+v
=b%(c* +a?) — (b® — )% V(P +a?)? — (¢ —a®)?: A(a* + V) — (a® - bP)2
This is the centeV of the nine-point circle. O

The inscribed conic with cente¥ is called the MacBeath inconic. It is well
known that this has foaD and H, the circumcenter and the orthocenter (see [4,
§11.1.5]). The Sherman line is tlieurth common tangent of the incircle and the
inscribed conic with centeN.

N. Dergiades has kindly suggested the following altereagixoof of Corollary
4. The orthogonal projection of a focus on a tangent of a ciagsaon the auxiliary
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E
Figure 2. The fourth side of a triangle as a common tangent

circle. Since the MacBeath inconic has the nine-point eied auxiliary circle ([1,
Problem 130]), and the orthogonal projection of the fo€usn the Sherman line
lies on the nine-point circle, the Sherman line must be tahge the MacBeath
inconic.

4, Construction of the Sherman line

The Sherman line, being tangent to the incircle and bisduyetthe nine-point
circle, has its line coordinatgg : ¢ : r] satisfying both (1) and (2). Regarding

px + qu + rz = 0 as the trilinear polar of the poirfi = (% T %) we have a
simple characterization &f leading to an easy ruler-and-compass construction of

the Sherman line.

Proposition 5. The Sherman line is the trilinear polar of the intersectidn o
(i) the trilinear polar of the Gergonne point,
(i) the isotomic line of the trilinear polar of the circumcen{gee Figure 2)

Proof. The pointS is the intersection of the two lines with equations
(b+c—a)x + (c+a—-by + (a+b—c)z = 0, (3)
a2 +ct—at)z + V(AP +a? -y + F@+P -z = 0. (4)
These two lines can be easily constructed as follows.

(3) is the trilinear polar of the Gergonne po@Jri_a e a+})_6).
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Figure 3. Construction of the tripole of the Sherman line

(4) is the trilinear polar of the isotomic conjugate of thecamcenter. It can also
be constructed as follows. If the trilinear polar of the aimwenterO intersects the
sidelines atX, Y, Z respectively, and ifX’, Y’, Z’ are points on the respective
sidelines such that

BX'=XC, CY'=YA,  AZ =ZB,
then (4) is the line containing’, Y/, Z’. This is called the isotomic line of the
line containingX, Y, Z. O
5. Coordinates

For completeness, we record the barycentric coordinatearmfus points asso-
ciated with the Sherman line configuration.

5.1 Points on the Sherman lind.he Sherman line is the trilinear polar of
S = (f(a7 b7 C) : f(b7c7 a) : f(c7 a“’ b))7

where
f(a,b,¢) == (b—¢)(a®(b+ c) — 2abc — (b+ ¢)(b — ¢)?).
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The point of tangency with the incircle is
T=(b+c—a)f(a,b,c)?: (c+a—b)f(bc,a)*: (a+b—c)f(c,a,b)?).

This is the triangle centek3sq¢ in [2]. The point of tangency with the MacBeath
inconic is the point

T = (a®S4 - f(a,b,¢)*: b*Sp- f(b,c,a)*: 2Sc - (c,a,b)?).

See [5].
The pedal ofD on the Sherman line is the point
M= ((b—i—c—a)(b—c)SAf(a,b,c) ’g(CL?bac) o )7
where

gla,b,¢) = —2a* +a*(b+c) + a®(b—c)? —a(b+c)(b— c)* + (b* — )2

The triangle centers, 7, and M do not appear in Kimberling’Encyclopedia
of Triangle Center$2]. However, the superior af/ is the point

P = <m; >

on the circumcircle, and the line P’ is perpendicular to the Sherman line (see
Figure 2).P’ is the triangle centek309.

5.2 A second construction of the Sherman litieis known that the MacBeath

inconic is the envelope of the perpendicular bisectoHd? as P traverses the

circumcircle ([4,811.1.5]). Therefore, the reflection &f in the Sherman line, like

those in the three sidelines dfBC, is a point on the circumcircle. This reflection
is the point

a2
P= (2a4—2a3(b+c)—a2(b2—4bc+c2)+2a(b+c)(b—c)2—(b2—c2)2 o )’

According to [2], P is the triangle centeXgs3, the isogonal conjugate of the
infinite point
Xos2 = (2a*—2a>(b+c)—a® (b* —dbc+c?)+2a(bd-c) (b—c) —(b*—c*)? 1 -1 -1,

This is the infinite point of the line joining the incenter toetnine-point center,
namely,

> (b= (b+c—a)(a® - b +be— )z =0.

cyclic

This observation leads to a very easy (second) construefithe Sherman line:

(i) Construct lines throught, B, C parallel to the linel V.
(ii) Construct the reflections of the lines in (i) in the respee angle bisectors of
the triangle.
(iif) The three lines in (i) intersect at a poiit on the circumcircle.
(iv) The perpendicular bisector éf P is the Sherman line.
See Figure 4. For a simpler construction, it is sufficientdostruct one line in (i)
and the corresponding reflection in (ii).
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N
[N
|

]

Figure 4. Construction of the Sherman line

5.3 Pedal of orthocenter on the Sherman lirEhe midpoint of the segmet#f P
is the point

Q = ((b+c—2a)(b—c)f(a,b,¢) : (c+a—2b)(b—c)f(b,c,a): (a+b—2c¢)(b—c)f(c,a,b))
on the nine-point circle. This is the triangle ceniéysg in [2] (see Figure 2).

5.4. Distances.Finally, we record the length of the fourth sidig" of the triangle:
5  167(4R? +5Rr + 12 — s2)(4R3 — (2r2 + s> )R + r(s? — r?))

- (4R% + 4Rr + 3r2 — 52)2 ’
whereR, r, ands are the circumradius, inradius, and semiperimeter of thengi
triangle. The distance fro@ to the Sherman line is
(R—2r)2R+r—s)2R+r+s)

4R? + 4Rr + 3r? — 52 ’

EF

OM =
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Improving Upon a Geometric Inequality of Third Order

Toufik Mansour and Mark Shattuck

Abstract. We show that the best possible positive constaint a certain geo-
metric inequality of third order lies in the interv§).14119, 0.14364], which
improves upon a previous known result whére- 0. We also consider a com-
parable question concerning a fourth order version of tbquality.

1. Introduction

Given a pointP in the plane of triangleA BC, let Ry, R2, and R3 denote the
respective distanced P, BP, andC P. Leta, b, andc be the lengths of the sides
of triangle ABC, s the semi-perimetet. the area,R the circumradius, and the
inradius.

Liu [4] conjectured the following geometric inequality vehiholds for all points
P in the plane of an arbitrary triangléBC"

(R1R»)? + (RoR3)? + (R3Ry)? > 2415, (1)
This inequality was proven by Wu, Zhang and Chu in [5], wheéreds strength-
ened to

(RiR)? + (RoRs)? + (RsRy)? > 12Rr2. 2)
Observe that (1) and (2) both reduce to Euler’s inequdlity 2r, see [1, p. 48,
Th. 5.1], wheneveP is taken to be the circumcenter of triangld3 C'.

Note that (2) cannot be improved upon by a multiplicativetdasince there

is equality in the case when triangleBC' is equilateral withP its center. The

following question involving an additional non-negativerh on the right-hand
side is raised by the authors at the end of [5]:

Problem. For a triangled BC and an arbitrary poinP, determine the best possible
k such that the following inequality holds:

(R1R2)2 + (RoR3)? + (R3R1)? > 12[R + k(R — 2r)]r2. 3)

In this paper, we will prove the following result by a diffetanethod than that
used in [5] to show (1) and (2).

Publication Date: July 25, 2012. Communicating Editor: |Pdu.
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Theorem 1. The best possiblg such that inequality¥3) holds lies in the interval
[y, 2], wherey ~ 0.14119 and z ~ 0.14364. In particular, we have

Nl

7
(R1R2)% + (3233)% + (R3R1)2 > 12[R + %(R —2r)]r?.

2. Preliminary results
Lemma?2. [5, Eq. 3.1]If 7 > 1, then
(abc)’

(R1R»)’ + (RoR3)! + (R3Ry) > — 7 AR
[ai=T +bi—1 4 ¢i-1]i~1

Lemma 3. Suppose is a fixed number with < p < £. Lett := w(a,b,c) =
ab + bc + ca, wherea, b and c are real numbers, and leY denote the maximum
value oft subject to the constraints+ b + ¢ = 2 andabc = p.

(i) M is achieved by some poift, b, c), where two ofa, b, ¢ are the same and
a,b,c> 0.

(i) One may assume further that is achieved by some poifit, b, c), where
a=band2 <a<1.

(iii) If v := =1, thenv satisfiesp = g(v), whereg is the function given by

— 822 + 361 — 27 — (9 — 8z)2
o) = RIS @

Proof. (i) A standard argument using the method of Lagrange migtiplith two
constraints shows that two ¢, b, c} must be the same wheiis maximized. Note
thata, b, c > 0 whent is maximized, for if say, ¢ < 0, thenr = ab + bc + ca =
2(b+c) — (b + ¢)? + bec < 0, and clearlyt can achieve positive values for all
choices ofp (for example, choosing, b > 0 andc = %). Note further that there is
no minimum fort, for if ¢ is negative, then

t:ab—l—bc+ca:ab—|—c(2—c)<ab:§7

so choosing: near zero implies can assume arbitrarily large negative values.

(i) By part (i) and symmetry, the equality(a,b,c) = M subject to the con-
straints is achieved by some poift, b, c), wherea = b and0 < a < 1 (note
thatc > 0 impliesa < 1). Thena is a positive root ofa(z) = p, where
a(z) = 22%(1 — z). Note that the function is increasing or(0, 2), decreas-
ing on (2,1), and has a maximum of: atz = 2, with a(0) = a(1) = 0.
If p = &, thena = b = ¢ = 2, by the equality condition in the geometric-
arithmetic mean inequality, so we will assume: 2—87 Then the equation(z) = p
has two roots in the intervdD, 1), which we will denote byr; < rs; note that
0<T’1<%<’I‘2<1.

We will now show that the maximum valu¥ is achieved when = b = r9 >
2 by comparing it to the value ofi(a,b,c) whena = b = ;. Let B(z) =
w(z,x,2—2x) = 4z — 322 Note thatB(ry) > 3(r1) iff 71 +r; < 3. Toshow the
latter, first observe that(z) > a(% — ) forall z € (0, %) since, for the function
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v(z) == a(z) — a(3 — z), we havey(2) = 0 with v/(z) = —3(2 — 3z)% < 0.
Thena(3 —r) < ( 1) = a(ry) impliesry < 3 — 1, as desired, since(z) is
decreasing whem > 3.

(ili) By part (ii), we havev = 2= where? < a < 1 satisfiea?(1—a) = p.
Thus, )

_4;23a_ 1:3a 21 (5)
a?(1 a) 2a

Note thatl < v < 3 sincel < 325 < 8if 2 € [2,1). Solving fora in terms ofv
in (5) gives

3+ (9 — 8v)z
a=""""0 (6)
4u

where we reject the other root sinee> % From (5) and (6), we may write
(1—a)(3a—1) —-3(%¢1) +4a -1

2
p= 2a“(1—a)= » ”
 —2043-(9-8v)a  —8v>+12v — (3+ (9 — 8v)2)(9 — 8v)
N 202 N 8v3 '
which gives the requested relation. a

Lemmad4. Leta, b, c be real numbers such thatt b+ c = 2 with0 < a, b, ¢ < 1.
Then we have

9
1+abc<ab—|—bc—|—ca§1+§abc.

Proof. The proof of Lemma 3 shows the right inequality. The left onltofvs
from expanding the obvious inequality — a)(1 — b)(1 — ¢) > 0, and noting
a+b+c=2. O

Lemma 5. Let D consist of the set of ordered paifp, ) such that there ex-
ists a triangle of perimete2 having side lengths, b, ¢ with p = abc andu =
abtberear] “if 1 < o/ < 2 is fixed, therp = g(«’) is the smallesp such that
(p,u’) € D.
Proof. Note first that(p, u) € D implies0 < p < 5= andl <u < 9 , the latter by
Lemma 4. Givernp, € (0, 287] letu, denote the solutlon of the equatlg(u) = Do
whereu € (1, %] andg is given by (4) above. Note that, is uniquely determined
sinceg(1l) =0 andg( )= 27, with g(z) increasing or{1, %] as
) 81— 8z(9 — x) + (27 — 122)(9 — 8z)2
Observe further that the proof of the third part of Lemma 3lmamodified slightly
to show that points of the forrfy(u), u) always belong td whenever € (1, 2].
Thus, from the third part of Lemma 3, we see thatis the largest« such that
(po,u) € D.

Sou < u, = g~ 1(p,) for all u such that(p,, u) € D, which impliesg(u)
for all suchu. Conversely, ifu’ € (1, 3] is fixed and(p,«') € D, theng(u’)
for all suchp. In particular,p = g(u’) is the smallesp such thatp, «’) € D.

> 0.

<P
SP
O
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Lemma®6. Let f(u) be given by
[(3 — 6u)g(u) +2]72 — 3(u— 1)z

3 bl

Fu) = 3(u—1)7 — 24(u—1)2

whereg(u) is given by

—8u? + 36u — 27 — (9 — 8u)?

If m is the minimum value of(u) on the interval(1, 2], thenm ~ 0.141194514.

Proof. From the definitions, we have

Go(-G-o0 e | 3 (95 24u) (+ 3(u— 1)%>
if(u) _ 2((3_6u)g(u)+21)§ 2u-1)32 ((Sfﬁu)gg(u)+2)2 7
du 3(u—1)2(9 — 8u) 6(u—1)2(9 — 8u)?
where
d 36 — 16u + 12(9 — Su)?  3(8u® — 36u + 27 + (9 — 8u)?)
%g(u) - Su3 * Sut ’

The equationd% f(u) = 0 can be written as
(3= 2)2 (325 — 212° + 402* — 212 — 32> 4+ 242 — 18) + 6(3 — 32 + 32> — 2°)2 (1 — 22)2
(3—3z+322— ZS)%(l — zz)%z4
whereu = (9 — 22)/8. The last equation implies
36212 — 3242" 4 1197210 — 242129 + 311128 — 287727 4 201425
— 7022° — 8972* 4+ 19832 — 20972% + 11252 — 180 = 0.

With the aid of mathematical programming (such as Mapleg, aan show that the
above polynomial equation has four real roots

z1 == —0.876333426, 29 ~ 0.257008823, 23 ~ 0.891710246, z4 ~ 2.374529908,
which implies
u1 =~ 1.029004966, ue ~ 1.116743308, us ~ 1.025606605, u4 ~ 0.420200965.
Now L f(u)|y—y, = 0, With L f(u)|y—y, < 0 @nd-L f(u)|y—y, < 0. Thus, the
equation%f(u) = 0 has a unique real solution® = uy =~ 1.116743308 on the
interval (1, 3).

Sincelim,,_1+ f(u) = oo, f(u*) = 0.141194514, andf (2) = lim__ o- f(u) =

8

%, we see that the minimum value éftu) on the interval(1, %] is approximately
0.141194514. O

:07

Lemma?. Leth(a) be given by

3

a®(1 —a)® +2[a(1 — a)(—a® +4a — 2)]2 — 6a*(1 — a)?(2a — 1)?
6(1 —a)?(2a — 1)2(3a — 2)? '

If n is the minimum value df(a) on the interval2—+/2, 1), thenn ~ 0.143630168.

h(a) =
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Proof. Using mathematical programming such as Maple, one can shaithe
equation%h(a) = 0 has a unique real solutiari ~ 0.741049808 on the interval

2 — V2 < a < 1. Sinceh(2 — v/2) = 2.178511254, h(%) = lim,,_2 h(a) = 1,

h(a*) = 0.143630168, andlim,_,;- h(a) = oo, we see that the minimum &f{a)
on the interval — v/2 < a < 1 is approximately0.143630168. O

3. Proof of the main result
3.1 The lower boundWe first treat the lower bound in Theorem 1. By Lemma 2
with j = 2, we may consider the inequality
(abc)%
(a3 + 0% + 63)%
which can be rewritten as
(abe)? _ 3(L+kjabeL _ 24kL?
(@3 +b3+c3)z 52 53
using the factsibc = 4Rrs and L = rs, see [3, Section 1.4]. By homogeneity,
we may takes = 1in (7). RecallingL = +/s(s —a)(s — b)(s — ¢) (see [2,
p. 12, 1.53]), we wish to find the best possiklsuch that the inequality
(abc)%
(a® 4+ b3 + 03)%

> 12[R + k(R — 2r))r?,

: (7)

> 3(1+k)abe](1—a)(1—b)(1—c)] 2 —24k[(1—a)(1—b)(1—c)] 2

(8)
holds for alla, b, ¢ satisfyinga + b+ ¢ =2 with 0 < a,b,c < 1.
Letp = abc andt = ab + bec + ca. From the algebraic identity,

a® + b + ¢ —3abc = (a+b+c)(a® +b*+ % —ab—be — ca)
= (a+b+c)((a+b+c)* —3(ab+ be+ ca)),

anda + b + ¢ = 2, we get

a®+03+ =3p+222—3t) =3p—6t+8.
Furthermore, we have
l-a)1-0)(1-c)=1—(a+b+c)+(ab+bc+ca)—abc=t—p—1.
Thus, (8) may be rewritten in terms pfandt¢ as

3

P S 3(14Rpli—p—1)} —Uk(E—p—1)%. (9

(3p — 6t + 8)2

Dividing both sides of (9) b)pg, and lettingu = %, we obtain the following
inequality inp andwu over the domairD defined above in Lemma 5:

1
(3p — 6pu + 2)%

> 3(1+ k)(u—1)2 — 24k(u — 1)2. (10)
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Next consider the functioh(p, u, k) defined by
1
1
(3p — 6pu + 2)2

Since for each given € (1, 3], we have

h(p,u, k) = —3(1+ k) (u—1)2 + 24k(u —1)2.

A pru k) = bu=3
dp 2(3p — 6pu + 2)2

forall p € (0, %), we may consider for eaah thesmallesty such thaip, u) € D
when determining the best possible constantThat is, we may replacg with
g(u) when determining the best possililén (10), by Lemma 5, where € (1, %]
andg is given by (4).

We rewrite (10) whem = g(u) asf(u) > k, where
[(3 — 6u)g(w) +2]72 — 3(u— 1)z

3(u—1)2 —24(u—1)7

Therefore, we seek the minimum value of f(u) over the interval(1, 2], and
choosingk = m will yield the largestk for which inequality (10), and hence (7),
holds. By Lemma 6, we have =~ 0.14119. By Lemma 2, we see that inequality

(3) holds withk = m and thus the best possibiein that inequality is at leasth,
which establishes our lower bound.

flu) =

3.2 The upper boundWe now treat the upper bound given in Theorem 1. For
this, we consider the original inequality (3), rewritten as

(RiR2)% + (RoR3)% + (R3Ry)2
3
p§

> 3(1+k)(u—1)2 — 24k(u — 1)2, (11)

where we have divided through both sides;i%y andu andp are as before with
a + b+ ¢ = 2. Equivalently, we consider the inequality

3 3 3
(R1R2)7+(R2R33)7+(R3R1)7 o 3(’LL o 1)
e ; >k, (12)
3(u—1)z —24(u—1)2
and seek to find a triangld BC' of perimeter2 and a pointP in its plane such
that the left-hand side is small. We take3C to be an acute isosceles triangle and
the pointP to be the orthocenter of triangléBC'. Note that the sides of triangle
ABC area, a, and2 — 2a for somea, where2 — /2 < a < 1. After several

straightforward calculations, we see that (12) in this caag be rewritten in terms
of a ash(a) > k, where

a?(1 —a)®+2[a(l — a)(—a® + 4a — 2)]% —6a%(1 —a)?(2a —1)?
6(1 —a)?(2a —1)2(3a — 2)? '

[N

h(a) =

By Lemma 7, we see that the minimum valuehgt;) on the interval(2 — v/2,1)
is approximately).14364, which gives our upper bound fé
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4. Fourth order inequalities

Liu [4] conjectured the following geometric inequality afurth order,

(R1R2)? + (RaR3)? + (R3Ry1)* > 8(R? + 2r?)r?, (13)
which was proven in [5], where it was strengthened to
(R1R2)* + (R2R3)? + (R3Ry1)* > 8(R + r)Rr?. (14)
Note that, sincé? > 2r, both (13) and (14) imply the inequality
(R1R2)? + (ReR3)? + (R3Ry)* > 487, (15)

which is thek = 2 case of Theorem 4.4 in [5]. Here, we apply the prior reasoning
and sharpen inequality (15), obtaining a new lower boundHtersum which is
incomparable to the bounds given in (13) and (14). We alswigecan alternate
proof of inequality (14), though it does not appear that we able to sharpen it
using the present method.

4.1 Sharpened form of15). We prove the following strengthened version of in-
equality (15).

Theorem 8. For any triangle ABC and pointP in its plane, we have

(R1R2)? + (RoR3)* + (R3R1)? > 6(7TR — 6r)r. (16)
Proof. By Lemma 2 whery = 2, it suffices to show
(abe)? 3
> _
I 2 0TR—6r)r (17)

for all trianglesABC with sidesa, b, andc such thata + b + ¢ = 2. Note that
4Rr = abc,r? = L? = (1 —a)(1 — b)(1 — ¢) = ab + bc + ca — abc — 1, and
a? +b? + c® = 4 — 2(ab + bc + ca), sincea + b + ¢ = 2. Lettingp = abc and
t = ab + bc + ca, we see that inequality (17) may thus be reexpressed as

2
D 21 9
> pt—p—1)— —p—1)°.
T3 2 g Pt—p=1)=36(t—p—1)
Dividing through both sides of the last inequality by, letting v = %, and
rearranging, we see that it is equivalent to

= —21(u — 1) + 72(u — 1)* > 0. 18
w(p, u) — (u—1)4+T72(u—-1)">0 (18)
Since for each: € (1, %], we have
d U
A (T

for all p € (0, %), it suffices to prove (18) in the case whenr-= g(u), by Lemma

5, whereg is given by (4). Rearranging inequality (18) when= g¢(u), and
cancelling a factor 0§ — 8u, we show equivalently that«) > 0, where

0(u) = (T2u® — 165u + 93)(9 — 8u)? — 144u® + 492u2 — 619u + 279.
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To do so, first observe that
—1440u® + 3276u — 1
O(u) = Ou® + 3 76? 857
(9 — 8u)z
whencel'(1) = —88 < 0 andlim - ¢'(u) = co. Since
8

— 432u® + 984u — 619,

_17280u® — 39024u + 22056
(9 — 8u)?

being the sum of two positive terms, it follows that the egqrat’(u) = 0 has a

unique real solution* on the interval(1, %). By any numerical method, we have

u* &~ 1.123717946. It follows thatl(u*) ~ 0.205071273 is the minimum value of

the function? on the interval(1, 2]. In particular, we havé(u) > 0if 1 < u < 2,
which establishes (18) and completes the proof of (16). a

9
" (u) + (984 — 864u) > 0, l<u< %

Remark:Note that right-hand side of (16) is at least as large as tjte-hiand
side of (14) wherR < 9r and is smaller whei® > $r.

4.2. An alternate proof of14). Here, we provide an alternative proof for (14) to
the one given in [5]. By the = 2 case of Lemma 2, it is enough to show

(abc)? 2
212 2 >8(R+r)Rr (19)

for atriangleA BC with side lengths, b andc, where we may assunag-b+c = 2.
Upon dividing through both sides of inequality (19) byc)?, we see that it may
be rewritten in terms of = abc andu = tbetca=l aq

abe
1 1
m > §+2(u—1). (20)

It suffices to show (20) in the case when= g(u), whereg is given by (4), by
Lemma 5, since the difference of the two sides is an incrgasinction ofp for
eachu. To show the inequality

(du — 3)(1 —ug(u)) <1, l<u<

| ©

3
2

(4u — 3)(16u? — 36u + 27 + (9 — 8u)?) -1
Su? -

we first rewrite it as
—64u® 4 200u* — 216w + 81 > (4u — 3)(9 — 8u)
Cancelling factors o — 8« from both sides of the last inequality then gives

3
2.

8u? — 16u + 9 > (du — 3)(9 — 8u)2. (21)
Finally, to show that (21) holds far < u < g note that for the function
8u? — 16u + 9
v(u) == sut —ut+J (9 — 8u)%,

4u — 3
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we havev(1) = 0 with
6 4
v'(u) =2 — + > 0, l<u<-=.
(4u—3)% " (9—8u):
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Maximal Area of a Bicentric Quadrilateral

Martin Josefsson

Abstract. We prove an inequality for the area of a bicentric quadgikat in
terms of the radii of the two associated circles and show lmeonstruct the
quadrilateral of maximal area.

1. Introduction

A bicentric quadrilateral is a convex quadrilateral thas bath an incircle and
a circumcircle, so it is both tangential and cyclic. Giveroteircles, one within
the other with radiir and R (wherer < R), then a necessary condition that there
can be a bicentric quadrilateral associated with theséesiis that the distancé
between their centers satisfies Fuss’ relation

1 1 1
R102 (R0 1%

A beautiful elementary proof of this was given by Salazae (&3}, and quoted at
[1]). According to [9, p.292], this is also a sufficient cotain for the existence
of a bicentric quadrilateral. Now if there for two such caglexists one bicentric
quadrilateral, then according to Poncelet’s closure #mothere exists infinitely
many; any point on the circumcircle can be a vertex for oneheke¢ bicentric
quadrilaterals [11]. That is the configuration we shall gturdthis note. We derive
a formula for the area of a bicentric quadrilateral in termhighe inradius, the
circumradius and the angle between the diagonals, confdugéich quadrilateral
the area has its maximum value in terms of the two radii, apnd/$tow to construct
that maximal quadrilateral.

2. Moreon thearea of a bicentric quadrilateral

In [4] and [3, §6] we derived a few new formulas for the area of a bicentric
guadrilateral. Here we will prove another area formula ggiroperties of bicentric
quadrilaterals derived by other authors.

Theorem 1. If a bicentric quadrilateral has an incircle and a circumcie with
radii » and R respectively, then it has the area

K:r(r—i- 4R2+r2) sin 6
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whered is the angle between the diagonals.
Proof. We give two different proofs. Both of them uses the formula
K= %pq sin 6 Q)

which gives the area of a convex quadrilateral with diagepal; and angled
between them.

Figure 1. Using the inscribed angle theorem

First proof. In a cyclic quadrilateral it is easy to see that the diagoratssfy
p = 2Rsin B andq = 2Rsin A (see Figure 1). Inserting these into (1) we have
that a cyclic quadrilateral has the afea

K = 2R?sin Asin Bsin#. (2)

In [13] Yun proved that in a bicentric quadrilaterdlBC D (which he called a
double circle quadrilateral),

r2+r\/m

sin Asin B = 572

Inserting this into (2) proves the theorem.
Second proofin [2, pp.249, 271-275] itis proved that the inradius in ahitcic

guadrilateral is given by
pq

2v/pq + 4R2

Solving for the product of the diagonals gives
pq = 2r <r +V4R? + r2)

where we chose the solution of the quadratic equation wighpllas sign since
the product of the diagonals is positive. Inserting thig iflt) directly yields the
theorem. O

T =

1A direct consequence of this formula is the inequalify< 2R? in a cyclic quadrilateral, with
equality if and only if the quadrilateral is a square.
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Remark. According to [12, p.164], it was Problem 1376 in the journauxc
Mathematicorum to derive the equation

Pqg 4R? _q
4r? pqg
in a bicentric quadrilateral. Solving this also gives thedurctpg in terms of the

radii r and R.

Corollary 2. If a bicentric quadrilateral has an incircle and a circumcie with
radii » and R respectively, then its area satisfies

K§r<r+ 1R +1)
where there is equality if and only if the quadrilateral isight kite.

Proof. There is equality if and only if the angle between the dia¢pimgma right
angle, sincein 6§ < 1 with equality if and only iff = 7. A tangential quadrilateral
has perpendicular diagonals if and only if it is a kite acamgdo Theorem 2 (i)
and (i) in [5]. Finally, a kite is cyclic if and only if two oposite angles are right
angles since it has a diagonal that is a line of symmetry apdsife angles in a
cyclic quadrilateral are supplementary angles. a

We also have that the semiperimeter of a bicentric quadrdhsatisfies

s <r+ V4R? +r?

where there is equality if and only if the quadrilateral isght kite. This is a direct
consequence of Corollary 2 and the formiila= rs for the area of a tangential
quadrilateral. To derive this inequality was a part of PeoblL203 in Crux Mathe-
maticorum according to [10, p.39]. Another part of that peolbwas to prove that
in a bicentric quadrilateral, the product of the sides Batis

abed < %TZ(ZLRQ +1?).

It is well known that the left hand side gives the square ofarea of a bicentric
guadrilateral (a short proof is given in [4, pp.155-156]hu¥ the inequality can

be restated as
K < 3rVAR? + 12,

This is a weaker area inequality than the one in Corollaryl#civcan be seen in
the following way. An inequality between the two radii of @éntric quadrilateral
is R > v/2r.2 From this it follows thatt R? > 872, and so

3r < VAR2 +r2.

Hence, from Theorem 1, we have

K
— <r+ VAR? 412 < 5VAR? 412
;

so the expression in Corollary 2 gives a sharper upper bourtid area.

2References to several different proofs of this inequality given at the end of [6], where we
provided a new proof of an extension to this inequality.
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3. Construction of the maximal bicentric quadrilateral

Given two circles, one within the other, and assuming thatertric quadrilat-
eral exist inscribed in the larger circle and circumscribeaund the smaller, then
among the infinitely many such quadrilaterals that are agat®ut with these cir-
cles, Corollary 2 states that the one with maximal area igla kite. Since a kite
has a diagonal that is a line of symmetry, the constructiothisfis easy. Draw a
line through the two centers of the circles. It intersectdineumcircle at4 andC'.
Now all that is left is to construct tangents to the incir¢ieoughA. This is done by
constructing the midpoimt/ between the incentdrand A, and drawing the circle
with centerM and radiusM I according to [7]. This circle intersect the incircle at
E andF. Draw the tangentsl & and AF" extended to intersect the circumcircle at
B andD. Finally connect the pointd BC D, which is the right kite with maximal
area of all bicentric quadrilaterals associated with the ¢iwcles having centers
andO.

Figure 2. Construction of the right kit¢ BC D

References

[1] A. Bogomolny, Fuss’ Theoreninteractive Mathematics Miscellany and Puzzles
http://wmv. cut -t he- knot. org/ Curri cul um Geonetry/ Fuss. sht m

[2] H. Fukagawa and T. Rothmagacred Mathematics, Japanese Temple GeomPtinceton
university press, 2008.

[3] M. Josefsson, Calculations concerning the tangenttlengnd tangency chords of a tangential
quadrilateralForum Geom.10 (2010) 119-130.

[4] M. Josefsson, The area of a bicentric quadrilatéfatum Geom.11 (2011) 155-164.

[5] M. Josefsson, When is a tangential quadrilateral a kkefum Geom.11 (2011) 165-174.

[6] M. Josefsson, A new proof of Yun’s inequality for bicaentguadrilateralsForum Geom. 12
(2012) 79-82.

[7] Math Open Referenc&angents through an external point, 2009,
http: // ww. mat hopenr ef . conif consttangents. ht m

[8] J. C. Salazar, Fuss’ theoreMath. Gazette90 (2006) 306—307.



Maximal area of a bicentric quadrilateral 241

[9] M. Saul,Hadamard’s Plane Geometry, A Reader's Companiamer. Math. Society, 2010.
[10] E. Spechtnequalities proposed in “Crux Mathematicorum2007, available at
http://hydra. nat. uni - magdebur g. de/ mat h4u/ i neq. pdf
[11] E. W. Weisstein, Bicentric PolygorivlathWorld — A Wolfram Web Resource, Accessed 22
April 2012, htt p: // mat hwor | d. wol f ram coni Bi cent ri cPol ygon. ht m
[12] P.Yiu,Notes on Euclidean Geometiiylorida Atlantic University Lecture Notes, 1998.
[13] Z. Yun, Euler’s inequality revisitedylathematical Spectrup#0 (2008) 119-121.

Martin Josefsson: Vastergatan 25d, 285 37 Markaryd, Swede
E-mail addressmar t i n. mar karyd@ot mai | . com






Forum Geometricorum
Volume 12 (2012) 243-245.

FORUM GEOM
ISSN 1534-1178

The Maltitude Construction in a Convex Noncyclic
Quadrilateral

Maria Flavia Mammana

Abstract. This note is linked to a recent paper of O. Radko and E. Tsu&er
We consider the maltitude construction in a convex noncysgliadrilateral and
we determine a point that can be viewed as a generalizatitiveatnticenter.

1. Introduction

In [5] it is investigated the perpendicular bisector camstion in a noncyclic
quadrilateralQ = Q) = ABCD. The perpendicular bisectors of the sides of
Q determine a noncyclic quadrilater@(®) = A, B,C; D;, whose vertices are the
centers of the triad circlesg., the circles passing through three vertice®ofThis
process can be iterated to obtain a sequence of noncyclititaiarals: (), 9,
0, ...

B

Figure 1.

All even generation quadrilaterals are similar, and all gdderation quadrilat-
erals are similar. Further, there is a point W that serves@sénter of the spiral
similarity for any pair of quadrilateral®™, Q("*2)_ If Q is a convex noncyclic
quadrilateral, the quadrilatera@™, Q("*2) are homotetic, the ratio of similarity
is a negative constant and the quadrilaterals in the igadependicular bisectors
construction converge . In a convex noncyclic quadrilateral the limit poiiit
can be viewed as a generalization of the circumcenter.
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2. Characteristic and affinity

In [3] it is proved that ifQ is a convex quadrilateral, thed(®) is affine toQ. It

follows that, for anyn, Q11 is affine toQ™.
B

D,

</
s

Ay

Figure 2.

For the convenience of the reader, we give a proof of thisgntgpIn [2] it is
defined the characteristic of a quadrilate¢alas follows. LetE be the common
point of the diagonalsiC and BD of Q. For the ratiosg—’g and%, let h be the
one not greater thah Also for the ratios2Z and2Z, let k be the one not greater
than1. The pair{h, k} is the characteristic of. In [2] it is proved that two con-
vex quadrilaterals are affine if and only if they have the sahmracteristic. We
consider now the quadrilaterQ(l) = A1 B1C1Dq. The lineA;C; is perpendic-
ular to the radical axi€8 D of the circle passing througBk, C', D and the circle
passing throughd, B, D. Similarly, the lineB; D, is perpendicular to the line
AC. Further, the linesA1 By, B1C4, C1 Dy, D1 A, are perpendicular to the lines
DC, AD, BA, CB, respectively. It follows that, ifF; is the common point of
diagonalsA4;C; and B; D; of QY. the triangle pairsABE andC, D, E;, BCE
andA, D, E,, CDFE and A; B1 E; are similar. Therefore we have

AE  EiD; BE  AEy EC  BiE
BE ~ ECy’ EC ~ E\Dy’ ED ~ AEy’
from which
AE  AE BE B E;
EC ~ EC,’ ED E\Dy

Thus,Q and Q) have the same charactristic and are affine.

3. Maltitudes

In [3] it is considered also the quadrilater@l,, determined by the maltitudes
of a convex noncyclic quadrilaterg. A maltitude ofQ is the perpendicular line
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through the midpoint of a side to the opposite side [1]. Ini{4$ proved that the
maltitudes are concurrent in a point, called anticentemd only if Q is cyclic.

In [3] it is proved that the quadrilater&,,, = A B|C D} is the symmetric of
oM with respect to the centroi@ of Q.This property follows from the fact that
the maltitudes of® are transformed into the perpendicular bisector®dh the

half-turn about. B

N

=
fin

hS

<\

X

'4

EREE
)
-

Figure 3.

The existence of the poifl/, as the limit point in the iterated perpendicular
bisectors construction, implies that the symmetii¢ of W with respect taG is
the limit point in the iterated maltitudes construction. riRermore, in a convex
noncyclic quadrilateral the limit poiri’”’ can be viewed as a generalization of the
anticenter.

We observe that in a cyclic quadrilateral the circumcentertae anticenter are
symmetric with respect to the centroid.dfis a convex noncyclic quadrilateral, in
analogy with the case of a cyclic quadrilateral, we call the tontainingG, W
andW’ theEuler line of Q.
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Using Complex Weighted Centroids
to Create Homothetic Polygons

Harold Reiter and Arthur Holshouser

Abstract. After first defining weighted centroids that use complexhanketic,

we then make a simple observation which proves Theorem 1. axedefine
complex homothety. We then show how to apply this theory iemgles (or
polygons) to create endless numbers of homothetic trian@lepolygon). The
first part of the paper is fairly standard. However, in thelfpzat of the paper, we
give two examples which illustrate that examples can edmlgiven in which
the simple basic underpinning is so disguised that it is hatlabvious. Also,

the entire paper is greatly enhanced by the use of complthaaetic.

1. Introduction to the basic theory

Supposed, B, C, z, y are complex nhumbers that satistfl +yB = C,z+y =
1. It easily follows thatd +y (B — A) = C andz (A — B)+ B = C. This simple
observation with its geometric interpretation is the basithis paper.

Definition. SupposeM, Ms, ..., M,, are points in the complex plane atgl,
m
ka, ...,k are complex numbers that satisfy k; = 1. Of course, each complex

=1
point M; is also a complex number. The weighted centroid of these Eappints
{My, My, ..., M} with respect to{k1, ko, ..., k,, } IS @ complex pointG,, de-

fined byG]\/[ = z k; M;.

i=1
The complex numbers,, ks, ..., k,, are called weights and in the notati6h,
itis always assumed that the reader knows what these weights
If k1, ko, ..., km, k1, ko, ..., k, are complex numbers, we denote the sums
m n

Sy = ki, S = 3 k.
i=1 i=1

SupposeVly, My, ..., M,,, M, M>, ..., M, are points in the complex plane.

Also, k1, ko, ..., km, k1, ko, ..., k, are complex numbers that satisfy k; +
i=1

2

k; = 1. Thus,S + Sy = 1.
=1

Publication Date: November 30, 2012. Communicating EdRawul Yiu.
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DenoteGMUM_sz +Zk M;.
=1

Thus, G, 7 is the weighted centroid of My, ..., M,,, M,...,M,} with
respect to the welghtékl,.. km,kl,...,k kn}.

It is obvious thatz =1 andz S =1

DenoteG )y, = E 5-M; andGyr = Z M

Thus,G)y is the welghted centr0|d o{fMl,M2, .., My, } with respect to the
welghts{g—;, ’g,—i, . S—} andGy; is the weighted centr0|d dfMy, My, ..., M, }

with respect to the welght%%, Bk
k k k

As always, these Weights are understood in the notatipn G4,
SinceG,, 17 = sz S R = S, - > ki + Sp - zg M, it is
= =1 i=1 =1
obvious that(x) is true
(*) Sk . G]\/[ + SE . GM = GMUH WhereSk + SE =1.
From equatior(x) andS, + S;; = 1 itis easy to see that (1) and (2) are true.
(1) Gur + S (Gar = Gur) = Gyuar-

2. Basic theorem

The identity(«) and the formula (1) of 1 proves the following Theorem 1.

Theorem 1. Supposé\l;, Mo, ..., M,,, M, Wg, ..., M, are points in the com-

plex plane. Also, suppose = E k; M; + Z k; M; whereky, ..., km, k1, ...,
=1 1= 1

k, are complex numbers that satisE k; + Z ki = 1. Then there exists com-
i=1 i=1
m
plex numbers:, xo, ..., z, Where) " z; = 1 and there exists complex numbers
=1
n
Y1,Y2, - - -, Yo Whered " y; = 1 and there exists a complex numhesuch that the
i=1
following are true. o o
Q). z1,...,xm,y1,---,Yn, z are rational function ok, ..., k., k1, ... kn.

2. P = Q+2(R—Q) whereQ, R are defined byQ = " a:M;, R —
=1

n —_
Z yiMz
i=1
As we illustrate in Section 6, the valuesxof, ..., xm, y1, ..., yn, 2 as rational
functions ofky, ko, ..., km, k1, k2, ..., k, can be computed adhoc from any spe-

cific situation that we face in practice. We observe tas the weighted centroid
of the complex pointd/,, Mo, ..., M,, using the weights1, 2, ...,z,,, andRis
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the weighted centroid of the complex poimts, M, ..., , M, using the weights
Y1, Y2, - - -, Yn. Of course, Theorem 1 is completely standard.

3. Complex homothety

If A, B are points in the complex plane, we denat®& = B — A. This also
means thatd B is the complex vector froml to B. Also, we defind AB| to be the
length of this vectord B. If k is any complex number, thén= r (cos 6 + isin ),
r > 0, is the polar form of. It is assumed that the reader knows that

[ (cos @ +isind)] - [T (cos ¢ +isingp)| =r-F(cos(0+ ¢) +isin (0 + ¢)) .

SupposeS, P, P whereS # P,S # P are points in the complex plane and
k = r(cosf +isin@), r > 0, is a non-zero complex number. Also, suppose
SP = k (SP) whereas alway§P = P — SandSP = P — S. Since

SP =k (SP)=[r(cosf +isind)]-(SP) = (cos@ +isinf)-[r- (SP)],

we see that the complex vectSiP can be constructed from the complex vector
S P in the following two steps.

First, we multiply the vecto5 P by the positive real number (or scale facter)
to define a new vecto§ P’ = r - (SP). SinceSP’ = P’ — S, the new point’’ is
collinear withS and P with P, P’ lying on the same side ¢f and|SP’| = r-|SP|.

Next, we rotate the vecta¥ P’ by 6 radians counterclockwise about the origin
O as the axis to define the final vectsiP. Of course, the final poinP itself is
computed by rotating the poii?’ by 6 radians counterclockwise about the afis
If A, B,C,z,yarecomplexandA+yB =C,z+y = 1,thenA+y (B — A) =
C. Therefore, AC =y - AB and ify = r (cos@ +isinf),, r > 0, we see how to
construct the poin€.

From this construction, the following is obvious. Suppése: P are arbitrary
variable points in the complex plane af® = k - (SP) wherek # 0 is a fixed
complex number.

Then the triangles\S PP will always have the same geometric shape (up to
similarity) sinceZ PSP = 6 and|SP| : |SP| = r: 1whenk = r (cos § + isin6),

r > 0. Next, let us suppose that the complex triangled BC' and AABC and
the complex points are related as follows:

SA=k-(SA), SB=k-(SB), SC=k-(SC),

wherek # 0 is some fixed complex number.

We call this relation complex homothety (or complex similie¢). Also,S is
the center of homothety (or similitude) akds the homothetic ratio (or ratio of
similitude). Wherk is real we have the usual homothety of two triangle. Of cqurse

for both real or complexk, it is fairly obvious thathA ABC, andA ABC are always
, i AB| |[AC|  [BO|
geometrically similar an a5l = Tacl = Ba] = k| .

Of course, this same definition of complex homothety alsalfbr two poly-

gonsABCDE,...andABCDE,....
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4. Using Theorem 1 to create endless homothetic triangles

Let My, My, ..., M,,, My, Muo, ..., Myn, Mp1, My, ..., My,, M.1, Mo,

., M., be any points in the plane.

As a specific example of this, we could start with a trianglel BC' and let
My, Mo, ..., M,, be any fixed points in the plane 6 ABC such as the centroid,
orthocenter, Lemoine point, incenter, Nagel point, etc.

Also, M1, ..., M,, are fixed points that have some relation to sit€. M,

., M,,, are fixed points that have some relation to si¢ andM,,. .., M., are
fixed points that have some relation to sidé.

Let kl, ko, .. km, k1, ko, ..., ky be arbitrary but fixed complex numbers that

satlsfka +Ek =1.

Deflne pomtsPa, P,, P. as follows.

(L) Py = S kM + S Bl .
z 1 i=1

(2) b, = EkMJer‘sz
zl

(3) P.= Z ki M; + Z kiM ;.
i=1 i=1
Note that these pointB,, P, P. are being defined in an analogous way. From

s

Theorem 1, there exists complex numbeyszs, ..., 2., wherei1 x; = 1,11, Y2,
1=
ey Un wherei1 y; = 1, andz such that the following statements are true.
1=
(1) 1, ..., Zm, Y1, Y2, - - - Un, 2 are rational functions ofy, ..., km, k1, ...,
) lzi = Q2 (Ra = Q), Py = Q+2(Ry = Q), Re = P+2 (R — Q), where

Z z; M;, andR, = Z yiM 4i, Ry = z yiMpi, Re = Z yiM

=1
(3) QP. = z- (QR.), QP = 2~ (QRy), QP = = - (QR.).

(3) follows from (2) since, for example?, — Q = QP,.
From (3) it also follows that\ P, P, P. is homothetic toA R, Ry R with a center

of homothetyQ and a ratio of homothetysz2 = 87t = &2 = 2. Also, of

i ; |PaPy| _ |PaPe| _
course,AP,P,P. ~ AR,RyR. with a ratio of similarity ‘RGRQ = BB =
fRe = 2.
|RbRc . . .

In the above construction, we could lump some (but not althefpoints in
{My, My, ..., My} with each of the three sets of poinfsi/,1, ..., Man },
{Mp,..., My, }, {Mc1,..., M,}. For example, we could deal with the four
SetS{M27"' m} {M17 al7"'7Man}1{MlaMbla-"vMbn};
{My,M.1,..., Mc,}. We then use the same formulas as above and we have

QPa=2-(QR.), QB =2z (QRy), QFP=z-(QR.),
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m n n
where@ = > z;M;, R, = (Z yiMaz’> + Ynt1M1, Ry = (Z yz’Mbi> +
i=2 i=1 i=1

n+1

n o ) m
Yn+1 My, R = (Z yiMci> + ypp1 My with >z, =1and > y; = 1.
i=1 i=2 i=1

As we illustrate in Section 7, by redefining our four sgdd;}, {Mq; }, { My },
{M.;} in different ways, we can vastly expand our collections ahbthetic tri-
angles.

5. Two specific examples

5.1 Problem 1.SupposeNABC lies in the complex plane. INABC let AD,
BE, CF be the altitudes to sideBC, AC, AB respectively, where the points
D, E, Flie on sidesBC, AC, AB. The ADEF is called the orthic triangle of
AABC. The three altitudesiD, BE, CF always intersect at a common point
H which is called the orthocenter ¢df ABC. Also, letO be the circumcenter of
AABC and letA’, B/, C’ denote the midpoints of side8C, AC, AB respec-
tively. The line HO is called the Euler line oA ABC. Define the points,, b,
P. as follows where, e, m, n, r are fixed real numbers.

(1) AP, =k-AH+e-HD+m-AO+n-AA +r- -OA.

(2 BP,=k-BH+e-HE+m-BO+n-BB +r-0B.

B)CP.=k-CH+e-HF+m-CO+n-CC'"+r-0C".
Show that there exists a poitt on the Euler lineHO of AABC, a pointR, on
side BC', a pointR;, on sideAC, a pointR,. on sideA B, and a real number such
thatAP, P, P. andA R, Ry R. are homothetic with center of homothefyand real
ratio of homothety% = ggf; = 8}% = 2.

We can also show that there exists a pdirgn the Euler lineD H such that this

AR, Ry R, is the pedal triangle of formed by the feet of the three perpendiculars
from S to sidesBC, AC, BC.

Solution We first deal with equation (1) given in Problem 1. Equati@s (3)
give analogous results.

SinceAP, =P, — A AH = H — A HD = D — A, etc, we see that equation
(1) is equivalent to

P,—A=k(H-A) +e(D-—H)+m(O—-A)+n(4d —-A)+r(4-0).

This is equivalent t@xx).
(xx) Pob=Q1—-k—-m-n)A+(k—-eH+eD+(m—r)O+ (n+r)A.
From geometry, we know thatH = 2- OA’,BH =2-OB/',CH =2-0OC".
Thus,H —A=2(A"—0O)andA=H +2(0 - 4’).
Substituting this value foA in (xx) we have
Po=(1—-k—-m-n)(H+20—-2A")+ (k—e)H +eD
+(m—-r)O+ (n+r)A.

This is equivalent to the following.



252 H. Reiter and A. Holshouser

Pob=(1-m-n—eH+2—-2k—m—-2n—7r)0O+eD
+(=2+2k+2m+3n+17) A.

Calingl—-m-n—-e=6,2—2k—m—2n—r = ¢,e = A\, and—2 + 2k +
2m + 3n +r = 1, we have

P, =0H + ¢O + \D + p A,

wheref + ¢+ A +¢ = 1.
As in Theorem 1, we now lumg@l, O together and lum@, A’ together. There-
fore,

P, = [0H 4 ¢O] + [AD + ¢ A']

B (010 AD YA
- 040 |5+ g | - o) [T
Calling 2 7o +9¢f¢ =Q, ande + ;”fw = R,, we have

Po=0+¢)Q+(A+¥)R
= Q+(A+7) (R —Q)
= Q+2(Ra—Q)
wherez = A+¢Y =—-2+2k+2m+3n+r+e.
Of course, @ lies on the Euler lineHO and R, lies on the sideBC' since

0, ¢, A, v are real.
By symmetry, equations (2), (3) yield the following analagaesults.

—Q+Z(Rb—Q) and P.=Q+z(F—Q),

whereR, = 22 + £2 nd R, = 2L + § e

Oof courseQ Iles on the Euler IlneHO R, ﬁes onsideBC, Ry lies onsideAC
andR, lies on sideAB.

SinceQP, = A+ ) (QR,) = z- QRa, QP = (A + ) (QRp) = z - QRy,
and@QF. = (A +v¢) (QR.) = z - QRC, we see thal\R,RyR. ~ AP, P,P. are
homothetic with ratio of homothetfre = 90 — &F —

T QR, QR ~
Also, AR, RyR. ~ AP,P,P, Wlth ratio of similarity |‘1§Z§Z‘\ = Hg‘;zj =
| Py Pe| = |2|
[RyR| ~ |*

SinceD, E, F lie at the feet of the perpendiculafé D, HE, HF and since
A', B, C' lie at the feet of the perpendicula¢dA’, OB’, OC’, it is easy to see
that there exists a poirtt on the Euler lineH O such thatA\ R, Ry R, is the pedal
triangle of S with respect toN ABC.

We now deal with a special case of Problem 1. ket eem = n = r = 0.
Thenfd =1—-e=1—-k,¢p =2 -2k, \ = k:z/) = —2+ 2k. Also,0 + ¢ =

3 — 3k, A +1v = -2+ 3k. Therefore() = 9+¢+9+¢_ 1H + 20.
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From geometry, we see that the center of homothety is G whereG is the
centroid of AABC. Also, G is still the center of homothety of P, P, P. and
AR, Ry R even for the case whefeis complex.

Also, we see thaR, = —hl. + (2204
z = —2+3k.

lfweletk =e=2m=n=r=0 weseethaR, = 1D+ 14" R, =
IE+ 1B R.=iF+1iC".

From geometry we know that the nine point cem&of A ABC lies at the mid
point of the line segment{ O.

Therefore, itk = e = 2,m = n = r = 0, we see thal\ R, R, R, is the pedal
triangle of the nine point cente¥. Also, whenk = e =2, m =n =r = 0, we
see thathA P, P, P, is geometrically just the (mirror) reflections of verticésB, C
about the three sideBC, AC, AB respectively. Also, the ratio of homothetyis
z = —2+ 3k = 4. Thus,AP, P, P, is four times bigger tharh R, Ry R...

, and the ratio of homothety is

5.2 Problem 2. SupposeA ABC' lies in the complex plane. As in Problem 1, let
AD, BE, CF be the altitudes for sideBC, AC, AB respectively wher®, F, F
lie on sidesAB, AC, BC'. LetI be the incenter oA ABC and let the incircle
(I,r) be tangent to the side$B, AC, BC at the pointsX, Y, Z respectively.
Define the points,, P,, P. as follows.
(1) P,=D+i(IX),
(2) Bb,=FE+i(IY),
(3) P. = F +i(IZ),wherei is the unit imaginary.
We wish to findAR,RyR. and a complex number such thatA P, P, P. and
AR, RyR. are homothetic with a center of homothdtyand a complex ratio of

1P, _ 1P, _ 1B
homothetyz = R = TR = TR

Solution

We first study whatA P, P, P, is geometrically. First, we note that 1.X, i -
1Y, i - I Z simply rotates the vectorEX, 1Y, IZ by 90° in the counterclockwise
direction about the origin O as the axis. Also, we note thaf| = | X — I| =
|[IY|=1|Y —I|=|1Z| = |Z — I| = r wherer is the radius of the inscribed circle
I(r).

Therefore, the point®,, Py, P, lie on sidesAB, AC, BC respectively and the
distance fromD to P, is r (going in the counterclockwise direction), the distance
from F to P, is r (going counterclockwise) and the distance fréfrio P. is r
(going counterclockwise).

We next analyze equation (1) in the problem. The analysigjoétons (2), (3)
is analogous.

Now equation (1) is equivalent to

Po=D+i(X—I)=—i- I+ [iX+D]=—i-I+(1+1) ['1Z+i+1+i]'

Observe that-i + (1 + i) = 1 and 5 + =5 = 1.
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DefineR, = 2 + 725 = D+ 14 (X — D) = D+ & (DX) sinceX — D =
DX.
Therefore,DR, = 5 (DX) = (4*) (DX) sinceR, — D = DR,.
Also, P, = —il + (1+i)R, = I + (1+1i) (R, —I). Therefore,IP, =
(1+17)(IR,) sinceP, — I =IP,andR, — I = IR,.
Therefore, by symmetry, we have the following equations.
(1) DR, = (1) (DX),ER, = (YY) (EY) ,FR. = () (FZ).
(2 IP,=(1+41i)(IRy),IP,=(1+41%)(IRy),IP.=(141) (IR,) .
Equation (1) tells us how to construttR,, R, R from the points D, X} {E,Y },
{F,Z}.
Also, AP, P,P. and AR, Ry R. are homothetic with center of homothetyand

complex ratio of homothety = 1 +i = 7% = 7 = 755

Also, AP,P,P. ~ AR.RyR, and LEel = LBl — [Pl — 19 4 ) = (/2.

ol v Bl TRa] = TR = [IR.]
Pan — PaPc _ Pch
AlSO, (R Rl = [ReRa] = IRuR-

6. Discussion

For a deeper understanding of the many applications of Enedr, we invite
the reader to consider the following alternative form oftiem 1 in§5.1.

Problem 1 (alternate form) The statement of the definitions,, Py, P. is the
same as in Problem 1.

However, we now definel”, B”, C” to be the (mirror) reflections aP about
the sidesAB, AC, BC respectively. Therefor&)A” =2-0OA’,OB" =2-0OB’,
OC” =2-0C’. We now substituted”, B”, C" for A’, B/, C" in the problem by
usingA” — O = 2(A’ — 0), etc. and ask the reader to solve the same problem
when we deal withi4, B,C, H, D, E, F, O, A", B" ,C" instead of4, B, C, H,
D, E,F,0, A, B, C'. Also, we show that?,, Ry, R. will lie on lines DA”,
EB”, FC" instead of lying on sided B, AC, BC'. The pedal triangle part of the
problem is ignored. The center of homoth&ywill still lie on the Euler lineHO.
This illustrates the endless way that Theorem 1 can be usegtéde homothetic
triangles (and polygons).
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Generalizing Orthocorrespondence

Manfred Evers

Abstract. In [3] B. Gibert investigates a transformatiéh— P of the plane
of a triangleABC', which he callsorthocorrespondencdmportant for the def-
inition of this transformation is the tripolar line dP* with respect toABC.
This line can be interpreted as a polar-euclidean equivalbthe orthocenter
H of the triangleABC, the pointP getting the role of the absolute pole of the
polar-euclidean plane. We propose to substitute the cditby other triangle
centers and will investigate the properties of such comedpnces.

1. Foundations

1.1 Introduction. In [3] B. Gibert investigates the properties of orthocop@s
dence, a mapping that every poiRtin the planef of a triangle ABC assigns a
point P+, the tripole of the orthotransversal (lin€)of P with respect to the trian-
gle ABC. This orthotransversal is described as follows: The perpendicular lines
at Pto AP, BP, CP intersect the lineBC, C A, AB respectively at point$’,,

By, P. which are collinear with the lin&.

We give an alternative description of the orthotransvelisal £, limiting our-
selves to a poinP which is neither an edge-point nor a point on the line at itfini
Let A*B*C™* be the polar triangle o BC' with respect to a circle&s with center
P. Then/ is the polar line with respect 8 of the orthocenteH* of A*B*C*.

Because of this construction of the orthocorrespondemttgot, we would like
to call orthocorrespondencH *-correspondence and generalize this by replacing
H* by some other poin)* (especially by a center of the triangle B*C*).

1.2 Notations. We always look on lines, conics, cubietc as sets of points.
Given a pointR, a triangleA and a conid”, we write
-R=(rq:ry:re)aif (rq : 1 : r) are homogeneous barycentric coordi-
nates with respect t4,
- LA(R) for the tripolar line ofR with respect t\,
- Ca(R) for the circumconic and/a (R) for the inconic ofA with perspec-
tor R,
- OA for the union of the three sidelines 4f.

We suppose that the poift, R = (r, : 1y : rc) A, IS NOt a point oA, so we have
rqrpre # 0. In this case we say:

Publication Date: December 5, 2012. Communicating EdRawl Yiu.
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0, ifsgn(r,) =sgn(ry) = sgn(r.),

with respect tA, R is of type { if sgn(ry) = sgn(re) # sgn(ra),
. ifsgn(r.) = sgn(r,) # sgn(ry),

c, ifsgn(ry) =sgn(ry) # sgn(re).

In the plane of the original triangld BC' we useL,, for the line at infinity
(instead ofC 4 s (G) whereG is the centroid ofABC'), and we denoté€ — £, by
£~. By d we denote the euclidean distance function. As usual, we tdeafme
d(P, Q) for two points P and @ on the lineL.,, and we putd(P, Q) = oo if
exactly one of the points is infinite.

1.3 Q*-correspondent point and calculation of its coordinates.

Let P = (pa : p» : pc)ABc be a point in the plane of the triangléBC, lying
neither on a sideline of this triangle nor @n,,. Let A* B*C* be the polar triangle
of ABC with respect to a circle& with centerP. For every point)* = (¢} : ¢; :
q}) a=B-c+, we call the lineLs(Q*) the Q*-transversal of P and its tripole with
respect tad BC the Q*-correspondent ofP. The tripole we denote biPiQ*.

Remark.While the triangleA* B*C* and the point)* depend on the radius> 0
of S, the@*-transversal and th@*-correspondent aP do not.

Proposition. (1) The@*-transversal ofP has the equation

(9apvpe)T + (G5 PePa)y + (42PaPb) 2 = Zeyetic(qzpupe) = 0.
(2) If Q* is not a vertex of the trianglel* B*C*, then
PRQ™ = (Padyq: * Pvled * Pedady)ABC = (Pa/dq =+ 1+ ) ABC-

Proof. (A) First, we calculate lengths*, b*, ¢* of the sides ofd* B*C* for a finite
point P not lying on any sideline of the triangléBC'. Let(pq, py, pc) = (Pa, - - ),
Pa + pp + p. = 1, be the exact barycentric coordinatesfofvith respect to the
triangle ABC' and leta, b, c be the lengths of the sides afdbe twice the area of
ABC L. Fora simpler calculation, we set the radius of the ci&l® 1.

We then getd* = P+ (B — C)* /p!, with p, := p,S = a-sgn(p,) -d(P, BC).
The difference of two points is interpreted as a vector ofwwedimensional vector
spaceV = R? with euclidean normi| - - - ||, and* indicates a rotation of a vector
by +90°: (Ul, UQ)J_ = (—’Ug, ’Ul).

Fora* we get

(@)= ||B* = C*|? = |(C = A)/p, — (A~ B)/p.|?
= (b/p)” + 254/ (pypt) + (¢/pL)?
= [(0/ps)? + 254/ (pope) + (¢/pe)?] /S,

Note: We want to point out the following connection betweblr sidelengths
a*,b*, c* of the triangle A* B*C*, the exact barycentric coordinatés,, py, p)

e use Conway’s triangle notatios: = besin 4, Sa = (b2 + ¢® — a®)/2 = becos A, etc
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of the pointP and the (exact) tripolar coordinatéd(P, A),d(P, B),d(P,C)) of
P (with respect taA BC):

d(P, A) = \/(cpp)? + 2Sapppe + (bpe)? = Sa*|pype|-  (¥)

We also mention that the vertices', B*, C* are finite points in the plane of trian-
gle ABC as long a<P is a finite point in this plane withp,pyp. # 0.

(B) Calculation of the coordinates of tlig'-correspondenP#@*. Given a point
Q* with exact barycentric coordinatds;, ¢;,q;) with respect toA*B*C*, we
want to find an equation of the lin@s(Q*) as well as the coordinates of its tripole
with respect toABC'. To achieve the results easily, we borrow a method from
the theory of vector spaces which - in case of the two-dinoeradivector space
V = R? - considers an element of the dual sp&¢eof linear forms (often such a
linear form is called a covector) as a one-dimensional affiispace (a line) of,
see for example [2, Chapter I]. This method is not essentdiathie calculation of
the polar line but will simplify it. We do not even have to kndine coordinates of
Q* with respect taA BC, which are in fact

(P2pbpeS? + PaDbqSB + PaPedi S — Popeqia® s -+ -0 ).

Given a vectoli = (v, v9) € R?, the dual vector is a 1-form* = vy + vay.
To visualize this object, we identify* with the linev,x + vy = v? +v3, which is
the polar line ofi with respect to the unit circlés € R?| w? + w2 = 1}. Within
this interpretationV* is formed by all the lines o¥ that do not contain the zero
vector, and additionally we have to include the line at imfinvhich represents
0* = 0z + Oy.

Obviously, the mapping\: VxV* — R, (7,w*) = ((v1,v2), w12 + way) —
viwy + vowo is a bilinear pairing. The mappingp : £~ — R2,R+— R — P, is
an affine chart withy p(P) = 6 andx p(S) = {w € R?| w? + w3 = 1}. By means
of this chart, we get a bilinear mapping

Ap : £ x{lines in€ not passing throug?} — R
with

Ap(R,1)=0, ifR=Porl=CLyorl| PR,

Ap(R,l)=1/t, if P+t(R— P)isapointon.

For every linel not passing throughP, we get a linear form\ = Ap(---,
Starting with a linear form\, we find the corresponding line By= {R | A\(R)
1}.

Since we assume tha& is not a point on any of the line§.,, BC,CA, AB,
we have well defined 1-forma := Ap(---,BC),3 = Ap(--- ,CA),y =
Ap(--- ,AB). For every pointR € £ — P, we can calculate the valuegR),
B(R), v(R) quite quickly once we know the valuegA), a(B), ...,~v(C). But
we already know that(B) = «(C') = 1and can easily calculatg A) = 1—1/p,.
Figure 1 gives an illustration of the mapping.

Becaused*, B*, C'* are the poles with respect # of the linesa = 1,8 =
1,v = 1, the pointQ* = q;A* + ¢; B* + ¢;C* has a polar lineCs(Q*) with the
equationg,; o + q; 8 + gy = 1.

1).
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C 3]
2
A ; B
0lP
3 2 -1 0 1 2 3
1

Figure 1. For the constellation shown here, we have(A, BC) = 0,
Ap(B,CA)=—-1,Ap(C,AB) =1/3.

We can now calculate the coordinates of the points of inttise of this Q*-
transversal with the sidelines of the triangl& C'. For example, th€*-transversal
and the lineBC intersect ai0 : pyq; : —pcq; ) aBc. Having calculated the three
intersection points, the statements (1) and (2) of the mitipa follow immedi-
ately. a

We introduce the poinQ!”l := (¢ : --- : ---)apc, SO we can write the point
P#Q* = P/Q!] as a barycentric quotient of two points.

1.4 A first example.For Q* we choose the centroid* = X,* of the triangle
A*B*C* .2 For every finite point? not lying on any side line of the trianglé BC,
we have the equation§”! = G and P4G* = P. Of course, we like to extend
the domain of the correspondence mapping to point8 4B C and onL.,. For
Q* = G* we can get a continuous extensii* = id¢.

Before investigatingl*-correspondence for different triangle centers Q*, we
contribute some

1.5. Basic properties of)*-correspondence.

1.5.1 If we take the cevian triangle @)* with respect toA* B*C* und construct
its polar triangle with respect t6 then we get the anticevian triangle BfQ* with
respect taA BC, see Figure 2. The polar triangle of the anticevian triamgl©*
with respect toA* B*C* is the cevian triangle aPfQ* with respect taABC.

2We adopt the notatioX,, of [7] for triangle centers.
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Q*-transversal

C

Figure 2. Besides the trianglésBC andA* B*C™, the picture shows the cevian
triangle of P with respect taA* B*C™ (light green) and the anticevian triangle
of P1Q* with respect tcABC (green).

1.5.2 The polar triangle of the pedal resp. antipedal triangl@bfvith respect to
A*B*C* is the antipedal resp. pedal trianglefQ* with respect taABC.

1.5.3 If Q* is a point onB*C* different from B* andC™* then P§Q* = A.

1.5.4 SupposeQ* = (q¢; : q; : ¢;)a=B=c+ IS @ point satisfying the equation
PiQ* = G = X,, then we have)* = Q"1 = P.
In the following we denote the tripolar line @¢§* with respect toA* B*C* by

*

q .

1.5.5 In 1.2 the pointP1Q* was defined as the tripole with respect4®C of the
line £5(Q*). But we can gePfQ* as the pole of* with respect taS, as well.

1.5.6 The setPtq¢* := {PfR* | R* € ¢*} is the circumconic ofABC with
perspectoPt(Q*, so we can write

PHq* = Capc(PQ*) = Capc(P/QU).
Two examples
e Forq¢* = L+p~c+(G*) = Lo, We getPfgx = Capc(P).
o If ¢* = La-p-c+(X{yg) is the Euler line ofA*B*C*, we getPi¢* =
Capc(PiX¢,s). For special cases, see 3.1 and 3.2.

1.5.7. The polar lines with respect 8 of points onC 4+ g«c+ (Q*) agree with the
tangent lines of74pc(PEQ*). In other words: TheS-dual of C4-p+c+(Q*) IS
Japc(PIQ).
Example The S-dual of the Steiner circumellips&s«g«c+ (G*) is Japc(P).
As special cases we get
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e for P = G the Steiner inellipse with centér ,

e for P = Ge (Gergonne point) the incircle with centéincenter),

e for P = Na (Nagel point) the Mandart inellipse with centéf (Mitten-
punkt),

e for P = K (symmedian point) the Brocard inellipse with centéy.

1.5.8 TheS-dual of the inconic7 4« p=c+ (Q*) of A* B*C* with perspecto)* is

Capc(PHQ").
Examples
o Ja-prc+(K*)isthe Brocard inellipse ol * B*C*. ItsS-dual isCspc (P1K™),
with PEK* = (1/(pa(pyc® + 2pppeSa + p2b®)) -+ : -+ ) apc. Forthe

special caseé”® = O, we getP{K* = K; the S-dual of the Brocard inel-
lipse of A* B*C* is the circumcircle ofABC.
e TheS-dual of the Steiner inellipsg 4+ g+c+(G*) is Capc(P). As special

cases we get

— the circumellipse which is shown in Figure 5 fBr= 1,

— the Steiner circumellipse faf = G,

— the circumcircle forP = K,

— the Kiepert hyperbola foP = X593,

— the Jerabek hyperbola fét = Xg,47.

1.6. The I*-correspondence (first part)As mentioned above, we are mainly in-
terested in the special case®@f being a triangle center oi* B*C*. For further
definitions we orient ourselves on the mappiig— P#l* becausd™ is the most
important weak center oft* B*C*, and it is a center for which the anticevians
agree with extraversionsl* = I*, 7 =0, a, b, c.

(d(P, A)A|pg| : --- : ---) are the homogeneous barycentric coordinates* of
with respect tod* B*C* and of I'”! with respect taABC. It can be easily seen
that the mapping~ — 9ABC — E, P s P/IPl = (sgnp,)d(P, B)d(P,C) :

: ---)ABC, cannot be extended to a continuous mapping Wlth dorfiain-
{A B ,C'}. Butif we introduce the point

TR0 = (aP:bP:c )ABC

= (Sgn(pa)a” : sgn(py)b™ : sgN(pe)c”) aBc
= (pad(P, A) :pbd(P, B) :pcd(P, C))ABC

and its anticeviang["? := (—a” : b” : ¢P)apc, - , all the mappingss™ —
{A,B,C} — E,P — P/IIP’T = (P$I*)", 7 = 0,a,b, ¢, are continuous. We
get(P4I*)° = (d(P,B)d(P,C) : --- : --- ) apc, Which is a point of type 0, and

the points(P4I*)", T = a, b, ¢, are the anticevians ¢P#7*)°.

We can see here that the same way the weak triangle cEntames in four
versions (a main centdp and its three mateg,, I, 1.), I*-correspondence splits
into four parts.

For P € {A, B,C} we have the equationg?t/*)” = P, 7 = 0,a,b,c; the
vertices are fixed points of all four-correspondences.
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Let us suppose now that the poifis a point onC,. Since we havéimp . p(a® :
bR . cB) = limp_p(pad(R, A) : pyd(R, B) : pd(R;C))) = (pa : P : Pe)y WE
put (af : b : cP) == (pa : pp : p.) and definel 170 .= (a? : b7 : P 4pc, - -
We get(PtI*)" := P/IP7 = .G, 7 = 0,a,b,c.

Conclusion All four mappingsé~ — {A,B,C} — &, P — (P{I*)", 7 =
0,a,b, c, can be extended to continuous mappiéigs: £.

1.6.1 Special cases.
o P=1=X;:(I{I*)° = X174 (Yff-center of congruence).
e P =G =Xy: (GiI") = (1/V202 +2c2 —a? : -+ : ---)apc =
VX508
e P =0 = X3, and suppos@ is of typer: (OfI*)” = .G.
e P = H = X4, and supposé/ is of typer: (H{I*)" = ; X5q.
o (LoofI*)™ = .G. (More accurately, we should writéL..t/*)” = {;G}.)

1.7. The Definition of)*-correspondence for other centers4fB*C*.

Let Q" = (¢} : ¢; : ¢;)a+B=c~ be any triangle center of*B*C* and letf* be a
barycentric center function, homogeneous in its argumevith

QF = ((f*(a*:b* ) f*(b*: ¢ a®): f*(c* 1 a* 1 0%))aspc=.

We take the definition ofa” : b” : ¢') from the last subsection, introduce the
points

QPO = (f (@ : P cP) o frF :cP a2 (P a? : bP)) Ao,

QPal .= (f*(=af 6P : Py o 2P P e —aP) : f5 (P o —al b)) aBce,

etc
and put(P$Q*)™ := P/Q!"™), 7 =0,a,b,c.

The Q*-correspondentPtQ*)” of P is well defined if and only if at least one
of the three coordinates in the definition is not zero. We tiettte set of point$’
where all the point§ P4Q*)", 7 = 0, a, b, ¢, are defined by do(d)*).

The mappingg- - - Q™)™ : dom(Q*) — &, 7 = 0, a, b, ¢, are continuous.

If @* is a strong center ofi* B*C™* then for every point? in dom(Q*) the set
{(P$Q*)" | 7 = 0,a,b,c} consists of only one poinf4Q*.

Examples

1.7.1 Taking P = H, we have(a” : b" : ¢P) = (a : b : ¢). So we get
THO — 1 G0 — gH] = ¢, o0 = OlH] = O, ... (see also 3.2.)

e}

1.7.2 Let P be a point onL,,. We getP{G* = P, PiO* = PHH* = G.
The pointsG*, O*, H* are points on the Euler line of the (degenerate) triangle
A*B*C*. If @* is any point on this linePtQ* is a point on the circumconic of
ABC throughG and P. The perspector of this conic Bf( Xg4s)*.

Two special cases
e TakingP = X3 (Euler infinity point), we geIXéﬁ = Xpag andPiX(g =

X30/Xe4s-
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e If Pisone of the two infinite points of the Kiepert hyperbGlasc (Xs23),
we getPiXgs = Xs23.

1.7.3 Ifwe takeQ* = K* = X4*, we get

o KIPl = (p2(cp?+2Sapppe +*p2) -1+ )anc.
o PK* = (ppp. (P, B)d*(P,C) -+ :-+) apc
= (1/(pa(c2pb2 + 25 apppe + b2pc2)) Do )ABC-

o domK*) =€ —{A,B,C}.
Special cases

KW = M = Xy, ItK* = Ge = X7.

K16 = X597 GEK* = X05.

KOl = X520 O8K* = Xogs = G/O.

KW = K; HEK* = Xog4.

KK = X543 KEK* = Xs0s.

If P is not a point on a sideline cABC then we havelim; .o(A +

tP) /KAl = A,

e If Pis a point on a sideline ol BC' but not a triangle vertex theRf K *
is the vertex opposite this sideline. For a palhbn AB, different from
A, we therefore gelim; .o(A + tP)/ KA+ = C. This shows thafs *-
correspondenceik™ : dom(K*) — &, P — P#K*, does not have any
extension that is continuous i, B, C.

o L 8K* = Capc(G) (Steiner circumellipse).

If instead of P we take its isogonal conjugaf€/ P, we get
KIK/P] — (a(c*p2 +2Sapppe+b2p2) : -+ 1 -+ ) apc and(K/P){K* = P{K*.

1.7.4 We takeQ* = Ge* = X7 and get

(PtGe*) = (pa(—a® + b7 + ) pylal — b7 + ) 2 pe(af + 07 = cP)),
(PiGe™)* = (pa(ap +bF + CP) :pb(—ap — P+ CP) :pc(—aP +bF — CP)),

A careful analysis shows that ddtre* ) = £.
Special cases

e The verticesA, B, C are fixed points of all foutie*-correspondences.
olf P=(0:¢t:1—t)apcisapointonBC andt(1 —t) > 0 then
(2t(1 —t)a:tg(t): (1 —t)g(t))apc for T =0,
(P8Ge*)T = ¢ (=2t(1 — t)a: tg(t) : (1 —t)g(t))apc for r = a,
(0:—=t:1—t)apc forT =1b,c,
where the polynomial function is defined by

g(t) == /—t(1 —t)a? + (1 — t)b% + tc2.
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olf P=(0:¢t:1—t)apcisapointonBC andt(1 —t) < 0 then
(0:=t:1—t)apcforT=0,a
(P1Ge") = { (20tl(1 = t)a: tg(t) : (1 — £)g(t)) apc for T = b,
(=20t|(L —=t)a :tg(t) : (1 —t)g(t))apc for r = c.

e ForapointP = (p, : pp : Pc) ABc ON Lo, WE get
(PiGe*)? = (p2 : p? : p?)apc (this is a point on the Steiner inellipse of
ABC),
(PiGe*)* = (0:1:1)apc €tc

1.8 Fixed points of)*-correspondence.

(A) Fixed points on a sideline o BC'. For different centers)* the situation
can be quite different: Fop* = H* (see [7]),Q* = I* (see 1.6)Q* = Ge*
(see 1.7.3), the vertices afBC' are the only edgepoints which are fixed points of
the correspondence mapping. (In case of the weak céjiter I*, the vertices
are fixed points for all four correspondendes- t/*)", 7 = 0, a, b, c.) The corre-
spondence af)* = (X119)* = (a?/(b?> —c?) : --- : - ) apc has exactly six fixed
points on the sidelines, the vertices4BC' and the vertices of the orthic triangle.
For some centers, as f@)* = (X7z6)* = G*/K*, every point on a sideline of
ABC'is a fixed point. In contrasti*-correspondence has no proper fixed point
on a sideline oABC (see 1.7.2).

(B) Fixed points not lying on a sideline of BC'. If we assumeP is a finite
point not lying on any side line of the triangléBC, the equationP§Q* = P is
true if and only ifQ* = G* or A*B*C"* is equilateral. A* B*C* is equilateral if
and only if P is one of the two Fermat points3, X 4.

Suppose thaf' is a Fermat point and th&* is a weak center ofi* B*C*. If F'
is of type 0 then( F'1Q*)° = F, (F1Q*)® is a point on the lineAF, etc If P = F
is of typea then ((F1Q*)® = F and(F1Q*) is a point on the linedF, (F1Q*)°
is a point on the linéB F', etc. We give a proof of the last statement:Af= F'is of
typea then,Q* is identical with the centez* of the equilateral trianglel* B*C*
and the pointgQ*, ,Q*, .Q* lie on the linesG* A*, G* B*, G*C*, respectively.
The polar line of,Q* with respect taS passes through the pole 6f A* which is
the point(0 : —pp : pe)apc. Therefore,(F1Q*)Y is a point on the line through
Aand(0 : p, : p.)apc. But this line also goes through = F. The same way
follows that(F4Q*), (F1Q*)° are points orBF resp.CF.

1.9 Points P with an isosceles trianglel* B*C*. We assume that* B*C* is an
isosceles triangle with* = ¢*. The last equation leads to the following condition
for the exact coordinate®., py, p.) of the pointP:

Pi((py — 1) + pe(b® = ) = p2((pe — 1)b* + py(c® — a?)).

The locus of pointsP satisfying the last equation is (after completion) a cubic
which passes through the points B, C', A being a dubble point. We denote
this algebraic curve (a strophoide) i A4; B, C). SinceA is a dubble point of
this curve, one can find a rational parametrisation fokit.A; B, C') also passes
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through the verteXd 4 of the orthic triangle 4 H g Hc, the two Fermat points and
the infinite point(—2 : 1 : 1) 4p¢ on the triangle mediad G (see Figure 3).

L

Figure 3. Here are shown the cubik¥A; B,C), K(B;C, A), K(C; A, B).
See 1.9 for a definition of these curves.

1.10 The image of the circumcircle gt BC under@*-correspondencelf P is a
point on this circle but not a triangle vertex theBC and A* B*C* are similar
triangles:a* : b* : ¢* = a : b : c. Therefore, ifQ* is a center ofdA* B*C* with a

center functionf*, we getQ”) = (f*(a,b,¢) : --- : --- ) apc and P§Q* is a point
on the circumconi€ 4z (K/QU).
Examples.

o Capc(K)IG* := {P/G| P € Capc(K)} =Capc(K/G) = Capc(K).

° CABC(K)ﬁI;—k = CABC(K/IT) = CABC(IT) forr = 0,a, b,C (see Figure
4)

o Capc(K)HO* = Capc(K/O) = Capc(H).

e Capo(K)EH" = Capc(K/H) = Capc(0), see [7].

o Ifwe put PEK* = Pfor P = A, B,C (see 1.7.3) the@ pc (Kt K* =
Capc(G).

We also look at the isotomic conjugates of these circumsonic

o {GP1/P | P € Capo(K)}= Lapc(K).

o {(I7V/P| P eCapc(KN=Lapc(l,),m =0,a,b,c.

o {O/P| P e Capc(K)}=Lapc(H).

o {HP//P| P €Capc(K)}= ﬁABC( ).

o {KIPl/P| P € Capo(K)}= Lo
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Figure 4. This shows the circumcircle (grey) and the cubi¢&™, O) (cyan)
andV (K™, H) (red) for the triangleA BC', see 1.11.1.

1.11 The preimage unde&p*-correspondence@*-associates.The mappingG* :
£ — £ is bijective. But in general()*-correspondence is neither injective nor
surjective. Gibert proved (see [3]) that f@* = H* there are up to two points
having the same correspondenfoints having the same correspondent he calls
associatesWe shall take this terminus here. As we could see in 1.7.8jrd P’ is
a K*-associate of its isogonal conjugate. There are celémsith more than two
Q*-associatesp* = O* for example (see in 2.3.4 Y)*-correspondence doesn't
have to be surjective, either. For example,@r= K* there is no poinfPfQ* on
a sideline of the trianglel BC' except for the vertices of this triangle.

We now describe a way of constructing the preimage of a pBint (r, :
Ty 1 Te)Aapc under@*-correspondence. We want to determine all poifitsiith
P#Q* = R and omit all the special casé®{Q*)", 7 = 0,a,b,c. (These can be
easily adapted.)

We start with a pointP? and choose a poinD* which is a triangle center of
A*B*C* with barycentric center functiofi*(a*, b*, ¢*). The@*-transversal of,
Ls(Q*), is the set of point$z : y : 2) 4 Satisfying the equation

chclicpbpcf*(a*a b*7 C*) x =0.

Given a pointT’, we denote the set of poinf8 with T a point onLs(Q*) by
V(Q*,T). If T is not an edgepoint, the set d6@1) N V(Q*,T) is the preimage
of the circumconicCapc(T). f T = (0 : ¢t : 1 —1t)apc, t(1 —t) # 0,is a

SGibert proved in fact that - using proper multiplicity - tleeare exactly two real or two complex
points having the same correspondent.
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point on BC but not a vertex then dof®*) N V(Q*, T') is the preimage of the line
through the pointsi and(0 : ¢ : ¢t — 1) 4. Finally, if T'is a triangle vertex then
dom(Q*) N V(Q*,T) is the preimage of this vertex.

Now we can present the preimage of a pdihtvhich is not a vertex o1 BC'".
It is the setV(Q*, T1) N V(Q*, T>) N dom(Q*) for any two different pointd, T
on EABC(R)-

1.11.1 Example We want to determine the preimage of the pofiis, the tripole

of the Euler line, undek *-correspondence. So we choose two different points on
L apc(Xess), G andO for instance. For every poirit, the setV(K™*,T') is a cubic
curve. Forl" = G, this cubic is the union of the line at infinity and the circurole

of ABC. We now look atV(K™*, O). There is exactly one infinite point, let us say
Py, on this curve, so this point is mapped X453 by K*-correspondence. In
general,V(K*, O) and the circumcircle have four common points. Three of them
are the pointsA, B, C; the fourth common point is a the finite poinfe,, which

is mapped taXg45 by K*-correspondence. For an isosceles but not equilateral
triangle ABC, the pointXg,s agrees with one of the edgels B, C, and so does
the pointP,. See Figure 4 for a picture. For more examples, see 2.1.4.8nt 2

1.12 Pivotal curves.In [3] Gibert introduces algebraic curves consisting of all
points P for which the line throughP and its orthocorresponde®f H* passes
through a given poink. Such a curve Gibert caltsthopivotal the pointR being
the orthopivot We transfer Gibert's concept to other correspondenceserGa
point R = (ry : 7 : Tc) ABC, the set of pointd” such that the point&, P, P1Q*
are collinear is

{P = (pa Py pc)ABC € dOHl(Q*) | Ecyclic'raq:;(qz< - q:)pbpc =0 }

We call this setQ*-pivotal set with pivot pointR. For a triangle cente)* the
coordinatesy;, g, ¢; depend onP, of course.

For a strong centef)*, the Q*-pivotal set is an open set (with respect to the
Zariski topology) of an algebraic curve which we denotefy)*, R). For most
strong centers, these curves are of high degeed) @nd rather complicated. Thus,
we do not go into an analysis of these. But for all of the cuRéQ*, R), one can
state that ifR is not an edgepoint, they pass through the vertiteB, C, the two
Fermat points and the poifit. Gibert gives a detailed description of the orthopiv-
otal curvesP(H*, R). These are cubics. The question arises: What are the other
pivotal curves of degree 3? The answer is: There aren't 8mgof: If P(Q*, R)
has degree 3 then the correspondent cefiffemust have a (homogeneous and
bisymmetric) barycentric centerfunctigfi(a*, b*, c*) = 1/(ma*? +n(b*2 +c*?))
with two different real numbers, m. (Fori < 100 there are just three such cen-
ters X;, namely, Xy, X7¢ and Xg3.) For all of these centei@* one getsP(Q*, R)
= P(H*, R) because the pointB, P1Q*, P4H* are always collinear, as one can
verify by simple calculation.

For a weak centef)*, the set of points? so that for some- € {0, a,b, ¢} the
three pointsP, (P1Q*)” and R are collinear is an open set of an algebraic curve
which we denote byP(Q*, R). In 3.1 we present a picture &f(1*, R).
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2. Q*-correspondence for “classical” triangle centers)*.

2.1 I*-correspondence (second part).

2.1.1 Geometric construction of the image and preimage points.e&oh point
P € & — {A, B,C} we define six point®4, P4, Pg, Py, Pc, P by: Py is the
intersection ofBC' with the internal bisector of the angléBPC, and P, is the
intersection ofBC' with the external bisector of this angle. Similarly we define
points P, Py, Pc, Py

P. Yiu [10] shows the following properties of these six psiniThe triangle
P, PpPc is the cevian triangle of some point that lies inside thentsia and that
we callpR. The tripolar line 4pc (o R) of o R intersects the side ling3C, CA, AB
in P,, Py, Py, respectivly. The point,, Pz, Pc are collinear with the line
Lapc(aR), the pointsPg ', Po, P4 collinear with the lineL spc(,R) and the
pointsPC',PA,PB collinear with the line 4pc(.R). Further more, Yiu shows:
The circles with diameterB4 P, , Ps Py, Pc Py, - they are callegieneralized Apol-
lonian circles[9], [10] 4 - have their centers on the li@pc(R?), R* = (r2 :
r? : r2)apc, and they are in the same pencil of circles through the pBiand
its imageP’ under the reflection in the circumcircle dfBC'. (If P is a point on
the circumcircle then all three circles are mutually tarigereach other and is
the point of tangency.)

lc

Figure 5.

“The original Apollonian circles we get faP = I.
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SincegR = (d(P,B)d(P,C) : --- : ---)apc, this point agrees witliP47)",
and ;R agrees with(P{I)” for 7 = a,b,c. P’ is theI*-associate of°. A rou-
tine calculation gives its coordinates® = (p2a?b%c? + pappa’c®(a® — c?) +
papeab®(a® — b2) + pypeat - (a®> — b2 —c2) -+ - ape.

Question: Given a poink, what is the numben  of (real) pointsP with R =
(PgI*)™ for somer € {0,a,b,c}? In[10] Yiu gives the following answer: The
numbem is 2, 1, or 0 according as the lin€ 4 g (R?) intersects the circumcircle
of ABC in 0, 1, or 2 points. Additionally, one could ask for a partition &f
illustrating the domains of pointB with np = 0 resp. 1 resp. 2. The set of points
R with ng = 1 is the union of circumconic§ spc(I;), ™ = 0,a,b, c. The set of
points R with ng = 2 is the union of the open green domains shown in Figure
5. We also can get a patrtition of the plane by lines showingitiveains of points
R~!' = G/Rwithng = 0,1, 2 (see Figure 6).

Figure 6.

The set of pointsR~! with nr = 1 is the union of linesC 45c(I;). The set
of points R~! with nz = 2 is the union of the green areas. This way we can link
Yiu’s [10] and Weaver’s [9] work to a problem that was put antied by Bottema
in [1]: Given a triplet(r,, ry, r.) Of real numbers, what is the number of poirfits
satisfying(ry : rp : 1) = (d(P, A) : d(P, B) : d(P,C))? Identifying(rq : 75 : 7¢)
with the pointR = (r, : 1, : 7.) aBc, Bottema’s answer can be formulated as
follows: The number of points depends o(fd BC),d(R,CA) and dR, AB)
being the sidelengths of a triangle (two points), a degdéedrangle (one point) or
not a triangle (zero points).

Given a pointR = (14,74, 7c) aApc Of typer, the pointsP and P’ with (P§I*)" =
(P'$I*)™ = R have coordinates
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(0> + A + (12 — r2)Vat + b+t — 2a2b2 — 26%¢2 — 2202
£ ((P+a? — 1)y et — 22(r2 4 12) + (12 — r2)?
+(@®+ 02 = A =202 (r2 +r2) + (r2 —r2)?

i) ABC.
We get real values for point® with np > 1.

2.1.2 There is a direct connection betweéttrcorrespondence and orthocorres-
pondence: Thd*-correspondenf’/* agrees with the orthocorrespondent rof
for the cevian triangle oPf/*. This is a consequence of the well known fact that
the orthocenteiH* of the triangleA* B*C* is the incenter of its orthic triangle
which we denote by\*. Since the tripolar of any point with respect to a given
triangle agrees with the tripolar of this point with resperits cevian triangle, we
have L g-p+c+(H*) = La~(H*). The polar triangles ofA* B*C* and A* with
respect taS are ABC and the cevian triangle aP4l*, respectivly.
Consequence$l) P’ is the orthoassociate @f with respect to the cevian triangle
of P#I*.

(2) The circumcircle oA BC'is identical with the polar circle of the cevian triangle
of P#I*.

(3) The orthocorrespondeiitf H* of P with respect taA BC agrees with thd™*-
correspondent aP for the anticevian triangle aP{H*.

(4) The polar circle ofABC is identical with the circumcircle of the anticevian
triangle of PH*.

2.1.3 The image of the sideline$J, _, , , .(AB#I*)" is an analytic curve which
is shown in Figure 7.

Figure 7. The red curve is the image of the sidelih® under the mappings
(I")7, 7=0,a,b,c
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2.1.4 The preimage of., under I'*-correspondenceA point P has the image
point (P§I*)* on the line of infinity if and only if1/d(P,A) = 1/d(P,B) +
1/d(P,C). The set of pointsP satisfying the last equation is an analytic curve
(an oval) O, which is invariant under inversion with respect to the amncircle
Capc(K). The union of the three oval®,, T = a,b,¢, is the algebraic curve
{P | Seyeic A3(P, B)d*(P, C)(d*(P, B)d*(P,C)—2d*(P, A)) = 0} (see Figure
8).

Figure 8. The set of point® with (P$Q*)™ a point onL, 7 = a,b, ¢, is an
algebraic curve which is the union of the three (red) ovals.

2.1.5 TheS-duals of the incircle and the excircles of the triangléB*C*.
Because of the strong connection between the incenter aniheircle and the
excenters and their correspondent excircles, we take flbdk at the incircle
and the excircles ofi* B*C*, Ju«p+c+(Gel), 7 = 0,a,b,c, and theirS-duals,
Capc((PtGe*)™), T = 0,a,b,c. The pointP is a focus of each of these circum-
conics, and the line§ 4 po (P4I*)7), T = a, b, ¢, are the corresponding directrices.
Figure 9 shows the situation fét = O.

2.1.6 I*-pivotal curves.We take the notatio?(Q*, R) from 1.11. For the weak
centerQ* = I*, this set is an algebraic curve, given by the equation

Ecyclic (dgdl%(xrb - yra)4 - 2d¢21dbdc($rb - yra)z(l"rc - Zra)z) =0,
with d, := c¢?y? + 2yzS4 + b%22, etc For a picture, see Figure 10.

2.2 G*-correspondenceln 1.4 we already saw tha@{G* = P for every pointP
in the triangle plane.
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S

Figure 9. This shows the (pink) circumcirdk pc ((01Ge:)°) = Capc(K)
and the (red) circumconiaS'agc ((OtGe*)™), T = a,b, c. The three (green)
linesLapc((O4I*)7), T = a,b, ¢, are the sidelines of the medial triangle.

Figure 10. Besides the (red) algebraic cuR€él*, O), the picture shows the
lines AO, BO, CO (green). Without any proof, we state that all (ten) singular
points of P(I*, O) lie on these lines. Six singular points are pointstohBC.
And for eachr = 0, a, b, ¢, one is of typer.
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2.3 O*-correspondence.

2.3.1 Calculation of domQ*). We have

Ol = ((pppe(V*p? + 204peSa + D3 (—D2SA + PapbSp + PapeSc + pypea®)
- )aso

First, we look at the set§(p, : py : pe)asc | b*p? + 2pypeSa + ¢?pf = 0} and
{(pa : pb : Pe)aBc | — P2SA + PaPbSB + PapeSc + Popea® = 0}. The first set
contains one real point, the vertek The second set is the circle with diameter
BC'. From this it follows that the first coordinate O™ is zero if and only ifP

is a point of the lineBC or a point on one of the circles with diameté3 resp.
AC'. Thisimplies: doniO*) = —{A,B,C,Hs,Hp, Hc}, whereH 4, Hg, Hc
are the vertices of the orthic triangle aBC.

2.3.2 Special imagesAs special cases fap!”! and PtO* we get
o for P=1:0U =T andItO* = G,
o for P =G : 0l = ((a® — 20® — 2¢*) (500 —b%> — ) -~ : -~ ) aBC
= Xi384/X1383 andGHO™ = X383/ X1384,
eforP=0: O[O} = Xq147 andOttO* = O/X1147,
o for P = H : O] = O and H{O* = Xy950.

2.3.3 The image of the sidelinest P = (0 : ¢t : 1 —¢) is a point onBC,
different from B, C and H 4, then P1O* = (t(t — 1)(a?(2t — 1) — b? + 2) :
—2t(a?t(t — 1) + b2 (1 —t) + c2t) : 2(1 — t)(a®t(t — 1) + b*(1 — t) + ct)) aBc-
The infinite point onBC' is mapped to the poin&. The image seBCHO* can be
extended to a connected analytic curve. This curve we déayat BC, O*). See
Figure 11 for a picture.

Figure 11. This picture shows the curvdsBC, O™) (green),A(C' A, O*) (pur-
ple) andA(AB, O*) (red).
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2.3.4 Connection betweef@*- and H*-correspondenceThe pointO* of the tri-
angle A* B*C* is identical with the orthocenter of the pedal triangleCfwhich
is the cevian triangle ofr*. Therefore, th&*-transversal ofP agrees with ortho-
transversal ofP for the anticevian triangle aP = P4{G* (with respect taA BC').

2.3.5 TheS-dual of the circumcircle of the triangld* B*C*. The S-dual of the
circumcircleC 4« g=c+ (K*) is the conic7apc(P#K*). The foci of this conic are
P and its isogonal conjugat&/P. The line L apc(P$O*) is the polar line ofP
with respect tQ74pc (P$K™), soitis a directrix of the conic.

Two examples:

e ForP = O, Japc(PtK™) is Brocard inellipse ofABC.

e ForP =1,,7=0,a,b,c, we getPfO* = G. Therefore,L 4pc(P1O*)
is the line at infinity, and the conigapc(P4K™) is a circle. Forr = 0
it is the incircle, forr = a, b, c the corresponding excircle of BC. O*-
correspondence maps the poifts 7 = 0, a, b, ¢, to G. Let us determine
the preimage of7 underfO*. Obviously, the incenter and the excenters
are the only finite points that are mappedddy #O*. But the equation
PtO* = G is also correct for every point ofl,, as can be easily checked.

2.3.6 The preimage of a point undér*-correspondenceThere are several pos-
sibilities to determine the preimage of a poltunderO*-correspondence. We
describe two. Afterwards, we determine the preimagg of

Figure 12. This "insect” consists of the triangdeBC, the (red) Neuberg cubic,
the (green) quarti®’(O*, Xe47) and the (cyan) quarti’(O*, Xes0). For the
triangle shown here, one real point is (and four more compdésts are) mapped
to H by O*-correspondence.
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(A) First, we determine the preimages Gfand H and the associates of the
Gibert point X714 using the way that was described in 1.11. We start with the
quarticV(O*, Xs523), given by the equation

Ecyclic(c2y2 + 2yzS4 + b2z2)(x(—mSA +ySp + zS¢c) + yz<12)(b2 — c2) =0.

Xgo3 = (b — 2 :--- 1 ---)apc is a point onL, (the orthopoint of the Euler
line). The quartic splits into the line at infinity and a cubighich is called the
Neuberg cubic and we denote Ky;. SinceL 40" = G, §O* maps the Neuberg
cubic onto the Kiepert hyperbola.

e There are five points ok 5 which are mapped t& by O*-correspondence,
the in- and excenters and the Euler infinity pakyy.

e The orthocenterH is the fourth (the non trivial) common point of the
Kiepert hyperbola and the Jarabek hyperb@la;c(Xs47). Hence, the
preimage ofH underO*-correspondence is the intersectionkof; with
the quarticV(O*, Xg47). See Figure 12.

e The orthocenter is the fourth common point of the Kiepert hyperbola
and the Feuerbach hyperbdlazc(Xes50). Therefore, we can get the
preimage ofH underO*- correspondence as the intersection of the Neu-
berg cubic with the quarti¥’(O*, Xg50). See Figure 12.

x1141
C

Figure 13. For an obtuse triangeBC, the quarticV(O*, H) splits into two

circles, the circum circle (green) and the polar circle (yaf the triangle. The
red curve is the Neuberg cubic. For the triangle presenteg tigere are four
O*-associates aK 1141, all lying on the polar circle.

e Apart from A, B, C, the Gibert pointX;14; is the only common point of
the circumcircle and the Neuberg culiig;, see [3]. The)*-correspondence
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maps the circumcircle to the circumcorigzc(H) (see 1.10) and the
Neuberg cubic t&€ 4pc(X523). Therefore,X114180* is the fourth com-
mon point ofCapc(H) andCapc(Xs23). The line £Lapco(X114180%) is
a line troughH, perpendicular to the Euler line. (The poift 4140 is
not in the current edition of [7].) The quartiy(O*, H) is the union of the
circumcircle and the algebraic sfp, : -+ : -+ )apc|Sap? + Sppi +
Scp? = 0}. This set is the polar circle ol BC (the circle with center
H and radiusp = +/—S4555¢/(\/8S) if ABC is obtuse, the setH}
if ABC' is right-angled, and the empty set (set without any realtpdin
ABC is acute. See Figure 13.

Another exampleThe preimage of the vertice$, B, C. The quartic/(Q*, A)
consists of the circle with diameté&?C' and the pointA. Therefore, the preimage
of A consists of all points lying on the circle with diamefe€' but not on a sideline
of ABC.

tripolar line of R

Figure 14. This shows the curve§(A; Rs, Rc) (purple), K(B; Rc, Ra)
(green) andC(C; Ra, R4) (light blue) and the (black) lin€s(R). For the tri-
angle ABC drawn here, the preimage & underO*-correspondence consists
of three (real and two nonreal/complex) points. See 2B)6.(

(B) A second way to determine the preimage of a point. Theolaipline
Lapc(R) of a point R intersects the triangle lineBC,CA, ABin Ry := (0 :
i Tc)ABC , Rp := (Ta :0: _Tc)ABC , Ro = (—Ta Tyt O)ABC- respec-
tivly. Supposing that a poinP is neither an edge-point nor a point on the line of
infinity, this point P can be in the preimage @t only if the corresponding polar
triangle B*C*Q* of R Rc A is an isosceles triangle with@*, B*) = d(Q*, C*).
Here,Q* = (pa/ra : --- : ---)apc is the pole ofL 4pc(R) with respect taS.
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The locus of pointsP satisfying the last equation is (after completion) the cubi
K(A; Rp, Rc). See 1.9 for a definition of the cubiéSand Figure 14 for a picture.
(C) The preimage of .. The pointsP whose coordinates satisfy the equation
chclic pa/[(a*z(b*z + 2 — a*2)] =0, a" =a" (paapbapc)a T
are points on one of the sidelines4BC or points on an octic which passes twice
through each of the verticed4, B, C' and also passes through the vertices of the
orthic triangle, see Figure 15.

C
/

A ~‘\B

/

Figure 15. The preimage &.. underfO* consists of all points of dof®™)
lying on the (red) octic, see 2.3.6.(C).

2.4. H*-correspondenceFor a nearly complete analysis of orthocorrespondence,
see [3] and [4].

2.5, N*-correspondence.

2.5.1 Calculation of domiy*). NP] = (a*2(b*2 4 ) — (b2 — ¢2)?) -

“)aBc, a* = a*(pa, Pb, Pe), - - - - The algebraic s€i(p, : py : pc)ABC | a*z(b*2+
c*2) — (b2 — ¢2)?) = 0} spllts into the lineBC and the quartid’(N*, A) which
passes through all the vertices 48B3 C' (A being a dubble point) and the vertices
Hp and H¢ of the orthic triangle.Hg and H¢ are the only intersection points of
V(N*, A) with AC resp. AB. The two quartic§’(N*, B) andV(N*, C) meet at
six points, the verticeg, B, C, the pointH 4 and two more points, one of type
and one of type:, see Figure 15. If the triangld BC is neither perpendicular nor
equilateral, we have doftv*) = £— 12 points.

Special images

o NUI = Xy, IEN* = Xg.
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\

Figure 16. The picture shows the curwegN ™, A) (light blue), V(N*, B) (pur-
ple) andV(N*, C) (green).

OiN* = (1/(Sa((a®>(b® + c2) — (b + ¢)?(b — ¢)?)? — 2a*b%c?) : - :

ce )ABC-
o GEN* = (1/(2a* — 18b*c? + 7Sa(b? +c*)?) -+t -+ )apc.
o Nl = H H4{N* = H/N = Xoz5.
o Lo iN* =G.

e tN* maps a pointP = (0 : p, : pe)apc, ppe # 0 onto the point
(Pope((py — pe)a® — (0* = ¢*)) = pyfa(Pa; DbsDe) : Defa(Pay Py, Pe))ane,
With fa(pa: po.pe) = ((pf + p2)a’ — 2(pb? + pec?) — (b° — 2)?).

2.5.2 TheS-dual of the nine-point-circle of the triangld* B*C*. We start from
the well known fact that for any two different poinf3 and Q in the plane of a
triangle A, both not lying ondA, there exists a conic which passes through the
vertices of the cevian triangles &f and ofQ, see [5] (for instance). This conic is
uniquely determined by’ and@ and we denote it bga (P, Q).

Of course, the dual of this statement is also true: Given tifferdnt pointsP
and@, both not lying o9 A, there exists exactly one conic which is an inconic of
the anticevian triangles d? and of@. This conic we denote hya (P, Q). We now
specialize in the nine-point-circtes« g« o+ (G*, H*) and itsS-dual Ja po (P, P1H™).
Figure 17 shows a picture of this conic.
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Figure 17. For the triangld BC and the pointP, the picture shows the (purple)
conic Jasc (P, PEH™), which is an inconic of the (red) anticevian triangle of
P#G* = P and of the (green) anticevian triangle B H*. The pointP is a
focus of this conic, and the purple line is the correspondiimgctrix which is
also the tripolar line of the poinP N ™.

3. Description of the algebraic setPfig* for ¢* = G*O*.

We refer to results given in 1.5.5 and look at two special €é@eP, P = I and
P=H.

3.1 P=1. WetakeP = I. LetG*O* = L 4+p~c~(X¢s5) be the Euler line of the
triangle A*B*C*. The linesG*O* = L -p+c+(X{yz) andIO = Lapc(Xes1)
are identical lines because we ha¥¢ = I and the orthopointX;,, of G*O*
agrees with the orthopoinks,3 of 7O. The S-dual of the lineG*O* is the
point X513, so the linesCs(Q*) with @* a point onG*O* form a pencil through
X513. The S-dual of O* is the line at infinity, and for a point o*O*, dif-
ferent fromO*, the S-dual Ls(Q*) is perpendicular tdO. As a special case
we have the lineCs(X35,) which passes through = O*. Because of the equa-
tion d(O*, N*) = d(N*, H*), the quadrupletO*, H*; N*, X3,) is an harmonic
range of points. ThereforéLs(X3,), Ls(N*); Ls(H*), Ls(O*)) is an harmonic
range of lines, and we get(l Ls(H*)) = d(Ls(H*), Ls(N*)). We also have
an harmonic rang&O*, N*; G*, H*) which implies that the quadrupléLs(H™*),
Ls(G¥); Ls(N*), Ls(O*)) is harmonic and we have equal distances between the
linesLs(H™), Ls(N*) and the linesLs(N*), Ls(G*). After all, we involve the
DeLongchamps poinL. Because of the harmonic rang&*, L*; O*, X3,), we
have equal distances between the lidgg H*), Ls(X3,) and the lineLs(X3,),
Ls(L*). The constellation of these lines is shown in Figure 18.

10 intersects

o Ls(H™*)in X319 (Bevan-Schroder-Point, midpoint éfand X3¢ , see [6],
(71, [8],

e Ls(N*)in X3 (inverse in circumcircle of the incenter; midpoint band
Xusa, se€ [7]),

o Ls(G*)in X1155 (Schroder-Point; midpoint oK s and X4s4 and inter-
section ofL 4pc (1) with IO, see [6], [7]),
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Ls(X549%) | Ls(N*) | Ls(Xa0)
Ls(G") | Ls(H") | Ls(l¥)

0= G*O*

5 O

I |

Figure 18. This shows the constellation of the lilks(Q*), Q* = H*, N*,
G*, L*, X30", X3,9,Incase ofP = I.

e Ls(L*)in (3a*(b+c) +2a3(b? — 13bc + ) + 4a?(—b3 + 4b%c + 4bc? —
) +2a(—b*+5b3c— 12022 +-5bc® — ) + (b+c)(b—c)* - ---: -~ ) aBC,

o Ls(XZ9) In X345 (X749 is the midpoint of I¥ and O*, X345 is the re-
flection of I in X155, See [7]).

| propose to call the poini/Q the I-conjugateof (). The set ofl-conjugates
of points on/O is the circumconi@ 4pc(X513), for short: Thel-conjugate off O
is Capc(Xs13). This conic passes through the poidts= I§G* andG = I§0*,
so it is a hyperbola. It also passes through the padififg* = X57, ItN* = Xg;
andI{L* = Xy45. The center of the circumconic is the poility;5 = X§13. It
should not be too difficult (but quite a bit of work) to calciddahe center functions
of I4Q* for all known centers)* on the Euler lingg*. A few of the points/fQ*
are listed in [7], many are not, even though some of them halatively simple
center functions.

The circleS is concentric with the incircle74pc(Ge) of ABC, so we can
chooseS = Japc(Ge). In this case, the triangld* B*C* is the intouch triangle
of ABC. The linelO intersects the incircle itXs446 and inXs447, see [7]. In [7]
we also can find\3p" = X517, H* = Xg5, N* = Xg40, G* = X354 (Weill-point),
L* = X3057.

Note.ChoosingP = I for 7 € {a,b, ¢}, the Euler line of the trianglel* B*C*
is identical with the line- 10 of ABC.

3.2 P = H. We assume thatl BC' is an oblique triangle. Taking® = H, the
trianglesABC and A* B*C* are homothetic with centdd, and we havga™ : b* :
c¢*) = (a: b:c). The pointH is an inner center iABC' is acute, and it is an
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outer center ifABC is obtuse. If we put the radius fto 1/|S4S5Sc|/(V8S),
the triangleA* B*C* agrees withABC' in case of an obtuse triangléBC (S is
the polar circle ofA BC'), while for an acute triangle we gett* B*C* by reflecting
ABCin H.

We can state the following

Lemma. Real version: For every poin® in the plane of an obtuse triangle
ABC, the lineLapc(H/Q) agrees with the polar line @ with respect to the
polar circle S. For every poir@ in the plane of an acute triangléBC', one gets
the line L4pc(H/Q) by reflecting the polar line of) (with respect to the circle
S) in H. Complex version: For every poii in the plane of an oblique triangle
ABC, the line L pc(H/Q) agrees with the polar line af with respect to the
quadricSaz? 4+ Spy® + Scz? = 0.

| propose to call the point/ /@) the H-conjugate of QThe H-conjugate of the
Euler line is the Kiepert hyperbola.

The constellation of the line§s(Q*), Q* = N*,G*,0*, L*, X}, is shown in
Figure 19. The proof of this is quite similar to the proof of ttonstellation of lines
given in the previous subsection.

Ls(N*) | Ls(O%) | Ls{Xa0?)
Ls(G") | Ls(L")

GO= G*O*

Figure 19.

GO intersects
o Ls5(G*) = Lapc(H) in Xyg6 (inner Vecten point),
° ES(O*) = EABC(XQOE,Q) in X403 (X403 is the pointX36 of the orthic
triangle, see [7]),
o Ls(N*) = Lapc(Xars) in Xis6 (inverse in circumcircle ofd, see [7]),
o Ls(L*) = Lapc(K/L)in ((2a° — a*(b? + ¢?) — 4a?(b* — ¢?)? + 3(b* —
62)2(b2 + 02))/5,4 U ')ABC-
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An Elementary View on Gromov Hyperbolic Spaces

Wiladimir G. Boskoff, Lucy H. Odom, and Bogdan D. Suceava

Abstract. In the most recent decades, metric spaces have been sfratied
variety of viewpoints. One of the important characterizasi developed in the
study of distances is Gromov hyperbolicity. Our goal her®iprovide two ap-
proachable, but also intuitive examples of Gromov hypéchuoktric spaces. The
authors believe that such examples could be of interestatbers interested in
advanced Euclidean geometry; such examples are in factiidiaimtroduction
into coarse geometries. They are both elementary and fuerdaim A scholar fa-
miliar with concepts like Ptolemy’s cyclicity theorem orri@us geometric loci
in the Euclidean plane could find a familiar environment byrkireg with the
concepts presented here.

1. Motivation

The reader familiar with the advanced Euclidean geomethyalveady have a
major advantage when she/he pursues the study of spedittiemes in metric ge-
ometry. On certain topics, the insight into some ideas dgesl historically within
the triangle geometry or alongside classes of fundamemeguialities serves as a
great aid in understanding the profound phenomena in megidices. Additionally,
from a mathematical standpoint, it is of particular intétesfind connections of
advanced Euclidean geometry with other areas of mathesnatic

One of the most accessible introductions into metric gepmetD. Burago, Y.
Burago, and S. Ivanov’'s monograph [2]. In this well-writteronograph, section
8.4 (pp. 284-288) is dedicated to the study of Gromov hypertspaces. The
chapter is particularly detailed, but we feel that some nebeenentary examples
would serve the exposition well.

Our motivation in writing this note is to provide the readdians familiar with
advanced Euclidean geometry with an idea of a possible n&séapic in a more
advanced context.

2. Gromov hyperbolic spaces: definition, notations, brief gidelines among
references

Following M. Gromov's influential work [5], in recent years\&ral investiga-
tors have been interested in showing that metrics, paatilguih the area of geomet-
ric function theory, are Gromov hyperbolic (to mention hetith a few examples,

Publication Date: December 11, 2012. Communicating EdRaul Yiu.
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see [1, 7, 8, 9]). In the classical theory, an important atdsexamples of Gromov
hyperbolic spaces are the CAl)(spaces, with: < 0 (see [4], p.106). The reader’s
ultimate goal is to understand the fundamental monographwbich serves as
guidelines to many researchers and attracts major interest

For a formal definition, consider a metric spadd, d) whered satisfies the
usual definition of a distance. GiveK,Y,Z € M, the quantity(X|Y ), =
Hd(X,Z) +d(Y,Z) — d(X,Y)] is called theGromov producbf X andY" with
respect taZ. Denotea A b = min{a, b}. The metric spacél/, d) is calledGromov
hyperbolic(see Definition 8.4.6, p. 287 in [2]) if there exists some ¢an&) > 0
such that

XIY)w = (X[Z2)w A (Z]Y)w =6,

forall X, Y, W, Z € M.

Sometimes it is more convenient to study the pointwise ctaraation of Gro-
mov hyperbolic spaces. Using the fact that b = max{a, b}, the Gromov hyper-
bolic condition can be rewritten in the following way:

(M, d) is a Gromov hyperbolic metric space if there exists a constan0 such
that

d(X,Z) +d(Y,W) < [d(Z,W) +d(Y, Z)] V[d(X,Y) + d(Z, W)] + 26,
VX, YW, Z € M.
The geometric idea is best captured in Mikhail Gromov’s dpson from [6,
p.19], where he writes: “It is hardly possible to find a comity definition of the
curvature (tensor) for an arbitrary metric spafebut one can distinguish certain
classes of metric spaces corresponding to Riemannian oldsivith curvatures

of a given type. This can be done, for example, by imposinguaéties between
mutual distances of finite configurations of pointsXn.

3. Examples of Gromov hyperbolic spaces

In this section we present two examples of Gromov hypertsgaces.

Proposition 1. Let A(—1,0), B(0,1), and D(0,—1) be points in the Cartesian
plane endowed with the Euclidean distantéd_et M C R? be the set

M ={A,B,D}uU{C|C(x,0),z > 0}.

Then the metric spadg\, d) is Gromov hyperbolic witlh ¢ [3‘2\/5, 4‘2\/5] :
Proof. We check that there exists a constari 0 such that
d(X,Z)+dY,W) <[d(Z,W)+d(Y,2Z)]V[dX,Y)+d(Z,W)] + 20,

forall X, Y, Z € M. Note thatd(B,D) = 2, d(A,C) = z+ 1, d(A,B) =
d(A,D) = /2, and

d(C,D) = d(C, B) = /22 + 1.
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In order to determine our constant> 0, we require the following condition:
d(A,C)+d(B,D) < [d(A,B) 4+ d(C,D)] vV [d(A, D) + d(C, B)] + 2.
However,d(A, B) + d(C, D) = d(A, D) + d(C, B), thus findingd reduces to the

following:
+(B3—=V2)—20<Va2+1, Vx>0
An inequality such asg + b < V22 + 1, for all z > 0 leads to§ > % when

b<0andd < # whenb > —1. In all the other cases, the basic inequality
holds for§ > 0. That is, the metric spadg\/, d) is Gromov hyperbolic withj
= :

2 0 2 .

Proposition 2. Let A(0,1), B(—1,0), C(0,—1) D(a,0), witha € (0, 2) be points
in the interior of the disk centered at the origin of radius é)dowed with the
Cayley distance (sd8])

d(X,Y) = 1ln§—§f 3‘;( (1)

where{s, S} = XY N C((0,0),2). Then the set
M = {A, B,C}U {D|D(a,0),a € (0,2)}

endowed with the metric space induced by Cayley’'s distameeGromov hyper-

bolic metric space if
V7+1
§>=-27V3 .
()

Proof. A direct computation shows that

V3a2+4+1 \/3a2+4+a2
V3a2+4—-1 \/3a2+4—a2

f+1
Vi—1

32+a)
2—a

d(A, D) = d(C,D) =

d(A,B) = d(B,C) = 2

d(A,C) = %1119, d(B,D) = %ln
In order to determiné > 0, we require the condition:
d(A,C) +d(B, D) < [d(A, B) +d(C, D)] V [(d(A, D) + d(C, B)] + 26.

On the other handi(A, B) + d(C, D) = d(A, D) + d(C, B), thus determining
reduces to

27(2+a) <

1
n——— <l

2
VT+1\ V3a2+4+1 V3a2+4+ad? e
V7-1) V3a2+4-1 V3a2+4—a?
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foranya € (0,2). In fact, the inequality

2
272 +a) _ <ﬁ+1> V3aZ2 +4+1 A6

2_a Vi-1) V3aZta—1

holds exactly when

2
(%) ce' > 27V/3,

Therefore

2

1 VT+1
§>=-n27V3 | —— | .
1" (ﬁ—1>

O

In all the other cases one should consider in this proof, viaiolsimilar com-
putations; these computations have not been included togpeeserve the quality
of our presentation. Our goal is to underline the fundameggametric core of
Gromov hyperbolic metric spaces by the use of these examples

Note that in the second example, the order of the points irCndey distance
in (1) is chosen so that the cross-ratio yields a value grélage 1.
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On Tripolarsand Parabolas

Paris Pamfilos

Abstract. Starting with an analysis of the configuration of chords ofitact
points with two lines, defined on conics circumscribing artgle and tangent to
these lines, we prove properties relating to the case thesare parabolas and
a resulting method to construct the parabola tangent toliioes.

1. Introduction

It is well known ([3, p. 42], [10, p. 184], [7, Il, p. 256]), thagiven three points
A, B,C and two lines in general position, there are either none or émnics
passing through the points and tangent to the given linesight simplification
of Chasles notation ([2, p. 304]) for these curve8;i8t conics The conics exist
if either the two lines do not intersect the interior of thiatigle ABC or the two
lines intersect the interior of the same two sidesA@C. In all other cases there
are no conics satisfying the above requirements. In thiderive obtain a formal
condition (Theorem 6) for the existence of these conicatirej to the geometry of
the triangleA BC'. In addition we study the configuration of a triangle and tine$
satisfying certain conditions. I§2 we introduce theniddle-tripolar, which plays
a key role in the study. 1§3 we review the properties of generalized quadratic
transforms, which are relevant for our discussiongd4, 5 we relate the classical
result of existence dip2t conics to the geometry of the triangleBC'. In the two
last sections we prove related properties and construatigthods for parabolas.

2. Themiddle-tripolar

If a parabola circumscribes a triangleBC' and is tangent to a liné(at a point
different from the vertices), thehdoes not intersect the interior gfBC'. In this
section we obtain a characterization of such lines. For thésstart with a point
P on the plane of trianglel BC' and consider its traced,, B1, C; and their har-
monic conjugatesis, Bo, Co, with respect to the sideBC, C A, AB, later lying
on the tripolartr(P) of P (See Figurel). By applying Newton's theorem ([5,
p. 62]) on the diagonals of the quadrilaterf B; By A; we see that the middles
A’, B, C' respectively of the segments A,, B1B,, C1Cs are on a line, which |
call the middle-tripolar of the pointP and denote bynp. In the following dis-
cussion a crucial role plays a certain symmetry among thelines defined by
the sides of the ceviad; B;C; of P and the tripolatr(P), in relation to thehar-
monic associategq13, p. 100]) P, P», P; of P. Itis, namely, readily seen that
for each of these four points the corresponding sides ohoeaviangle and tripolar
define the same set of four lines. A consequence of this fabatsall four points
P, P, P», P; define the same middle-tripolar, which lies totally in théeeor of

Publication Date: December 17, 2012. Communicating EdRaul Yiu.
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Figure 1. The middle-tripolam p of P

the triangleABC'. Combining these two properties, we see that for every pdint
of the plane, not coinciding with the side-lines or the \a&$i of the triangle, the
corresponding middle-tripolar. p lies always outside the triangle. It is easy to see
that all these properties are also consequences of theviotjcalgebraic relation,
which is proved by a trivial calculation.

Figure 2. Givere find P such thae = mp

Lemma 1. If the point P defines through its tracd; the ratio ﬁig = k, then the

corresponding middle-tripolarn p defines on the same side of the triandl8C
(W A'B _ 12

the ratio 477 = k=.

Using this lemma, we can see that every linexterior to the triangle and not
coinciding with a side-line or vertex, defines a paihtinterior to the triangle, such
thate = mp. It suffices for this to take the ratios defineddgn the side lines
b — A'B by — B'C A

YT >T BA *T OB
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and define the pointd,, B;, C; with corresponding ratios
AlB . 310 . ClA o
a0~ VR pa= vk G-k

A simple application of Ceva’s theorem implies that thesanggodefine cevians
through the required poirf?, and proves the following lemma.

Lemma 2. Every linee not intersecting the interior of the triangld BC' and not
coinciding with a side-line or vertex of the triangle is th&die-tripolar mp of a
unique pointP in the interior of the triangleABC.

3. Quadratic transform associated to a base

If a conic circumscribes a triangléBC' and is tangent to two linds!’ (at points
different from the vertices), then it is easily seen thadtaithe lines do not intersect
the interior of the triangle or they intersect the interibthee same couple of sides
of the triangle. In this section we obtain a characterizatib such lines. For this
we start with abaseA(1,0,0), B(0,1,0),C(0,0,1), D(1,1,1) of the projective
plane ([1, I, p. 95]). To this base is associated a quadnatitsformf, described
in the corresponding coordinates through the formulas

This generalizes thisogonaland thelsotomictransformations of a given triangle
ABC and has analogous to them properties ([9]). The most sinfpieem are,
that f is involutive (f2 = I), fixes D and its three harmonic associates, and maps
lines to conics through the vertices ABC. In addition, the harmonic associates
of D define analogously the same transformation. Of interestiirstudy is also
the induced transformatiofi* of the dual spacéP?)*, consisting of all lines of
the projective plané”2. The transformatiorf* can be defined by the requirement
of making the following diagram of maps commutatiy€ o tr = tr o f).

P2 L) P2

Here ¢tr denotes the operatiolyr = ¢r(P) of taking the tripolar line of a point
with respect taABC'. For every linel the linel’ = f*(1) is found by first taking
the tripole P, of [, then takingP’ = f(P,) and finally defining’ = ¢r(P’). Itis
easily seen thatf*)? = I and thatf* fixes the sides of the cevian triangle and the
tripolar of P. The next lemma follows from a simple computation, which liom
(See Figures).
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Figure 3.1 = f*(1) intersectsBC on A" = A’'(A14,)

Lemma 3. Let Ay, By, be the traces oD on BC,CA, AB and A,, By, Cs

their harmonic conjugates with respect to these side-eimitpoFor every lind in-

tersecting these sides, correspondinglyAatB’, C’, the linel’ = f*(1) intersects
these sides at the corresponding harmonic conjugatés= A’(A;A4s),B" =

B'(B1Bs),C" = C'(C1Cy).

Lemmad. LetA, B,C, D be a projective base anfithe corresponding quadratic
transform. For every liné not coinciding with a side-line or vertex ofBC, the
linesi,!” = f*(I) satisfy the following property: either both do not interséte
interior of ABC or both intersect the interior of the same pair of sidesi@C.

The proof is again an easy calculation in coordinates, whiatmit. The next
theorem, a sort of converse of the preceding one, shows higtconstruction
characetrizes the lines tangent to a conic circumscribimagle.

Theorem 5. Let ABC be atriangle and, !’ be a pair of lines having the property
of the previous lemma. Then there is a pdihtsuch thatd, B, C, D is a projective
base with quadratic transformatiofiand such that’ = f*(1).

Figure 4. The common harmonics definedABC and the two lines

To prove the theorem consider first the intersection paitits3’, ¢’ of I, and
A" B",C" of I’ correspondingly with the sideBC, C A, AB of the triangle. By
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the hypothesis follows that the pairs of segmefitd”, BC either do not intersect
or one of them contains the other. The same is true for the pdiB”, C A and
C'C"”, AB. It follows that there are exactly two real points, As on line BC,
which are common harmonics with respect(®, C') and (A’, A”) i.e. (A1, As)

are simultaneously harmonic conjugate with respe¢BaC') and(A’, A”). Anal-
ogously there are defined the common harmofigs B:) of (C, A) and(B’, B”)

and the common harmonig¢€’;, C2) of (A4, B) and (C’,C") (See Figuret). To
prove the theorem, it is sufficient to show that three pointisad the sixA;, A,

By, By, C1, Cy are on a line. This can be done by a calculation or, more con-
veniently, by reducing it to lemma 2 (see also [6, p. 232])fdct, consider the
projecitvity g fixing A, B, C' and sending liné’ to the line at infinitym’ = ¢(I’).
Then linel maps to a linen = ¢(l). Since projectivities preserve cross ratios, the
common harmonic points df !/’ map to corresponding common harmonic points
of m,m/. By Lemma 2 linem is the middle-tripolar of some point and three of
these harmonic points are on a line. Consequently, theigesmander ! are also

on aline.

4. 3p2t conics

The structure of a trianglel BC and two linesl, !/, studied in the preceding
section, is precisely the one for which we have four solitmthe problem of
constructing a conic passing through three points and tdarigewo lines (a3p2t
conic). The standard proof of this classical theorem ([342)], [10, p. 184], [7,
I, p. 256], [4], [12]) relies on a consequence of the theodesargues ([11, p.
127]).

Figure 5. A1, A, fixed points of the involution interchangind3, C), (A’, A”)

By this, all conics, tangent to two fixed linéd’ at two fixed points, determine
through their intersections with a fixed line an involutiddl, p. 102]) on the
points of this line. Such an involution is completely defirngdgiving two pairs
of corresponding points, such &8, C) and (A4’, A”) in Figure 5. The chord of
contact points contains the fixed points of the involutidmaracterized by the fact
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to be simultaneous harmonic conjugate with respect to tloeplairs defining the
involution. In Figureb, the fixed points of the involution on linBC are Ay, As.
Analogously are defined the fixed points of the involutiongraging on the two
other sides of the triangld BC. Thus, there are obtained three pairs of points
(A1, A2), (B1, B2), (C1,C2) on respective sides of the given triangle.

‘ L',

A

LA

Figure 6. The four circumconics of BC tangent td, !’ = f*(1)

By the analysis made in the previous sections we see that fitepoints lie, by
three, on four lines, whose intersections witH define the contact points with the
conics. The ingredient added to this proof by our remarkbas these four lines
are the sides of a cevian triangle and the associated tripbk certain pointD,
defined directly by the triangld BC and the two lines, I’ (See Figures). Thus,
the theorem can be formulated in the following way, whicmgsi into the play the
geometry of the triangle involved.

Theorem 6. Let A, B, C, D be a projective base anida line not coinciding with
the side-lines or vertices of triangld BC. Let alsoL;, L., (i = 1,2,3,4) be the
intersections of lineg I" = f*() with the side-lines of the cevian triangle bfand
the tripolar ¢r(D). The four conics, passing, each, through, B, C, L;, L, (i =
1,2,3,4)), are tangent td and!’. Conversely, every conic circumscribingBC
and tangent to two lines I’ is part of such a configuration for an appropriate point
D.

Remarks.(1) The transformatiorf* is a sort ofdual of f and operates iiP?)*

in the same wayf operates inP2. As noticed in§3, f* is an involutive quadratic
transformation, which fixes the sides of the cevian triaraflé> and the tripolar
tr(D). Analogously tof, which maps lines to circumconics efBC, f* maps
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the lines of the pencil through a fixed poi@, representing dine of (P2)*, to
the tangents of the conic inscribed BC, whose perspector ([13, p. 115]) is
f(Q). The theorem identifies pointd.;, L) with the lines of (P?)* joining the
fixed pointsof this transformation, correspondingly, with theintsi, I’ of (P?)*.

(2) In the converse part of the theorem the pdinis not unique. The structures,
though, defined by it and which are relevent for the problerhaaid, are indeed
unique. Any one of the harmonic associafes D5, D3 of D will define the same
f and f* and the same four lines, intersecting the lind$ in the same pairs of
points(L;, L). In each case, three of the lines will be the side-lines obsci-
ated cevian triangle and the fourth will be the associatipolar. Thus, in the last
theorem, one can always select the pdinin the interior of the trianglel BC, and
this choice makes it unique.

Corollary 7. Given the triangleABC, the pairs of lined, I’ for which there is a
corresponding3p2t conic, are precisely the paids!’ = f*(1), wherel is any line
not coinciding with the side-lines or vertices 4BC and f* is defined by a point
D lying in the interior of the triangle.

5. Four parabolas and a hyperbola

If one of the two lines of the last theoreri,say, is the line at infinity, then it
is easily seen that the other line can be identified with thadieitripolar of some
point D. This leads to the following theorem.

Figure 7. The four parabolas through B, C tangent to linéd = mp

Theorem 8. For every pointD in the interior of the triangleA BC the sides of its
cevian triangle and its tripolar are parallel to the axes agtfour parabolas cir-
cumscribing the triangle and tangent to its middle-tripolap. The intersections
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of these four lines witln p are the contact points of the parabolas wiily. Con-
versely, every parabola through the vertices of a triandlBC', touching a linel
is member of a quadruple of parabolas constructed in this. way

Figure7 shows a complete configuration of three poiAts3, C', alinel = mp
and the four parabolas passing through the points and tatméme line. By the
analysis made ir32, line [ contains the middles of segmentis A5, B; B> and
C1Cs.

The theorem implies that if a parabatecircumscribes a trianglel BC, then
for each tangent to the parabola, at a point different from the vertices, dreme
precisely three other parabolas circumscribing the saiargglie and tangent to the
same line. These three parabolas can be then determinedtdpdmting the cor-
responding poinD. The possibility to haveD lying in the interior of the triangle,
shows that one of the lines drawn parallel to the axes of thassbolas from the
corresponding contact point does not intersect the intefithe triangle, whereas
the other three do intersect the interior, defining the ceWemngle of pointD.
Point D is the tripole of that parallel, which does not intersect ititerior. This
rises the interest for finding the locus 6f in dependence of the tangent to the
parabola. The next theorem lists some of the propertiesi®idhus and its rela-
tions to the parabola.

Figure 8. The hyperbola locus

Theorem 9. Letc be a parabola with axis circumscribing the triangled BC'. The
locus of tripolesDp of linese,,, which are the parallels to the axis from the points
P of the parabola, is a hyperbola circumscribing the triangled has, among
others, the properties:

(1) The hyperbola passes through the centi@idnd has its perspector at the point
at infinity [¢] determined by the direction ef The perspectoE of the parabola is
on the inner Steiner ellipse gfBC and coincides with the center of the hyperbola.
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(2) Line EG passes through the fourth intersection palnbf the hyperbola with
the outer Steiner ellipse. This line contains also the isotoconjugatet([e]) of
[e]. The tripole of this line is the fourth intersection poihof the parabola with
the outer Steiner ellipse.

(3) The fourth intersection poir” of the parabola and the hyperbola is the tripole
of ¢/, wheree’ the parallel toe through E. Line KG is parallel to the axis: and
is also the tripolar ofF. Itis alsoDg = F and line F K is a common tangent to
the parabola and the outer Steiner ellipse. The tangenthddyperbola af’, K
intersect on the parabola at its intersection point withelis.

(4) The hyperbola is the imaggc) of the parabola under the homographywhich
fixesA, B, C and send<< to F.

(5) All lines joining P to Dp pass throughk'.

Most of the properties result by applying theorems on géremaics circum-
scribing a triangle, adapted to the case of the parabola.

In (1) the result follows from the general property of circumcanio be gen-
erated by the tripoles of lines rotating about a fixed poine (ierspectorof the
conic). In our case the fixed point is the point at infinj#y, determined by the
direction of the axis of the parabola, and the lines passingughle] are all lines
parallel toe. That the conic is a hyperbola follows from the existencevas t
tangents to the inner Steiner ellipse, which are parallehéoaxise. These two
parallels have their tripoles at infinity, as do all tangeiatshe inner Steiner el-
lipse, implying that the conic is a hyperbola. That this poéa passes through
the centroid results from its definition, sinc€' is the tripole of the line at infin-
ity, which is a line of the pencil generating the conic. Thairtl on the perspector
E follows also from a well known property for circumscribednazs, according
to which the cente€' and the perspecta? of a circumconic areevian quotients
(C = G/P,[13, p. 109]). This is a reflexive relation, and since thespector]e]
of the hyperbola coincides with the center of the parabbiaiy juotients will be
also identical.

In (2) point F' is the symmetric of7 w.r. to E. It belongs to the outer Steiner
ellipse, which is homothetic to the inner one and lies alsth&hyperbola, since
E is its center. That point& = G/[e], G andt([e]) are collinear follows by the
vanishing of a simple determinant in barycentrics. Theoted of line EG is the
claimed intersection, sinck, G are the respective perspectors of these conics.

In (3) line ¢’ contains both the perspector of the parabola and the péospEc
the hyperbola, so its tripole belongs to both correspondorgcs.

In (4,5) and the rest of3) the statements follow by an easy computation, and
the fact, that the matrix of ~! in barycentrics is

a 0 O
0 b 0],
0 0 c

where(a, b, c) are the coordinates of the point at infinity of lime This is a ho-
mography mapping the outer Steiner ellipse to the hypertimldixing A, B, C
and sending' to K.
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6. Relationsto parabolas tangent to four lines

The two next theorems explore some properties of the pasaliahgent to four
lines, which are the sides of a triangle together with theotdr of a point with
respect to that triangle. The focus is on the role of the neidaibolarm p.

Theorem 10. Let A; B1C be the cevian triangle of poir® with respect to trian-
gle ABC'. The parabola tangent to the sides4fB;C, and the tripolar ofD has
its axis parallel to linel = mp. In addition, the triangleABC' is self-polar with
respect to the parabola.

Figure 9. Reduction to the equilateral

The proof of the first part is a consequence of the theorem oftdie ([3, p.
208]), according to which, the centers of the conics whiehtangent to four given
lines is the line through the middles of the segments joitimegdiagonal points of
the quadrilateral defined by the four lines (tewton lineof the quadrilateral [5, p.
62]). The parabola tangent to the four lines has its center at infinity, thusrlate
incides with the point at infinity of this line and this prouvée first part of the theo-
rem. The second part results from a manageable calculstibii,can be given also
a proof, by reducing it to a special configuration via an appate homography.
In fact, consider the homograplfy which maps the vertices of the triangleBC
and pointD, correspondingly, to the vertices of the equilatetaB’C’ and its cen-
troid D’. Since homographies preserve cross ratios, they predervelation of a
line, to be the tripolar of a point. Thus, the line at infiniyhich is the tripolar of
the centroid, maps to the tripolatr(G’) of point G’ = f(G) (See Figure). It
follows that the image coni¢ = f(c) of the parabola is also a parabola, since it
is tangent to five linest” B”, B"C",C" A"  tr(G'), f(A2Bs), one of which is the
line at infinity (f (A2B2)). Here A” = f(A;), B” = f(B1),C” = f(C4) denote
the middles of the sides of the equilateral. The proof of teoad part results then
from the following lemma.
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Lemma 11. If a parabola is inscribed in a triangle, then the anticomplentary
triangle is self-polar with respect to the parabola.

Figure 10. A’ B'C" is self-dual w.r. to the parabola inscribedABC

To prove the lemma consider a parabelescribed in a triangled BC'. Con-
sider also its anticomplementard/ B'C" and the pointC” of tangency with side
AB (See Figurel0). The parallel toAB throughC, which is a side of the anti-
complementary, intersects the parabola at two pdihts’; and by a well known
property of parabolas ([8, p. 58]), the tangent€'atC> meet at the symmetri€”’
of the middleC3 of C;C with respect ta””. ThusC’ coincides with a vertex of
the anticomplementary, being also the pol of lig’,, as claimed.

Remark.The converse is also truéf a conic is inscribed in a triangle, such that
the anticomplementary is self-polar, then the conic is apafta

Theorem 12. Let the parabolac be tangent to the sides of the triangleBC
and to the tripolartr(D) of a point D. Then its contact point withr (D) is the
intersection point of this line with the middle-tripolar= mp.

tr(D) \/Az Bz/ G

Figure 11. The contact poirits with the tripolar
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This is proved by an argument similar to that, used in thequimg theorem.
In fact, define the homographfymapping triangleA BC' to an equilateral’ B'C’
and pointD to the centroid ofA’ B’C’. Then, see, as in the preceding theorem,
that the image conie’ = f(c) of the parabola: is again a parabola. Let then
be the pole of lind = mp with respect ta.. SinceP is on line Ay By = tr(D)
(See Figurel 1), which maps undef to the line at infinity, its image®’ = f(P)
is at infinity. Hence the image-ling = f(l) is parallel to the axis of’. Thus,’
intersects the parabold at its point at infinity, which is the imagg¢(@), where
Q is the contact point ot with the line A;B;. From this follows that point)
coincides with the intersection point of lineand A, Bs, as claimed.

7. The points of tangency

Four lines in general position define a complete quadréaté3C D EF', four
trianglesADE, ABF, BCE,CDF, the diagonal trianglgdI.J and four points
ADFEp, ABFp, BCEpandC D Fp, which are correspondingly the tripoles of one
of these lines with respect to the triangle of the remainhrgd (See Figurél).
The notation is such, that the tripolar of each of these faimtp, with respect to
the triangle appearing in its label, is the remaining ling¢ @uthe four, carrying
the missing from the label letters (e.g. triangi&3 F, tripole ABFp and tripolar
DCE). The harmonic associates of each of these points with cespehe cor-
responding triangle are the vertices of the diagonal tte@ily J. It is easily seen
that the harmonic associates of any of the four paiisEp, ABFp, BCEp and
C D Fp, with respect taH I J, are the remaining three points.

Figure 12. Four lines, four triangles, four points
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Applying theorem-12 to each one of the four triangles andcitreesponding
tripole we obtain four middle-tripolard D En, ABFn, BC'En,CD Fn,which in-
tersect the corresponding liné&”'F, CDE, ADF, ABFE at corresponding points
of tangencyAD Eq, ABFq, BCEq,CDFq with the parabola tangent to the four
given lines (See Figuré2). This remark leads to a construction method of the
parabola tangent to four given lines. The method is not morepticated than
the classical one ([8, p. 57]), which uses the circumcireled orthocenters of the
triangles defined by the four lines. In fact, once the middfgslars are found, the
method uses only intersections of lines. The determinaifahe middle-tripolars,
on the other side, requires either the construction of tmmbaic conjugate of a
point w.r. to two other points, or the construction of poiatslines having a given
ratio of distances to two other points of the same line. Fange, referring to
the last Figure 12, if the ratié% = k, then the corresponding ratio of the intersec-

tion point B’ of lines ADEn and ABE is g%g = k2. Point B’ is also the middle
of segmentB” B, whereB” = B(A, E) is the harmonic conjugate d8 w.r. to

(A, E). Once the four contact points are found, one can easily nansa fifth

point on the parabola and define it as a conic passing througlpdints. For this
it suffices to find the middlé/ of a chord, e.g. the one joiningC'Eq, C D Fq and

take the middle of\/ A.

Figure 13. The contact points of the parabola tangent tolfioes
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The Butterfly Theorem Revisited

Nikolaos Dergiades and Sung Hyun Lim

Abstract. We start with a proof of the original butterfly theorem, giwvighout
proof Mackay’s generalization, and finally prove a full gelization of these
two versions of the butterfly theorem.

1. Introduction

We give the proof of the original version of the butterfly therm (Theorem 2
below) with the aid of the following theorem concerning théersection ratio of
two chords in a circle.

Theorem 1. If the chord BB’ in a circle intersects the chord AA’ at the point P,

then the division ratio
AP AB - AB’

PA"  A'B-A'B

Figure 1

Proof. If R is the radius of the circle (see Figure 1) andh’ are the heights of
trianglesABB’, A’ BB’ from A and A’ respectively, then
AP h  ABABE AR AR

PA" W ABAB T AB. AR
2R
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Theorem 2 (Butterfly theorem, original version)f three chords AA’, BB’, CC’
in acircle are concurrent at the midpoint M of AA’, then the lines BC and B'C’
intersect theline AA’ at two points P, P’ equidistant from M.

C B’

Figure 2

Procr)]f. It is sufficient to prove tha% = % (see Figure 2). From Theorem 1
we have

AM AB - AB’

1 = =
MA" A'B-A'B
implying
A'B’ AB
AB - AB @)
A'C’ AC
ACT  ACT @

Hence from Theorem 1 and (1), (2) we have
AP A'B" A'C"  AB AC AP
P'A  AB’ AC'"  A'B AC PA”

d

Remark. SinceBC B’C’ with the linesBC, B'C’, BC', B'C'is a complete quad-
rangle inscribed in a circle, we may considéd’ as a line that cuts the pal# B/,
CC’ not at M but at two equidistant points from/ or from O. So we have the
following generalization of the butterfly theorem.

Theorem 3 (Butterfly theorem, Mackay’s version{ziven a complete quadrangle
inscribed in a circle; if any line cuts two opposite sides at equal distances from the
center of the circle, it cuts each pair at equal distances from the center.

For a proof, see [1, p.105, Theorem 105].
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2. A complete generalization of the Butterfly theorem

Since the pair$ BC, B'C"), (BB’, CC")and(BC’, B'C') can be thought of as
conics that pass through the four concyclic poiit<”, B’, C’, Theorem 3 and the
butterfly theorem can be generalized as in Theorem 5. We §i@bksh a lemma.

Lemma 4. Two points P and P’ are conjugate relative to a circumconic of triangle
ABC if and only if the conic passes through the cevian product of P and P’.

Proof. Let P = (u: v :w)andP’ = (v’ : v' : w') in barycentric coordinates with
respect to triangled BC'. Their cevian product is the point

1 1 1
S = : : .
vw' +vw  wu +wu w4+ uv
The two pointsP and P’ are conjugate relative to the circumconigz + qzx +
rzy = 0 with matrix

r q
M = 0 p
g p 0

if and only if PM P"* = 0 (see [2,§10.6.1]). This amounts to

p(ow’ +v'w) + qwu’ + w'u) + r(w’ +u'v) = 0.
Equivalently, the conic passes through O

Theorem 5. Let ABC' D be a cyclic quadrilateral, and M be the orthogonal pro-
jection of circumcenter O on a line .. If a conic passing through A, B, C, D
intersects .Z at two points P and @) equidistant from M, then for every conic pass-
ing through A, B, C', D and intersecting .Z, the two intersections are equidistant
from M.

N

Figure 3
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Proof. Let NV be the infinite point of the lineZ, which intersects the conic &
and@ (Figure 3). Sincé\/ and/N are harmonic conjugate with respectf@ndq),

the pointsM and N are conjugate relative to the conic. The polanofelative to

the circumcircle ofABC'is a line perpendicular t&/O atO. This is the lineO M.

So the pointsM and N are also conjugate relative to the circumcircleaBC'.
Hence from Lemma 4 we conclude thatmust be the cevian product af and

N relative toABC'. By Lemma 4 again, they must be conjugate relative to every
conic that passes through B, C', D. If this conic meetsZ’, it must intersect the
line at two points equidistant fromy. O

References

[1] R. A. JohnsonAdvanced Euclidean Geometry, Dover reprint, 2007.
[2] P. Yiu, Introduction to the Geometry of the Triangle, Florida Atlantic University Lecture Notes,
2001.

Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greec
E-mail address: nder gi ades@ahoo. gr

Sung Hyun Lim: Kolon APT 102-404, Bang-yi 1 Dong, Song-pa Seoul, 138-772 Korea.
E-mail address: pr ogr essi vef orest @nai | . com



Forum Geometricorum
Volume 12 (2012) 305-306.

FORUM GEOM

ISSN 1534-1178

Author Index

Banerjee, D.: Alhazen’s circular billiard problem, 193
Barbu, C.: Some properties of the Newton-Gauss line, 149
Boskoff, W. G.: An elementary view on Gromov hyperbolic spaces, 283
Dergiades, N.: Harmonic conjugate circles relative to a triangle, 153
Alhazen'’s circular billiard problem, 193
The butterfly theorem revisited, 301
Evers, M.: Generalizing orthocorrespondence, 255
Goehl, J. F, Jr: More integer triangles witlR /r = N, 27
Finding integer-sided triangles with?> = nA, 211
Gonzalez, L.: Onthe intersections of the incircle and the cevian circuohei
of the incenter, 139
Hess, A.: A highway from Heron to Brahmagupta, 191
Hoehn, L.: The isosceles trapezoid and its dissecting similar tres (29
Holshouser, A.: Using complex weighted centroids to create homotheticpoly
gons, 247
Josefsson, M.:Characterizations of orthodiagonal quadrilaterals, 13
Similar metric characterizations of tangential and extamigl quadri-
laterals, 63
A new proof of Yun’s inequality or bicentric quadrilateraikd
Maximal area of a bicentric quadrilateral, 237
van Lamoen, F. M.: The spheres tangent externally to the tritangent spheres
of a triangle, 215
Lim, S. H.: The butterfly theorem revisited, 301
Mammana, M. F.: Properties of valtitudes and vaxes of a convex quadrilat-
eral, 47
The maltitude construction in a convex noncyclic quadeilal, 243
Mansour, T.: Improving upon a geometric inequality of third order, 227
Mendoza, A.: Three conics derived from perpendicular lines, 131
Micale, B.: Properties of valtitudes and vaxes of a convex quadrilatéva
Nguyen, M. H.: Synthetic proofs of two theorems related to the Feuerbach
point, 39
Nguyen, P. D.: Synthetic proofs of two theorems related to the Feuerbach
point, 39
Nicollier, G.: Reflection triangles and their iterates, 83; correction 129
Odom, L. H.: An elementary view on Gromov hyperbolic spaces, 283
Pamfilos, P.: On tripolars and parabolas, 287
Pennisi, M.: Properties of valtitudes and vaxes of a convex quadrilatéva



306

Author Index

Pohoata, C.: On the intersections of the incircle and the cevian circuohei
of the incenter, 149

Patrascu, I.. Some properties of the Newton-Gauss line, 151

Radko, O.: The perpendicular bisector construction, isotopic pomat &im-
son line, 161

Reiter, H.: Using complex weighted centroids to create homothetic -poly
gons, 247

Shattuck, M.: Improving upon a geometric inequality of third order, 227

Suceaw, B. D.: An elementary view on Gromov hyperbolic spaces, 283

Svrtan, D.: Non-Euclidean versions of some classical triangle ineties)
197

Tsukerman, E.: The perpendicular bisector construction, isotopic poirt a
Simson line, 161

Veljan, D.: Non-Euclidean versions of some classical triangle inéties)
197

Weise, G.: Generalization and extension of the Wallace theorem, 1

Yiu, P.: Sherman’s fourth side of a triangle, 219





