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Generalization and Extension of the Wallace Theorem

Gotthard Weise

Abstract. In the Wallace theorem we replace the projection directions (altitudes
of the reference triangle) by all permutations of a general direction triple, and
regard simultaneously the projections of a pointP to each sideline. Introducing a
pair ofWallace pointsand a pair ofWallace triangles, we present their properties
and some connections to the Steiner ellipses.

1. Introduction

Most people interested in triangle geometry know the Wallace-Simson Theorem
(see [2], [3] or [4]):

In the euclidean plane beABC a triangle andP a point not on
the sidelines. Then the feet of the perpendiculars fromP to the
sidelines are collinear (Wallace-Simson line), if and only if P is a
point on the circumcircle ofABC.

This theorem is one of the gems of triangle geometry. For morethan two centuries
mathematicians are fascinated about its simplicity and beauty, and they reflected
on generalizations or extensions up to the present time.

O. Giering [1] showed that not only the collinearity of the three pedals, but also
the collinearities of other intersections of the projection lines (in direction of the
altitudes) with the sidelines of the triangle are interesting in this respect.

In a paper of M. de Guzmán [2] it is shown that one can take instead altitude
directions a general triple(α, β, γ) of projection directions which are assigned to
the oriented side triple(a, b, c). One gets instead the circumcircle a circumconic
for which it is easy to construct three points (apart fromA, B, C) and the center.

In this paper we aim at continuing some ideas of the above publications. We
consider the permutations of a triple of projection directions simultaneously, and
the conceptsWallace pointsandWallace trianglesyield new interesting insights.

2. Notations

First of all, we recall some concepts and connections of the euclidean triangle
geometry. Detailed information can be found, for instance,in the books of R. A.
Johnson [4] and P. Yiu [7], or in papers of S. Sigur [5].

Publication Date: January 31, 2012. Communicating Editor:Paul Yiu.



2 G. Weise

Let ∆ = ABC be a triangle with the verticesA, B, C, the sidesa, b, c, and
the centroidG. For the representation of geometric elements we use homogeneous
barycentric coordinates.

SupposeP = (u : v : w) is a general point. Reflecting the tracesPa, Pb, Pc

of P in the midpointsGa, Gb, Gc of the sides, respectively, then the points of
reflectionP •a , P •b , P •c are the traces of the (isotomic) conjugateP • = (

1

u
:

1

v
:

1

w
)

of P .
The line[

1

u
:

1

v
:

1

w
] is thetrilinear polar (tripolar) x

u
+

y
v
+

z
w

= 0 of P , the line
[u : v : w] is thedual (the tripolar of the conjugate) ofP andCP :

u
x

+
v
y

+
w
z

=

0 is a circumconic of∆ with perspectorP (P -circumconic). A perspector of a
circumconicC is the perspective center of∆ and the triangle formed by the tangents
of C atA, B, C. The centerMP of CP has coordinates

(u(v + w − u) : v(w + u − v) : w(u + v − w)). (1)

The point by point conjugation ofCP yields the dual line ofP . The duals of all
points ofCP form a family of lines whose envelope is the inconic associated to the
circumconicCP .

The points of the infinite linel∞ satisfy the equationx + y + z = 0.
Themedialoperationm and thedilated (antimedial)operationd carry a pointP

to the imagesmP = (v + w : w + u : u + v) anddP = (v + w − u : w + u− v :

u + v − w), respectively, which both lie on the lineGP :

P G mP dP

2 1 3

Figure 1. Medial and dilated operation

The point(u : v : w) forms together with the points(v : w : u) and(w : u : v)

aBrocardian triple[6]; every two of these points are the right-right Brocardian and
the left-left Brocardian, respectively, of the third point.

TheSteiner circumellipseCG of ∆ has the equation

yz + zx + xy = 0, (2)

and theSteiner inellipseis described by

x2
+ y2

+ z2 − 2yz − 2zx − 2xy = 0. (3)

The Kiepert hyperbolais the (rectangular) circumconic of∆ throughG and the
orthocenterH.

3. Direction Stars, Projection Triples and their Normalized Representation

Let us call adirection stara set{α, β, γ} of three pairwise different directions
α, β, γ not parallel to the sides of∆. It is described by three points

α = (α1 : α2 : α3), β = (β1 : β2 : β3), γ = (γ1 : γ2 : γ3)
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on the infinite line. Their barycentrics (different from zero) form a singular matrix

D =





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3





of rank 2. Since the coordinates of each point are defined except for a non-zero
factor, we can adjust by suitable factors so that all cofactors of D are equal to
unity. We call such representation of a direction star itsnormalized representation.
In this case not only the row sums ofD vanish, but also the column sums, and

β2 − γ3 = γ1 − α2 = α3 − β1 =: λ1, (4)

γ3 − α1 = α2 − β3 = β1 − γ2 =: λ2, (5)

α1 − β2 = β3 − γ1 = γ2 − α3 =: λ3 (6)

and

β3 − γ2 = γ1 − α3 = α2 − β1 =: µ1, (7)

γ2 − α1 = α3 − β2 = β1 − γ3 =: µ2, (8)

α1 − β3 = β2 − γ1 = γ3 − α2 =: µ3. (9)

Here is an example of a normalized representation of a direction star:

D =





1 2 −3

1 3 −4

−2 −5 7



 .

We will see below that two other matrices with the same elements as inD (but
in other arrangements) are also involved. The rows ofD→ (D←) consist of the
elements of the main (skew) diagonal and their parallels:

D→ :=





α1 β2 γ3

β1 γ2 α3

γ1 α2 β3



 , D← :=





α1 γ2 β3

β1 α2 γ3

γ1 β2 α3



 .

From a direction star we form3! = 6 ordered direction triples (permutations
of the directions), which we can interpret as projection directions on the sidelines
a, b, c (in this order). We denote theseprojection triplesby

α→ := (α, β, γ), α← := (α, γ, β);

β→ := (β, γ, α), β← := (β, α, γ);

γ→ := (γ, α, β), γ← := (γ, β, α).

The arrows indicate whether the permutation is even or odd. Interpreting as a map,
for instanceα←(P ) is a triple (Pαa, Pγb, Pβc) of feet in which the first index
indicates the projection direction, and the second one refers to the side on whichP
is projected.

The square matricesD, D→ andD← all have rank2. Their kernels represent
geometrically some points in the plane of∆. The kernel ofD is obviouslyG =
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(1, 1, 1). For kerD→ =: (p→ : q→ : r→) and kerD← =: (p← : q← : r←) we find

p→ = α2α3 − β3γ2 = β2β3 − γ3α2 = γ2γ3 − α3β2, (10)

q→ = α3α1 − β1γ3 = β3β1 − γ1α3 = γ3γ1 − α1β3, (11)

r→ = α1α2 − β2γ1 = β1β2 − γ2α1 = γ1γ2 − α2β1, (12)

and

p← = α2α3 − β2γ3 = β2β3 − γ2α3 = γ2γ3 − α2β3, (13)

q← = α3α1 − β3γ1 = β3β1 − γ3α1 = γ3γ1 − α3β1, (14)

r← = α1α2 − β1γ2 = β1β2 − γ1α2 = γ1γ2 − α1β2. (15)

These satisfy

p→ − p← = q→ − q← = r→ − r← = 1, (16)

p→q→ + q→r→ + r→p→ − p→ − q→ − r→ = 0, (17)

p←q← + q←r← + r←p← + p← + q← + r← = 0. (18)

Let us denote byℓQq the line with directionq through a pointQ. Then the
direction stars localized at the verticesA, B, C are described by the following
lines:

ℓAα = [0 : α3 : −α2], ℓBα = [−α3 : 0 : α1], ℓCα = [α2 : −α1 : 0];

ℓAβ = [0 : β3 : −β2], ℓBβ = [−β3 : 0 : β1], ℓCβ = [β2 : −β1 : 0];

ℓAγ = [0 : γ3 : −γ2], ℓBγ = [−γ3 : 0 : γ1], ℓCγ , = [γ2 : −γ1 : 0].

Next we want to assign each projection triple to a specific line. We begin with
the construction of such a lineℓα→ for the projection tripleα→. Let

P1 := ℓBγ ∩ ℓCβ = (β1γ1 : β2γ1 : β1γ3), (19)

P2 := ℓCα ∩ ℓAγ = (γ2α1 : γ2α2 : γ3α2), (20)

P3 := ℓAβ ∩ ℓBα = (α1β3 : α3β2 : α3β3). (21)

Their conjugates are

P •1 = (β2γ3 : β1γ3 : β2γ1),

P •2 = (γ3α2 : γ3α1 : γ2α1), (22)

P •3 = (α3β2 : α1β3 : α1β2).

In view of (4), (5), (6) it is clear thatdet(P •
1
, P •

2
, P •

3
) = 0. Hence, these points

are collinear and lie on the line

ℓα→ := [α1 : β2 : γ3], (23)

which intersects the infinite line in(λ1 : λ2 : λ3). By cyclic interchange ofα, β, γ
we find

ℓβ→ := [β1 : γ2 : α3], ℓγ→ := [γ1 : α2 : β3], (24)
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and the intersections(λ3 : λ1 : λ2) and (λ2 : λ3 : λ1) with the infinite line,
respectively. The barycentrics of these three lines form the rows of the matrixD→.
In a similar fashion we find the lines

ℓα← = [α1 : γ2 : β3], ℓβ← = [β1 : α2 : γ3], ℓγ← = [γ1 : β2 : α3] (25)

whose coordinates form the rows ofD←. From these we have the theorem below.

Theorem 1. The linesℓα→, ℓβ→, ℓγ→ are concurrent at the point

W •

→
= (p→ : q→ : r→).

Likewise, the linesℓα←, ℓβ←, ℓγ← are concurrent at

W •

←
= (p← : q← : r←).

Recall that the conjugates of the points of a line lie on a circumconic of∆.
Hence the conjugates of the six lines in (23) - (25) are the circumconics

Cα→ :

α1

x
+

β2

y
+

γ3

z
= 0, Cβ→ :

β1

x
+

γ2

y
+

α3

z
= 0, Cγ→ :

γ1

x
+

α2

y
+

β3

z
= 0 ;

(26)

Cα← :

α1

x
+

γ2

y
+

β3

z
= 0, Cβ← :

β1

x
+

α2

y
+

γ3

z
= 0, Cγ← :

γ1

x
+

β2

y
+

α3

z
= 0.

(27)

α

γβ

A

B
CW→

W←

Figure 2.
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Theorem 2 below follows easily from Theorem 1.

Theorem 2. The circumconicsCα→, Cβ→, Cγ→ (red in Figure 2)have the common
point

W→ =

(

1

p→
:

1

q→
:

1

r→

)

,

the circumconicsCα←, Cβ←, Cγ← (blue in Figure 2)have the common point

W← =

(

1

p←
:

1

q←
:

1

r←

)

.

Hence, their perspectors are collinear on the tripolars ofW→ and ofW←, respec-
tively. These lines are parallel and they intersect the infinite line at the point

W∞ = (q→ − r→ : r→ − p→ : p→ − q→)

and define a directionδ.

In the special case of altitudes isW→ the Tarry point andW← the orthocenter
of ∆. The circumconicCα→ is the circumcircle. In [1],Cβ→ andCγ→ are called
the right- and left-conics respectively.

4. Wallace Points

In [2] it is shown that in the case of three directionsα, β, γ the pointsP1, P2, P3

constructed for the projection tripleα→ lie on a circumconic with the property that
for a pointP on this circumconic the feet of the projections ofP to a, b, c in direc-
tion α, β, γ, respectively, are collinear. Now we want to look at this generalization
of the theorem of Wallacesimultaneouslyfor all 6 projection triples belonging to
the direction star{α, β, γ}.

Theorem 3. The respective three feet of the three projection triplesα→(W→), β→(W→)

andγ→(W→) localized atW→ are collinear on the Wallace lineswα→, wβ→, wγ→,
respectively; there is analogy for the feet ofα←(W←), β←(W←), γ←(W←). We
shall call the pointsW→ and W← the Wallace-right- and Wallace-left-points re-
spectively of the direction star{α, β, γ}.

Proof. Let gα→, gβ→, gγ→ be the lines throughW→ in directionα, β, γ, respec-
tively. To simplify the equations we make use of the quantities

X1 := α2q→ − α3r→ = γ3r→ − γ1p→ = β1p→ − β2q→

X2 := β2q→ − β3r→ = α3r→ − α1p→ = γ1p→ − γ2q→

X3 := γ2q→ − γ3r→ = β3r→ − β1p→ = α1p→ − α2q→.

These satisfy

X2

1 − X2X3 = X2

2 − X3X1 = X2

3 − X1X2, (28)
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and yield the equations of the lines

gα→ = [p→X1 : q→X2 : r→X3]

gβ→ = [p→X2 : q→X3 : r→X1]

gγ→ = [p→X3 : q→X1 : r→X2].

These projection lines intersect the sidelines in the points

Qαa = (0 : r→X3 : −q→X2), Qβa = (0 : r→X1 : −q→X3), Qγa = (0 : r→X2 : −q→X1);

Qαb = (−r→X3 : 0 : p→X1), Qβb = (−r→X1 : 0 : p→X2), Qγb = (−r→X2 : 0 : p→X3);

Qαc = (q→X2 : −p→X1 : 0), Qβc = (q→X3 : −p→X2 : 0), Qγc = (q→X1 : −p→X3 : 0).

The feetQαa, Qβb, Qγc of the projection tripleα→ are collinear because their
linear dependent coordinates. They yield a Wallace line

wα→ = QαaQβb = [p→X2X3 : q→X1X2 : r→X3X1].

Analogously it follows from the collinearity ofQαb, Qβc, Qγa resp.Qαc, Qβa, Qγb

wβ→ = [p→X1X2 : q→X3X1 : r→X2X3], wγ→ = [p→X3X1 : q→X2X3 : r→X1X2].

The proof for the other Wallace point is analogous. �

5. Some circumconics generated by the Wallace points

The Wallace points generate some circumconics with notableproperties:

• W •

→
-circumconic CW •

→

:

p→
x

+

q→
y

+

r→
z

= 0, (29)

• W •

←
-circumconic CW •

←

:

p←
x

+

q←
y

+

r←
z

= 0, (30)

• W→-circumconic CW→ :

1

p→x
+

1

q→y
+

1

r→z
= 0, (31)

• W←-circumconic CW← :

1

p←x
+

1

q←y
+

1

r←z
= 0, (32)

• circumconic throughW→ and W←,
• circumconics with the centersmW→ resp.mW←,
• circumconics of the medial triangle ofABC with the centersm2W→ and

m
2W← respectively.

Theorem 4. (a)The circumconicsCW •
→

andCW •
←

intersect at the pointSδ := W •

∞

on the Steiner circumellipse.
(b) The circumconic throughW→ and W← has perspectorW∞. Hence it is the
circumconicCW∞

q→ − r→
x

+

r→ − p→
y

+

p→ − q→
z

= 0 (33)

passing throughG. Its centerM∞ lies on the Steiner inellipse. The Wallace points
are antipodes.
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Proof. (a) The conjugates of the circumconicsCW •
→

andCW •
←

, that are the lines
[p→ : q→ : r→] and[p← : q← : r←], respectively, intersect on the infinite line at
the pointW∞. Hence its conjugate lies on the Steiner circumellipse.

(b) The line through the conjugates of the Wallace points is

[q→ − r→ : r→ − p→ : p→ − q→].

Its conjugate (a circumconic) has the perspectorW∞. The pointG = (1 : 1 : 1)

obviously satisfies the circumconic equation (33). The center of theW∞ - circum-
conic according to (1) is

M∞ = ((q→ − r→)
2

: (r→ − p→)
2

: (p→ − q→)
2
). (34)

It satisfies equation (3) of the Steiner inellipse and is - howone finds out by a longer
computation in accordance with (17) - collinear with the twoWallace points, hence
they must be antipodes. �

In the special case of the altitude directions the pointSδ is the Steiner point of
ABC andCW∞ is the Kiepert hyperbola.

An interesting property of (31) and (32) is presented in Theorem 7 below.
The following theorem involves circumconics that are in connection with the6

centers of the circumconics (26), (27).

α

γβ

W→

A

C
B

W←

G
dM∞M∞

Q→

Q←X→

X←

Figure 3.

Theorem 5. (a) Suppose the Wallace pointW→ (respectivelyW←) is reflected in
the centers of the three circumconics in (26) (respectively(27)). Then the three
reflection points lie on a circumconic throughW← (respectivelyW→). Its center is
Q→ = mW→ (respectitvelyQ← = mW←). These two circumconics(thick red and
blue respectively in Figure 3)intersect the Steiner circumellipse at pointdM∞.
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(b) The centers of the three circumconics in (26) (respectively(27)) lie on a cir-
cumconic of the medial triangle throughQ← (respectivelyQ→) with centerX→ =

m
2W→ (respectivelyX← = m

2W←). Both circumconics(red and green respec-
tively in Figure 3)intersect on the Steiner inellipse at pointM∞.

6. Wallace Triangles

The Wallace lineswα→, wβ→, wγ→ belonging toW→ form a triangle∆→

(Wallace-right-triangle) and the Wallace lineswα←, wβ←, wγ← belonging toW←
form a triangle∆← (Wallace-left-triangle).

Theorem 6. Each of the Wallace triangles and∆ are triply perspective.
(a)The 3 centers of perspective of (∆,∆→) are collinear on the tripolar ofW→.
(b) The 3 centers of perspective of (∆,∆←) are collinear on the tripolar ofW←.

Proof. With (28), the vertices of the Wallace-right-triangle∆→ are

A→ :=

(

1

p→X1

:

1

q→X3

:

1

r→X2

)

, (35)

B→ :=

(

1

p→X3

:

1

q→X2

:

1

r→X1

)

, (36)

C→ :=

(

1

p→X2

:

1

q→X1

:

1

r→X3

)

. (37)

The triple perspectivity of∆ and∆→ follows from the concurrency of the lines

AA→, BB→, CC→ at

(

X1

p→
:

X2

q→
:

X3

r→

)

=: PA→

AB→, BC→, CA→ at

(

X3

p→
:

X1

q→
:

X2

r→

)

=: PB→

AC→, BA→, CB→ at

(

X2

p→
:

X3

q→
:

X1

r→

)

=: PC→.

These three centers of perspectivity are obviously collinear on the line[p→ : q→ :

r→], which is the tripolar of
(

1

p→
:

1

q→
:

1

r→

)

= W→.

The proof for∆← is analogous. �

Theorem 7. The vertices of∆→ and∆← lie on theW→ - circumconic and on the
W← - circumconic, respectively.

Proof. Easy verification. �

7. Direction Star and Steiner Circumellipse

Each of the 6 circumconics in (26) and (27) assigned to a direction star has a
fourth common point (Sα→, . . . ,Sγ←) with the Steiner circumellipse. These points
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α

β γ

G

Sα→

A

B
C

Sβ→

Sγ→

Sα←

Sβ←

Sγ←

Figure 4. The triangles∆S→ and∆S←

form two triangles∆S→ and∆S← (Figure 4). The pointSα→ is the conjugate of
the intersection ofℓα→ with the infinite line, thus according to (4) - (6) follows

Sα→ =

(

1

β2 − γ3

:

1

γ3 − α1

:

1

α1 − β2

) = (

1

λ1

:

1

λ2

:

1

λ3

)

, (38)

for the other vertices of the triangle∆S→ we find

Sβ→ =

(

1

γ2 − α3

:

1

α3 − β1

:

1

β1 − γ2

)

=

(

1

λ3

:

1

λ1

:

1

λ2

)

, (39)

Sγ→ =

(

1

α2 − β3

:

1

β3 − γ1

:

1

γ1 − α2

)

=

(

1

λ2

:

1

λ3

:

1

λ1

)

. (40)

The coordinates of these points are connected by cyclic interchange. Hence they
form a Brocardian triple [6]. The same is valid for the triangle ∆S←.

Theorem 8. (a)The triangles∆S→ and∆S← have the centroidG.
(b) The 6 sidelines of these triangles are the duals of the respective opposite ver-
tices and hence tangents at the Steiner inellipse. The points of contact are the
midpoints of the sides of these triangles.
(c) The triangles∆S→ and ∆S← have the same area likeABC, because each
Brocardian triple with vertices on the Steiner circumellipse has this property.

Theorem 9. The triangles∆, ∆S→ and∆S← are pairwise triply perspective. The
9 centers of perspective lie on the infinite line, and the 9 axes of perspective pass
throughG.
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α

β γ

A

C

G

Sα→

B

Sβ→

Sγ→

Figure 5. Triple perspectivity of∆ and∆S→

We omit the elementary but long computational proof. Figure5 illustrates the
triple perspectivity of∆ and∆S→.
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Characterizations of Orthodiagonal Quadrilaterals

Martin Josefsson

Abstract. We prove ten necessary and sufficient conditions for a convex quadri-
lateral to have perpendicular diagonals. One of these is a quite new eight point
circle theorem and three of them are metric conditions concerning the nonover-
lapping triangles formed by the diagonals.

1. A well known characterization

An orthodiagonal quadrilateralis a convex quadrilateral with perpendicular di-
agonals. The most well known and in problem solving useful characterization of
orthodiagonal quadrilaterals is the following theorem. Five other different proofs
of it was given in [19, pp.158–159], [11], [15], [2, p.136] and [4, p.91], using
respectively the law of cosines, vectors, an indirect proof, a geometric locus and
complex numbers. We will give a sixth proof using the Pythagorean theorem.

Theorem 1. A convex quadrilateralABCD is orthodiagonal if and only if

AB2
+ CD2

= BC2
+ DA2.

b

A
b

B

b
C

bD

b

X

bY

Figure 1. Normals to diagonalAC

Proof. Let X and Y be the feet of the normals fromD and B respectively to
diagonalAC in a convex quadrilateralABCD, see Figure 1. By the Pythagorean
theorem we haveBY 2

+AY 2
= AB2, BY 2

+CY 2
= BC2, DX2

+CX2
= CD2

Publication Date: February 22, 2012. Communicating Editor: Paul Yiu.
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andAX2
+ DX2

= DA2. Thus

AB2
+ CD2 − BC2 − DA2

= AY 2 − AX2
+ CX2 − CY 2

= (AY + AX)(AY − AX) + (CX + CY )(CX − CY )

= (AY + AX)XY + (CX + CY )XY

= (AX + CX + AY + CY )XY

= 2AC · XY.

Hence we have

AC ⊥BD ⇔ XY = 0 ⇔ AB2
+ CD2

= BC2
+ DA2

sinceAC > 0. �

Another short proof is the following. The area of a convex quadrilateral with
sidesa, b, c andd is given by the two formulas

K =
1

2
pq sin θ =

1

4

√

4p2q2 − (a2 − b2
+ c2 − d2

)
2

whereθ is the angle between the diagonalsp andq.1 Hence we directly get

θ =

π

2

⇔ a2
+ c2

= b2
+ d2

completing this seventh proof.2

A different interpretation of the condition in Theorem 1 is the following. If four
squares of the same sides as those of a convex quadrilateral are erected on the sides
of that quadrilateral, then it is orthodiagonal if and only if the sum of the areas of
two opposite squares is equal to the sum of the areas of the other two squares.

2. Two eight point circles

Another necessary and sufficient condition is that a convex quadrilateral is or-
thodiagonal if and only if the midpoints of the sides are the vertices of a rectangle
(EFGH in Figure 2). The direct theorem was proved by Louis Brand in the proof
of the theorem about theeight point circlein [5], but was surely discovered much
earlier since this is a special case of the Varignon parallelogram theorem.3 The
converse is an easy angle chase, as noted by “shobber” in postno 8 at [1]. In fact,
the converse to the theorem about the eight point circle is also true, so we have
the following condition as well.A convex quadrilateral has perpendicular diag-
onals if and only if the midpoints of the sides and the feet of the maltitudes are

1The first of these formulas yields a quite trivial characterization of orthodiagonal quadrilaterals:
the diagonals are perpendicular if and only if the area of thequadrilateral is one half the product of
the diagonals.

2This proof may be short, but the derivations of the two area formulas are a bit longer; see [17,
pp.212–214] or [7] and [8].

3The midpoints of the sides in any quadrilateral form a parallelogram named after the French
mathematician Pierre Varignon (1654-1722). The diagonalsin this parallelogram are the bimedians
of the quadrilateral and they intersect at the centroid of the quadrilateral.
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eight concyclic points,4 see Figure 2. The center of the circle is the centroid of the
quadrilateral (the intersection ofEG andFH in Figure 2). This was formulated
slightly different and proved as Corollary 2 in [10].5

b

A
b

B

b
C

bD

b

E

b F

b
G

bH

b

bb

b

Figure 2. Brand’s eight point circle and rectangleEFGH

There is also a second eight point circle characterization.Before we state and
prove this theorem we will prove two other necessary and sufficient condition for
the diagonals of a convex quadrilateral to be perpendicular, which are related to the
second eight point circle.

Theorem 2. A convex quadrilateralABCD is orthodiagonal if and only if

∠PAB + ∠PBA + ∠PCD + ∠PDC = π

whereP is the point where the diagonals intersect.

Proof. By the sum of angles in trianglesABP andCDP (see Figure 3) we have

∠PAB + ∠PBA + ∠PCD + ∠PDC = 2π − 2θ,

whereθ is the angle between the diagonals. Henceθ =
π
2

if and only if the equation
in the theorem is satisfied. �

Problem 6.17 in [14, p.139] is about proving that if the diagonals of a convex
quadrilateral are perpendicular, then the projections of the point where the diago-
nals intersect onto the sides are the vertices of a cyclic quadrilateral.6 The solution
given by Prasolov in [14, p.149] used Theorem 2 and is, although not stated as
such, also a proof of the converse. Our proof is basically thesame.

4A maltitude is a line segment in a quadrilateral from the midpoint of a side perpendicular to the
opposite side.

5The quadrilateral formed by the feet of the maltitudes is called the principal orthic quadrilateral
in [10].

6In [14] this is called an inscribed quadrilateral, but that is another name for a cyclic quadrilateral.
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b

A
b

B

b
C

bD

b

P

b

K

b Lb
M

bN

Figure 3. ABCD is orthodiagonal iffKLMN is cyclic

Theorem 3. A convex quadrilateral is orthodiagonal if and only if the projections
of the diagonal intersection onto the sides are the verticesof a cyclic quadrilateral.

Proof. If the diagonals intersect inP , and the projection points onAB, BC, CD
andDA areK, L, M andN respectively, thenAKPN , BLPK, CMPL and
DNPM are cyclic quadrilaterals since they all have two opposite right angles (see
Figure 3). Then∠PAN = ∠PKN , ∠PBL = ∠PKL, ∠PCL = ∠PML and
∠PDN = ∠PMN . QuadrilateralABCD is by Theorem 2 orthodiagonal if and
only if

∠PAN + ∠PBL + ∠PCL + ∠PDN = π

⇔ ∠PKN + ∠PKL + ∠PML + ∠PMN = π

⇔ ∠LKN + ∠LMN = π

where the third equality is a well known necessary and sufficient condition for
KLMN to be a cyclic quadrilateral. �

Now we are ready to prove the second eight point circle theorem.

Theorem 4. In a convex quadrilateralABCD where the diagonals intersect atP ,
let K, L, M andN be the projections ofP onto the sides, and letR, S, T andU
be the points where the linesKP , LP , MP andNP intersect the opposite sides.
Then the quadrilateralABCD is orthodiagonal if and only if the eight pointsK,
L, M , N , R, S, T andU are concyclic.

Proof. (⇒) If ABCD is orthodiagonal, thenK, L, M andN are concyclic by
Theorem 3. We start by proving thatKTMN has the same circumcircle asKLMN .
To do this, we will prove that∠MNK+∠MTK = π, which is equivalent to prov-
ing that∠MTK = ∠ANK+∠DNM since∠AND = π (see Figure 4). In cyclic
quadrilateralsANPK andDNPM , we have∠ANK = ∠APK = ∠TPC and
∠DNM = ∠MPD. By the exterior angle theorem∠MTP = ∠TPC +∠TCP .
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In addition∠MPD = ∠TCP sinceCPD is a right triangle with altitudeMP .
Hence

∠MTK = ∠TPC + ∠TCP = ∠ANK + ∠MPD = ∠ANK + ∠DNM

which proves thatT lies on the circumcircle ofKLMN , sinceK, M and N
uniquely determine a circle. In the same way it can be proved thatR, S andU lies
on this circle.

(⇐) If K, L, M , N , R, S, T andU are concyclic, thenNMTK is a cyclic
quadrilateral. By using some of the angle relations from thefirst part, we get

∠MTK = π − ∠MNK

⇒ ∠MTP = ∠ANK + ∠DNM

⇒ ∠TPC + ∠TCP = ∠APK + ∠MPD

⇒ ∠TCP = ∠MPD.

Thus trianglesMPC andMDP are similar since angleMDP is common. Then

∠CPD = ∠PMD =
π
2

soAC⊥BD. �

b

A
b

B

bD

b
C

b

PbN

bM

b
L

b

K

b

R

b S

b
T

b

U

Figure 4. The second eight point circle

In the next theorem we prove that quadrilateralRSTU in Figure 4 is a rectangle
if and only if ABCD is an orthodiagonal quadrilateral.

Theorem 5. If the normals to the sides of a convex quadrilateralABCD through
the diagonal intersection intersect the opposite sides inR, S, T and U , then
ABCD is orthodiagonal if and only ifRSTU is a rectangle whose sides are par-
allel to the diagonals ofABCD.
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Proof. (⇒) If ABCD is orthodiagonal, thenUTMN is a cyclic quadrilateral ac-
cording to Theorem 4 (see Figure 5). Thus

∠MTU = ∠DNM = ∠MPD = ∠TCP,

soUT ‖ AC. In the same way it can be proved thatRS ‖ AC, UR ‖ DB and
TS ‖ DB. HenceRSTU is a parallelogram with sides parallel to the perpendicu-
lar linesAC andBD, so it is a rectangle.

(⇐) If RSTU is a rectangle with sides parallel to the diagonalsAC andBD of
a convex quadrilateral, then

∠DPC = ∠UTS =
π
2
.

HenceAC⊥BD. �

b

A
b

B

bD

b
C

b

PbN

bM

b
L

b

K

b

R

b S

b
T

b

U

Figure 5. ABCD is orthodiagonal iffRSTU is a rectangle

Remark.Shortly after we had proved Theorems 4 and 5 we found out that the
direct parts of these two theorems was proved in 1998 [20]. Thus, in [20] Zaslavsky
proved that in an orthodiagonal quadrilateral, the eight points K, L, M , N , R, S,
T andU are concyclic, and thatRSTU is a rectangle with sides parallel to the
diagonals. We want to thank Vladimir Dubrovsky for the help with the translation
of the theorems in [20].

Let’s call the eight point circle due to Louis Brand thefirst eight point circleand
the one in Theorem 4 thesecond eight point circle. SinceRSTU is a rectangle, the
center of the second eight point circle is the point where thediagonals inRSTU
intersect.

Theorem 6. The first and second eight point circle of an orthodiagonal quadrilat-
eral coincide if and only if the quadrilateral is also cyclic.
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Proof. Since the second eight point circle is constructed from linesegments through
the diagonal intersection, the two eight point circles coincide if and only if the four
maltitudes are concurrent at the diagonal intersection. The maltitudes of a convex
quadrilateral are concurrent if and only if the quadrilateral is cyclic according to
[12, p.19]. �

b

A
b

B

bD

b
C

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

Figure 6. The two eight point circles

That the point where the maltitudes intersect (the anticenter) in a cyclic orthodi-
agonal quadrilateral coincide with the diagonal intersection was proved in another
way in [2, p.137].

3. A duality between the bimedians and the diagonals

The next theorem gives an interesting sort of dual connection between the bime-
dians and the diagonals of a convex quadrilateral. The first part is a characterization
of orthodiagonal quadrilaterals. Another proof of (i) using vectors was given in [6,
p.293].

Theorem 7. In a convex quadrilateral we have the following conditions:
(i) The bimedians are congruent if and only if the diagonals are perpendicular.
(ii) The bimedians are perpendicular if and only if the diagonalsare congruent.

Proof. (i) According to the proof of Theorem 7 in [9], the bimediansm andn in a
convex quadrilateral satisfy

4(m2 − n2
) = −2(a2 − b2

+ c2 − d2
)

wherea, b, c andd are the sides of the quadrilateral. Hence

m = n ⇔ a2
+ c2

= b2
+ d2
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which proves the condition according to Theorem 1.
(ii) Consider the Varignon parallelogram of a convex quadrilateral (see Fig-

ure 7). Its diagonals are the bimediansm andn of the quadrilateral. It is well
known that the length of the sides in the Varignon parallelogram are one half the
length of the diagonalsp andq in the quadrilateral. Applying Theorem 1 to the
Varignon parallelogram yields

m⊥n ⇔ 2

(p

2

)2

= 2

(q

2

)2

⇔ p = q

since opposite sides in a parallelogram are congruent. �

b

A
b

B

b
C

bD

a

b

c

d
p

q

b

b

b

b

m

n

Figure 7. The Varignon parallelogram

4. Three metric conditions in the four subtriangles

Now we will use Theorem 1 to prove two more characterizationsresembling it.

Theorem 8. A convex quadrilateralABCD is orthodiagonal if and only if

m2

1
+ m2

3
= m2

2
+ m2

4

wherem1, m2, m3 andm4 are the medians in the trianglesABP , BCP , CDP
andDAP from the intersectionP of the diagonals to the sidesAB, BC, CD and
DA respectively.

Proof. LetP divide the diagonals in partsw, x andy, z (see Figure 8). By applying
Apollonius’ theorem in trianglesABP , CDP , BCP andDAP we get

m2

1
+ m2

3
= m2

2
+ m2

4

⇔ 4m2

1
+ 4m2

3
= 4m2

2
+ 4m2

4

⇔ 2(w2
+ y2

) − a2
+ 2(x2

+ z2
) − c2

= 2(y2
+ x2

) − b2
+ 2(z2

+ w2
) − d2

⇔ a2
+ c2

= b2
+ d2

which by Theorem 1 completes the proof. �
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b C

b
D
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b

c

d
b

P

b

b

b

b

m1

m2

m3

m4

Figure 8. The subtriangle mediansm1, m2, m3 andm4

Theorem 9. A convex quadrilateralABCD is orthodiagonal if and only if

R2

1
+ R2

3
= R2

2
+ R2

4

whereR1, R2, R3 andR4 are the circumradii in the trianglesABP , BCP , CDP
andDAP respectively andP is the intersection of the diagonals.

Proof. According to the extended law of sines applied in the four subtriangles,
a = 2R1 sin θ, b = 2R2 sin (π − θ), c = 2R3 sin θ andd = 2R4 sin (π − θ), see
Figure 9. We get

a2
+ c2 − b2 − d2

= 4 sin
2 θ

(

R2

1 + R2

3 − R2

2 − R2

4

)

where we used thatsin (π − θ) = sin θ. Hence

a2
+ c2

= b2
+ d2 ⇔ R2

1 + R2

3 = R2

2 + R2

4

sincesin θ > 0 for 0 < θ < π. �

When studying Figure 9 it is easy to realize the following result, which gives a
connection between the previous two theorems.

Theorem 10. A convex quadrilateralABCD is orthodiagonal if and only if the
circumcenters of the trianglesABP , BCP , CDP andDAP are the midpoints of
the sides of the quadrilateral, whereP is the intersection of its diagonals.

Proof. The quadrilateralABCD is orthodiagonal if and only if one of the triangles
ABP , BCP , CDP andDAP have a right angle atP ; then all of them have it.
Hence we only need to prove that the circumcenter of one triangle is the midpoint
of a side if and only if the opposite angle is a right angle. Butthis is an immediate
consequence of Thales’ theorem and its converse, see [18]. �

The next theorem is our main result and concerns the altitudes in the four nonover-
lapping subtriangles formed by the diagonals.
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b

A
b

B

b
C

b
D

a

b

c

d

bP

θ

b

b

b

b

R1

R2

R3

R4

Figure 9. The circumradiiR1, R2, R3 andR4

Theorem 11. A convex quadrilateralABCD is orthodiagonal if and only if

1

h2

1

+

1

h2

3

=

1

h2

2

+

1

h2

4

whereh1, h2, h3 andh4 are the altitudes in the trianglesABP , BCP , CDP and
DAP from the intersectionP of the diagonals to the sidesAB, BC, CD andDA
respectively.

Proof. Let P divide the diagonals in partsw, x andy, z. From expressing twice
the area of triangleABP in two different ways we get (see Figure 10)

ah1 = wy sin θ

whereθ is the angle between the diagonals. Thus

1

h2

1

=

a2

w2y2
sin

2 θ
=

w2
+ y2 − 2wy cos θ

w2y2
sin

2 θ
=

(

1

y2
+

1

w2

)

1

sin
2 θ

−
2 cos θ

wy sin
2 θ

where we used the law of cosines in triangleABP in the second equality. The
same resoning in triangleCDP yields

1

h2

3

=

(

1

x2
+

1

z2

)

1

sin
2 θ

−
2 cos θ

xz sin
2 θ

.

In trianglesBCP andDAP we have respectively

1

h2

2

=

(

1

x2
+

1

y2

)

1

sin
2 θ

+

2cos θ

yx sin
2 θ
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and
1

h2

4

=

(

1

w2
+

1

z2

)

1

sin
2 θ

+

2cos θ

zw sin
2 θ

sincecos (π − θ) = − cos θ. From the last four equations we get

1

h2

1

+

1

h2

3

−
1

h2

2

−
1

h2

4

= −
2 cos θ

sin
2 θ

(

1

wy
+

1

yx
+

1

xz
+

1

zw

)

.

Hence

1

h2

1

+

1

h2

3

=

1

h2

2

+

1

h2

4

⇔ cos θ = 0 ⇔ θ =

π

2

since(sin θ)
−2 6= 0 and the expression in the parenthesis is positive. �

b

A
b

B

b C

b
D

b

P

b

b

b

b

h1

h2

h3

h4

a

b

c

d

w

x

y

z

θ

Figure 10. The subtriangle altitudesh1, h2, h3 andh4

5. Similar metric conditions in tangential and orthodiagonal quadrilaterals

A tangential quadrilateral is a quadrilateral with an incircle. A convex quadri-
lateral with the sidesa, b, c andd is tangential if and only if

a + c = b + d

according to the well known Pitot theorem [3, pp.65–67]. In Theorem 1 we proved
the well known condition that a convex quadrilateral with the sidesa, b, c andd is
orthodiagonal if and only if

a2
+ c2

= b2
+ d2.

Here all terms are squared compared to the Pitot theorem.
From the extended law of sines (see the proof of Theorem 9) we have that

a + c − b − d = 2 sin θ(R1 + R3 − R2 − R4)
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whereR1, R2, R3 andR4 are the circumradii in the trianglesABP , BCP , CDP
andDAP respectively,P is the intersection of the diagonals andθ is the angle
between them. Hence

a + c = b + d ⇔ R1 + R3 = R2 + R4

sincesin θ > 0, so a convex quadrilateral is tangential if and only if

R1 + R3 = R2 + R4.

In Theorem 9 we proved that the quadrilateral is orthodiagonal if and only if

R2

1 + R2

3 = R2

2 + R2

4.

All terms in this condition are squared compared to the tangential condition.
In [16] and [13] it is proved that a convex quadrilateral is tangential if and only

if
1

h1

+

1

h3

=

1

h2

+

1

h4

whereh1, h2, h3 andh4 are the same altitudes as in Figure 10. We have just proved
in Theorem 11 that a convex quadrilateral is orthodiagonal if and only if

1

h2

1

+

1

h2

3

=

1

h2

2

+

1

h2

4

,

that is, all terms in the orthodiagonal condition are squared compared to the tangen-
tial condition. We find these similarities between these twotypes of quadrilaterals
very interesting and remarkable.
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More Integer Triangles with R/r = N

John F. Goehl, Jr.

Abstract. Given an integer-sided triangle with an integer ratio of the radii of
the circumcircle and incircle, a simple method is presentedfor finding another
triangle with the same ratio.

In a recent paper, MacLeod [1] discusses the problem of finding integer-sided
triangles with an integer ratio of the radii of the circumcircle and incircle. He finds
sixteen examples of integer triangles for values of this ratio between1 and999. It
will be shown that, with one exception, another triangle with the same ratio can be
found for each.

Macleod shows that the ratio,N , for a triangle with sidesa, b, andc is given by

2abc

(a + b − c)(a + c − b)(b + c − a)

= N. (1)

Defineα = a + b − c, β = a + c − b, andγ = b + c − a. Then

(α + β)(β + γ)(γ + α)

4αβγ
= N. (2)

Let α′ andβ′ be found from any one of MacLeod’s triangles. Then (2) may be
used to findγ′. But notice that (2) is then a quadratic equation forγ:

(α′
+ β′

)(α′
+ γ)(β′

+ γ) = 4Nα′β′γ. (3)

One root is the known value,γ′, while the other root gives a new triangle with
the same value forN . Note that the sum of the two roots is−α′

− β′
+

4Nα′β′

α′+β′ .
Since one root isγ′, the other is given by

γ = −α′
− β′

− γ′
+

4Nα′β′

α′
+ β′

.

For N = 2, a = b = c = 1; soα′
= β′

= γ′
= 1 andγ = 1. No new triangle

results.
ForN = 26, a = 11, b = 39, c = 49; soα′

= 1, β′
= 21, γ′

= 77 andγ =
3

11
.

Scaling by a factor of11 givesα′
= 11, β′

= 231, andγ′
= 3. The sides of the

resulting triangle area′ = 121, b′ = 7, andc′ = 117.

Publication Date: March 1, 2012. Communicating Editor: Paul Yiu.
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The first few values and the last value ofN given by Macleod along with the
original triangles and the new ones are shown in the table below.

N a b c a′ b′ c′

1 1 1 1 1 1 1

26 11 39 49 7 117 121

74 259 475 729 27 1805 1813

218 115 5239 5341 763 12493 13225

250 97 10051 10125 1125 8303 9409

866 3025 5629 8649 93 73177 73205

Table 1. Macleod triangles and the corresponding new ones
(sides arranged in ascending order).

Reference
[1] A. J. MacLeod, Integer triangles withR/r = N , Forum Geom., 10 (2010) 149–155.

John F. Goehl, Jr.: Department of Physical Sciences, Barry University, 11300 NE Second Avenue,
Miami Shores, Florida 33161, USA
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The Isosceles Trapezoid and
its Dissecting Similar Triangles

Larry Hoehn

Abstract. Isosceles trapezoids are dissected into three similar triangles and re-
arranged to form two additional isosceles trapezoids. Moreover, triangle centers,
one from each similar triangle, form the vertices of a centric triangle which has
special properties. For example, the centroidal trianglesare congruent to each
other and have an area one-ninth of the area of the trapezoids; whereas, the cir-
cumcentric triangles are not congruent, but still have equal areas.

1. Introduction

If you were asked whether an isosceles trapezoid can be dissected into three
similar triangles by a point on the longer base, you would probably reply initially
that it is not possible. However, it is sometimes possible and the search for such a
point was the gateway to some other very interesting results.

Theorem 1. If the longer base of an isosceles trapezoid is greater than the sum of
the two isosceles sides, then there exists a point on the longer base of the trapezoid
which when joined to the endpoints of the shorter base divides the trapezoid into
three similar triangles.

x x

b

a c

hy

z

A DE

B C

Q

Figure 1.

Proof. To begin our construction we consider isosceles trapezoidABCD with
longer baseAD and congruent sidesAB andCD as shown in Figure 1. Addi-
tionally we letx = AB = CD, b = BC, e = AD, y = BE, andz = CE.

We propose that the pointE can be located onAD by letting

AE = a =

e

2

−

√

(e

2

)2

− x2,

ED = c =

e

2

+

√

(e

2

)2

− x2.

Publication Date: March 14, 2012. Communicating Editor: Paul Yiu.
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Then,
AE

ED
=

a

c
=

ac

c2
=

x2

c2
.

Therefore,a
x

=
x
c

or AE
AB

=
CD
ED

. Since∠BAE and∠CDE are base angles of the
isosceles trapezoid, then triangleBAE is similar to triangleEDC.

Next we consider trianglesCQE andCQD whereQ is the intersection of a
perpendicular dropped fromC to baseAD. If CQ = h, thenQD =

e−b
2

=
a+c−b

2

so thatEQ = ED − QD =
c−a+b

2
. By the Pythagorean Theorem for triangles

CQE and CQD respectively, we havez2
= h2

+

(

c−a+b
2

)2
and x2

= h2
+

(

a+c−b
2

)2

. By subtracting these equations we obtain

z2 − x2
=

(

c − a + b

2

)

2

−

(

a + c − b

2

)

2

= bc − ac.

Sincea
x

=
x
c

(see above), we addx2
= ac to z2 − x2

= bc− ac to obtainz2
= bc.

Rewriting this asz
b

=
c
z
, or equivalentlyEC

CB
=

DE
EC

, and noting that∠ECB and
∠DEC are alternate interior angles of parallel lines, we have that trianglesECB
andDEC are similar. By transitivity, or by repeating the method above, we get
that all three triangles are similar to each other. This proves Theorem 1. �

There are some excellent books on dissection, but most involve dissecting a
polygon and rearranging the pieces into one or more other polygons. However,
none of these references consider isosceles trapezoids andsimilar triangles. See
[1] and [4].

Theorem 2. Using the notation introduced above we have the following equalities:
(i) y2

= ab, x2
= ac, z2

= bc;
(ii) a =

xy
z

, b =
yz
x

, c =
xz
y

;
(iii) xyz = abc, and
(iv) the area of ABCD =

1

2
h(a + b + c).

Proof. The first three follow immediately from the similar dissecting triangles, and
(iv) follows directly from the formula for the area of a trapezoid. �

Theorem 3. Using the notation introduced above, the length of a diagonal, d, is
given by

d =

√
ac + ab + bc =

√

x2
+ y2

+ z2.

Proof. By the law of cosines for trianglesABC andCDA, respectively, in Figure
1, we have

d2
= AC2

= x2
+ b2 − 2xb cos ABC

= x2
+ (a + c)2 − 2x(a + c) cos(180

◦ − ABC)

= x2
+ (a + c)2 + 2x(a + c) cos ABC.

Therefore,

cos ABC =

x2
+ b2 − d2

2xb
=

x2
+ (a + c)2 − d2

−2x(a + c)
.
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After some simplification and Theorem 2(i) this becomes

d2
= x2

+ ab + bc = ac + ab + bc = x2
+ y2

+ z2.

�

Theorem 4 (Generalization of the Pythagorean Theorem). Using the notation in-
troduced above, y2

+ z2
= b(a + c).

Proof. Since the triangles are similar, the anglesBEC, BAE andCDE are con-
gruent. By Theorem 2(i),

y2
+ z2

= ab + bc = b(a + c) = b2,

where the last equality holds whenever∠BAE = 90
◦. �

This result appeared previously in [2].
Next we consider triangles whose vertices are specific triangle centers for each

of the three dissecting triangles of Figure 1. Since there are over a thousand iden-
tified triangle centers, we restrict our discussion to two ofthe most well-known;
namely, the centroid and circumcenter. We will refer to these new triangles as
centroidal and circumcentric, respectively.

2. The Centroidal Triangle

It is well-known that the centroid of a triangle is the intersection of the three
medians of a triangle and that the centroid is the center of gravity for the triangle.
We denote the centroids of our three similar triangles asGa, Gb, andGc as shown
in Figure 2.

A D

B C

E

B′

C′

Ga

Gb

Gc

A′ D′

Figure 2. The centroidal triangle

Theorem 5. Using the notation already introduced,
(i) Triangle GaGbGc is isosceles with GaGb = GcGb =

1

3

√
ab + bc + ca,

(ii) the base of GaGc of triangle GaGbGc is parallel to AD and its length is
GaGc =

1

3
(a + b + c), and

(iii) the area of triangle GaGbGc is 1

9
of the area of trapezoid ABCD.
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Proof. We consider triangleGaGbGc whose vertices are the respective centroids
Ga, Gb, andGc of trianglesBAE, CEB andDEC. LetA′, B′, C ′, andD′ be the
respective midpoints ofAE, BE, CE, andDE. By the midsegment, or midline
theorem,the line segment joining the midpoints of two sides of a triangle is parallel
to and half the length of the third side. Therefore, quadrilateralA′B′C ′D′ has sides
parallel to and one-half the corresponding sides of quadrilateralABCD, and the
quadrilaterals are similar. In particular, quadrilateralA′B′C ′D′ is isosceles.

Since the centroid of a triangle divides each median in a ratio of 2 : 3 of the
median from the vertex and1 : 3 from the midpoint of the corresponding side,
GaGb =

2

3
A′C ′ for triangleBA′C ′ andGcGb =

2

3
B′D′ for triangleCB′D′. Since

trapezoidA′B′C ′D′ has a similarity ratio of1
2

with isosceles trapezoidABCD,
GaGb =

2

3
A′C ′

=
2

3
· 1

2
AC =

1

3
AC. In the same mannerGcGb =

1

3
BD. Since

diagonalsAC and BD are congruent,GaGb = GcGb and triangleGaGbGc is
isosceles. Note thatGaGb = GcGb =

1

3

√
ab + bc + ca, which is one-third of the

length of the diagonal of the trapezoid.
The baseGaGc of triangleGaGbGc is parallel toAD and its length isGaGc =

2

3
A′D′

+
1

3
BC in trapezoidBCD′A′ so that

GaGc =

2

3

(a

2

+

c

2

)

+

1

3

b =

1

3

(a + b + c).

Finally, the area of triangleGaGbGc =
1

2
× base× height= 1

2
· 1

3
(a+b+c)· h

3
=

1

9
· 1

2
h(a + b + c) =

1

9
× area of trapezoidABCD. �

3. The Circumcentric Triangle

Next we consider the circumcenters of each of the three dissecting triangles of
Figure 1. A circumcenter is the intersection of the three perpendicular bisectors
of the sides of any triangle. The circumradius is the radius of the circumcircle
which passes through the three vertices of the particular triangle. For our example
in Figure 3, triangleABE has circumcenterOa and circumradiusRa(= AOa =

BOa = COa). Similar statements hold forOb, Oc, Rb, andRc.

A D

B C

E

B′

C′

A′ D′

Oa

Ob

Oc

Figure 3. The circumcentric triangle
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Theorem 6. Using the notation already introduced for triangle OaObOc,
(i) OaOb = Rc and OcOb = Ra,

(ii) OaOc =

√

2R2
a + 2R2

c − R2

b , and

(iii) the area of triangle OaObOc =
xyz
8h

=
abc
8h

.

Proof. Let A′ andB′ be the feet of the perpendicular bisectors of two sides of tri-
angleABE. Since triangleAOaE is isosceles,AOaA

′ andEOaA
′ are congruent

right triangles. Note thatOa is the vertex of three isosceles subtriangles in triangle
ABE, and also a vertex of six right triangles which are congruentin pairs. For
convenience we label the angles away from centerOa numerically (see Figure 4)
as

∠BAE = γ = ∠1 + ∠2,

∠BEA = α = ∠2 + ∠3,

∠ABE = β = ∠1 + ∠3.

Ra Rc

A D

B C

E

B′

C′

A′ D′

Oa

Ob

Oc

2

1

2
1

3

1

3 2
3

23

1

2 3 2

1

3
1

Figure 4. Numbered angles of isosceles and similar triangles

In the same manner corresponding congruent angles are denoted in Figure 4 for
the similar trianglesCBE andDEC.

In particular, we note that in quadrilateralB′EC ′Ob which has two right angles,
we have

∠B′ObC
′
= 360

◦ − 90
◦ − 90

◦ − ∠2 − ∠1 = 180
◦ − γ = α + β.

Also,

∠OaEOc = ∠3 + (∠2 + ∠1) + ∠3 = (∠3 + ∠2) + (∠1 + ∠3) = α + β.

Therefore, one pair of opposite angles of quadrilateralOaObOcE are congruent.
Since

∠EOaOb = ∠EOaB
′
= 90

◦ − ∠3,

∠EOcOb = ∠EOcC
′
= 90

◦ − ∠3,
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the other pair of opposite angles of quadrilateralOaObOcE are congruent. Hence
quadrilateralOaObOcE is a parallelogram. Therefore,OaOb = EOc = Rc and
OcOb = EOa = Ra. This proves (i).

Since the sum of the squares of the diagonals of a parallelogram is equal to the
sum of the squares of the four sides, we have

OaO
2

c + ObE
2

= OaO
2

b + ObO
2

c + OcE
2
+ EO2

a = 2R2

c + 2R2

a.

Therefore,OaO
2
c = 2R2

c + 2R2
a − R2

b . From this (ii) follows.
If we use the formulaR =

abc
4·Area for the circumradius of a triangle with sides of

lengthsa, b, c (see [3] and [4]), then for triangleABE

R2

a =

(

axy

4 · 1

2
ah

)

2

=

x2y2

4h2
=

ac · ab

4h2
=

a2bc

4h2
,

with similar results forR2

b andR2
c . Therefore,

OaO
2

c = 2R2

c + 2R2

a − R2

b =

2a2bc

4h2
+

2abc2

4h2
−

ab2c

4h2
,

OaOC =

√

abc(2a + 2c − b)

2h
.

Since the opposite sides of a parallelogram are parallel,

∠EObOc = ∠ObEOa = ∠3 + ∠2 = α,

∠ObEOc = ∠1 + ∠3 = β.

This implies that∠ObOcE = γ. Therefore, triangleEObOc is similar to the
original three similar dissecting triangles. SinceEOb is a diagonal of parallelogram
OaObOcE, similar statements hold for triangleOaObE. Finally,

areaOaObOc =

1

2

· area of parallelogramOaObOcE = area ofEObOc.

Using the basic formula for the area of a triangle we have

area ofOaObOcE = area ofOaObE + area ofEObOc

=

1

2

·
y

2

· OaOb +

1

2

·
z

2

· ObOc

=

1

4

· yRc +

1

4

· zRa.
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Recalling the formulaR =
abc

4·Area from above, we have

area ofOaObOc =

1

8

(yRc + zRa)

=

1

8

(

y ·
czx

4 · ch
2

+ z ·
axy

4 · ah
2

)

=

1

8

(xyz

2h
+

xyz

2h

)

=

xyz

8h
=

abc

8h
.

�

Corollary 7. If the dissecting triangles are right triangles, then
(i) c = a + b, and
(ii) the area of triangle OaObOc is one-eighth the area of trapezoid ABCD.

x
y

b

x

a c

z

A

B

Oa

E

C

D

Ob

Oc

Figure 5. Circumcentric triangle with similar right triangles

Proof. For a right triangle the circumcenter is the midpoint of the hypotenuse of the
right triangle. Therefore,c2

= x2
+ z2 in triangleBEC in Figure 5. Substituting

x2
= ac andz2

= bc yieldsc2
= ac + bc. From this the first result follows. Note

that

area ofOaObOc = area ofEObOc =

1

4

· area ofECD

=

1

4

·
1

2

· hc =

1

4

·
1

2

h(a + b) =

1

4

· area ofABCE.

It also follows thatEC separates the trapezoid into two parts with equal area.�

4. The Three IsoscelesTrapezoids

We return to the dissection of§1. Since we started with a dissection problem
it surely occurred to the reader that we might be able to rearrange the dissected
trapezoid into another configuration. That is indeed the case. The three similar
triangles can be rearranged as follows:
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Theorem 8. If the isosceles trapezoid is literally cut apart, then the similar trian-
gles can be rearranged to form two additional isosceles trapezoids which meet the
same dissection criteria, have the same area, and have the same diagonal lengths
as the original trapezoid.

Proof. With the trapezoid cut apart and reassembled we get the threecases shown
in Figure 6 below. The triangles are numbered #1, #2, and #3 for clarity.

x

b

x

z

a c

y h

A D

B C

E Q

#1

#2

#3

Figure 6(i) Original trapezoid with similar triangles

b

xz

y
h

c

a

y

D

B C

Q

F

E

#1

#2

#3

Figure 6(ii) Trapezoid with rearranged triangles

b

x

z z
h

c

a

y

D

C

E Q G

F

#1

#2

#3

Figure 6(iii) Trapezoid with rearranged triangles

Note that the area of each of the three trapezoids is1

2
h(a + b + c) regardless

of shape. In Theorem 3 the length of the diagonals for the firsttrapezoid was
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given by the formulad =

√
ab + bc + ca =

√

x2
+ y2

+ z2. Since the formula is
symmetric in the variables, the formulas hold for the lattertwo cases as well. This
can also be seen as a proof without words in Figure 7 where the dotted segments are
the diagonals of the three respective trapezoids. Since thediagonals of an isosceles
trapezoid are congruent, we have

AC = BD, BD = EF, EF = CG.

Hence all are equal in length.

x

c

y

a b

b

x

x

z z
h

c

a

y

D

C

E QA

B

G

F

#1

#1

#1

#2

#3

#1

#2

#3

Figure 7. Proof without words: Congruent diagonals

Since many of the formulas derived in the theorems above are symmetric in vari-
ablesa, b, c, x, y, andz, these particular properties also hold for the two additional
trapezoidal arrangements of similar triangles. For example, since two sides of the
centroidal triangle of the original trapezoid are given by1

3

√
ab + bc + ca and the

third side by1

3
(a + b + c), the three centroidal triangles of all three trapezoids are

also isosceles and congruent. Additionally the areas of each of these triangles is
one-ninth of the areas of the trapezoids.

Since the sides of the circumcentric triangle of the original trapezoid are given

by circumradiiRa, Rc, and
√

2R2
a + 2R2

c − R2

b , the circumcentric triangles of the
other two trapezoids are not isosceles and are not congruentfor the three trape-
zoidal arrangements. However, the areas of the three circumcentric triangles are
the same and are given byxyz

8h
=

abc
8h

.
There are some excellent books on dissection, but most involve dissecting a

polygon and rearranging the pieces into one or more other polygons. For example,
see [1] and [5]. However, none of these references consider isosceles trapezoids
and similar triangles as presented in this paper. �

5. More Study

There are some additional questions that might be worth pursuing such as: What
properties follow from other centric triangles such as incenters, orthocenters, etc.?
Under what conditions are the three Euler lines of the dissecting triangles con-
current or parallel? Under what conditions are the three triangle centers for the
dissecting triangles collinear? Will any of the centric triangles be similar to the
dissecting triangles? Do comparable properties hold when isosceles trapezoid is
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replaced by isosceles quadrilateral? Finally, is there a 3-dimensional analog for
these properties?
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Synthetic Proofs of Two Theorems Related to
the Feuerbach Point

Nguyen Minh Ha and Nguyen Pham Dat

Abstract. We give synthetic proofs of two theorems on the Feuerbach point of a
triangle, one of Paul Yiu, and another of Lev Emelyanov and Tatiana Emelyanova
theorem.

1. Introduction

If S is a point belonging to the circumcircle of triangleABC, then the images of
S through the reflections with axesBC, CA andAB respectively lie on the same
line that passes through the orthocenter ofABC. This line is called the Steiner line
of S with respect to triangleABC.

If a lineL passes through the orthocenter ofABC, then the images ofL through
the reflections with axesBC, CA and AB are concurrent at one point on the
circumcircle ofABC. This point is named the anti-Steiner point ofL with respect
to ABC. Of course,L is Steiner line ofS with respect toABC if and only if S
is the anti-Steiner point ofL with respect toABC. In 2005, using homogenous
barycentric coordinates, Paul Yiu [5] established an interesting theorem related to
the Feuerbach point of a triangle; see also [3, Theorem 5].

Theorem 1. The Feuerbach point of triangleABC is the anti-Steiner point of the
Euler line of the intouch triangle ofABC with respect to the same triangle.1

In 2009, J. Vonk [4] introduced a geometrically synthetic proof of Theorem 1.
In 2001, by calculation, Lev Emelyanov and Tatiana Emelyanova [1] established
a theorem that is also very interesting and also related to the Feuerbach point of a
triangle.

Theorem 2. The circle through the feet of the internal bisectors of triangleABC
passes through the Feuerbach point of the triangle.

In this article, we present a synthetic proof of Theorem 1, which is different
from Vonk’s proof, and one for Theorem 2. We use(O), I(r), (XY Z) to denote
respectively the circle with centerO, the circle with centerI and radiusr, and the
circumcircle of triangleXY Z. As in [2, p.12], the directed angle from the line

Publication Date: March 22, 2012. Communicating Editor: J.Chris Fisher.
The authors thank Professor Chris Fisher for his valuable comments and suggestions.
1The anti-Steiner point of the Euler line is called the Euler reflection point in [3].
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a to the lineb denoted by(a, b). It measures the angle through whicha must be
rotated in the positive direction in order to become parallel to, or to coincide with,
b. Therefore,
(i) −90

◦ ≤ (a, b) ≤ 90
◦,

(ii) (a, b) = (a, c) + (c, b),
(iii) If a

′ and b
′ are the images ofa and b respectively under a reflection, then

(a, b) = (b
′, a

′
),

(iv) Four noncollinear pointsA, B, C, D are concyclic if and only if(AC,AD) =

(BC,BD).

2. Preliminary results

Lemma 3. Let ABC be a triangle inscribed in a circle(O), andL an arbitrary
line. Let the parallels ofL throughA, B, C intersect the circle atD, E, F respec-
tively. The linesLa, Lb, Lc are the perpendiculars toBC, CA, AB throughD, E,
F respectively.
(a)The linesLa, Lb, Lc are concurrent at a pointS on the circle(O),
(b) The Steiner line ofS with respect toABC is parallel toL.

O

A

B C

D

E

F

S

L

ℓ

Figure 1.

Proof. Let S be the intersection ofLa and(O). Let ℓ be the line throughO per-
pendicular toL (see Figure 1).

(a) BecauseA, B, andC are the images ofD, E, andF through the reflections
with axisL respectively,

(FE,FD) = (CA,CB). (1)
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Therefore, we have

(SE,AC) = (SE,SD) + (SD,BC) + (BC,AC)

= (FE,FD) + 90
◦

+ (BC,AC) (F ∈ (SDE), SD ⊥ BC)

= (CA,CB) + 90
◦
+ (BC,AC)

= 90
◦.

Therefore,SE coincidesLb, i.e., S lies onLb. Similarly,S also lies onLc, and the
three linesLa, Lb, Lc are concurrent atS on the circle(O).

(b) LetB1, C1 respectively be the images ofS through the reflections with axes
CA, AB. LetB2, C2 respectively be the intersection points ofSB1, SC1 with AC,
AB (see Figure 2). Obviously,B2, C2 are the midpoints ofSB1, SC1 respectively.
Thus,

B2C2//B1C1. (2)

SinceSB2, SC2 are respectively perpendicular toAC, AB,

S ∈ (AB2C2). (3)

O

A

B C

D

E

F

S

B1

C1

C2

B2

L

ℓ

Figure 2.

Therefore, we have

(B1C1,L) = (B1C1, AD) (L//AD)

= (B2C2, AD) (by (2))

= (B2C2, AC2) + (AB,AD) (B ∈ AC2)

= (B2S,AS) + (AB,AD) (by (3))

= (ES,AS) + (AB,AD) (E ∈ B2S)

= (ED,AD) + (DA,DE) (D ∈ (SEA))

= 0
◦.
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Therefore,B1C1//L. This means that the Steiner line ofS with respect to triangle
ABC is parallel toL. �

Before we go on to Lemma 4, we review a very interesting concept in plane
geometry called the orthopole. Let triangleABC and the lineL. A′, B′, C ′ are
the feet of the perpendiculars fromA, B, C to L respectively. The linesLa, Lb,
Lc pass throughA′, B′, C ′ and are perpendicular toBC, CA, AB respectively.
ThenLa, Lb, Lc are concurrent at one point called the orthopole of the lineL with
respect to triangleABC. The following result is one of the most important results
related to the concept of the orthopole. This result is oftenattributed to Griffiths,
whose proof can be found in [2, pp.246–247].

Lemma 4. Let ABC be a triangle inscribed in the circle(O), andP be an ar-
bitrary point other thanO. The orthopole of the lineOP with respect to triangle
ABC belongs to the circumcircle of the pedal triangle ofP with respect toABC.

Lemma 5. Let ABC be a triangle inscribed in(O). A1, B1, C1 are the images
of A, B, C respectively through the symmetry with centerO. A2, B2, C2 are the
images ofO through the reflections with axesBC, CA, AB respectively.A3, B3,
C3 are the feet of the perpendiculars fromA, B, C to the linesOA2, OB2, OC2

respectively. Then,
(a) The circles(OA1A2), (OB1B2), (OC1C2) all pass through the anti-Steiner
point of the Euler line of triangleABC with respect to the same triangle.
(b) The circle(A3B3C3) also passes through the same anti-Steiner point.

Proof. (a) LetH be the orthocenter ofABC. Take the pointsD, S belonging to
(O) such thatAD//OH andDS ⊥ BC (see Figure 3).

According to Lemma 3, the Steiner line ofS with respect toABC is parallel to
AD. On the other hand, the Steiner line ofS with respect toABC passes through
H. Hence,OH is the Steiner line ofS with respect toABC. In other words,

S is the anti-Steiner point of the Euler line ofABC with respect to the same triangle.
(4)

Let Sa be the intersection ofSD andOH. By (4),Sa is the images ofS through
the reflection with axisBC. From this, note thatA2 is the image ofO through the
reflection with axisBC, we have:

OA2SSa is an isosceles trapezium withOA2//Sa. (5)

Therefore, we have

(A2O,A2S) = (SaO,SaS) (by (5))

= (DA,DS) (DA//SaO andD ∈ SaS)

= (A1A,A1S) (A1 ∈ (DAS))

= (A1O,A1S) (O ∈ A1A).

It follows that S ∈ (OA1A2). Similarly, S ∈ (OB1B2) and S ∈ (OC1C2).
Therefore,

the circles(OA1A2), (OB1B2), (OC1C2) all pass throughS. (6)
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Figure 3.

From (4) and (6), we can deduce that(OA1A2), (OB1B2), (OC1C2) all pass
through the anti-Steiner point of the Euler line of triangleABC with respect to
ABC.

(b) Take the pointsA0, B0, C0 such thatA, B, C are the midpoints ofB0C0,
C0A0, A0B0 respectively. LetM be the mid-point ofBC (see Figure 4). Since
AB//CA0 andAC//BA0, ABA0C is a parallelogram. On the other hand, not-
ing thatHB ⊥ AC andCA1 ⊥ AC, HC ⊥ AB, andBA1 ⊥ AB, we have
HB//CA1, HC//BA1. This means thatHBA1C is a parallelogram. Thus,A0,
A1 are the images ofA, H respectively through the symmetry with centerM .
Therefore, the vectorsA1A0 andAH are equal.

On the other hand, sinceAHSaD is a parallelogram, the vectorsDSa andAH

are equal.
Hence, under the translation by the vectorAH, the pointsA1, D are transformed

into the pointsA0, Sa respectively. This means thatA0Sa//A1D.
From this, noting thatAD ⊥ A1D andAD//OH, we deduce that

A0Sa ⊥ OH. (7)

On the other hand, becauseSSa ⊥ BC andBC//B0C0, we have

SSa ⊥ B0C0. (8)

From (7) and (8), we see that the orthopole ofOH with respect to triangle
A0B0C0 lies on the lineSSa. Similarly, the orthopole ofOH with respect to
A0B0C0 also lies onSSb andSSc, whereSb, Sc are defined in the same way with
Sa. Thus,

S is the orthopole ofOH with respect to triangleA0B0C0. (9)

It is also clear thatH is the center of the circle(A0B0C0) and

A3B3C3 is the pedal triangle ofO with respect to triangleA0B0C0. (10)
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From (9) and (10), and by Lemma 4, we haveS ∈ (A3B3C3). �

Lemma 6. If any of the three points inA, B, C, D are not collinear, then the
nine-point circles of trianglesBCD, CDA, DAB, ABC all pass through one
point.

Lemma 6 is familiar and its simple proof can be found in [2, p.242].

3. Main results

3.1. A synthetic proof of Theorem 1.Assume that the circleI(r) inscribed inABC
touchesBC, CA, AB at A0, B0, C0 respectively. LetA1, B1, C1 be the images
of A0, B0, C0 respectively through the symmetry with centerI. LetA2, B2, C2 be
the images ofI through the reflections with axesB0C0, C0A0, A0B0 respectively.
Let A3, B3, C3 be the mid-points ofAI, BI, CI respectively (see Figure 5).

Under the inversion inI(r), the pointsA2, B2, C2 are transformed into the
pointsA3, B3, C3 respectively. As a result, the circles(IA1A2), (IB1B2), (IC1C2)

are transformed into the linesA1A3, B1B3, C1C3 respectively. According to
Lemma 5(a),
the circles(IA1A2), (IB1B2), (IC1C2) all pass through one point lying on the
circle (I), the anti-Steiner point of the Euler line of triangleA0B0C0 with respect
to the same triangle. We call this pointF . (11)
Hence,A1A3, B1B3, C1C3 are also concurrent atF . (12)
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BecauseA1, B1, C1 be the images ofA0, B0, C0 respectively through the sym-
metry with centerI, A1B1, A1C1 are parallel toA0B0, A0C0 respectively.

From this, noting thatA0B0, A0C0 are perpendicular toIC, IB respectively,
we deduce that

A1B1, A1C1 are perpendicular toIC, IB. (13)

Let M be the mid-point ofBC. Noting thatB3, C3 are the mid-points ofBI,
CI respectively, we have

IC//MB3 and IB//MC3. (14)

Therefore, we have

(FB3, FC3) = (FB1, FC1) (by (12))

= (A1B1, A1C1) (A1 ∈ (FB1C1))

= (IC,IB) (by (13))

= (MB3,MC3) (by (14)).

From this,F ∈ (MB3C3), the nine-point circle of triangleIBC.
Similarly, F also belongs to the nine-point circles of trianglesICA, IAB.
Thus, from Lemma 6,F belongs to the nine-point circle of triangleABC. This

means that

F is the Feuerbach point of triangleABC. (15)

From (11) and (15),F is not only the anti-Steiner point of the Euler line of
A0B0C0 with respect toA0B0C0, but also the Feuerbach point ofABC.

Thus, we can conclude that the Feuerbach point ofABC is the anti-Steiner point
of the Euler line ofA0B0C0.
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3.2. A synthetic proof of Theorem 2.Suppose that the inscribed circleI(r) of tri-
angleABC touchesBC, CA, AB at A0, B0, C0 respectively. LetA′, B′, C ′ be
the intersections ofAI, BI, CI with BC, CA, AB respectively;A′′, B′′, C ′′ be
the feet of the perpendiculars fromA0, B0, C0 to AI, BI, CI respectively andF
be the Feuerbach point ofABC (see Figure 6).

I

A

B CA′

B′

C′

A0

B0

C0

A′′

B′′

C′′

F

Figure 6.

From Lemma 5(b) and Theorem 1,F ∈ (A′′B′′C ′′
). (16)

On the other hand, under inversion in the incircleI(r), F , A′′, B′′, C ′′ are
transformed intoF , A′, B′, C ′ respectively. (17)

From (16) and (17), we can conclude that In conclusion, the circumcircle of
A′B′C ′ passes through the Feuerbach pointF of ABC.
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Properties of Valtitudes and Vaxes of
a Convex Quadrilateral

Maria Flavia Mammana, Biagio Micale, and Mario Pennisi

Abstract. We introduce the vaxes relative to a v-parallelogram and determine
several properties of valtitudes and of vaxes. In particular, we study the quadri-
lateral detected by the valtitudes and the one detected by the vaxes.

Given a convex quadrilateralQ, we call maltitude ofQ the perpendicular line
through the midpoint of a side to the opposite side. Maltitudes have been investi-
gated in several papers (see, for example, [2, 7, 8]). In particular in [7] it has been
proved that they are concurrent in a point, called anticenter in [9], if and only if
Q is cyclic. Valtitudes relative to a v-parallelogram of a convex quadrilateralQ
were defined in [7]. This definition generalizes the one of maltitudes. Moreover
the problem of concurrency of valtitudes relative to a v-parallelogram of a convex
quadrilateralQ was investigated. In this paper we introduce the notion of vaxis
relative to a v-parallelogram and we determine several properties of valtitudes and
vaxes. In particular, we study the quadrilateral detected by the valtitudes and those
detected by the vaxes.

1. v-parallelograms

LetA1A2A3A4 be a convex quadrilateral, that we denote byQ. A v-parallelogram
of Q is any parallelogram with vertices on the sides ofQ and sides parallel to the
diagonals ofQ.

A1

A2A3

A4

V1

V2

V3

V4

Figure 1.

To obtain a v-parallelogram ofQ we can use the following construction. Fix an
arbitrary pointV1 on the segmentA1A2. Draw fromV1 the parallel to the diagonal
A1A3 and letV2 be the intersection point of this line with the sideA2A3. Draw
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from V2 the parallel to the diagonalA2A4 and letV3 be the intersection point of
this line with the sideA3A4. Finally, draw fromV3 the parallel to the diagonal
A1A3 and letV4 be the intersection point of this line with the segmentA4A1. The
quadrilateralV1V2V3V4 is a v-parallelogram [7] and, by movingV1 on the segment
A1A2, we obtain all possible v-parallelograms ofQ (see Figure 1).

In the following we will denote byV a v-parallelogram ofQ, with Vi (i =

1, 2, 3, 4), vertex ofV on the sideAiAi+1 (with indices taken modulo4) and with
G′ the common point to the diagonals ofV. Observe thatV is orthodiagonal.
The v-parallelogramM1M2M3M4, with Mi midpoint of the sideAiAi+1, is the
Varignon parallelogram ofQ. In this particular caseG′ is the centroidG of Q. We
recall that ifM5 andM6 are the midpoints of the diagonalsA1A3 andA2A4 of
Q respectively, the segmentM5M6, that we call thethird bimedianof Q, passes
throughG that bisects this segment ([1, 5]).

Theorem 1. The locus described by the common point of the diagonals of a v-
parallelogramV of Q by varyingV is the third bimedian ofQ.

Proof. Let V be any v-parallelogram ofQ and letN1N2N3N4 be the Varignon
parallelogram ofV, with midpointNi of ViVi+1 (see Figure 2).

A1

A2A3

A4

V1

V2

V3

V4

N4

N1

N2

N3 M5

M6

G′

Figure 2.

The trianglesA1A2A3 andV1A2V2 are correspondent in a homothetic transfor-
mation with centerA2. It follows that

A1V1

A1A2

=

A3V2

A2A3

. (1)

Moreover,M5 andN1 are collinear withA2. Analogously,M6 andN4 are collinear
with A1.

Let G′

1
andG′

2
be the common points of the lineM5M6 with N1N3 andN2N4,

respectively. Because the trianglesM5G
′

1
N1 and M5M6A2 are similar, as are

V2A2N1 andA3A2M5, we have

M5G
′

1

M5M6

=

M5N1

M5A2

=

A3V2

A2A3

. (2)
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Analogously, because the trianglesM6G
′

2
N4 andM5M6A1 are similar, as are

A1V1N4 andA1A2M6, we have

M5G
′

2

M5M6

=

A1N4

A1M6

=

A1V1

A1A2

. (3)

From (1), (2) and (3), it follows thatM5G′

1

M5M6
=

M5G′

2

M5M6
. Hence,G′

1
= G′

2
= G′,

andG′ lies on the bimedianM5M6.
Conversely, fix a pointP on the bimedianM5M6. Let N1 be the common point

to the lineA2M5 with the parallel line toA2A4 passing throughP . Let V1 be the
common point to the lineA1A2 with the parallel line toA1A3 passing throughN1.
V1 detectS a v-parallelogramV that hasP as common point of its diagonals.�

2. Valtitudes

Let V be a v-parallelogram ofQ andHi be the foot of the perpendicular to
Ai+2Ai+3 from Vi. The quadrilateralH1H2H3H4 is called theorthic quadrilateral
of Q [6], and we will denote it byH. The linesViHi are called thevaltitudesof Q
with respect toV (see Figure 3).

A1

A2A3

A4

V1

V2

V3

V4

H4

H1

H2

H3

Figure 3.

In the following the valtitudeViHi will be denoted byhi. Observe thatH can
be a convex, concave, or crossed quadrilateral. IfV is the Varignon parallelogram,
the quadrilateralH is called theprincipal orthic quadrilateralof Q and the lines
MiHi are the maltitudes ofQ.

Given a v-parallelogramV, if the valtitudes ofQ with respect toV are concur-
rent, thenQ is cyclic or orthodiagonal[7]. Moreover,if Q is cyclic or orthodiag-
onal, there is only one v-parallelogramV∗ with respect to which the valtitudes are
concurrent. Precisely,
(a) If Q is cyclic, V∗ is the Varignon parallelogram ofQ and then the valtitudes
that are concurrent are the maltitudes ofQ; moreover the concurrency point of the
maltitudes is the anticenterH of Q; H is the symmetric of the circumcenter O with
respect to the centroidG of Q and the line containing the three pointsH, O andG
is the Euler line ofQ (see Figure 4).

The line through the midpointM5 of the diagonalA1A3 of Q perpendicular to
the diagonalA2A4 and the line through the midpointM6 of A2A4 perpendicular
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Figure 4.

to A1A3 are concurrent inH [6]. Observe thatG is the midpoint of the segments
OH andM5M6, then the quadrilateralOM5HM6 is a parallelogram withG as the
common point to the diagonals.

(b) If Q is orthodiagonal,V∗ is the v-parallelogram detected from the perpen-
diculars to the sides ofQ through the common pointK of the diagonals ofQ, that
is then the concurrency point of the valtitudes (see Figure 5).

K

A1

A2

A3

A4

V1

V2

V3

V4

H1

H2

H3

H4

Figure 5.
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3. Vaxes

Let Q be a convex quadrilateral andV a v-parallelogram ofQ.
We call thevaxisrelative to the sideAiAi+1 the perpendicular toAiAi+1 through

Vi and denote it byki.

Theorem 2. If V is a v-parallelogram ofQ and G′ is the common point of the
diagonals ofV, in the symmetry with centerG′ the valtitudes relative toV corre-
spond with the vaxes relative toV.

A1

A2A3

A4

V1

V2

V3

V4

H4

H1

H2

H3

G′

Figure 6.

Proof. In fact,Vi andVi+2 are symmetric with respect toG′ (see Figure 6). Then
the vaxiski and the line parallel to it passing throughVi+2, i.e., the valtitudehi+2,
are correspondent in the symmetry with centerG′. �

From Theorem 2 it follows that given a v-parallelogramV, the vaxes ofQ
relative toV are concurrent if and only if the valtitudes ofQ relative toV are
concurrent.

Then, from the concurrency properties of valtitudes, it follows thatif the vaxes
are concurrent, thenQ is cyclic or orthodiagonal. Moreover,if Q is cyclic or or-
thodiagonal, there is only one v-parallelogramV∗ such that the valtitudes relative
to it are concurrent. Precisely,
(a) If Q is cyclic, V∗ is the Varignon parallelogram ofQ, and the vaxes that are
concurrent are the axes ofQ and the concurrency point is the circumcenterO of
Q.
(b) If Q is orthodiagonal,V∗ is the v-parallelogram detected by the perpendicu-
lars to the sides ofQ through the common pointK of the diagonals ofQ and the
concurrency point of the vaxes is the pointK ′ symmetric ofK with respect toG′

(see Figure 7).
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Figure 7.

4. The quadrilateral of valtitudes and the quadrilateral of vaxes

Let Q be a convex quadrilateral andV a v-parallelogram ofQ.
Let Bi be the common point to the valtitudeshi andhi+1. We callB1B2B3B4

thequadrilateral of the valtitudesand denote it byQh.
Let Ci be the common point of the vaxeski andki+1. We callC1C2C3C4 the

quadrilateral of the vaxesand denote it byQk (see Figure 8).
A1
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A4
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V3

V4

H4

H1
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H3
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B2

B3
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C2

C3

C4

G′

Figure 8.

If V is the Varignon parallelogram, the lineshi are the maltitudes andQh is
called thequadrilateral of the maltitudesof Q [4]. The lineski are the axes ofQ,
Ci is the circumcenter of the triangleAiAi+1Ai+2 andQk is called thequadrilat-
eral of the circumcentersof Q [4]. Observe that whenV is the Varignon parallel-
ogram, ifQ is cyclic, thenQh andQk are reduced to a point.
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The theorem below follows from Theorem 2.

Theorem 3. If V is a v-parallelogram ofQ andG′ is the common point of the di-
agonals ofV, the quadrilateral of the vaxes and the quadrilateral of thevaltitudes
are symmetric with respect toG′.

Proof. In fact, the valtitudehi+2 is the correspondent of the vaxiski in the sym-
metry with centerG′, and the pointBi+2 is the correspondent of the pointCi. �

Corollary 4 ([4, p.474]). If V is the Varignon parallelogram ofQ, the quadri-
lateral of the circumcenters and the quadrilateral of the maltitudes are symmetric
with respect to the centroidG of Q.

Let K andK ′ be the common points of the diagonals ofQ and ofQk respec-
tively.

Lemma 5. If Q is orthodiagonal, the trianglesAiAi+1K and CiCi+3K
′, (i =

1, 2, 3, 4) are similar.

Proof. SinceQ is orthodiagonal, the verticesBi of Qh lie on the diagonals ofQ
[6]. The diagonals ofQh and those ofQ lie on the same lines (see Figure 9). It
follows thatQh is orthodiagonal. Then, by Theorem 3,Qk is orthodiagonal as
well, and the diagonals ofQk are parallel to those ofQ. Then, the linesC1C3 and
C2C4 are perpendicular to the linesA1A3 andA2A4 respectively. Moreover, the
line C1C4 is perpendicular toA1A2. Therefore, the trianglesA1A2K andC1C4K

′

are similar, because they have equal angles. Analogously, the similarlity of each
of the pairsA2A3K, C2C1K

′; A3A4K, C3C2K
′; andA4A1K, C4C3K

′ can be
established. �
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A4

V1
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V3

V4
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C2

C3

C4
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K′

Figure 9.

Let us make some preliminary remarks.
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For the two ratiosA1K
KA3

and A3K
KA1

let r be the one not greater than1. Also, for

the two ratiosA2K
KA4

and A4K
KA2

, let r′ be the one not greater than1. The pair{r, r′} is
called the characteristic ofQ. In [3] it was proved that two quadrilaterals are affine
if and only if they have the same characteristic.

Theorem 6. If Q is orthodiagonal andV is a v-parallelogram ofQ, the quadri-
lateral of the vaxes and the quadrilateral of the valtitudesare affine toQ.

Proof. From Lemma 5, we have

A1K

A2K
=

C1K
′

C4K ′
, (4)

A2K

A3K
=

C2K
′

C1K ′
, (5)

A3K

A4K
=

C3K
′

C2K ′
. (6)

By multiplying (4) and (5), and also (5) and (6), we obtain:

A1K

A3K
=

C2K
′

C4K ′
,

A2K

A4K
=

C3K
′

C1K ′
.

Thus the quadrilateralsQ andQk have the same characteristic, and therefore are
affine. From theorem 3, alsoQh is affine toQ. �

Lemma 7. If Q is cyclic, the angles ofQk are equal to those ofQ. Precisely,
∠CiCi+1Ci+2 = ∠Ai−1AiAi+1 (i=1,2,3,4).

A1
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A3

A4

V1

V2

V3

V4

C1

C2

C3

C4

Figure 10.
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Proof. Let us prove that∠C1C2C3 = ∠A4A1A2 (see Figure 10). The other cases
can be established analogously. SinceQ is cyclic, ∠A4A1A2 and∠A2A3A4 are
supplementary angles. Moreover, the angles atV2 and V4 of the quadrilateral
V3C2V2A3 are right angles. Therefore,∠C1C2C3 and∠A2A3A4 are supplemen-
tary angles. It follows that∠C1C2C3 = ∠A4A1A2. �

Theorem 8. If Q is cyclic, then the quadrilateral of the vaxes and the quadrilateral
of the valtitudes are cyclic.

Proof. SinceQ is cyclic, ∠A4A1A2 and ∠A2A3A4 are supplementary angles.
Therefore, from Lemma 7,∠C1C2C3 and∠C1C4C2 are supplementary angles.
Then,Qk is cyclic and, from Theorem 3,Qh is cyclic as well. �

Theorem 9. If Q is cyclic and orthodiagonal andV is a v-parallelogram ofQ,
the quadrilateral of the vaxes and the quadrilateral of the valtitudes are similar to
Q.

A1

A2

A3

A4

V1

V2V3

V4

C1

C4

C3

C2

K

K′

Figure 11.

Proof. From Lemma 7,Q and Qk have equal angles. Let us prove now that
the sides ofQ are proportional to those ofQk. Consider the trianglesA1A2A3

andC2C3C4 (see Figure 11). From Lemma 5 the trianglesA1A2K andC2C3K
′

are similar, and∠KA1A2 = ∠K ′C2C3. Since, from Lemma 7,∠A1A2A3 =

∠C2C3C4, the trianglesA1A2A3 andC2C3C4 are similar.
Analogously, the similarity of each of the following pairs of triangles can be

established:A2A3A4, C3C4C1; A3A4A1, C4C1C2; andA4A1A2, C1C2C3. It
follows that

A1A2

C2C3

=

A2A3

C3C4

=

A3A4

C4C1

=

A4A1

C1C2

,

and the sides ofQ are proportional to those ofQk.
Therefore,Qk is similar toQ, and from Theorem 3,Qh is also similar toQ. �
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Lemma 10. If V is a v-parallelogram ofQ and Mi is the midpoint of the side
AiAi+1 of Q (i = 1, 2, 3, 4), then

A1V1

A1M1

=

A1V4

A1M4

=

A3V2

A3M2

=

A3V3

A3M3

, (7)

A2V1

A2M1

=

A2V2

A2M2

=

A4V3

A4M3

=

A4V4

A4M4

. (8)

A1

A2A3

A4

V1

V2

V3

V4

M4

M2

M1

M3

Figure 12.

Proof. In fact, since the trianglesA1V1V4 andA1M1M4 are similar, as are trian-
glesA3V2V3 andA3M2M3 (see Figure 12), we have

A1V1

A1M1

=

A1V4

A1M4

=

V1V4

M1M4

,
A3V2

A3M2

=

A3V3

A3M3

=

V2V3

M2M3

.

SinceV1V4 = V2V3 andM1M4 = M2M3, (7) holds.
Analogously, since the trianglesA2V1V2 andA2M1M2 are similar, as areA4V3V4

andA4M3M4, (8) also holds. �

Theorem 11. If Q is cyclic, the diagonals of the quadrilateral of the vaxes and
those of the quadrilateral of the valtitudes are parallel tothe diagonals ofQ.

Proof. Let O be the circumcenter ofQ (see Figure 13). LetC ′

4
andC ′′

4
be the

common points of the lineA1O with the vaxesk1 andk4 respectively. Since the
trianglesA1V1C

′

4
andA1M1O are similar, as are trianglesA1V4C

′′

4
andA1M4O,

we have
A1V1

A1M1

=

A1C
′

4

A1O
,

A1V4

A1M4

=

A1C
′′

4

A1O
.

From (7), we haveA1C′

4

A1O
=

A1C′′

4

A1O
. Therefore,C ′′

4
= C ′

4
= C4, andC4 lies on the

line A1O. Moreover,
A1C4

A1O
=

A1V1

A1M1

=

A1V4

A1M4

. (9)

Analogously, it is possible to prove thatC2 lies on the lineA3O and

A3C2

A3O
=

A3V2

A3M2

=

A3V3

A3M3

. (10)
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Figure 13.

From (9), (7) and (10), it follows that
A1C4

A1O
=

A3C2

A3O
.

Thus, the trianglesOC2C4 andOA1A3 are similar, and the diagonalC2C4 of Qk

is parallel to the diagonalA1A3 of Q.
Analogously, by using (8), it is possible to prove that the trianglesOC1C3 and

OA2A4 are similar, and the diagonalC1C3 of Qk is parallel to the diagonalA2A4

of Q. Since, from Theorem 3,Qk andQh are symmetric with respect to a point,
the diagonals ofQh are parallel to the diagonals ofQk and thus they are parallel
to the diagonals ofQ. �

A1

A2

A3

A4

V1

V2

V3

V4

C1

C2

C3

C4

O

Figure 14.
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Theorem 12. If Q is cyclic andV is a v-parallelogram ofQ, the quadrilateral of
the vaxes relative toV has the same circumcenter ofQ.

Proof. From Theorem 8,Qk is cyclic. The axes of segmentsC2C4 andC1C3 meet
at the circumcenter ofQk. The trianglesOC2C4 andOA1A3 are correspondent in
a homothetic transformation with center the circumcenterO of Q, because, from
theorem 11, the linesC2C4 andA1A3 are parallel (see Figure 14). It follows that
the axes of segmentsC2C4 andA1A3 coincide. Analogously, the axes of segments
C1C3 andA2A4 coincide. Then it follows thatO is the circumcenter ofQk. �

Theorem 13. If Q is cyclic, all the quadrilaterals of the vaxes ofQ have the same
Euler line.
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A4

V1

V2

V3

V4

C1

C2

C3

C4

O

V ′

1

V ′

2

V ′

3

V ′

4

C′

1

C′

2

C′

3

C′

4

Figure 15.

Proof. Consider two v-parallelogramsV and V
′ and their quadrilaterals of the

vaxesQk andQ
′

k respectively (see Figure 15). The verticesCi and C ′

i of Qk

andQ
′

k respectively lie on the lineOAi+1, and the ratio betweenOCi andOC ′

i

is equal to the ratio between the circumradii ofQk andQ
′

k. Then,Qk andQ
′

k

are correspondent in a homothetic transformation with center O. From Theorem
12, the Euler line ofQk passes throughO, therefore it is fixed in the homothetic
transformation. It follows thatQk andQ

′

k have the same Euler line. �

We call thek-line of Q (cyclic) the Euler line of all the quadrilaterals of the
vaxes ofQ.

Theorem 14. If Q is cyclic andV is a v-parallelogram ofQ, the quadrilateral of
the valtitudes relative toV has the same anticenter ofQ.
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Figure 16.

Proof. Let H be the anticenter ofQ. Let B′

4
andB′′

4
be the common points of the

line A1H with the valtitudesh1 andh4, respectively (see Figure 16).
Since the trianglesA1V1B

′

4
andA1M1H are similar, as areA1V4B

′′

4
andA1M4H,

we have
A1V1

A1M1

=

A1B
′

4

A1H
,

A1V4

A1M4

=

A1B
′′

4

A1H
.

From (7) it follows that

A1B
′

4

A1H
=

A1B
′′

4

A1H
.

Therefore,B′

4
= B′′

4
= B4 andB4 lies on the lineA1H. Analogously it is possible

to prove thatB2 lies on the lineA3H.
Now consider the third bimedianM5M6 of Q, with M5 andM6 the midpoints

of the diagonalsA1A3 andA2A4 of Q respectively. Leth5 be the perpendicular
to the lineA2A4 through the pointM5 and leth6 be the perpendicular to the line
A1A3 throughM6. The linesh5 andh6 pass throughH (see§2). The triangles
HB2B4 andHA1A3 are correspondent in a homothetic transformation with center
H, because, from Theorem 11,B2B4 andA1A3 are parallel. It follows thath5

passes through the midpoint ofB2B4 and it is perpendicular toB1B3, then it passes
through the anticenter ofQh. Analogously,h6 passes through the anticenter ofQh

as well, thenH is the anticenter ofQh. �

Theorem 15. If Q is cyclic, all the quadrilaterals of the valtitudes ofQ have the
same Euler line.
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Proof. Given a v-parallelogramV and the quadrilateralsQk andQh relative to it,
from Theorem 3, the Euler line ofQh is the symmetric of the Euler line ofQk with
respect to the pointG′, common point to the diagonals ofV. Then, the theorem
follows from Theorem 13. �

We call theh-line of Q (cyclic) the Euler line of all the quadrilaterals of the
valtitudes ofQ.

Theorem 16. If Q is cyclic, the h-line and the k-line ofQ are parallel and are
symmetric with respect to the line containing the third bimedian ofQ.

M5

M6

A1

A2

A3

A4

B1

B2

B3

B4

V1

V2

V3

V4

H

G

O

Figure 17.

Proof. From Theorems 3, 13 and 15 it follows that the h-line and the k-line of
Q are symmetric with respect toG′, common point of the diagonals of any v-
parallelogram ofQ. Therefore, in particular, they are parallel. Moreover, from
Theorem 1, the pointsG′ lie on the third bimedian ofQ, then the h-line and the
k-line of Q are symmetric with respect to the line containing the third bimedian of
Q (see Figure 17). �
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Similar Metric Characterizations of Tangential
and Extangential Quadrilaterals

Martin Josefsson

Abstract. We prove five necessary and sufficient conditions for a convex quadri-
lateral to have an excircle and compare them to similar conditions for a quadri-
lateral to have an incircle.

1. Introduction

There are a lot of more or less well known characterizations of tangential quadri-
laterals,1 that is, convex quadrilaterals with an incircle. This circle is tangent at the
inside of the quadrilateral to all four sides. Many of these necessary and sufficient
conditions were either proved or reviewed in [8]. In this paper we shall see that
there are a few very similar looking characterizations for aconvex quadrilateral to
have anexcircle. This is a circle that is tangent at the outside of the quadrilateral
to the extensions of all four sides. Such a quadrilateral is called anextangential
quadrilateral in [13, p.44],2 see Figure 1.

b

A
b

B

b
C

b
D

a

c

d

b E

b

b

b

Figure 1. An extangential quadrilateral and its excircle

We start by reviewing and commenting on the known characterizations of extan-
gential quadrilaterals and the similar ones for tangentialquadrilaterals. It is well
known that a convex quadrilateral is tangential if and only if the four internal angle

Publication Date: April 4, 2012. Communicating Editor: Paul Yiu.
1Another common name for these is circumscribed quadrilateral.
2Alexander Bogomolny calls them exscriptible quadrilateral at [2].
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bisectors to the vertex angles are concurrent. Their commonpoint is the incen-
ter, that is, the center of the incircle. A convex quadrilateral is extangential if and
only if six angles bisectors are concurrent, which are the internal angle bisectors
at two opposite vertex angles, the external angle bisectorsat the other two vertex
angles, and the external angle bisectors at the angles formed where the extensions
of opposite sides intersect. Their common point is the excenter (E in Figure 1).

The most well known and useful characterization of tangential quadrilaterals is
the Pitot theorem, that a convex quadrilateral with sidesa, b, c, d has an incircle if
and only if opposite sides have equal sums,

a + c = b + d.

For the existence of an excircle, the similar characterization states that the adjacent
sides shall have equal sums. This is possible in two different ways. There can
only be one excircle to a quadrilateral, and the characterization depends on which
pair of opposite vertices the excircle is outside of. It is easy to realize that it must
be outside the vertex (of the two considered) with the biggest angle.3 A convex
quadrilateralABCD has an excircle outside one of the verticesA or C if and only
if

a + b = c + d (1)

according to [2] and [10, p.69]. This was proved by the Swiss mathematician Jakob
Steiner (1796–1863) in 1846 (see [3, p.318]). By symmetry (b ↔ d), there is an
excircle outside one of the verticesB or D if and only if

a + d = b + c. (2)

From (1) and (2), we have that a convex quadrilateral with sidesa, b, c, d has an
excircle if and only if

|a − c| = |b − d|

which resembles the Pitot theorem. There is however one exception to these char-
acterizations. The existence of an excircle is dependent onthe fact that the exten-
sions of opposite sides in the quadrilateral intersect, otherwise the circle can never
be tangent to all four extensions. Therefore there is no excircle to either of a trape-
zoid, a parallelogram, a rhombus, a rectangle or a square even though (1) or (2)
is satisfied in many of them, since they have at least one pair of opposite parallel
sides.4

In [8, p.66] we reviewed two characterizations of tangential quadrilaterals re-
garding the extensions of the four sides. Let us take anotherlook at them here. If
ABCD is a convex quadrilateral where opposite sidesAB andCD intersect atE,
and the sidesAD andBC intersect atF (see Figure 2), thenABCD is a tangential
quadrilateral if and only if either of the following conditions holds:

AE + CF = AF + CE, (3)

BE + BF = DE + DF. (4)

3Otherwise the circle can never be tangent to all four extensions.
4The last four of these quadrilaterals can be considered to beextangential quadrilaterals with

infinite exradius, see Theorem 8.
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Figure 2. The extensions of the sides

The history of these conditions are discussed in [14] together with the correspond-
ing conditions for extangential quadrilaterals. In our notations,ABCD has an
excircle outside one of the verticesA or C if and only if either of the following
conditions holds:

AE + CE = AF + CF, (5)

BE + DE = BF + DF. (6)

These conditions were stated somewhat differently in [14] with other notations.
Also, there it was not stated that the excircle can be outsideA instead ofC, but
that is simply a matter of making the changeA ↔ C in (5) to see that the condition
is unchanged. How about an excircle outside ofB or D? By making the changes
A ↔ D andB ↔ C (to preserve thatAB andCD intersect atE) we find that
the conditions (5) and (6) are still the same. According to [14], conditions (3) and
(5) were proved by Jakob Steiner in 1846. In 1973, Howard Grossman (see [5])
contributed with the two additional conditions (4) and (6).

From a different point of view, (3) and (5) can be considered to be necessary and
sufficient conditions for when aconcavequadrilateralAECF has an “incircle” (a
circle tangent to two adjacent sides and the extensions of the other two) or an
excircle respectively. Then (4) and (6) are necessary and sufficient conditions for a
complexquadrilateralBEDF to have an excircle.5

Another related theorem is due to the Australian mathematician M. L. Urquhart
(1902–1966). He considered it to be “the most elementary theorem of Euclidean
geometry”. It was originally stated using only four intersecting lines. We restate it
in the framework of a convex quadrilateralABCD, where opposite sides intersect
atE andF , see Figure 2. Urquhart’s theorem states that ifAB+BC = AD+DC,
thenAE + EC = AF + FC. In 1976 Dan Pedoe wrote about this theorem (see
[12]), where he concluded that the proof by purely geometrical methods is not el-
ementary and that he had been trying to find such a proof that did not involve a
circle (the excircle to the quadrilateral). Later that year, Dan Sokolowsky took up

5Equations (4) and (6) can then be merged into one as|BE − DF | = |BF − DE|.
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that challenge and gave an elementary “no-circle” proof in [15]. In 2006, Mowaf-
faq Hajja gave a simple trigonometric proof (see [6]) that the two equations in
Urquhart’s theorem are equivalent. According to (1) and (5), they are both charac-
terizations of an extangential quadrilateralABCD.

2. Characterizations with subtriangle circumradii

In [9, pp.23–24] we proved that if the diagonals in a convex quadrilateralABCD
intersect atP , then it has an incircle if and only if

R1 + R3 = R2 + R4

whereR1, R2, R3 andR4 are the circumradii in the trianglesABP , BCP , CDP
andDAP respectively, see Figure 3.
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b

b

R2

R3
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Figure 3. The subtriangle circumcircles

There are the following similar conditions for a quadrilateral to have an excircle.

Theorem 1. LetR1, R2, R3, R4 be the circumradii in the trianglesABP , BCP ,
CDP , DAP respectively in a convex quadrilateralABCD where the diagonals
intersect atP . It has an excircle outside one of the verticesA or C if and only if

R1 + R2 = R3 + R4

and an excircle outside one of the verticesB or D if and only if

R1 + R4 = R2 + R3.

Proof. According to the extended law of sines, the sides satisfiesa = 2R1 sin θ,
b = 2R2 sin θ, c = 2R3 sin θ andd = 2R4 sin θ, whereθ is the angle between the
diagonals,6 see Figure 3. Thus

a + b − c − d = 2 sin θ(R1 + R2 − R3 − R4)

6We used thatsin (π − θ) = sin θ to get two of the formulas.
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and
a + d − b − c = 2 sin θ(R1 + R4 − R2 − R3).

From these we directly get that

a + b = c + d ⇔ R1 + R2 = R3 + R4

and
a + d = b + c ⇔ R1 + R4 = R2 + R3

sincesin θ 6= 0. By (1) and (2) the conclusions follow. �

3. Characterizations concerning the diagonal parts

In [7] Larry Hoehn made a few calculations with the law of cosines to prove that
in a convex quadrilateralABCD with sidesa, b, c, d,

efgh(a+c+b+d)(a+c−b−d) = (agh+cef+beh+dfg)(agh+cef−beh−dfg)

wheree, f, g, h are the distances from the verticesA,B,C,D respectively to the
diagonal intersection (see Figure 4). Using the Pitot theorema+ c = b+ d, we get
that the quadrilateral is tangential if and only if

agh + cef = beh + dfg. (7)

Now we shall prove that there are similar characterizationsfor the quadrilateral to
have an excircle.

Theorem 2. Lete, f, g, h be the distances from the verticesA,B,C,D respectively
to the diagonal intersection in a convex quadrilateralABCD with sidesa, b, c, d.
It has an excircle outside one of the verticesA or C if and only if

agh + beh = cef + dfg

and an excircle outside one of the verticesB or D if and only if

agh + dfg = beh + cef.

Proof. In [7] Hoehn proved that in a convex quadrilateral,

efgh
(

a2
+ c2 − b2 − d2

)

= a2g2h2
+ c2e2f2 − b2e2h2 − d2f2g2.

Now addingefgh(−2ac + 2bd) to both sides, this is equivalent to

efgh
(

(a − c)2 − (b − d)
2
)

= (agh − cef)
2 − (beh − dfg)

2

which is factored as

efgh(a−c+b−d)(a−c−b+d) = (agh−cef+beh−dfg)(agh−cef−beh+dfg).

The left hand side is zero if and only ifa+ b = c+d or a+d = b+ c and the right
hand side is zero if and only ifagh+ beh = cef + dfg or agh+ dfg = beh+ cef .

To show that the first equality from both sides are connected and that the second
equality from both sides are also connected, we study a special case. In a kite
wherea = d andb = c and alsof = h, the two equalitiesa + b = c + d and
agh + beh = cef + dfg are satisfied, but none of the others. This proves that they
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are connected. In the same way, using another kite, the othertwo are connected
and we have that

a + b = c + d ⇔ agh + beh = cef + dfg

and

a + d = b + c ⇔ agh + dfg = beh + cef.

This completes the proof according to (1) and (2). �

Remark.The characterization (7) had been proved at least three different times be-
fore Hoehn did it. It appears as part of a proof of an inverse inradii characterization
of tangential quadrilaterals in [16] and [17]. It was also proved in [11, Proposition
2 (e)]. All of the four known proofs used different notations.

4. Characterizations with subtriangle altitudes

In 2009, Nicuşor Minculete gave two different proofs (see [11]) that a convex
quadrilateralABCD has an incircle if and only if the altitudesh1, h2, h3, h4 from
the diagonal intersectionP to the sidesAB, BC, CD, DA in trianglesABP ,
BCP , CDP , DAP respectively satisfy

1

h1

+

1

h3

=

1

h2

+

1

h4

. (8)

This characterization of tangential quadrilaterals had been proved as early as 1995
in Russian by Vasilyev and Senderov [16]. Another Russian proof was given in
2004 by Zaslavsky [18]. To prove that (8) holds in a tangential quadrilateral (i.e.
not the converse) was a problem at the 2009 mathematics Olympiad in Germany
[1]. All of these but the 1995 proof used other notations.
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Figure 4. The subtriangle altitudesh1, h2, h3 andh4

Here we will give a short fifth proof that (8) is a necessary andsufficient con-
dition for a convex quadrilateral to have an incircle using the characterization (7).
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By expressing twice the area ofABP , BCP , CDP , DAP in two different ways,
we have the equalities (see Figure 4)

ah1 = ef sin θ,

bh2 = fg sin θ,

ch3 = gh sin θ,

dh4 = he sin θ (9)

whereθ is the angle between the diagonals.7 Hence
(

1

h1

+

1

h3

−
1

h2

−
1

h4

)

sin θ =

a

ef
+

c

gh
−

b

fg
−

d

he
=

agh + cef − beh − dfg

efgh
.

Sincesin θ 6= 0, we have that

1

h1

+

1

h3

=

1

h2

+

1

h4

⇔ agh + cef = beh + dfg

which by (7) proves that (8) is a characterization of tangential quadrilaterals.
Now we prove the similar characterizations of extangentialquadrilaterals.

Theorem 3. Let h1, h2, h3, h4 be the altitudes from the diagonal intersectionP
to the sidesAB, BC, CD, DA in the trianglesABP , BCP , CDP , DAP re-
spectively in a convex quadrilateralABCD. It has an excircle outside one of the
verticesA or C if and only if

1

h1

+

1

h2

=

1

h3

+

1

h4

and an excircle outside one of the verticesB or D if and only if

1

h1

+

1

h4

=

1

h2

+

1

h3

.

Proof. The four equations (9) yields
(

1

h1

+

1

h2

−
1

h3

−
1

h4

)

sin θ =

a

ef
+

b

fg
−

c

gh
−

d

he
=

agh + beh − cef − dfg

efgh
.

Sincesin θ 6= 0, we have that

1

h1

+

1

h2

=

1

h3

+

1

h4

⇔ agh + beh = cef + dfg

which by Theorem 2 proves the first condition in the theorem. The second is proved
in the same way. �

7Here we have used thatsin (π − θ) = sin θ in two of the equalities.
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5. Iosifescu’s characterization for excircles

According to [11, p.113], Marius Iosifescu proved in 1954 that a convex quadri-
lateralABCD has an incircle if and only if

tan

x

2

tan

z

2

= tan

y

2

tan

w

2

wherex = ∠ABD, y = ∠ADB, z = ∠BDC andw = ∠DBC, see Figure 5.
That proof was given in Romanian, but an English one was givenin [8, pp.75–77].

x

y

z

w

b

A

b
C

b
D

b

B

c

b

a

d
q

Figure 5. Angles in Iosifescu’s characterization

There are similar characterizations for a quadrilateral tohave an excircle, which
we shall prove in the next theorem.

Theorem 4. Let x = ∠ABD, y = ∠ADB, z = ∠BDC andw = ∠DBC in a
convex quadrilateralABCD. It has an excircle outside one of the verticesA or C
if and only if

tan

x

2

tan

w

2

= tan

y

2

tan

z

2

and an excircle outside one of the verticesB or D if and only if

tan

x

2

tan

y

2

= tan

z

2

tan

w

2

.

Proof. In [8], Theorem 7, we proved by using the law of cosines that

1 − cos x =

(d + a − q)(d − a + q)

2aq
, 1 + cos x =

(a + q + d)(a + q − d)

2aq
,

1 − cos y =

(a + d − q)(a − d + q)

2dq
, 1 + cos y =

(d + q + a)(d + q − a)

2dq
,

1 − cos z =

(b + c − q)(b − c + q)

2cq
, 1 + cos z =

(c + q + b)(c + q − b)

2cq
,

1 − cos w =

(c + b − q)(c − b + q)

2bq
, 1 + cos w =

(b + q + c)(b + q − c)

2bq
,
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wherea = AB, b = BC, c = CD, d = DA and q = BD in quadrilateral
ABCD. Using these and the trigonometric identity

tan
2

u

2

=

1 − cos u

1 + cos u
,

the second equality in the theorem is equivalent to

(d + a − q)2(d − a + q)(a − d + q)(c + q + b)2(c + q − b)(b + q − c)

16abcdq4

=

(b + c − q)2(b − c + q)(c − b + q)(a + q + d)
2
(a + q − d)(d + q − a)

16abcdq4
.

This is factored as

4qQ1(a + d − b − c)
(

(a + d)(b + c) − q2
)

= 0 (10)

where

Q1 =

(a − d + q)(d − a + q)(b − c + q)(c − b + q)

16abcdq4

is a positive expression according to the triangle inequality. We also have that
a + d > q andb + c > q, so(a + d)(b + c) > q2. Hence we have proved that

tan

x

2

tan

y

2

= tan

z

2

tan

w

2

⇔ a + d = b + c

which according to (2) shows that the second equality in the theorem is a necessary
and sufficient condition for an excircle outside ofB or D.

The same kind of reasoning for the first equality in the theorem yields

4qQ2(a + b − c − d)

(

(a + b)(c + d) − q2
)

= 0 (11)

where(a + b)(c + d) > q2 and

Q2 =

(a − b + q)(b − a + q)(d − c + q)(c − d + q)

16abcdq4
> 0.

Hence
tan

x

2

tan

w

2

= tan

y

2

tan

z

2

⇔ a + b = c + d

which according to (1) shows that the first equality in the theorem is a necessary
and sufficient condition for an excircle outside ofA or C. �

6. Characterizations with escribed circles

All convex quadrilateralsABCD have four circles, each of which is tangent
to one side and the extensions of the two adjacent sides. In a triangle they are
called the excircles, but for quadrilaterals we have reserved that name for a circle
tangent to the extensions of all four sides. For this reason we will call a circle
tangent to one side of a quadrilateral and the extensions of the two adjacent sides
anescribed circle.8 The four of them have the interesting property that their centers
form a cyclic quadrilateral. IfABCD has an incircle, then its center is also the
intersection of the diagonals in that cyclic quadrilateral[4, pp.1–2, 5].

8In triangle geometry the two names excircle and escribed circle are synonyms.
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First we will prove a new characterization for when a convex quadrilateral has
an incircle that concerns the escribed circles.

Theorem 5. A convex quadrilateral with consecutive escribed circles of radii Ra,
Rb, Rc andRd is tangential if and only if

RaRc = RbRd.
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d

Figure 6. The four escribed circles

Proof. We consider a convex quadrilateralABCD where the angle bisectors inter-
sect atIa, Ib, Ic andId. Let the distances from these four intersections to the sides
of the quadrilateral bera, rb, rc andrd, see Figure 6. Then we have

ra

(

cot

A

2

+ cot

B

2

)

= a = Ra

(

tan

A

2

+ tan

B

2

)

,

rb

(

cot

B

2

+ cot

C

2

)

= b = Rb

(

tan

B

2

+ tan

C

2

)

,

rc

(

cot

C

2

+ cot

D

2

)

= c = Rc

(

tan

C

2

+ tan

D

2

)

,

rd

(

cot

D

2

+ cot

A

2

)

= d = Rd

(

tan

D

2

+ tan

A

2

)

.
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From two of these we get

rbrd

(

cot

B

2

+ cot

C

2

)(

cot

A

2

+ cot

D

2

)

= RbRd

(

tan

B

2

+ tan

C

2

)(

tan

A

2

+ tan

D

2

)

,

whence

rbrd

(

cos
A
2

sin
D
2

+ sin
A
2

cos
D
2

sin
A
2

sin
D
2

)(

cos
B
2

sin
C
2

+ sin
B
2

cos
C
2

sin
B
2

sin
C
2

)

= RbRd

(

sin
B
2

cos
C
2

+ cos
B
2

sin
C
2

cos
B
2

cos
C
2

)(

sin
A
2

cos
D
2

+ cos
A
2

sin
D
2

cos
A
2

cos
D
2

)

.

This is equivalent to

rbrd

RbRd
= tan

A

2

tan

B

2

tan

C

2

tan

D

2

. (12)

By symmetry we also have

rarc

RaRc
= tan

A

2

tan

B

2

tan

C

2

tan

D

2

; (13)

so
rarc

RaRc
=

rbrd

RbRd
. (14)

The quadrilateral is tangential if and only if the angle bisectors are concurrent,
which is equivalent toIa ≡ Ib ≡ Ic ≡ Id. This in turn is equivalent to that
ra = rb = rc = rd. Hence by (14) the quadrilateral is tangential if and only if
RaRc = RbRd. �

We also have the following formulas. They are not new, and caneasily be de-
rived in a different way using only similarity of triangles.

Corollary 6. In a bicentric quadrilateral9 and a tangential trapezoid with consec-
utive escribed circles of radiiRa, Rb, Rc andRd, the incircle has the radius

r =

√

RaRc =

√

RbRd.

Proof. In these quadrilaterals,A + C = π = B + D or A + D = π = B + C (if
we assume thatAB ‖ DC). Thus

tan

A

2

tan

C

2

= tan

B

2

tan

D

2

= 1

or

tan

A

2

tan

D

2

= tan

B

2

tan

C

2

= 1.

In either case the formulas for the inradius follows directly from (13) and (12),
sincer = ra = rb = rc = rd when the quadrilateral has an incircle. �

9This is a quadrilateral that has both an incircle and a circumcircle.
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In comparison to Theorem 5 we have the following characterizations for an
extangential quadrilateral.

Theorem 7. Let a convex quadrilateralABCD have consecutive escribed circles
of radii Ra, Rb, Rc andRd. The quadrilateral has an excircle outside one of the
verticesA or C if and only if

RaRb = RcRd

and an excircle outside one of the verticesB or D if and only if

RaRd = RbRc.
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Figure 7. Intersections of four angle bisectors

Proof. We consider a convex quadrilateralABCD where two opposite internal
and two opposite external angle bisectors intersect atEa, Ec, Eb andEd. Let the
distances from these four intersections to the sides of the quadrilateral beρa, ρc, ρb

andρd respectively, see Figure 7. Then we have

ρa

(

cot

A

2

− tan

B

2

)

= a = Ra

(

tan

A

2

+ tan

B

2

)

,

ρb

(

tan

B

2

− cot

C

2

)

= b = Rb

(

tan

B

2

+ tan

C

2

)

,

ρc

(

tan

D

2

− cot

C

2

)

= c = Rc

(

tan

C

2

+ tan

D

2

)

,

ρd

(

cot

A

2

− tan

D

2

)

= d = Rd

(

tan

D

2

+ tan

A

2

)

.
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Using the first two of these, we get

ρaρb

(

cot

A

2

− tan

B

2

)(

tan

B

2

− cot

C

2

)

= RaRb

(

tan

A

2

+ tan

B

2

)(

tan

B

2

+ tan

C

2

)

,

whence

ρaρb

(

cos
A
2

cos
B
2
− sin

A
2

sin
B
2

sin
A
2

cos
B
2

)(

sin
B
2

sin
C
2
− cos

B
2

cos
C
2

cos
B
2

sin
C
2

)

= RaRb

(

sin
A
2

cos
B
2

+ cos
A
2

sin
B
2

cos
A
2

cos
B
2

)(

sin
B
2

cos
C
2

+ cos
B
2

sin
C
2

cos
B
2

cos
C
2

)

.

This is equivalent to

ρaρb

cos
A+B

2

(

− cos
B+C

2

)

sin
A
2

cos
2 B

2
sin

C
2

= RaRb

sin
A+B

2
sin

B+C
2

cos
A
2

cos
2 B

2
cos

C
2

,

which in turn is equivalent to

ρaρb

RaRb
= − tan

A + B

2

tan

B + C

2

tan

A

2

tan

C

2

. (15)

By symmetry (B ↔ D), we also have

ρcρd

RcRd
= − tan

A + D

2

tan

D + C

2

tan

A

2

tan

C

2

. (16)

Now using the sum of angles in a quadrilateral,

tan

A + B

2

= − tan

D + C

2

and

tan

B + C

2

= − tan

A + D

2

.

Hence

tan

A + B

2

tan

B + C

2

= tan

A + D

2

tan

D + C

2

so by (15) and (16) we have

ρaρb

RaRb
=

ρcρd

RcRd
. (17)

The quadrilateral is extangential if and only if the internal angle bisectors atA and
C, and the external angle bisectors atB andD are concurrent, which is equivalent
to Ea ≡ Eb ≡ Ec ≡ Ed. This in turn is equivalent to thatρa = ρb = ρc = ρd.
Hence by (17) the quadrilateral is extangential if and only if RaRb = RcRd.

The second conditionRaRd = RbRc is proved in the same way. �
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We have not found a way to express the exradius (the radius in the excircle)
in terms of the escribed radii in comparison to Corollary 6. Instead we have the
following formulas, which although they are simple, we cannot find a reference
for. They resemble the well known formulasr =

K
a+c

=
K

b+d
for the inradius in a

tangential quadrilateral with sidesa, b, c, d and areaK.

Theorem 8. An extangential quadrilateral with sidesa, b, c andd has the exradius

ρ =

K

|a − c|
=

K

|b − d|

whereK is the area of the quadrilateral.

Proof. We prove the formulas in the case that is shown i Figure 8. The area of the
extangential quadrilateralABCD is equal to the areas of the trianglesABE and
ADE subtracted by the areas ofBCE andCDE. Thus

K =
1

2
aρ +

1

2
dρ − 1

2
bρ − 1

2
cρ =

1

2
ρ(a + d − b − c)

where the exradiusρ is the altitude in all four triangles. Hence

ρ =

2K

a − c + d − b
=

K

a − c
=

K

d − b

since here we havea+b = c+d (the excircle is outside ofC), that isa−c = d−b.
To cover all cases we put absolute values in the denominators. �
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Figure 8. Calculating the area ofABCD with four triangles

This theorem indicates that the exradii in all parallelograms (and hence also in
all rhombi, rectangles and squares) are infinite, since in all of them a = c and
b = d.
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A New Proof of Yun’s Inequality for
Bicentric Quadrilaterals

Martin Josefsson

Abstract. We give a new proof of a recent inequality for bicentric quadrilaterals
that is an extension of the Euler-like inequalityR ≥

√
2r.

A bicentric quadrilateral ABCD is a convex quadrilateral that has both an in-
circle and a circumcircle. In [6], Zhang Yun called these “double circle quadrilat-
erals” and proved that

r
√

2

R
≤

1

2

(

sin
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2

cos

B

2

+ sin

B

2

cos

C

2

+ sin

C

2
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D

2

+ sin

D

2

cos

A

2

)

≤ 1

wherer and R are the inradius and circumradius respectively. While his proof
mainly focused on the angles of the quadrilateral and how they are related to the
two radii, our proof is based on calculations with the sides.
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Figure 1. A bicentric quadrilateral with its inradius and circumradius
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In [4, p.156] we proved that the half angles of tangent in a bicentric quadrilateral
ABCD with sidesa, b, c, d are given by

tan

A

2

=

√

bc

ad
= cot

C

2

,

tan

B

2

=

√

cd

ab
= cot

D

2

.

We need to convert these into half angle formulas of sine and cosine. The trigono-
metric identities

sin

x

2

=

tan
x
2

√

tan
2 x

2
+ 1

,

cos

x

2

=

1

√

tan
2 x

2
+ 1

yields

sin

A

2

=

√

bc

ad + bc
= cos

C

2

, (1)

cos

A

2

=

√

ad

ad + bc
= sin

C

2

(2)

and

sin

B

2

=

√

cd

ab + cd
= cos

D

2

, (3)

cos

B

2

=

√

ab

ab + cd
= sin

D

2

. (4)

From the formulas for the inradius and circumradius in a bicentric quadrilateral
(these where also used by Yun, but in another way)

r =

2

√
abcd

a + b + c + d
,

R =

1

4

√

(ab + cd)(ac + bd)(ad + bc)

abcd

we have

r
√

2

R
=

8

√
2abcd

(a + b + c + d)

√

(ab + cd)(ac + bd)(ad + bc)

≤
8

√
2abcd

4

4
√

abcd
√

(ab + cd)(ad + bc)
√

2

√
acbd

=

2

√
abcd

√

(ab + cd)(ad + bc)

where we used the AM-GM inequality twice.



A new proof of Yun’s inequality for bicentric quadrilaterals 81

Let us for the sake of brevity denote the trigonometric expression in the paren-
thesis in Yun’s inequality byΣ. Thus

Σ = sin

A

2

cos

B

2

+ sin

B

2

cos

C

2

+ sin

C

2

cos

D

2

+ sin

D

2

cos

A

2

and the half angle formulas (1), (2), (3) and (4) yields

Σ =

√
ab2c +

√
bc2d +

√
acd2

+

√
a2bd

√

(ab + cd)(ad + bc)
=

(

√
ab +

√
cd)(

√
ad +

√
bc)

√

(ab + cd)(ad + bc)
.

Using the AM-GM inequality again,

(

√
ab +

√
cd)(

√
ad +

√
bc) ≥ 2

√

√
ab
√

cd · 2

√

√
ad

√
bc = 4

√
abcd.

Hence
r
√

2

R
≤

2

√
abcd

√

(ab + cd)(ad + bc)
≤

1

2

Σ.

This proves the left hand side of Yun’s inequality.
For the right hand side we need to prove that

(

√
ab +

√
cd)(

√
ad +

√
bc)

√

(ab + cd)(ad + bc)
≤ 2.

By symmetry it is enough to prove the inequality
√

ab +

√
cd

√
ab + cd

≤
√

2.

Since both sides are positive, we can rewrite this as

(

√
ab +

√
cd)

2 ≤ 2(ab + cd) ⇔ 2

√
abcd ≤ ab + cd

which is true according to the AM-GM inequality.
This completes our proof of Yun’s inequality for bicentric quadrilaterals. From

the calculations with the AM-GM inequality we see that thereis equality on the left
hand side only when all the sides are equal since we useda+ b+ c+d ≥ 4

4
√

abcd,
with equality only ifa = b = c = d. On the right hand side we have equality only
if ab = cd andad = bc, which is equivalent toa = c andb = d. Since it is a
bicentric quadrilateral, we have equality on either side ifand only if it is a square.

It can be noted that since opposite angles in a bicentric quadrilateral are supple-
mentary angles, Yun’s inequality can also (after rearranging the terms) be stated as
either
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B

2

+ sin

B

2

sin

C

2

+ sin

C

2

sin

D

2

+ sin

D

2

sin

A

2

)

≤ 1

or

r
√

2

R
≤

1

2

(

cos

A

2

cos

B

2

+ cos

B

2

cos

C

2

+ cos

C

2

cos

D

2

+ cos

D

2

cos

A

2

)

≤ 1.

We conclude this note by a few comments on the simpler inequality R ≥
√

2r.
According to [2, p.132] it was proved by Gerasimov and Kotii in 1964. The next
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year, the American mathematician Carlitz published a paper[3] where he derived a
generalization of Euler’s triangle formula to a bicentric quadrilateral. His formula
gaveR ≥

√
2r as a special case. Another proof can be based on Fuss’ theorem, see

[5]. The inequality also directly follows from the fact thatthe areaK of a bicentric
quadrilateral satisfies2R2 ≥ K ≥ 4r2, which was proved in [1].
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Reflection Triangles and Their Iterates

Grégoire Nicollier

Abstract. By reflecting each vertex of a triangle in the opposite side one obtains
the vertices of the reflection triangle of the given triangle. We analyze the for-
ward and backward orbit of any base triangle under this reflection process and
give a complete description of the underlying discrete dynamical system with
fractal structure.

1. Introduction

We considerfinite triangles as well asinfinite triangles with a finite side, a ver-
tex at infinity and two semi–infinite parallel sides. By reflecting each vertex of a
triangle in the opposite side one obtains the vertices of thereflection triangleof
the given triangle. A degenerate triangle is thus its own reflection triangle – in-
cluding by convention triangles with two or three coincident vertices. The reverse
construction of an antireflection triangle is in general notpossible with compass
and ruler only [2]. By using interactive geometry software one sees how erratic
the behavior of a, say, four times reflected triangle can be with respect to the base
triangle (Figure 1).
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3

4

b

b

b

b

b

bbb

b

b

b

bb

b

b

b

b

b

b

Figure 1

We give a complete description of the dynamical system generated by this re-
flection process and we reduce the part concerning the non-acute triangles to a
symbolic system. Eachproper triangle (i.e., each finite nondegenerate triangle) is
the reflection triangle of5, 6 or 7 differently placed triangles –7 when the triangle
is equilateral or nearly equilateral (Figure 2). Each degenerate triangle with three
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A1 = C1
b
B

b
C

b A

bb
B1

b C1

b
A1b

B1

Figure 2. Isosceles triangle with equal30
◦–angles and degenerate reflection tri-

angle; the7 triangles with the same equilateral reflection triangle

distinct vertices is the reflection triangle of exactly5 triangles. Each nondegenerate
infinite triangle is the reflection triangle of exactly3 infinite triangles. We prove
that all finite acute and right–angled triangles tend to an equilateral limit if one
iterates this reflection map, and we describe the fractal structure of the triangles
having an equilateral or degenerate limit. If one represents the set of triangles up to
similarity by the set

{

(α, β) | 0◦ ≤ β ≤ α ≤ 90
◦ − β

2

}

in the Euclidean plane, the
triangles with equilateral limit form a dense open subset; the triangles with degen-
erate limit form a countable union of maximal path–connected subsets with empty
interior; the triangles without equilateral or degeneratelimit form an uncountable
totally path–disconnected subset; any neighborhood of a triangle without equilat-
eral limit contains uncountably many triangles with equilateral limit, with degener-
ate limit, and with neither equilateral nor degenerate limit. We show that there are
up to angle similarity four finite and two infinite triangles similar to their reflection
triangle (among them the degenerate and equilateral triangles, theheptagonal tri-
anglewith anglesπ

7
, 2π

7
and 4π

7
, and the rectangular infinite triangle). We exhibit

the ten2–cycles – three of them for infinite triangles – and the forty3–cycles –
eight of them for infinite triangles. If one identifies similar triangles, the set of
non-acute triangles contains (finitely many) cycles of any fixed finite length – they
are always repelling – and uncountably many disjoint divergent forward orbits for
both finite and infinite triangles. We exhibit some explicit examples and describe
symbolically the periodic and divergent forward orbits. Itis possible to design di-
vergent forward orbits with almost any behavior: such an orbit can for example
approximate any periodic orbit of non-acute, nondegenerate triangles during any
finite number of consecutive reflection steps before leavingthis cycle, or it can
even be dense in the space of triangles without equilateral limit. If one identifies
similar triangles, infinite triangles having a degenerate limit are countably dense in
the set of infinite triangles; this is also the case for the backward orbit of any nonde-
generate infinite triangle; the backward orbit of a finite triangle without equilateral
limit (and not reduced to a single point) is dense in the set ofall triangles without
equilateral limit.
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Properties of finite reflection triangles can be found in [12,5, 6] and [3, pp. 77–
80]. The reflection triangle of a proper triangle∆ is homothetic – in ratio4 with
respect to the centroid of∆ – to the pedal triangle of the nine–point centerN [5],
i.e., to the triangle with vertices on each side of∆ halfway between the side’s
midpoint and the altitude’s foot. By the Wallace–Simson Theorem [10, p. 137] the
reflection triangle of a proper triangle∆ – being similar to the pedal triangle ofN
– is degenerate if and only ifN lies on the circumcircle of∆: this is the case if and
only if the sidesa, b, c of ∆ satisfya2

+ b2
+ c2

= 5R2, R being the circumradius.
Thus, by the sine law, the reflection triangle of a proper triangle with anglesα, β,
γ is degenerate if and only if

sin
2 α + sin

2 β + sin
2 γ =

5

4
. (1)

We mainly use a method developed by van IJzeren [9] for solving the problem of
finding all triangles with a given finite reflection triangle.We reformulate, extend
and fully exploit van IJzeren’s results and prove them because the original proof
(in Dutch) is partly incomplete and sometimes approximate.The key paper [9]
was preceded by another van IJzeren’s paper [8] and by publications of Dutch
mathematicians on the same subject [2, 11].

2. Van IJzeren coordinates of a triangle

We identify triangles that have the same anglesα, β, γ to get the setT of
similarity classes. We then speak of a(triangle) classof T and write∆ ∈ T
or {α, β, γ} ∈ T . It is both natural and convenient to assign angles0, 0, π
to all degenerate triangles (i.e., to triangles with collinear vertices) and to lump
them together into a single classO of T . The classes of infinite triangles are
Πα = {α, π − α, 0}, 0 < α < π; these are the classes of triangles having as
vertices one point at infinity and two different finite points, and as sides one line
segment and two half–lines (which are parallel). Note thatΠα = Ππ−α and that
Ππ/2 contains the infinite rectangular triangles. We denote byIα the isosceles class
of the finite triangles with angles{α,α, π− 2α}, 0 < α < π

2
. We often identifyT

with
{

(α, β) | 0◦ ≤ β ≤ α ≤ 90
◦ − β

2

}

(Figure 4).
For both the class∆ = {α, β, γ} ∈ T and a triangle∆ with these angles, we

define the sums(∆) = sin
2 α+sin

2 β+sin
2 γ, the productp(∆) = sin

2 α·sin2 β ·
sin

2 γ and thevan IJzeren map

V (∆) = ∆
∗

= (s(∆), p(∆))

giving thevan IJzeren coordinatesof ∆. s(∆) runs from0 for a degenerate triangle
to 9

4
for an equilateral triangle;s(∆) is > 2, = 2 or < 2 if ∆ is acute, right–

angled or obtuse, respectively.p(∆) runs from0 for a degenerate or infinite triangle
to 27

64
for an equilateral triangle. A givens(∆) or p(∆) determines the curve of

admissible values(α, β) for two acute angles of∆ (Figure 3).

Lemma 1. The polynomialu3− su2
+ du− p has rootsu1 = sin

2 α, u2 = sin
2 β,

u3 = sin
2 γ for some{α, β, γ} ∈ T if and only ifs, p ∈ R, p ≥ 0, d =

s2

4
+ p and
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0
Π

2

Α

0

Π

2

Β

Figure 3. Level curvessin2
α+sin

2
β+sin

2
(α+β) = s (plain, thick fors =

5

4
)

andsin
2
α·sin2

β ·sin2
(α+β) = p (dashed). Points(α, β) corresponding to the

two smallest anglesα, β of a triangle lie in the square0 ≤ α, β ≤ π

2
south–west

of or on the thick dotted line.

D(s, p) = (9− 4s)3 − (8p + 2s2 − 18s + 27)
2 ≥ 0. {α, β, γ} is then unique and

s ≥ 0.

Proof. If d =
s2

4
+ p, p

16
D(s, p) is the polynomial’s discriminant: fors ∈ R and

p > 0 one has thenD(s, p) ≥ 0 if and only if the roots are real; fors ∈ R and
p = 0 the roots are then0 and s

2
(double) andD(s, 0) = 4s3

(2 − s) is≥ 0 if and
only if s ∈ [0, 2].

(⇒) s, d andp are the roots’ sum, the sum of products of two roots and the roots’
product, respectively. Hences, p ∈ R, p ≥ 0, andD(s, p) ≥ 0 if d =

s2

4
+ p. We

have to prove thatd =
s2

4
+p. If no angle is0, divide the cosine law by the squared

circumdiameter to get

2 sin α sin β cos γ = sin
2 α + sin

2 β − sin
2 γ. (2)

If the triangle is degenerate or infinite, (2) becomes0 = 0 and is true also. Square
(2) to get4u1u2(1− u3) = (s− 2u3)

2, i.e.,

4u1u2 − 4p = s2 − 4su3 + 4u2

3
= s2 − 4u1u3 − 4u2u3, i.e., 4d− 4p = s2.

(⇐) The polynomial’s rootsu1, u2, u3 are real. Sinced =
s2

4
+ p, one has

u3 − su2
+ du− p = u(u− s

2
)
2
+ p(u− 1): no root can be> 1 or < 0 if p > 0;

if p = 0, the roots are0 and s
2
∈ [0, 1] sinceD(s, p) ≥ 0. One can thus write
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u1 = sin
2 α1, u2 = sin

2 β1, u3 = sin
2 γ1 for someα1, β1, γ1 ∈

[

0, π
2

]

. As above,
4d− 4p = s2 if and only if 4u1u2(1− u3) = (s− 2u3)

2
= (u1 + u2 − u3)

2, i.e.,
if and only if 4u1u2 − 4u1u2u3 = u2

3
− 2(u1 + u2)u3 + (u1 + u2)

2, i.e., if and
only if

u2

3
− 2(u1 + u2 − 2u1u2)u3 + (u1 − u2)

2
= 0. (3)

Sinceu1 + u2 − 2u1u2 = u1(1 − u2) + (1 − u1)u2 and u1 − u2 = u1(1 −

u2) − (1 − u1)u2, (3) is equivalent to
(

u3 − (u1(1 − u2) + (1 − u1)u2)

)

2
=

4u1(1− u2)(1− u1)u2, i.e.,

u3 = sin
2 α1 cos

2 β1 + cos
2 α1 sin

2 β1 ± 2 sin α1 cos β1 cos α1 sin β1,

which issin
2 γ1 = sin

2
(α1±β1). If sin

2 γ1 = sin
2
(α1+β1), takeα = α1, β = β1,

γ = π − α − β. If sin
2 γ1 = sin

2
(α1 − β1), supposeα1 ≥ β1 without restricting

the generality and chooseγ = α1 − β1, β = β1 andα = π − β − γ = π − α1.
D(s, p) = −64p2

+p
(

−32s2
+ 288s − 432

)

−4s4
+8s3 shows thatD(s, p) <

0 for p ≥ 0, s < 0. Two triangle classes with the sames and the samep have
necessarily the samed =

s2

4
+ p and are equal since they correspond to the same

rootssin
2 α, sin

2 β, sin
2 γ. �

Theorem 2. The van IJzeren map is a bijection fromT to

T ∗
=

{

(s, p) | D(s, p) = (9− 4s)3 − (8p + 2s2 − 18s + 27)
2 ≥ 0, s ≥ 0, p ≥ 0

}

with inverseV −1
: T ∗ → T given by

(s, p) 7→ {arcsin
√

u1 , arcsin
√

u2 , π − arcsin

√
u1 − arcsin

√
u2 }

whereu1 ≤ u2 ≤ u3 are the solutions ofu3 − su2
+ (

1

4
s2

+ p)u− p = 0.

For (s, p) ∈ T ∗ the discriminant p
16

D(s, p) of the above polynomial inu is 0

if and only if there are multiple roots amongsin2 α, sin
2 β andsin

2 γ, i.e., if and
only if (s, p) = Π

∗

α for p = 0 or (s, p) = I∗α for D(s, p) = 0 – in addition to
(s, p) = O∗ or Π

∗

π/2
in both cases.

The curveD(s, p) = 0, s ≥ 0, p ≥ 0, is the roof Λ of T ∗ (Figure 4) and
is constituted byO∗, Π

∗

π/2
and the images of the isosceles classes: the point

{α,α, π − 2α}∗, 0 ≤ α ≤ π
2
, or

Λ(t) =

(

2t(3 − 2t), 4t3(1− t)
)

, 0 ≤ t = sin
2 α ≤ 1, (4)

travels alongΛ from the originO∗ to Π
∗

π/2
= (2, 0).

The pointsΛ(t) given by t = 0, 2−
√

3

4
, 1

4
, 1

2
, 3

4
, 2+

√

3

4
and1 areO∗

= (0, 0),

I∗
π/12

= (
5−2

√

3

4
, 7−4

√

3

64
) ≈ (0.384, 0.001), I∗

π/6
= (

5

4
, 3

64
), I∗

π/4
= (2, 1

4
), the roof

topI∗
π/3

= (
9

4
, 27

64
) = (2.25, 0.421875), I∗

5π/12
= (

5+2
√

3

4
, 7+4

√

3

64
) ≈ (2.116, 0.218)

andΠ
∗

π/2
= (2, 0), respectively.

For 1

2
≤ t ≤ 3

4
the pointsΛ(t) of the left roof section andΛ(

3

2
− t) of the right

roof section have the same abscissa.
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Figure 4. T as
{

(α, β) | 0◦ ≤ β ≤ α ≤ 90
◦ − β

2

}

and roof ofT ∗ with points
corresponding toO, to the isosceles classesIα for α = 15

◦, 30
◦, 45

◦, 60
◦ (the

maximal value ofβ and ofp), 75◦, and toΠ90◦

O∗ and the images of the classes of infinite triangles{α, 0, π − α}, 0 < α ≤
π
2
, form the ground Γ of T ∗ on the s–axis represented by the curve(s, p) =

(2t, 0), 0 ≤ t = sin
2 α ≤ 1.

The vertical segment in Figure 4 betweenI∗
π/4

and Π
∗

π/2
corresponds to the

curve

(s, p) = (2, t(1 − t)), 1

2
≤ t = sin

2 α ≤ 1,

constituted by the images of the right–angled classes{α, π
2
− α, π

2
}, π

4
≤ α ≤ π

2
.

The images of the obtuse triangle classes are to the left of this segment, the images
of the acute classes to the right.

3. Coordinates of the reflection triangle

Since the elementary symmetric polynomialss = u1 + u2 + u3, d = u1u2 +

u2u3+u3u1, p = u1u2u3 have by Lemma 1 the propertyd =
s2

4
+p if u1 = sin

2 α,
u2 = sin

2 β andu3 = sin
2 γ for some{α, β, γ} ∈ T , every symmetric polynomial

in u1, u2, u3 can then be expressed withs andp only:

{α, β, γ} ∈ T ⇒
∑

cyclic

sin
2 α sin

2 β = d =
s2

4
+ p,

∑

cyclic

sin
4 α = s2 − 2d =

s2

2
− 2p,

∑

cyclic

sin
4 α sin

4 β = d2 − 2sp =

(

s2

4
+ p

)

2
− 2sp,

∑

cyclic

sin
2 α sin

2 β
(

sin
2 α + sin

2 β
)

= sd− 3p =
s3

4
+ sp− 3p.

(5)

Theorem 3. If r(∆) denotes the reflection triangle (class) of∆, the map

ρ : T ∗ → T ∗, (s, p) = ∆
∗ 7→ r(∆)

∗
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induced byr is given byρ(I∗
π/6

) = (0, 0) and by

ρ(s, p) =

(

ρ1(s, p), ρ2(s, p)

)

=

(

(s+16p)(4s−5)
2

4s+1+64p(4s−7)
, p(4s−5)

6

(4s+1+64p(4s−7))2

)

otherwise.

(6)
Further,

D(ρ(s, p)) = D(s, p)

(4s−5)
6
(4s−1+64p(4s−9))

2

(4s+1+64p(4s−7))
4 (7)

if ρ(s, p) is defined,i.e., for all (s, p) ∈ R
2 not lying on the hyperbolap =

− 4s+1

64(4s−7)
. This hyperbola is tangent to the roof atI∗

π/6
and is otherwise exte-

rior to T ∗.

Proof. Consider the proper triangle∆ = ABC with anglesα, β, γ and oppo-
site sidesa, b, c and reflect∆ in all its sides to get the reflection triangle∆1 =

A1B1C1. Let (s, p) and(S,P ) be the van IJzeren coordinates of∆ and∆1, re-
spectively. Suppose first that∆1 is proper and consider the triangleA1B1C with
anglemin(3γ, |2π − 3γ|) at C. The cosine law, the formulacos γ − cos 3γ =

4 sin
2 γ cos γ and the sine law give

c2

1 = c2
+ 2ab(cos γ − cos 3γ) = c2

(1 + 8 sin α sinβ cos γ) and thus by (2)

R2

1
sin

2 γ1 = R2
sin

2 γ(1 + 4s− 8 sin
2 γ), whereR,R1 are the circumradii. (8)

The cyclic sum of (8) gives with (5)

R2

1S = R2
(s(1 + 4s)− 4(s2 − 4p)) = R2

(s + 16p). (9)

Multiplying
∑

cyclic sin
2 α1 sin

2 β1 =
S2

4
+ P by R4

1
and using (8) for each angle

of ∆1, (5) and (9), one gets

R4

1
P = R4

∑

cyclic

sin
2 α sin

2 β(1 + 4s − 8 sin
2 α)(1 + 4s− 8 sin

2 β)−R4

1

S2

4

= R4p(4s− 5)
2. (10)

Note that (10) proves once again (see (1)) that all proper triangles withs =
5

4

have a degenerate reflection triangle.
The product of the three formulas (8) gives together with (5)

R6

1P = R6p(1 + 4s− 8 sin
2 α)(1 + 4s− 8 sin

2 β)(1 + 4s − 8 sin
2 γ)

= R6p
(

(1 + 4s)3 − 8(1 + 4s)2 + 64(1 + 4s)(s2

4
+ p)− 512p

)

= R6p (4s + 1 + 64p(4s − 7)) .

(11)

Use now the relations

R2

1S · R
4

1P = S · R6

1P and
(

R4

1P
)

3
= P ·

(

R6

1P
)

2

between the left sides of (9)–(11) to combine their right sides in the same way,
simplify the powers ofR and get(S,P ) = ρ(s, p) when∆ and∆1 are proper
triangles. Sinceρ(0, 0) = (0, 0), the formula is also correct when∆ is degen-
erate. Theorem 4 will prove the formula when∆1 is degenerate and∆ proper.
A limit argument establishes the validity of the formula forthe infinite caseΠα =
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limε→0+{α−ε, π−α−ε, 2ε}. Theorem 7 givesr(Πα) explicitly and computes its
coordinates directly. The proof of (7) follows from (6) by brute computation. �

We denote byρm andrm, m ∈ Z, themth iterate ofρ andr, respectively, and
speak of descendants (child, grandchild, . . . ) or ancestors(parents, grandparents,
. . . ) of a point(s, p) or of a triangle (class). By (7)(S,P ) ∈ T ∗ \Λ has no parents
(s, p) ∈ R

2 outsideT ∗ sinceD(S,P ) > 0 andD(s, p) < 0 are incompatible.
Note also that by (7) a non-isosceles parent ofIα (or a parent ofO∗, Π

∗

π/2
that is

not on the roof) has coordinates(s, p) with s =
5

4
(see Theorem 4) orp =

1−4s
64(4s−9)

(see Theorems 8 and 11).
Several angles play a special role in our story. We denote them byω indexed by

the rounded angle measure in degrees:

ω12 = arcsin

√

3−
√

7

8
≈ 12.148◦ ω58 = arcsin

√

29−6
√

6

20
≈ 57.7435◦

ω21 = arcsin

√

1

8
≈ 20.705◦ ω62 = arcsin

√

1+6
√

6

20
≈ 62.364◦

ω38 = arcsin

√

3

8
≈ 37.761◦ ω66 = arcsin(

√
2− 1

2
) ≈ 66.09◦

ω49 = arcsin
3

4
≈ 48.59◦ ω68 = arcsin

√
1+

√

6

2
≈ 68.2238◦

ω50 = arcsin

√
1+

√

2

2
≈ 50.976◦ ω71 = arcsin

√

3+
√

17

8
≈ 70.666◦

ω51 = arcsin

√

17−1

4
≈ 51.332◦ ω72 = arcsin

3
√

10
≈ 71.565◦

ω52 = arcsin

√

5

8
= 90

◦ − ω38 ≈ 52.2388◦

4. Degenerate reflection triangles

We provide here some of the details behind (1).

Theorem 4. The reflection triangle of a nondegenerate triangle∆ is degenerate if
and only ifs(∆) =

5

4
, i.e., if and only if the point(α, β) formed by the two smallest

angles of∆ lies on the ovalsin2 α + sin
2 β + sin

2
(α + β) =

5

4
through (

π
6
, π

6
)

cutting the positive axes atω52 (Figure 3). Triangle∆ is then obtuse with obtuse
angle between2π

3
(for α = β =

π
6
) andπ − ω52 (infinite triangle).

Proof. Let firstABC be a proper triangle with opposite sidesa, b, c, circumcenter
O, circumradiusR, nine–point centerN , centroidG and mediansma, mb, mc, and
let X be a point (not necessarily coplanar withABC). [10, p. 174] proves

XA2
+ XB2

+ XC2
= GA2

+ GB2
+ GC2

+ 3XG2. (12)

By usingm2

a + m2

b + m2

c =
3

4
(a2

+ b2
+ c2

) (an immediate consequence of the
median theorem [10, p. 68]), takingX = O and usingON =

3

2
OG, (12) becomes

3R2
=

1

3
(a2

+ b2
+ c2

) +
4

3
ON2. (13)

The homothetyh(G, 1

4
) with centerG and ratio 1

4
transformsr(ABC) into the

pedal triangle ofN [5]. By the Wallace–Simson Theorem [10, p. 137]r(ABC) is
thus degenerate if and only ifN lies on the circumcircle,i.e., if and only if (13)
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becomesa2
+ b2

+ c2
= 5R2, i.e., if and only if s(ABC) =

5

4
by the sine law.

Theorem 7 proves the result for infinite triangles. �

Here is an even shorter proof using an idea of [3, p. 78] (the proof there is
flawed): when∆ is a proper triangle, the trilinear vertex matrix ofr(∆) is





−1 2 cos γ 2 cos β
2 cos γ −1 2 cos α
2 cos β 2 cos α −1





;

its determinant is0 if and only if r(∆) is degenerate; the determinant can be written
as4s(∆)− 5 since one getss(∆) = 2 + 2 cos α cos β cos γ by expandingcos γ =

− cos(α + β).
Theorem 3 tells us that inR2 the parentsρ−1

(O∗
) ofO∗

= (0, 0) are the origin
itself and all the points(5

4
, p), p ∈ R: only the origin and the points(5

4
, p), 0 ≤

p ≤ 3

64
, lie in T ∗.

Consider a proper triangle∆ with coordinates(s, p) and its reflection trian-
gle ∆1 = A1B1C1 with sidesa1, b1, c1 and coordinates(S,P ). (8), (9) and
(11) are then also true when∆1 is degenerate if one replaces their left side byc2

1
,

a2

1
+ b2

1
+ c2

1
anda2

1
b2

1
c2

1
, respectively: thusa2

1
+ b2

1
+ c2

1
6= 0 and a2

1
b2
1
c2
1

(a2

1
+b2

1
+c2

1
)3

=

p(64p(4s−7)+4s+1)

(16p+s)3
. Suppose now that∆1 is degenerate,i.e., s =

5

4
, with c1 = a1 +

b1 6= 0 and letx = a1/c1 ∈ [0, 1]: then a2

1
b2
1
c2
1

(a2

1
+b2

1
+c2

1
)3

=

128p(3−64p)

(64p+5)3
=

(x−x2
)
2

8(x2
−x+1)3

is given as a function ofp or x by Figure 5 with maximum1

54
for p =

1

64
and for

x =
1

2
, i.e., for a parent with angles

{

π
4
, arcsin

√

3−
√

7

8
, π − arcsin

√

3+
√

7

8

}

=

{45◦, ω12, 135
◦ − ω12}, and with minimum0 for Iπ/6. The following theorem is

proven.

1

64

3

64

p

1

54

1

2
1

x

1

54

Figure 5. Graphs of128p(3−64p)

(64p+5)3
and (x−x

2
)
2

8(x2
−x+1)3

Theorem 5. A finite degenerate triangle∆1 with three different vertices is the
reflection triangle of exactly5 triangles. If the midpoint of the longest side is not
a vertex, these5 triangles are the degenerate triangle itself, a pair of non-similar
non-isosceles triangles and their mirror images in the lineof ∆1. If the midpoint
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of the longest side is the third vertex, these5 triangles are the degenerate triangle
itself, a non-isosceles triangle with angles{45◦, ω12, 135

◦−ω12}, its mirror image
in the line of∆1 and their reflections in the midpoint of the longest side. The
corresponding coordinates(s, p) of the nondegenerate parents are given bys =

5

4

and by the two (possibly equal) solutionsp ∈
]

0, 3

64

[

of 128p(3−64p)

(64p+5)3
=

(x−x2
)
2

8(x2
−x+1)3

,
wherex is the ratio of the shortest side of∆1 to the longest side(Figure 5).

A finite degenerate triangle with only two different vertices is the reflection tri-
angle of exactly2 triangles: itself by convention and an isosceles triangle with
equal anglesπ

6
. A point is the reflection triangle of itself only.

b
O

b
N

b

H

bA

b Ma

b
B

b C

b
A1

b

B1b
C1

b
O′

Figure 6. Construction of an inscribed triangleABC with degenerate reflection
triangleA1B1C1. The dotted curve is the locusL of A1 as function ofA.

Here is a construction of all∆ ∈ T with s =
5

4
that is simpler than the cor-

responding construction of [5]. Take a pointO and a circleO(R) of radiusR
centered atO (Figure 6). ChooseN ∈ O(R) and reflectO in N to get the ortho-

centerH. We search forA,B,C ∈ O(R) with
−−→
OH =

−→
OA +

−−→
OB +

−−→
OC. Choose

anyA ∈ O(R) with HA ≤ 2R, takeMa given by
−−−→
OMa =

1

2

−−→
AH and construct the

chorda = BC with midpointMa to get – if not degenerate – a triangleABC with
s =

5

4
. N

(

R
2

)

is then the nine–point circle ofABC. In the four cases whereABC
degenerates into a chord (see below), one gets an infinite triangle with angleω52

at the double vertex ofABC by taking a triangle’s semi–infinite side alongABC
and a finite side on the tangent toO(R). WhetherABC is degenerate or not, one
has then also

−−−→
OMb =

1

2

−−→
BH and

−−−→
OMc =

1

2

−−→
CH.

There is an even simpler determination ofMa: construct the centroidG given
by
−−→
OG =

2

3

−−→
ON and getMa as the intersection ofAG andN

(

R
2

)

on the other side
of G.

LetA1B1C1 be the degenerate reflection triangle. The lineA1B1C1 goes through
the reflectionO′ of O in H [5, without proof]: we give here a demonstration by the
author, D. Grinberg (personal communication). The Simson line of any pointX
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of the circumcircle bisectsXH [7, p. 46], hence the Simson line ofN goes in our
case through the midpointMNH of NH; the homothetyh(G, 4) that transforms
the pedal triangle ofN into the reflection triangle sends thusMNH to a point of the
line A1B1C1; but this point is on the lineON at distance2

3
R+4

(

3

2
R− 2

3
R

)

= 4R
from O and is thusO′.

LetL be the locus ofA1 as function ofA. The side midpoints ofABC lie on the
nine–point circleN

(

R
2

)

insideO(R), and this arc is the locus ofMa as function
of A. As A moves on the portion ofO(R) inside H(2R), Πω52

is represented
at the arc’s extremitiesE± with ∠NOE± = ± arccos

1

4
≈ ±75.523◦ and atL±

given byO(R) ∩ N
(

R
2

)

∩ L with ∠NOL± = ±2 arcsin
1

4
≈ ±28.955◦. Iπ/6 is

represented at∠NOA = 0
◦,±60

◦. Any other∆ ∈ T with s =
5

4
is represented

six times (once in each of the intervals delimited by the seven angles above) by a
triply covered triangle (with each vertex in turn getting the labelA) and its triply
covered image under reflection in the lineON . The corresponding six degenerate
reflection trianglesA1B1C1 occupy only two positions symmetrically to the line
ON and each vertex in turn isA1; the situation is similar for the infinite triangle
and for the isosceles case:L contains thus alsoB1 andC1 (on the corresponding
altitudes ofABC).

Place the isosceles triangle∆ = ABC of Figure 2 with equal30◦–angles and
its degenerate reflection triangleA1B1C1 into Figure 6, withB at N ; let thenA
andB glide towardsL− (andC towardsE+) on the nine–point circle of Figure 6
in such a way that the reflection triangleA1B1C1 remains degenerate: the angleα
at A grows from30

◦ to ω52, the coordinates(s, p) of ∆ travel on the lines =
5

4

from (
5

4
, 3

64
) = I∗

30◦
on the roof to(

5

4
, 0) = Π

∗

ω52
on the ground and the ratio

x = A1C1 : B1C1 runs from0 to 1 in Figure 5.
The homothetyh(G,−2) sendsN

(

R
2

)

to O(R) and thusL± to E∓ (hence
{G} = E+L− ∩ E−L+). By considering a degenerate triangleABC with ver-
ticesE+, L− or E−, L+ (infinite triangle’s case), one sees that the antipodeL′

−

of L− on N
(

R
2

)

, being at distanceR from H, is the midpoint ofHE+: L− lies
on the circleL′

−
(R) with diameterHE+. The tangents toL at H form a 60

◦–
angle because they are the tangents toO(R) corresponding to the isoscelesABC
representingIπ/6.

In a cartesian coordinate system with originO andN = (R, 0), the locusL of
A1 as function ofA = (R cos ϕ,R sin ϕ) is the curve

A1 =

(

2R(7− 2 cos ϕ)(1 − cos ϕ)

5− 4 cos ϕ
,
2R sinϕ(2 cos ϕ− 1)

5− 4 cos ϕ

)

, |ϕ| ≤ arccos

1

4

.

(14)
(14) gives alsoB1 andC1 from the polar coordinates ofB andC, respectively.
The range of the polar angle ofB andC is smaller than forA: whenA goes from
E− to E+, B andC start atL+, go toE± in opposite directions and come back to
L−.

The end points ofL are the midpoints of the segmentsO′L±. Indeed, sinceA1

is the upper end pointU of L for the infinite triangle’s caseA = E−, B = C =

B1 = C1 = L+ =

(

7

8
R,

√

15

8
R

)

, one hasU =

(

39

16
R,

√

15

16
R

)

by (14). The line
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UL+ is tangent toL at L+ since it would be the line of the degenerate reflection
triangle in the infinite triangle’s case.

Theorem 6. Let ∆ be an proper triangle with degenerate reflection triangle∆1.
The following properties are equivalent.
(1) ∆1 has two equal sides and three different vertices,i.e., ∆ has angles45◦ and
ω12.
(2) The middle vertex of∆1 is halfway between the corresponding vertex of∆ and
the orthocenter of∆, i.e., on the nine–point circle of∆ but not on its circumcircle.

Proof. (2)⇒(1): (14) shows that the upper part ofL cutsN
(

R
2

)

atC1 if and only if
the polar angle ofC is arccos

7

8
(infinite triangle’s case) orarccos 3

4
: in this second

case,C1 =

(

11

8
R,

√

7

8
R

)

is the midpoint ofHC. By computing then with (14) the

intersections of the lineO′C1 and ofL, one gets the polar anglesarccos 5+
√

7

8
≈

17.114◦ for A (say) and− arccos
5−

√

7

8
≈ −72.886◦ for B, hence∠AOB =

90
◦ and∠COA = arccos

1+
√

7

4
, thus∠ACB = 45

◦ and∠ABC = ω12 by the
inscribed angle theorem.C1 is the midpoint ofA1B1 by Theorem 5.

(1)⇒(2): there is only one position on the upper part ofL where both shorter
sides of∆1 are equal. �

5. Infinite reflection triangles

Theorem 7. The action ofr on a class of infinite triangles is given byr(Πα) =

Π(2α+arctan(3 tan α)) mod π (Figure 8)andr(Πα)
∗

=

(

s(4s−5)
2

4s+1
, 0

)

for 0 < α ≤ π
2
,

wheres = s(Πα) = 2 sin
2 α.

Proof. The theorem is true forα =
π
2
. Take an acute angleα, consider a triangle

with an angle2α between sides of length1 and2 and defineδ as the acute or right
angle formed by the bisector of2α and the opposite side. Using the angle bisector
theorem and settings = 2 sin

2 α one getssin2 δ =
9s

8s+2
and thustan δ = 3 tan α,

i.e., δ = arctan(3 tan α). A figure shows that the formula forr(Πα) is exact.
Developingr(Πα)

∗
=

(

2 sin
2
(2α + δ), 0

)

leads to the expression ins. �

Note thatr(Ππ/6) = Ππ/3. When restricted to thes–axis,ρ is given byρ(s, 0) =

(s(4s−5)
2

4s+1
, 0

)

: the fixed points are(0, 0), (
3

4
, 0) = Π

∗

ω38
and(2, 0), they lie on the

groundΓ and are repelling inR2. Since an infinite triangle has an infinite reflec-
tion triangle,ρ mapsΓ to Γ (Figures 7 and 8):ρ|Γ is a triple covering ofΓ. Since
no point ofΓ \ {(0, 0)} has parents outsideΓ by the formula forρ and by (7), the
backward and forward orbit underρ of (s, 0), s ∈ ]0, 2], remains inΓ. ρn|Γ is
a 3

n–fold covering ofΓ with 3
n fixed points for every integern ≥ 1 (Figure 7).

Since3
n > 3 + 3

2
+ · · · + 3

n−1 for n > 1, ρ|Γ hasn–cycles for alln ≥ 1, i.e.,
cycles ofminimalperiodn. The length of the longest monotonicity interval of the
first coordinate ofρn|Γ tends to0 for n → ∞. Each periodic or infinite forward
orbit has a countable backward orbit. The following theoremis proven.



Reflection triangles and their iterates 95

0.25 0.75 1.25 2
s

0.25

0.75

1.25

2

S

Figure 7. First coordinate
of ρ|Γ (plain) and ofρ2|Γ
(dashed)

Ω21 Ω38 Ω52 90
Α

Ω21

Ω38

Ω52

90

Α1

Figure 8. α1 = α1(α) given
by Πα1

= r(Πα) and its iter-
ate (in◦)

Theorem 8. (1) The two or three parents(in R
2
) of anyΠ

∗

α = (S, 0), 0 < S ≤ 2,

all lie on Γ \ {(0, 0)} and their abscissae are the solutions ofs(4s−5)
2

4s+1
= S. The

parents ofΠ∗

π/2
= (2, 0) are thus itself and(1

4
, 0) = Π

∗

ω21
. Π

∗

ω52
= (

5

4
, 0) and

(0, 0) are the only parents of(0, 0) on thes–axis and their abscissae are the solu-

tions of s(4s−5)
2

4s+1
= S = 0.

(2) The backward orbit of anyΠ∗

α underρ lies inΓ and is countably dense inΓ.
(3) ρ|Γ has a nonzero finite number ofn–periodic points for all integersn ≥ 1.
(4) There are uncountably many disjoint infinite forward orbitsof ρ|Γ.
(5) Every nondegenerate infinite triangle has exactly3 parents sinceΠω21

gener-
ates two inversely similar parents of a given rectangular infinite triangle.

Figure 7 shows thatρ|Γ has three2–cycles. Since the abscissa ofρ2
(s, 0)−(s, 0)

is

8s(s− 2)(4s − 3)(8s2 − 12s + 1)(256s4 − 832s3
+ 832s2 − 260s + 13)

(4s + 1)
2
(64s3 − 160s2

+ 104s + 1)

,

the points(3±
√

7

4
, 0), which areΠ

∗

ω12
andΠ

∗

45◦+ω12
, are exchanged byρ, as are

the points
(

1

16

(

13−
√

13±
√

78− 2

√
13

)

, 0
)

, i.e., Π
∗

10.08...◦ andΠ
∗

48.24...◦ , and
(

1

16

(

13 +

√
13 ±

√

78 + 2

√
13

)

, 0
)

, i.e., Π∗

28.68...◦ andΠ
∗

63.96...◦ ; these2–cycles

are repelling inR2. Notice thatω12 already appeared in Theorem 5. The in-
finite triangle and its grandchild are directly similar whencorresponding to the
first 2–cycle and inversely similar in the two other2–cycles. ρ|Γ has eight3–
cycles, they are all repelling inR2. Four 3–cycles are given by the roots of
16777216s12−167772160s11

+720371712s10−1735131136s9
+2569863168s8−

2413019136s7
+ 1429815296s6 − 516909056s5

+ 106880256s4 − 11406272s3
+
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543312s2 − 8820s + 21, approximately

0.00285317 0.0702027 1.22068
0.0254111 0.553455 1.33684
0.145175 1.7937 1.03778
0.336812 1.91456 1.56253

and the four other3–cycles consist of the roots of16777216s12−163577856s11
+

686817280s10−1625292800s9
+2381971456s8−2236841984s7

+1345982464s6−
504474624s5

+ 110822912s4 − 12847168s3
+ 670592s2 − 12028s + 31, approx-

imately
0.00307391 0.0755414 1.28031
0.028553 0.61172 1.15683
0.172455 1.89595 1.47455
0.409917 1.75352 0.887586.

There are no other fixed points or2– or3–cycles on thes–axis if one allowss ∈ C.

6. Fixed points and2–cycles ofρ

Since

ρ(s, p)− (s, p) =

(

4(−48ps+100p+4s3
−11s2

+6s)
256ps−448p+4s+1

,

−8p(4s−7)(32p−8s2
+16s−9)(64ps−112p+16s3

−60s2
+76s−31)

(256ps−448p+4s+1)2

)

, (15)

the7 fixed points ofρ in C
2 areO∗, I∗

π/3
, Π

∗

π/2
, {π

7
, 2π

7
, 4π

7
}∗ = (

7

4
, 7

64
), Π

∗

ω38
=

(
3

4
, 0),

(

6−
√

5

4
, 8

√

5−17

64

)

≈ {0.297, 0.561, 2.284}∗ ≈ {17.027◦, 32.132◦ , 130.84◦}∗

in T ∗ and
(

6+
√

5

4
, −17−8

√

5

64

)

∈ R
2\T ∗. The eigenvalues of the Jacobian matrix of

ρ at the fixed points show thatI∗
π/3

is attracting inR2 and that all other fixed points

are repelling. The critical points ofρ form the lines =
5

4
and their image is the

origin. A triangle∆ and its reflection triangle are directly similar when∆ is degen-
erate, equilateral, infinite rectangular or heptagonal, and they are inversely similar
when∆

∗ is Π
∗

ω38
or

(

6−
√

5

4
, 8

√

5−17

64

)

.
(

6−
√

5

4
, 8

√

5−17

64

)

seems to correspond to a
new special triangle, whose angles are probably not rational multiples ofπ. Note
thats

(

{ π
15

, π
5
, 11π

15
}
)

is also6−
√

5

4
.

Due to the location of the fixed points and to the shape ofT ∗, which is closed,
every forward orbit with both rightward and upward direction right froms =

7

4
is

forced to converge toI∗
π/3

: as we will show, this is the case when the class of the
base triangle lies in a dense open subset ofT containing among others the classes
of acute and right-angled triangles as well as the obtuse isosceles classes that are
not Iπ/6 or one of its ancestors.

There are24 2–cycles ofρ in C
2: three have already been described and lie in

Γ, seven lie inT ∗ \ Γ; the others are extraneous with three inR
2 \ T ∗ and eleven

outsideR
2. The seven2–cycles inT ∗ \ Γ all correspond to2–cycles of obtuse

triangles inT , whose acute angles are approximately
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{8.0763◦, 3.79275◦} and {38.5099◦ , 17.99879◦}
{31.70115◦ , 9.19698◦} and {32.64671◦ , 21.218476◦}
{38.47736◦ , 31.19757◦} and {65.27712◦ , 13.75689◦}
{8.92974◦, 4.0548◦} and {42.23276◦ , 19.04471◦}
{28.3017◦, 21.20007◦} and {53.85134◦ , 16.98919◦}
{28.56877◦ , 8.60948◦} and {41.35919◦ , 23.72889◦}
{28.43994◦ , 23.62517◦} and {60.10737◦ , 12.60168◦}

A triangle is directly similar to its grandchild in the first and in the last two2–
cycles, and inversely similar in the other ones. All these seven 2–cycles are re-
pelling since all eigenvalues of the productDρ(s1, p1) · Dρ(s2, p2) of the Jaco-
bian matrices have, for each cycle, a modulus> 1. These2–cycles are found
by factoring the resultants of the two polynomial equationsρ2

(s, p) = (s, p).
The first 2–cycle above is given by the real rootss of 65536s8 − 557056s7

+

1957888s6−3655680s5
+3872768s4−2305408s3

+724768s2−108760s+4631.
The two following2–cycles and a2–cycle ofR2 \ T ∗ are given by the real roots
s of 1048576s10 − 13107200s9

+ 70713344s8 − 215482368s7
+ 406921216s6 −

490459136s5
+373159424s4−169643008s3

+40513488s2−3790120s+124099.
For all these four cycles,
p = (1/337368791278296246393273057280) ·

(

5697378387575131871164499329286144s21
− 154889486440160171050477250146205696s20

+ 1969815556158944678290770182533021696s19
− 15566445671068280089872392791655448576s18

+85631462714487625678783595000448942080s17
−348112463554334373128224482745250742272s16

+1083507345888748869781387484631673077760s15
−2639517092099238037040386587357479960576s14

+5101110411405362920907743213057415839744s13
−7879598682568490824891500098264963743744s12

+9755010920158666665095433559290717143040s11
−9665123390396900965289298855291498004480s10

+7621723765100864197885830623086984560640s9
−4736932616001461404053670419403437375488s8

+2286117650306026795884571720542890491904s7
−838913081019577908008862079371766857728s6

+227315320515680762946527159936618376192s5
−43653800721293741337945047166944293120s4

+ 5602702571338156095393807479024699136s3
− 441294571999478960624696851928272768s2

+ 19005387969579097545642865154748404s − 340848826010088138830599778323827
)

.

The two following2–cycles and a2–cycle ofR2 \T ∗ are given by the real roots
s of 1048576s10 − 12582912s9

+ 65470464s8 − 193789952s7
+ 359325696s6 −

432427008s5
+337883648s4−166321920s3

+48099088s2−7029296s+326343.
The last two2–cycles and the last2–cycle ofR2 \ T ∗ are given by the real roots
of 1048576s10 − 12058624s9

+ 59965440s8 − 168624128s7
+ 293994496s6 −

327127040s5
+ 229654528s4 − 96299264s3

+ 21257456s2 − 1867864s + 56317.
For all these six cycles,
p = (1/4567428188341362809789303424452351253020672) ·

(

−36698931238245649527233362547878693259349852160s23

+ 984810666870471120012672280485882885859228778496s22

− 12470437758739421776652337771814086850631568457728s21

+ 99105170498836558716042634538353704493085448208384s20

− 554556689733191355308583432652149828431320367235072s19

+ 2323340000828761484943848892548251075477913095634944s18
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− 7564960112634217226649274510083987727875628771311616s17

+ 19612556761550162606749159530083584049909501234511872s16

− 41140288987466333778005801486897731005916908693225472s15

+ 70558385413803161958940236549368891637028689744494592s14

− 99560699194220260609319527114212812701788113291182080s13

+ 115899356168570674006768063437295751144767658305519616s12

− 111264237238415092642895350569186227778391267231137792s11

+ 87779176155017883059837850878398210925269779119865856s10

− 56523554163594762683354338049606423057525776982736896s9

+ 29393921592752966963028643161504310305801154828042240s8

− 12157286006804762121004498275570505776082534409453568s7

+ 3914592300388673052527540455248353181688884203261952s6

− 952555899422406409637309239532608077882495981792256s5

+ 167990783122364109694540415872844398979364116465408s4

− 20227383407106448892530229235014104156364912461632s3

+ 1526394055420066271305468814522007678645577112528s2

− 63861725292150155008281030050782500647383181532s

+ 1122971671566516289006707431478378061492442587
)

.

Whenp is replaced by one of the given polynomials, the corresponding polyno-
mials fors can be indeed factored out in both coordinates ofρ2

(s, p)− (s, p). Two
of the2–cycles ofρ outsideR2 are the cycle

(s±, p∓) =

(

5+i±
√

−1−8i
4

, −19−22i∓
√

−56+202i
64

)

and its complex conjugate cycle; the remaining nine such2–cycles are given by
the non-real roots of the above polynomials ins with the corresponding above
formulas forp.

In Section 10 we will prove that there are cycles of any finite length inT ∗ \ Γ.

7. Isosceles triangles

Since the reflection triangle of an isosceles triangle is isosceles,ρ maps the roof
Λ of Figure 4 to itself. Plug the parametric representation (4) of Λ into formula (6)
to obtainρ(Λ(t)). An investigation of this function (Figure 9) and its derivative
proves that, asI∗α travels onΛ from the origin to(2, 0), ρ(I∗α) moves continuously
as follows: start at the origin, left roof section up for0 < α ≤ π

12
, right roof section

down for π
12
≤ α ≤ π

6
, right roof section up forπ

6
≤ α ≤ π

3
, a very short down and

up round trip on the left roof section near the top forπ
3
≤ α ≤ 5

12
π – with turning

(deepest) point

I∗ω58
=

(

168
√

6−187

100
,

3(135664
√

6−326751)

40000

)

≈ (2.245, 0.417)

for α = ω68 – and final descent of the right roof section for5

12
π ≤ α < π

2
with

arrival at the bottomΠ
∗

π/2
. Not to forget: ρ(I∗

π/6
) has been instantly catapulted

from (2, 0) to the origin!
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It is now easy to count the isosceles parents of the isoscelesclassIα, 0 < α < π
2

(Figure 10): one if0 < α < ω58, two if α = ω58 and three otherwise. The three
isosceles parents ofIπ/3, for example, areIπ/3, Iπ/12 andI5π/12 (Figure 2).

ç

0.04
1

4

3

4
1

t

2

2.25
S

Figure 9. AbscissaS(t) of ρ(Λ(t)) as a function oft = sin
2
α: S(0) = S(

1

4
) =

0, S(0.04) > 2 andS
′

(t) > 10 on [0, 0.04]. The ordinate ofρ(Λ(t)) increases
and decreases withS(t).

ç

15 30 60 75 90
Α

60

90

Α1

Figure 10.α1 = α1(α) given byIα1
= r(Iα) (in ◦)

If the abscissa ofI∗α is > 7

4
, i.e., if α > arcsin

√
3−

√

2

2
≈ 39.024◦, and if α

is different from π
3
, ρ(I∗α) lies on the roof strictly right from and aboveI∗α – as

an investigation ofρ(Λ(t)) − Λ(t) shows (Figure 11). The forward orbit ofI∗α
converges then to a fixed point thatmustbe the roof top. But anI∗α with smaller
abscissa> 0 will also be stretched overs =

7

4
by some iterateρn of ρ (Figure 9):

the orbit will thus also converge to the top unlessρn
(I∗α) transits throughΠ∗

π/2

with immediate transfer to the origin. The latter configuration is only possible if
I∗α belongs to the backward orbit ofI∗

π/6
: when limited toΛ, this orbit has no bi-

furcations and is thus an infinite sequenceI∗
π/6

, I∗α−1
≈ I∗

6.33◦ , I
∗

α−2
≈ I∗

1.269◦ , . . .

with π
6

> α−1 > α−2 > · · · tending to0. The following theorem is proven.
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0.75 1
t

2
s

0.750.3 0.5 1
t

0.2

p

Figure 11. Abscissas and ordinatep of ρ(Λ(t)) − Λ(t) as functions oft with
non-negative ordinate for3−

√

2

4
≤ t ≤ 1

Theorem 9. The iterated reflection class of an isosceles base triangle class Iα

converges to an equilateral limit unlessIα belongs to the backward orbit ofIπ/6

and converges thus to a degenerate limit in a finite number of steps, i.e., unless
Iα = Iπ/6, I6.33...◦ , I1.269...◦ , . . . , whereIπ/6 = r(I6.33...◦), . . .

See [4] for another proof, which iterates the formula

cos
2 α1 =

cos
2 α(4 cos

2 α− 3)
2

1 + 16 cos
2 α− 16 cos

4 α

for a nondegenerater(Iα) = Iα1
and shows thatlimn→∞ cos αn =

1

2
unless some

αn is π
6
.

8. Parents

ρ maps the point(7

4
, p) of the vertical lines =

7

4
horizontally to the point

(8p +
7

8
, p) of the oblique lines = 8p +

7

8
.

ρ maps the vertical segments = 1+

√

17

4
≈ 2.031, −105+28

√

17−16

√
95−23

√

17

64
≤

p ≤ −105+28
√

17+16

√
95−23

√

17

64
, delimited by the roof onto the vertical segment

s =
5+3

√

17

8
≈ 2.171, 19+5

√

17

128
≤ p ≤ 181

√

17−701

128
, delimited by the roof between

I∗ω71
andI∗ω51

. As p grows on the first segment,

ρ
(

1 +

√

17

4
, p

)

=

(

5+3
√

17

8
, P =

(
√

17−1)
6p

(

64(
√

17−3)p+
√

17+5

)2

)

(16)

travels on the second segment from the bottom up and back, reaching the left roof
section forp =

4+
√

17

64
(Figure 12). This gives two acute isosceles parents ofIω71

and one acute non-isosceles parent ofIω51
.

We define thevan IJzeren rational function

v(s) =

(4s − 5)
2
(

(4s− 5)
2 − 4S(4s − 7)

) (

s(4s− 5)
2 − S(4s + 1)

)

−16 (16s2 − 32s − 1)

2
(17)

with parameterS, double zero ats =
5

4
and double poles ats = 1 +

√

17

4
≈

2.031
(

if S 6= 5+3
√

17

8

)

and ats = 1 −
√

17

4
≈ −0.031

(

if S 6= 5−3
√

17

8

)

. For
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0.32 0.34
P

0.15

0.25

p

Figure 12.p–values as function ofP in (16) and (19)

S =
5+3

√

17

8
, v

(

1 +

√

17

4

)

=
1651−251

√

17

2176
≈ 0.283 by continuous extension;

the situation is analogous forS =
5−3

√

17

8
. v(s) is obtained from (6) by solving

S = ρ1(s, p) for p and replacing thenp in ρ2(s, p) (= P ).

Theorem 10 (Parents). The parentsρ−1
(∆

∗

1
) (in R

2
) of any ∆

∗

1
= (S,P ) ∈

T ∗ \ {(0, 0)} are the points(s, p) ∈ R
2 with

s ∈
]

0, 9

4

]

\ {5

4
}, s 6= 9

4
if (S,P ) = (2, 0), v(s) = P,

p =

s(4s− 5)
2 − S(4s + 1)

−16

(

(4s − 5)
2 − 4S(4s − 7)

) (18)

or

S =

5 + 3

√
17

8

, s = 1 +

√
17

4

,
p(4s− 5)

6

(4s + 1 + 64p(4s − 7))
2

= P, (19)

i.e.,

p =

8(
√

17+1)P+65
√

17−297±

√

128(101−29
√

17)P−38610
√

17+160034

512(3
√

17−13)P

with two values forP < 181
√

17−701

128
and one forP =

181
√

17−701

128
(Figure 12).

The denominators are never zero. All between three and sevenparents of(S,P )

∈ T ∗ \ Γ lie in T ∗ \ Γ except the rightmost parent
(

5

4
+ sin α, 1+sin α

64(1−sin α)

)

of I∗α
for ω66 < α < π

2
.

Note that the parents of(S, 0) ∈ Γ \ {(0, 0)} have already been described – in a
simpler way – in Theorem 8.

The children(S,P ) = ρ(s0, p) of the points(s0, p) ∈ T ∗ with constant abscissa

s0 ∈
]

0, 9

4

]

\
{

5

4
, 7

4
, 1 +

√

17

4

}

constitute a parabola arcP = v(s0) with end points

on Γ ∪ Λ. If s0 > 1

4
, there is one point(s0, p0) ∈ T

∗ \ Λ whose child is on the
roof: the parabola arc is then tangent toΛ at ρ(s0, p0) (see curveΦ in Figure 34).
If s0 =

1

4
, the parabola arc is tangent toΛ at (2, 0).

Choose anyS ∈
]

0, 9

4

]

asS = 2t(3 − 2t), 0 < t ≤ 3

4
, and draw the curvey =

v(s); choose then anyP ∈ [Pmin, Pmax] =

[

max

(

0, 4(3

2
−t)3(t− 1

2
)

)

, 4t3(1−t)
]

:

by Theorem 10 the parents(s, p) of (S,P ) for which s 6= 1 +

√

17

4
have the same
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abscissae as the points with ordinatey = P on the curvey = v(s), s ∈
]

0, 9

4

]

\{5

4
}

with s 6= 9

4
if (S,P ) = (2, 0) – and each such abscissa corresponds to only one

parent!
The (not included) start valuet = 0, the transition valuest =

1

2
, 9−

√

17

8
≈

0.61,
√

2 − 3

4
≈ 0.664, 29−6

√

6

20
≈ 0.715 and the end valuet =

3

4
delimit open

subintervals where the curvey = v(s) has constant characteristic features. These

t–values correspond toS = 0, 2, 5+3
√

17

8
≈ 2.171, 12

√
2−59

4
≈ 2.221, 168

√

6−187

100

≈ 2.245 and 9

4
. Each of the figures 14–26 has to be read as follows for the corre-

spondingS ∈
]

0, 9

4

]

: the abscissaes of the curve points at the altitudeP > 0, P ∈
[Pmin, Pmax], tell whether the corresponding parents(s, p) of (S,P ) = ∆

∗

1
∈ T \Γ

are the coordinates of obtuse, right–angled or acute parents ∆ of ∆1 (except when
(s, p) /∈ T ); filled circles on the boundaryy = Pmin, Pmax mark the abscissa of
an isosceles parentIα, an empty square indicates a parent(s, p) outsideT ∗ or the

exceptional cases forS =
5+3

√

17

8
, and the dashed lines = 1 +

√

17

4
goes through

the pole. In Figure 14–17 – whereS ∈ ]0, 2] – the parents(s, 0) of (S, 0) are given
by v(s) = 0, s ∈ ]0, 2] \ {5

4
}: empty circles mark the other zeros. ForS ∈ ]0, 2]

andP → 0, the parents(s, p) of (S,P ) with s → 5

4
tend toI∗

π/6
sincep → 3

64
by

(18).

0 1.25 2 2.25
s

-
27

4

Figure 13.y = v(s) for S = 0 with simple root ats = 0 and sextuple root at
s =

5

4
, which are the abscissae of the parents of(0, 0) in R

2

ç
0.38 1.25 2 2.25

s

0.004

Figure 14.S = 0.56, top forI∗

arcsin
√

0.1
≈ I

∗

18.435◦ , bottom forΠ∗

arcsin
√

0.28
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ç
0.38 1.25 2 2.25

s

0.047

Figure 15.S =
5

4
, top forI∗

30◦ , bottom forΠ∗

ω52

ç
0.38 1.25 2 2.25

s

0.15

Figure 16.S =
7

4
, top forI∗

arcsin

√
3−

√

2

2

≈ I
∗

23.356◦ , bottom forΠ∗

90◦−ω21

ç ç
0.38 1.25 2 2.25

s

0.25

Figure 17.S = 2, transition case of the right–angled triangles, top forI
∗

π/4
,

bottom forΠ∗

π/2
. A raising bump culminates at( 9

4
, 0). The right–angled∆1 =

{π

2
, α,

π

2
− α} corresponds toP =

1

4
sin

2
2α.

Proof of Theorem 10 and of Figures 13–26.Theorem 10 is already proven except
for the number of parents of(S,P ) ∈ T ∗ \ Γ, their location and the aspect of the
curvey = v(s) given by (17). The derivative ofv(s) can be factored asv′(s) =

(4s−5)(192s3
−528s2

+s(128S+100)+136S+125)(256s4
−1280s3

+2016s2
−1040s+64S+25)

−16(16s2
−32s−1)

3

(20)
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á

0.38 1.25 2 2.25
s

0.171

0.299

Figure 18.S = 2.09, top forI∗

arcsin
√

0.55
≈ I

∗

47.87◦ , bottom forI∗

arcsin
√

0.95
≈

I
∗

77.079◦ , � parent outsideT ∗

á

á

0.38 1.25 2 2.25
s

0.309

0.354

Figure 19.S =
5+3

√

17

8
≈ 2.171, transition case, top forI∗

ω51
, bottom forI∗

ω71
.

� There aretwo parents withs = 1 +

√

17

4
(pole) if P ∈ [Pmin, Pmax[ and

one forP = Pmax; both such parents ofIω71
are isosceles.� There is a parent

outsideT ∗.

á

0.38 1.25 2 2.25
s

0.335

0.366

Figure 20.S = 2.1875, top forI∗

ω52
, bottom forI∗

90◦−ω21
, � parent outsideT ∗

with 3rd degree factorq3(s) and4th degree factorq4(s) (Figure 27).
ForS = 2t(3− 2t), t ∈ R, which is invariant undert 7→ 3

2
− t, one has

q4(s) = (16s2 − 40s − 16t + 25)(16s2 − 40s − 16(
3

2
− t) + 25) (21)
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0.38 1.25 2 2.25
s

0.394

Figure 21.S = 12
√

2− 59

4
≈ 2.221, transition case, top forI∗

arcsin

√
√

2−3/4
≈

I
∗

54.587◦ , bottom forIω66
. The rightmost root ofv(s) = Pmin is triple.

0.38 1.25 2 2.25
s

0.41

0.412

Figure 22.S = 2.24, top forI∗

arcsin
√

0.7
≈ I

∗

56.789◦ , bottom forI∗

arcsin
√

0.8
≈ I

∗

63.435◦

0.38 1.25 2 2.25
s

0.4142

0.4152

Figure 23.S = 2.2436, top for I
∗

arcsin
√

0.71
≈ I

∗

57.417◦ , bottom for
I
∗

arcsin
√

0.79
≈ I

∗

62.725◦

andv(s)− 4t3(1− t) =

(16s2
−40s−16t+25)

2

(16s3
+s2

(64t2−96t−40)+s(−96t2+176t+25)−44t2−6t)

−16(16s2
−32s−1)

2 (22)

with numerator’s squared2nd degree factor(Q2(s))
2 and3rd degree factor

Q3(s) = 16s3
+s2

(

64t2 − 96t− 40

)

+s
(

−96t2 + 176t + 25

)

−44t2−6t. (23)
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0.38 1.25 2 2.25
s

0.4161

0.4167

Figure 24.S =
168

√

6−187

100
≈ 2.245, transition case, top forI∗

ω58
, bottom for

I
∗

ω62
. (S,P ) has7 parents for allP ∈ ]Pmin, Pmax[.

0.38 1.25 2 2.25
s

0.4201

Figure 25.S = 2.2484, top for I
∗

arcsin
√

0.73
≈ I

∗

58.694◦ , bottom for
I
∗

arcsin
√

0.77
≈ I

∗

61.342◦

0.38 1.25 2 2.25
s

0.1
0.2

27

64

Figure 26. t =
3

4
, S =

9

4
, end case forI∗

60◦ . v(s) − 27

64
has triple roots at

s =
5±2

√

3

4
and a simple root ats =

9

4
.

Since fort ≥ 0

Q2(s) = 16

(

s− 5

4
−
√

t
)(

s− 5

4
+

√
t
)

, (24)

one can factor (21) further forS = 2t(3− 2t), t ∈
[

0, 3

2

]

:

q4(s) = 256

(

s− 5

4
−
√

t
)(

s− 5

4
+

√
t
)(

s− 5

4
−

√

3

2
− t

)(

s− 5

4
+

√

3

2
− t

)

. (25)
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-1 1 2
S

1.25

pole

2.25

s

Figure 27. Poles and real zeros ofv
′

(s) as a function ofS with constant zero5
4
,

thick curve for the zeros ofq3(s), plain curve for the zeros ofq4(s) and vertical
lines atS = 12

√
2− 59

4
andS =

9

4

ç

ç

1

4

5

4
2

9

4

s

1

2

3

4

1

3

2

t

Figure 28. At heightt, solutionss of v(s) = 4t
3
(1 − t) for S = 2t(3 − 2t),

s 6= 1 +

√

17

4
: roots of (Q2(s))

2 on the parabolat = (s − 5

4
)
2 and roots

of Q3(s) on the bold curve (with one simple and one double root fort = 0,
29−6

√

6

20
, 3+

√

17

8
and1); abscissae of the parents ofI

∗

α
at heightt = sin

2
α for

0 < α <
π

2
, with parents outsideT ∗ on the right parabola section under the

bold curve
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For t ∈
[

0, 3

2

]

andS = 2t(3 − 2t) ∈
[

0, 9

4

]

, the roots of (22) are thus – except

s = 1+

√

17

4
for t =

3

4
±

√

17−3

8
– the rootss =

5

4
±
√

t of (Q2(s))
2 on the parabola

t = (s − 5

4
)
2 and the real roots ofQ3(s) (Figure 28): ift = sin

2 α ∈ ]0, 1[, these
roots, in particulars =

5

4
± sin α, are the abscissae of the parents ofI∗α. The pole

s = 1+

√

17

4
is equal to5

4
+sinα for t =

3

4
−

√

17−3

8
and to a double root ofQ3(s) for

t =
3

4
+

√

17−3

8
: I∗ω51

andI∗ω71
have no parent withs = 1+

√

17

4
from these sources.

The parent ofI∗α with abscissas =
5

4
+ sin α 6= 1 +

√

17

4
has the ordinatep =

1+sin α
64(1−sin α)

according to (18). One getsD(s, p) =

(2 cos 2α+1)
2
(2 cos 2α−4 sin α+5)

16(1−sin α)2
,

which is< 0 for α > ω66 (parent outsideT ∗), = 0 for α =
π
3

orα = ω66 (isosceles
parent ofIα) and> 0 otherwise (non-isosceles parent ofIα): this parent is obtuse
for α < arcsin

3

4
= ω49, right–angled forα = ω49 and acute forω49 < α ≤ ω66;

it is the acute classI75◦ for α =
π
3
. The parent with abscissas =

5

4
− sin α

has the ordinatep =
1−sinα

64(1+sin α)
and D(s, p) is then= 0 for α =

π
3

and > 0

otherwise: the corresponding parent ofIα is always obtuse sinces < 2. Since the
number of real roots ofQ3(s) counted with their multiplicity (Figure 28) coincides
with the number of isosceles parents ofIα for all α 6= ω58, we have the following
result: with the only exception of the rightmost solution ofv(s) = Pmax for S =

168
√

6−187

100
(giving an isosceles parent ofIω58

), double roots of (the denominator
of) v(s)− Pmax or of v(s)− Pmin, Pmin > 0, correspond to non-isosceles parents
of the considered isosceles triangle class (unless(s, p) lies outsideT ∗), and simple

or triple roots correspond to isosceles parents. Note that168
√

6−187

100
is the abscissa

of the endI∗ω58
of the appendix formed by the roof under the reflection mapρ.

For S ∈
[

0, 9

4

]

, the growth ofv(s) on R \ {1 ±
√

17

4
} is given by the sign of

v′(s) according to (20), (21) and Figure 27. If one considersS ∈
]

0, 9

4

[

, writes
it as S = 2t(3 − 2t) with t ∈

]

0, 3

4

[

and excludes partly the transition values

t =
1

2
, 9−

√

17

8
,
√

2− 3

4
, 29−6

√

6

20
, i.e., S = 2, 5+3

√

17

8
, 12

√
2− 59

4
, 168

√

6−187

100
, v(s)

has exactly two local extrema (always maxima) at heightPmax = 4t3(1 − t) –
for s =

5

4
±
√

t – and exactly two local extrema (a minimum on the left) at height

4(
3

2
−t)3(1−(

3

2
−t)) – for s =

5

4
±

√

3

2
− t. Note that4(3

2
−t)3(1−(

3

2
−t)) = Pmin

for t ∈
[

1

2
, 3

4

]

and thatt and3

2
−t are symmetric with respect to3

4
in Figure 28. �

Theorem 11. The parents inT of Iα, α 6= π
3
, are – up to the exceptions mentioned

below – the two non-isosceles classes{α′

±
, β′

±
, γ′

±
} given by the non-obtuse angles

α′

±
=

π
4
± α

2
,

β′

±
= arccot





2 cos α + 2

√

2−

(

1

2

± sinα

)

2



 ,

γ′

±
= arccot





2 cos α− 2

√

2−

(

1

2

± sinα

)

2
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in ]0, π[ – with coordinates
(

5

4
± sin α, (1±sin α)

2

64(1−sin
2 α)

)

∈ T ∗ – and the isosceles

triangle classes with coordinates(s, p) (automatically on the roof)corresponding
to each real roots of Q3(s) given by(23) for t = sin

2 α, with p as in Theorem 10.
For α = ω66 the triangle class{α′

+, β′

+, γ′

+} is isosceles with equal anglesω50

and corresponds to the triple roots =

√
2+

3

4
of v(s) = Pmin for S = 12

√
2− 59

4
.

For α > ω66 the non-isosceles class{α′

+
, β′

+
, γ′

+
} doesn’t exist: it corresponds to

the parent outsideT ∗ andβ′

+
, γ′

+
/∈ R.

Proof. Parts of this theorem have been already demonstrated in the proof of The-
orem 10. Theorem 2 fors =

5

4
− sin α, p =

1−sin α
64(1+sin α)

gives an obtuse parent

{α′, β′, γ′} of Iα with sin
2 α′

=
1−sinα

2
, i.e., sin α = cos 2α′

= sin

(

π
2
− 2α′

)

,

sin
2 β′

=

3 + sinα− 2 sin
2 α− cos α

√

7 + 4 sin α− 4 sin
2 α

8(1 + sinα)

,

sin
2γ′

=

3 + sinα− 2 sin
2 α + cos α

√

7 + 4 sin α− 4 sin
2 α

8(1 + sinα)

.

Becausesin2 γ′ ≥ sin
2 α′, sin2 β′ for 0 < α < π

2
, α′, β′ are acute, thusα′

=
π
4
−α

2
,

andγ′ is obtuse. One gets

cot
2β′

=

1

sin
2 β′

− 1 =

(

2 cos α +

√

7 + 4 sin α− 4 sin
2 α

)

2

and, with negative parenthesis,cot
2 γ′

=

(

2 cos α−
√

7 + 4 sin α− 4 sin
2 α

)2

.

For s =
5

4
+ sinα, p =

1+sinα
64(1−sin α)

one gets similarlysin2 α′
=

1+sinα
2

, i.e.,

sinα = − cos 2α′
= sin

(

2α′−π
2

)

, sin2 β′
=

3−sin α−2 sin
2 α−cos α

√
7−4 sinα−4 sin

2 α

8(1−sin α)

andsin
2 γ′

=

3−sin α−2 sin
2 α+cos α

√
7+4 sinα−4 sin

2 α

8(1−sin α)
with sin

2 γ′, sin2 α′ ≥ sin
2 β′

for 0 < α ≤ ω66 andsin
2 γ′ > sin

2 α′ for 0 < α ≤ ω49, i.e., when{α′, β′, γ′} is
obtuse or right–angled. Sinceα′ is always acute,α′

=
π
4

+
α
2
. One getscot2 β′

=

(

2 cos α +

√

7− 4 sin α− 4 sin
2 α

)

2

and, with parenthesis changing sign atα =

ω49 from < 0 to > 0, cot
2 γ′

=

(

2 cos α−
√

7− 4 sin α− 4 sin
2 α

)

2

. �

For α = 0, a triangle with angles{α±, β±, γ±} = {45◦, ω12, 135
◦ − ω12} is

the parent of an isosceles degenerate triangle with three different vertices from
Theorem 5. Forα =

π
2
, {α−, β−, γ−} is the parentΠω21

of Ππ/2. The points

(s, p) =

(

5

4
± sin α, (1±sin α)

2

64(1−sin
2 α)

)

constitute the hyperbola arcp =
1−4s

64(4s−9)
, 1

4
≤

s < 9

4
, which starts onΓ, is tangent toΛ at I∗

π/12
andI∗

5π/12
and lies outsideT ∗

betweens =

√
2 +

3

4
and the poles =

9

4
.

One gets the following non-isosceles parents of isosceles triangles with integer
angles (see curveΦ in Figure 34):{42◦, 12◦, 126◦} for I6◦ , {36◦, 12◦, 132◦} for
I18◦ , {60◦, 15◦, 105◦} for I30◦ , {66◦, 18◦, 96◦} for I42◦ , {72◦, 24◦, 84◦} for I54◦ ,
{54◦, 48◦, 78◦} for I66◦ and{18◦, 6◦, 156◦} for I78◦ .
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Figure 29. Curve of the coordinates of the hexagenerated triangles

The isosceles parent of the right–angledIπ/4 is Iα with

α = arcsin

√

1

12

(

8−
13

3
√

73− 6

√
87

−
3

√

73− 6

√
87

)

≈ 10.1986◦.

The two isosceles parents ofIω58
have equal anglesarcsin

√

11−4
√

6

20
≈ 14.191◦

and ω68 (corresponding to the rightmost double root ofv(s) = Pmax for S =

168
√

6−187

100
), respectively.

Consider(S,P ) ∈ T ∗ neither on the roof nor on the ground. Figures 14–26

show that(S,P ) has5 parents ifS ≤ 12

√
2− 59

4
and7 parents ifS ≥ 168

√

6−187

100
,

whereas the interval12
√

2 − 59

4
< S < 168

√

6−187

100
assures the mutation from

“pentagenerated” to “heptagenerated” non-isosceles classes ofT : in this last case,
the number of parents of(S,P ) depends onP and jumps (over6 at the levelP6)
from7 near the bottomPmin to5 near the topPmax, and the ordinateP6 = P6(S) of
the hexagenerated triangle class climbs with growingS. This mutation is achieved
at the abscissaS =

168
√

6−187

100
of the endI∗ω58

of the appendix formed by the roof
under the reflection mapρ. Triangle classes have thus infinitely many or exactly7,
6, 5, 4, 3 or 2 parents inT but never only one parent!

For12
√

2− 59

4
< S ≤ 168

√

6−187

100
, the largest of the three real rootss of

q3(s) = 192s3 − 528s2
+ s(128S + 100) + 136S + 125

in (20) is the abscissa of the first maximum ofv(s) left from 9

4
: this gives the

ordinateP6 of the hexagenerated triangle class exactly (Figures 27, 29and 30).
Figures 14–17 show that finite obtuse or right–angled triangles have only obtuse

parents.
All acute triangles with abscissa> s(Iω49

) =
135

64
= 2.109375 have both acute

and obtuse parents. The coordinates(S,P ) = r
(

{α, π
2
− α, π

2
}
)

∗

of the triangles
with right–angled parents form the parabola arcP = v(2) =

81

4
(S − 2)(

9

4
− S),
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60
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Β

Figure 30. Level curvess(∆) = 12
√

2 − 59

4
ands(∆) =

168
√

6−187

100
in the

αβ–plane for two anglesα, β (in ◦) of the triangle∆: the curve of the hexagen-
erated triangles separates the pentagenerated from the heptagenerated ones. The
pentageneratedcusps correspond toIω66

, the three other points toIω58
.

2 ≤ S ≤ 54

25
= 2.16, given by (17):S grows withα from 2 for r(Ππ/2) = Ππ/2

to 2.16 for r(Iπ/4), which is I
arcsin 3/

√

10
= Iω72

sinceQ3(s) = 2 if and only

if t ∈ { 9

10
, 1}. The parabola arc starts and ends on the right roof section and is

tangent to the left roof section forS =
135

64
at I∗ω49

. Acute triangles with abscissa
> 2.16 have thus no right–angled parents.

A non-isosceles parent of an isosceles classIα ∈ T generates two different
parents of a corresponding given isosceles triangle. By considering congruent non-
identical triangles as different, we have proven the following result.

Theorem 12. Let ABC be a proper triangle with verticesA,B,C and angles
α, β, γ. Let

S = sin
2 α + sin

2 β + sin
2 γ, P = sin

2 α · sin2 β · sin2 γ.

ABC is the reflection triangle of between5 and7 parents.
(1) If ABC is obtuse and non-isosceles, it has exactly5 parents, which are all
obtuse, non-isosceles and pairwise non-similar.
(2) If ABC is acute and non-isosceles(Figure 30), it has between5 and7 parents
depending onS and P . These parents are all non-isosceles and pairwise non-
similar:

(a) 2 < S ≤ 135

64
= 2.109375: 5 parents,4 of them obtuse and the last one

obtuse, right–angled or acute according asP T
81

4
(S − 2)(

9

4
− S);

(b) 2.109375 ≤ S ≤ 54

25
= 2.16: 5 parents,3 of them obtuse, one acute and

the last obtuse, right–angled or acute according asP S
81

4
(S−2)(

9

4
−S);

(c) 2.16 ≤ S ≤ 12

√
2− 59

4
≈ 2.221: 5 parents,3 of them obtuse and2 acute;
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(d) 12

√
2 − 59

4
≤ S ≤ 168

√

6−187

100
≈ 2.245: 5, 6 or 7 parents,3 of them

obtuse,2 acute and zero, one or two additional acute parents accord-
ing as P T P6 = P6(S) given by Figure 29;P6 grows withS from

371
√

2
− 16765

64
≈ 0.383 to

3(135664
√

6−326751)

40000
≈ 0.417.

(e) 168
√

6−187

100
≤ S < 9

4
: 7 parents,3 of them obtuse and4 acute.

(3) If ABC is isosceles with equal anglesα, it has5 parents except forα = ω58

(6 parents) and forω58 < α < ω66 (7 parents):

(a) 0
◦ < α < ω49: one isosceles obtuse parent, a pair of non-similar non-

isosceles obtuse parents and their mirror images in the axisof ABC;
(b) α = ω49 (S =

135

64
): one isosceles obtuse parent, one non-isosceles obtuse

and one non-isosceles right–angled parent and their mirrorimages;
(c) ω49 < α < ω58: one isosceles obtuse parent, one non-isosceles obtuse

and one non-isosceles acute parent and their mirror images;
(d) α = ω58

(

S =
168

√

6−187

100

)

: one isosceles obtuse and one isosceles acute
parent, one non-isosceles obtuse and one non-isosceles acute parent and
their mirror images;

(e) ω58 < α < ω66, α 6= 60
◦: one isosceles obtuse and two non-similar

isosceles acute parents, one non-isosceles obtuse and one non-isosceles
acute parent and their mirror images;

(f) α = 60
◦: one equilateral parent, three congruent isosceles parents with

equal angles15◦ and three with equal angles75◦ (Figure 2);
(g) ω66 ≤ α < ω72

(

S = 12

√
2− 59

4
for α = ω66

)

: one isosceles obtuse and
two non-similar isosceles acute parents, one non-isosceles obtuse parent
and its mirror image;

(h) α = ω72: three isosceles parents (one obtuse, one right–angled andone
acute), one non-isosceles obtuse parent and its mirror image;

(i) ω72 < α < 90
◦: a pair of non-similar isosceles obtuse parents, one acute

isosceles parent, one non-isosceles obtuse parent and its mirror image.

In order to count and describe the parents of the corresponding coordinates
(S,P ) ∈ T ∗ \Γ in Theorem 12, one has to neglect the mirror images and the repe-
titions of congruent triangles and to add one exterior parent of I∗α for ω66 < α < π

2
.

9. Convergence to an equilateral or degenerate limit

After continuous extension, all level curves ofρ1 and ofρ2 given by (6) are
tangent toΛ at I∗

π/6
= (

5

4
, 3

64
). By (15) one hasρ1(s, p) = s for (s, p) 6= I∗

π/6
if

and only ifp =

s(s−2)(4s−3)

4(12s−25)
: this curve lies inT ∗ if and only if s ∈ {0} ∪

[

3

4
, 2

]

∪

{9

4
} and is tangent toΛ at I∗

π/6
. One hasρ2(s, p) = p for (s, p) 6= I∗

π/6
if and only

if p = 0 or s =
7

4
or p =

1

4
(s− 1)

2
+

1

32
or p =

(4s−5)
3
+4s+1

−64(4s−7)
: both last curves are

tangent toΛ at I∗
π/6

from outsideT ∗ and the parabola has no other point inT ∗.
The arrowsր,տ,ւ,ց in Figure 31 show the constant quadrant of the vector

ρ(s, p) − (s, p) in each of the zones ofT ∗ delimited by the curvesρ1(s, p) = s
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andρ2(s, p) = p, whose intersections are the fixed points ofρ. Note that zone VII
is the thin region bounded below byρ1 = s and above by the curved branch of
ρ2 = p and by the roof. Sinceρ(s, p) lies strictly eastwards and northwards from
(s, p) for all (s, p) ∈ T ∗ with 2 ≤ s < 9

4
, p > 0, the sequence

(

ρn
(s, p)

)

n∈N

for such an(s, p) converges to or reachesI∗
π/3

with strictly increasing coordinates.
The first part of the following theorem is proven.

ç

I

IIIIV

II

V

VI

VII

3

4

5

4

7

4
2

s

3

64

7

64

p

Figure 31. Quadrant of the vectorρ(s, p) − (s, p) depending on the zone of
(s, p) ∈ T ∗ with curvesρ1 = s (black, thick),ρ1 = p (magenta, thick),ρ1 =

5

4

(dashed, orange) and, fors ≥ 5

4
, ρ1 =

7

4
(dot–dashed, blue),ρ1 = 2 (dotted,

red),ρ2 = ptop (thin)

Theorem 13. (1) An acute or right–angled proper triangle has always an acute
reflection triangle and its iterated reflection triangle converges to an equilateral
limit with strictly growing coordinates.
(2) An acute or right–angled triangle becomes equilateral after a finite number of
reflection steps if and only if its class is an isosceles acuteancestor ofI60◦ given
by the infinite sequence of successive parentsI60◦ , I75◦ , I84.6588...◦ , I88.205...◦ , . . .
whose equal angles grow towards90

◦.

Proof. (2) EachIα with α ≥ 75
◦ has exactly one acute or right–angled parent: an

isosceles one with equal angles> α (Figure 10). �

Theorem 14. (s, p) ∈ T ∗ \
(

Γ ∪
{

(
7

4
, 7

64
)

})

converges toI∗
π/3

under iteration ofρ
(with strictly growing coordinates except possibly for thefirst reflection step) when
(1) (s, p) is in zone I of Figure 31 with boundary,i.e., s ≥ 7

4
andρ1(s, p) ≥ s, or

(2) ρ1(s, p) ≥ 7

4
andρ2(s, p) ≥ ptop whereptop ≈ 0.11118 is the ordinate of the
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1

4
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s

0.01

p

1

4

s

10-4

p

Figure 32. Detailed views of the left part of Figure 31. In theright figure, the
intersection points of the roof (black, thick) withρ1(s, p) = 2 (dotted, red) and
ρ1(s, p) =

5

4
(dashed, orange) give the coordinates of the isosceles parents of

I
π/4 andI

π/6, respectively.( 1

4
, 0) is the parentΠ∗

ω21
of Π

∗

π/2
.

maximum point of the curveρ1(s, p) = s (Figures 31 and 32), or
(3) ρ1(s, p) ≥ 2.

Note that576ptop is the middle root ofp3 − 294p2
+ 13209p + 97200.

Proof. We only have to prove that the corner of zone I near the heptagonal fixed
point (

7

4
, 7

64
) is mapped byρ to zone I and not to zone III, and this is true: the

points withρ1(s, p) = s, s > 7

4
, p > 0, are mapped upwards byρ and ∂ρ2

∂p
(s, p) =

(5−4s)6(64p(4s−7)−4s−1)

−(64p(4s−7)+4s+1)3
is strictly positive in the rectangle7

4
< s < 2, 7

64
< p < 1

8

containing the maximum point of the curveρ1(s, p) = s. �

Theorem 14 gives Figure 33 where each(α, β) is identified with the triangle
class{α, β, 180◦ − α − β} ∈ T . The large points are the fixed points ofr; the
small points areI30◦ , its isosceles parent and grandparent and the parentΠω21

of
Π90◦ . The squares mark the right–angledI45◦ and its isosceles parent on the thin
dotted curveρ1(s, p) = 2. The curves =

5

4
is dot–dashed and goes through

I30◦ = (30
◦, 30◦); its parent curves are dashed: one of them goes through the

parent(60◦, 15◦) of I30◦ corresponding to(s, p) = (
7

4
, 3

64
). There are points with

ρ1(s, p) ≥ 2 in zones I, II, VII and VI of Figure 31; there are points withρ1(s, p) ≥
7

4
andρ2(s, p) ≥ ptop in zones I, II, III and VI. Note that every neighborhood of

the heptagonal fixed point
(

360
◦

7
, 180

◦

7

)

contains triangle classes with equilateral
limit. Because the leftmost roots ofv(s) = P for S =

5

4
are almost equal for all

P , the inner branch of parents ofs =
5

4
that passes throughI6.33...◦ in Figure 33 is

nearly a level curve ofs; furthermore, the nearby arc of the curveρ1(s, p) = 2 that
joins the pair of points representingΠω21

is almost parallel to the square diagonal
s = 2: the fractal structure is born.
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Figure 33. Convergence to an equilateral limit is ensured when two angles
(α, β) of the base triangle are in the zone enclosed by or north–eastfrom the
plain curve, or on this curve, filled points excepted.

We now describe the set of triangles with equilateral or degenerate limit system-
atically. We denote byAn andDn the set of classes inT that become acute and
degenerate after exactlyn applications of the reflection mapr, n ∈ N. A∗

n andD∗

n

are the corresponding subsets ofT ∗: A∗

n, n ≥ 1, consists of the points(s, p) ∈ T ∗

for which the first coordinates ofρn−1
(s, p) and ofρn

(s, p) are≤ 2 and > 2,
respectively. SinceO∗ is a repelling fixed point ofρ, the basins of attraction of
I∗
π/3

andO∗ in T ∗ are the disjoint unionsA∗
=

⋃

n≥0
A∗

n andD∗
=

⋃

n≥0
D∗

n,

respectively. Figure 34 shows the “wing”
⋃

3

n=1
An with skeleton

⋃

3

n=1
Dn, where

(α, β) represents{α, β, 180◦ − α− β} ∈ T .
The boundary curve ofA∗

n, n ≥ 1, consists of the following points:

(1) the points(s, p) ∈ T ∗ for which the first coordinate ofρn−1
(s, p) or of

ρn
(s, p) is 2

(2) the members ofρ−k
(

I∗
π/6

)

(lying thus onD∗

k+1
) for 0 ≤ k ≤ n− 1

(3) the members ofρ−n
(

Π
∗

π/2

)

=

⋃n
k=0

ρ−k
(

Π
∗

π/2

)

(lying thus onΓ)

(4) the roof section between the roof member ofρ−(n−1)
(

I∗
π/4

)

and its roof
parent.

A∗

n, n ≥ 1, is composed of5n−1
+ 1 maximal simply connected subsets.T ∗ \

⋃n
k=0
A∗

k, n ≥ 0, consists of5
n
+3

4
maximal simply connected components –

the overline denoting set closure. Forn ≥ 1, 3
n
−1

2
such components are jux-

taposed arches whose feet are the3
n
+1

2
members ofρ−n

(

Π
∗

π/2

)

on Γ. Starting
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Figure 34. Wing of the obtuse triangles that become acute after one (A1, green),
two (blue) or three reflection steps (red) with curves of the triangles that become
degenerate after one (D1, dot–dashed), two (dashed) or three reflection steps

(dotted)

from the rightmostΠ∗

π/2
, the members ofρ−n

(

Π
∗

π/2

)

and the3
n
−1

2
members of

⋃n−1

k=0
ρ−k

(

Π
∗

ω52

)

alternate onΓ. Each member ofρ−k
(

Π
∗

ω52

)

– lying between the
leftmost member ofρ−m

(

Π
∗

π/2

)

and the leftmost member ofρ−(m+1)
(

Π
∗

π/2

)

, say

– is the starting point of one of the3k curves ofD∗

k+1
: after continuous extension at

some points of
⋃k

ℓ=0
ρ−ℓ

(

I∗
π/6

)

, this curve ends at the roof member ofρ−m
(

I∗
π/6

)

.

One has furtherD∗

n = D∗

n ∪
⋃n−1

k=0
ρ−k

(

I∗
π/6

)

andA∗

n ∩ D
∗

n =

⋃n−1

k=0
ρ−k

(

I∗
π/6

)

,
n ≥ 1.

Figure 34 shows the frontier lineΦ of the non-isosceles parents of the isosce-
les triangle classes given by Theorem 11. The same classes are represented two
times on the branches issued from the left bifurcation, three times after the right
bifurcation. Φ cuts the dot–dashed middle curveD1 at (45◦, ω12): a triangle with
these angles is the parent of an isosceles degenerate triangle (i.e., a segment and
its midpoint). The intersection point ofΦ with the lineβ = α corresponding to
the roof is the isosceles parentI15◦ of I60◦ and its left end is the parentΠω21

of
Π90◦ . Φ intersects the lines = 2 at the right–angled parent(90◦ − ω21, ω21) of
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Iω49
, the right bifurcation point is the isosceles parentI75◦ of I60◦ and the end of

the following left branch is the isosceles parentIω50
of the end classIω66

.
Consider Figure 34 filled withA andD. Let Pn, n ≥ 1, be the closure of the

component ofAn with a boundary segment on the “roof”β = α together with the
underlying arch bounded by theα–axis. LetSn, n ≥ 1, be the following subset of
P1: the closure of both pairs of components ofAn+1 connecting theα–axis with
I30◦ on both sides of the middle curveD1 together with both underlying arches
and enclosed bubbles. LetS lb

n , S lt
n , Srb

n andSrt
n be the left bottom, left top, right

bottom and right top parts ofSn delimited byΦ left and right fromD1.
Every class of proper non-acute and non-isosceles triangles has exactly5 par-

ents, every class of infinite triangles exceptΠ90◦ has exactly3 parents, and every
Iα, 0

◦ < α ≤ 45
◦, has exactly one isosceles and two non-isosceles parents. Here

are these mappings.
The reflection mapr is a bijective fractal blow–up ofPn+1, n ≥ 1, to Pn,

i.e., every component, boundary or point ofAk, Dk, . . . in Pn+1 is blown up
bijectively for allk ≥ n+1 (with appropriate orientation–preserving distortion and
translation) to the geographically corresponding component, boundary or point of
Ak−1, Dk−1, . . . in Pn. r is a bijective fractal blow–up or blow–down toPn of
Srb

n and ofS lb
n flipped about a vertical axis. Andr is a bijective fractal blow–up or

blow–down toPn withoutα–axis ofSrt
n \ {I30◦} flipped about the lineβ = α and

of S lt
n \ {I30◦} after a half–turn. Note that the top ofSrt

n and ofS lt
n has first to be

stretched afterI30◦ has been removed!
Every point ofPn, n ≥ 1, has thus one parent inPn+1 and all its other parents in

P1, more precisely inSn. If one identifies the set of classes of infinite triangles with
the interval[0◦, 90◦] of theα–axis, the action ofr on the infinite classes consists
of three bijective fractal blow–ups to[0◦, 90◦]: one of[0◦, ω21], one of[ω21, ω52]

after a flip and one of[ω52, 90
◦
].

For a global description of the reflection mapr we identifyT in Figure 35 with
{

(α, β) | 0
◦ ≤ β ≤ α ≤ 90

◦ − β
2

}

and consider the setT1 of the non-acute,
nondegenerate classes and the setT2 of the non-obtuse classes –T1 andT2 sharing
the setT⊥ of the right–angled classes. The zones i–v and1–7 of T are delimited
by the following plain curves:

(1) the curveD1 of the nondegenerate classes that degenerate at the first stage,
(2) the curve of the parents of the right–angled classes, whose 5 segments

without I30◦ – between zones1 and v,2 and iv,3 and iii, 5 and ii,4 and i,
respectively – are each mapped bijectively toT⊥ or T⊥ \ {Π90◦},

(3) the curveΦ of the non-isosceles parents of the isosceles classes,
(4) the curve between zone6 and zone7 (from Iω50

to Iω68
) that corresponds to

the rightmost parents of the hexagenerated points ofT ∗ and whose dotted
child curve (fromIω66

to Iω58
) is the thick line of hexagenerated triangles

of Figure 30.

The reflection mapr can be described as follows if one considers zones i–iv without
D1: the curveD1 and(0, 0) are mapped to(0, 0); zone i, zone iv flipped about a
vertical axis and zone v without origin are each scaled bijectively and fractally to
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Figure 35. Decomposition of the reflection mapr into bijective submappings

T1; zone ii flipped about the lineβ = α and zone iii after a half–turn are each
scaled bijectively and fractally toT1 without α–axis. Zone1, zone2 flipped about
a vertical axis and zone4 are each scaled bijectively and fractally toT2; zone3

without I30◦ after a half–turn and zone5 without I30◦ flipped about the lineβ = α
are each scaled bijectively and fractally toT2 without Π90◦ . Note that the upper
border section of zone5 from I75◦ to I30◦ is mapped to the whole right “roof”
section fromI60◦ to Π90◦ . Zone6 after a half–turn and zone7 flipped about a
vertical axis are each scaled bijectively and fractally to the heptagenerated tip of
T2.

The triangle classesr
(

{α, 90◦ − α, 90◦}
)

with right–angled parents constitute
the dashed curver(T⊥) of Figure 35 joining with decreasingα the fixed pointΠ90◦

to r(I45◦) = Iω72
overr

(

{90◦ − ω21, ω21, 90
◦}

)

= Iω49
. Their coordinates(S,P )

form the parabola arcP =
81

4
(S − 2)(

9

4
− S), 2 ≤ S ≤ 2.16.

A class of non-isosceles finite triangles in Figure 35 has5, 6 or 7 parents when it
is located below, on or above the upper dotted curve, respectively; it has (exactly)
one right–angled parent if and only if it is onr(T⊥); exactly3, 4 or 5 of its par-
ents are obtuse when it is located on or above the upper section of r(T⊥), below
this section but not below the bottom section, or belowr(T⊥), respectively. The
preceding sentence is also true for finite isoscelestriangles, except that triangles
in the classIω66

have only5 parents (instead of6) and that triangles in the class
Iω49

have two right–angled parents (instead of one acute and one right–angled) and
three obtuse parents.
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10. Periodic orbits

We use the notations of Section 9.

Theorem 15. ρ
∣

∣

T
∗
\Γ hasn–periodic points for all integersn ≥ 1.

Proof. Consider the bottom halfS lt↓
n of S lt

n delimited byΦ and by the upper parent
curve ofΦ. rn is a bijective continuous mapping fromS lt↓

n to the toprn
(

S lt↓
n

)

of

T1 delimited byΦ, and the inverse mapping is continuous also. Sincern
(

S lt↓
n

)

is

homeomorphic to a closed disk and sincern
(

S lt↓
n

)

⊃ S lt↓
n , S lt↓

n contains a fixed

point of rn by the Brouwer Theorem. Forn ≥ 2,
⋃n−1

k=1
rk

(

S lt↓
n

)

doesn’t intersect

S lt↓
n : all fixed points ofrn in S lt↓

n have thus ordern. �

The same argument is valid forSrt↓
n . ForS lb

n andSrb
n the fixed point can be a

class of infinite triangles (we will show that it is always such a class). Forn = 1

there is exactly one fixed point ofr in S lt↓
1

, Srt↓
1

, S lb
1

andSrb
1

: the triangle class

with coordinates
(

6−
√

5

4
, 8

√

5−17

64

)

, the heptagonal class,Πω38
andΠ90◦ , respec-

tively. (39.952203015767141115 . . .◦ , 18.346346518943955680 . . .◦) in S lt↓
3

is
for example a3–periodic triangle class. All computations in this sectionwere done
with 1000–digit precision.

The following construction generates all cycles for classes of finite triangles in
T1, as we will show in Section 11: take any fractal ancestor copyC of P1 \ α–axis
that is included inP1 and not bordered by theα–axis; the outer layer ofC belongs
to An+1 for some uniquen ≥ 1; cut away the part ofC beyond the ancestor
curve ofΦ throughC that is as far as possible from andn generations older than
the ancestor curve ofΦ borderingC (this ancestor may beΦ here); denote by
R the rest ofC; take the smallest integerN ≥ 1 with rN

(R) ⊃ R: one has
N ≤ n sincern

(R) ⊃ R; rN is then a bijective continuous mapping fromR
to rN

(R) ⊃ R with continuous inverse and there is at least oneN–cycle as in
the proof of Theorem 15 since

⋃N−1

k=1
rk

(R) doesn’t intersectR if N ≥ 2. This
N–cycle is unique and the same cycle is generated in this way byinfinitely many
different fractal copies ofP1 \ α–axis inP1 (see Section 11).

(25.478876347440316089 . . .◦ , 3.6818528532788970876 . . .◦)
(62.431567122689586325 . . .◦ , 12.276789619498866686 . . .◦)
(32.460249346540695688 . . .◦ , 24.998279789538063086 . . .◦)

is a3–cycle not leavingS1.

(37.865926747917574986 . . .◦ , 18.061811244908607526 . . .◦)
(10.468235814868372615 . . .◦ , 4.8401011494351450701 . . .◦)
(48.638604189899250723 . . .◦ , 22.211186045240131467 . . .◦)

is a3–cycle of triangle classes in order inS lt
2

, P2 andSrt
1

.
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(42.090874141099660640 . . .◦ , 15.557122843876427568 . . .◦)
(1.2635523114915185243 . . .◦ , 0.8247788078196525102 . . .◦)
(6.3075862480243139879 . . .◦ , 4.1172394455012728648 . . .◦)
(30.390568589226577771 . . .◦ , 19.803092968967591208 . . .◦)

is a4–cycle of triangle classes in order inS lt
3

, P3, P2 andS lt
1

.

(37.247939372886625265 . . .◦ , 19.189939461450692321 . . .◦)
(10.723421490339811872 . . .◦ , 4.2741308209904622975 . . .◦)
(49.920751710266512618 . . .◦ , 19.633287363391045768 . . .◦)
(30.697646461742403045 . . .◦ , 17.370185973399543132 . . .◦)

is a4–cycle of triangle classes in order inS lt
2

, P2, Srt
1

andS lt
1

.

(37.630255649010598209 . . .◦ , 18.570369773326372964 . . .◦)
(10.420573639194774736 . . .◦ , 4.5115591822140415293 . . .◦)
(48.550547727001821453 . . .◦ , 20.765781310885329500 . . .◦)
(32.363595430957208503 . . .◦ , 16.384331092939721789 . . .◦)
(30.729181801658592737 . . .◦ , 17.688152298022029834 . . .◦)

is a5–cycle of triangle classes in order inS lt
2

, P2, Srt
1

, S lt
1

andS lt
1

.

(37.930269796367360642 . . .◦ , 18.102923174699484745 . . .◦)
(10.135362642153623417 . . .◦ , 4.6659841044983596966 . . .◦)
(47.278732653265572140 . . .◦ , 21.526719537744220795 . . .◦)
(32.908073875879027270 . . .◦ , 15.212876460421699178 . . .◦)
(27.941680542770112113 . . .◦ , 18.655538982479742580 . . .◦)
(48.659125226707857104 . . .◦ , 22.220242130215287975 . . .◦)

is a6–cycle of triangle classes in order inS lt
2

, P2, Srt
1

, S lt
1

, S lt
1

andSrt
1

.

(39.305662309899846302 . . .◦ , 17.677017538458936691 . . .◦)
(5.7747047491290930782 . . .◦ , 2.8485972409982163053 . . .◦)
(28.121014496985812289 . . .◦ , 13.853288022731393651 . . .◦)
(36.786251566382858823 . . .◦ , 31.096467455697263241 . . .◦)
(66.202454138266987877 . . .◦ , 11.299882269350171350 . . .◦)
(38.901818026182387037 . . .◦ , 25.434990337954490686 . . .◦)
(30.886718722856714101 . . .◦ , 7.0225504408166614203 . . .◦)

is a7–cycle of triangle classes in order inS lt
2

, P2, S lt
1

, Srt
1

, Srb
1

, Srt
1

andS lb
1

.

(38.468777685667500548 . . .◦ , 18.102890974997997195 . . .◦)
(8.0151057516993356943 . . .◦ , 3.7150704462974721546 . . .◦)
(38.254172619328622821 . . .◦ , 17.649186686577651211 . . .◦)
(9.7328922219345150314 . . .◦ , 4.7538361797984130640 . . .◦)
(45.519097683522135284 . . .◦ , 22.022284341558206040 . . .◦)
(31.297303214442445113 . . .◦ , 13.020261718008364724 . . .◦)
(28.711664232298528730 . . .◦ , 25.939377664641886290 . . .◦)
(66.695344715752296964 . . .◦ , 8.3394888580526813797 . . .◦)
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is a8–cycle of triangle classes in order inS lt
2

, P2, S lt
2

, P2, Srt
1

, S lt
1

, S lt
1

andSrb
1

.
As for S lb

n andSrb
n , any fractal ancestor copyC of P1 that is bordered by the

α–axis and included inP1 is covered for the first time byrn
(C) for somen ≥ 1;

rn is then a bijective continuous mapping fromC to rn
(C) ⊃ C with continuous

inverse and – since
⋃n−1

k=1
rk

(C) doesn’t intersectC for n ≥ 2 – there is at least one
n–cycle. We show in Section 11 that thisn–cycle is unique and consists of classes
of infinite triangles and that each cycle of such classes can be generated in this way
by infinitely many different fractal copies ofP1 bordered by theα–axis inP1.

Theorem 16. T \
(

A ∪ D
)

is totally path–disconnected ifT =

{

(α, β) | 0◦ ≤

β ≤ α ≤ 90
◦ − β

2

}

.

Proof. Otherwise some fixed continuous curve between two differentpoints of
T \

(

A ∪ D
)

would be included in each member of an infinite nested family of
shrinking fractal ancestor copies ofP1 or of P1 \ α–axis whose diameters tend to
0, a contradiction. �

11. Reflection triangles as symbolic dynamics

We use the notations of Section 9. Referring to Figure 36, which is based on
Figure 8, we code a classΠα of infinite triangles by the infinite sequencex =

x1x2x3 . . . of digitsxk ∈ {0, 1, 2} giving the position ofα in “base3” with respect
to the fractal subdivision of[0◦, 90◦] induced by the monotonicity intervals ofρ|Γ
and its iterates. Ifx is eventually periodic we overline the period’s digits. We
identify the ends02 and10 as well as12 and20. For a classx of infinite triangles
or for the zero sequencex codingO, the reflection classr(x) is then given by a left
shift whenx1 = 0 or 2 and a left shift with permutation0↔ 2 in x whenx1 = 1.
Note thatrn

(x) = xn+1 . . . or rn
(x) = (xn+1 . . . )0↔2 according asx1 . . . xn

contains an even or odd number of1’s.
One hasO = 0, Πω21

= 10, Πω38
= 1, Πω52

= 20, andΠπ/2 = 2. The
lexicographic order of two sequences is the same as the orderα < β ≤ π

2
for

the corresponding infinite trianglesΠα andΠβ. The parents ofx are0x, 2x and
1x0↔2 (if one neglects the parents ofx = O that are classes of finite triangles). A
sequence is an ancestor of0 (0 included) if and only if it contains an even number
of 1’s with end0 or an odd number of1’s with end2. A sequence is an ancestor of
2 (2 included) if and only if it contains an even number of1’s with end2 or an odd
number of1’s with end0. The three2–cycles are generated by02 = Πω12

, 0121

and1012. (See the discussion after Theorem 8.)
x generates a periodic orbit if and only if the sequence is periodic: if rn

(x) = x

for somen ∈ N\{0}, one has indeedx = x1 . . . xn orx = x1 . . . xn(x1 . . . xn)0↔2

according asx1 . . . xn contains an even or odd number of1’s; conversely, ifx =

x1 . . . xn, one hasrn
(x) = x or rn

(x) = x0↔2 and thusrn
(x) = x or r2n

(x) = x:
the orbit is periodic.x generates an infinite forward orbit if and only if the sequence
never becomes periodic.

We code a class of non-acute nondegenerate triangles (i.e., a class ofT1) by
a nonempty sequencez = w1y1w2y2 . . . of digits wk ∈ N \ {0} and yk ∈
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Figure 36. Fractal subdivision of[0◦

, 90
◦

] induced byΠα1
= r(Πα) and its iterates

{D,E, i, ii, iii, iv} with the following property: ifz is a finite sequence, it ends
with E – for “exterior” – or withD – for “becoming degenerate” – and these are
the only occurrences ofD andE. At each zooming stagek (see Figures 34 and 35),
wk numerates the side–by–side fractal copies ofP1 or P1 \ α–axis (starting from
the border inAk) andyk locates the triangle class in this copy:D if the triangle
class is on the midline that becomes eventually degenerate,E if it is in one of the
two components ofA bordering this copy andi, ii, iii or iv if it is in the bottom
right, top right, top left or bottom left inside quarter (without midline), respec-
tively. The triangle classes ofS lb

2
correspond for example to sequences beginning

with 1iv2 . . .
All triangle classes on the same midline section are thus coded identically, as

are the triangle classes in the components ofA bordering the same copy. The infi-
nite sequencesz containing neitherii nor iii code the classes of infinite triangles
that don’t become degenerate. An infinite sequencez containing onlyyk ∈ {i, iv}
for all k > k0 after a lastyk0

∈ {ii, iii} is identified with the finite sequence ob-
tained by puttingyk0+1 = D: for example1i1ii1i1iv = 1i1ii1D. The preceding
sentence is also true if one interchangesi, iv with ii, iii. An infinite sequencez
containing onlyyk ∈ {ii, iii} is identified withw1D. Triangle classes ending in
E or D have two representations when they are on the curve separating quarteri
from ii or iii from iv at the last stage:(60◦, 15◦) is for example1i1D or 1ii1D.
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Classes of infinite triangles ending in1i – exceptz = 1i – or in1iv have a second
representation ending in1iv or 1i, respectively.

We consider the following involutive permutations of{i, ii, iii, iv}: σi is the
identity, σii interchangesi ↔ ii and iii ↔ iv, σiii interchangesi ↔ iii and
ii ↔ iv andσiv interchangesi ↔ iv and ii ↔ iii. These permutations form a
dihedral groupC2×C2 under composition – withσiii ◦σii = σii ◦σiii = σiv, and
cyclically. The reflection classr(z) is then given by the following transformation
of z = w1y1w2y2 · · · ∈ T1:

(1) if w1 > 1, r(z) = (w1 − 1)y1w2y2 . . . ,
(2) r(1E) = acute triangle outsideT1,
(3) r(1D) = degenerate triangle(0◦, 0◦) outsideT1,
(4) r(1y1w2y2 . . . ) = σy1

(w2y2 . . . ) for y1 ∈ {i, ii, iii, iv} except when all
yk ∈ {ii, iii} (then1y1w2y2 · · · = 1D).

The parents ofz are(w1 + 1)y1 . . . , 1y σy(z) for y = i, iv, and – ifz codes
a class of proper triangles –1y σy(z) for y = ii, iii. An infinite triangle tends to
Ππ/2 under iteration ofr if and only if its code ends in1i or in 1iv. The fixed points
of r in T1 are the heptagonal class1ii1i, the triangle class1iii1i with coordinates
(

6−
√

5

4
, 8

√

5−17

64

)

, Πω38
= 1iv1i andΠπ/2 = 1i.

If rn
(z) causes a left shift of2m digits,m ≥ 1, one has

rn
(z) = σy

(

(wm+1 − ν)ym+1wm+2ym+2 . . .
)

wherey ∈ {i, ii, iii, iv} is given byt1 = y1, tk+1 = σσt
k
(y

k+1)
(tk) for 1 ≤

k ≤ m − 1, y = tm and whereν is an integer∈ [0, wm+1 − 1]; one hasn =

ν +

∑m
k=1

wk.

Theorem 17. (1) The following situations are equivalent:

(a) n ≥ 1, rn
(z) = z andrn

(z) causes a left shift of2m digits.
(b) m ≥ 1,

z = (w1 − ν)y1w2y2 . . . wmym σy(w1y1w2y2 . . . wmym)w1y1w2y2 . . . wmym

(26)
for some integerν ∈ [0, w1 − 1], n =

∑m
k=1

wk andy is given byt1 = y1,
tk+1 = σσt

k
(y

k+1)(tk) for 1 ≤ k ≤ m− 1, y = tm.

The forward (periodic) orbit ofz is then generated by

rn−ν
(z) = w1y1w2y2 . . . wmym σy(w1y1w2y2 . . . wmym) (27)

and the sequencez is periodic if and only ifν = 0.
(2) For each integerN ≥ 1 the number ofN–periodic orbits is finite and nonzero
for both finite and infinite triangles.
(3) A triangle class ofT1 belongs to the backward orbit of a periodic orbit ofT1
if and only if its sequencez is eventually periodic and contains infinitely many
yk ∈ {i, iv}.
(4) A triangle class ofT1 belongs to an infinite divergent forward orbit if and only
if its sequencez is infinite, never becomes periodic and contains either noyk ∈
{ii, iii} or both infinitely manyyk ∈ {ii, iii} and infinitely manyyk ∈ {i, iv}.
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(5) Every periodic orbit inT1 is repelling. An infinite forward orbit inT1 is thus
never asymptotically periodic.

Proof. (1) By settingrn
(z) = z in the paragraph preceding the theorem.

(2) There is at least oneN–periodic orbit for classes of both finite and infinite
triangles by Theorems 15 and 8 and there are finitely many sequences with the
necessary form (27) forn = N .

(3) The ancestors of a generator (27) of a periodic orbit are eventually periodic
sequences.

Conversely, if the sequencez is eventually periodic,rk0
(z) is periodic for infin-

itely manyk0. Fix such ak0 with rk0
(z) = w1y1w2y2 . . . wMyM . If n =

∑M
k=1

wk

the sequencesrk0+ℓn
(z), ℓ ∈ N, are thenσỹ

ℓ

(

rk0
(z)

)

for someỹℓ ∈ {i, ii, iii, iv}:
since there are two equalỹℓ in {ỹ0, . . . , ỹ4} some descendantrk0+ℓn

(z) of z with
0 ≤ ℓ ≤ 3 generates a periodic orbit.

(4) follows from the preceding results.
(5) We already know that the fixed pointΠπ/2 is repelling. Consider another

periodic orbit: it is generated as in (27) by a sequence

z0 = w1y1w2y2 . . . wmym σy(w1y1w2y2 . . . wmym)

with rn
(z0) = z0 for n =

∑m
k=1

wk that corresponds to the triangle class∆0 6=
Ππ/2. Let ε > 0 be the distance between∆0 andAn in T1. We consider∆ 6= ∆0

in theε–neighborhood of∆0 with sequencez. If z is finite, some descendant of∆

will be degenerate or acute,i.e., somerℓ0n
(∆) will be outside theε–neighborhood

of rℓ0n
(∆0) = ∆0. If ∆ /∈ A ∪ D the first2m digits of z andz0 coincide. Let

k0 ∈ ]ℓ0m, (ℓ0 + 1)m] with ℓ0 ∈ N \ {0} be the index of the first different digit.
Thenrℓ0n

(z) andrℓ0n
(z0) = z0 differ in one of the first2m digits: rℓ0n

(∆) is
outside theε–neighborhood ofrℓ0n

(∆0) = ∆0, the periodic orbit is repelling. �

Note that the forward orbit ofz in (27) may have less thann points, even if
y 6= i: for example

1i1ii1ii1i1i1ii σy (1i1ii1ii1i1i1ii) = 1i1ii1ii1i = 1i1ii σỹ(1i1ii)

sincey = ỹ = ii.
We now analyze the construction of Section 10. Suppose without restricting the

generality that a cycle is generated by (26). This cycle contains a triangle class of
P1 beginning with1y1w2y2 . . . wmymw1. Take the fractal copyC of P1 with this
address (conversely, the address1y1w2y2 . . . wmymw1 of any fractal copyC of P1

in P1 can be chosen as begin of (26)). Suppose that the cycle is aN–cycle with
2M shifts: note thatN =

∑M
k=1

wk dividesn =

∑m
k=1

wk. The given cycle (26)
is then generated by

z = 1y1w2y2 . . . wMyM σỹ(w1y1w2y2 . . . wMyM)w1y1w2y2 . . . wMyM

and is exactly the cycle generated byC in the construction of Section 10 since the
addresses ofrk

(C), 0 ≤ k ≤ N − 1, are correct: there is thus only one such cycle.
The same cycle is also generated by
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1 y1w2y2 . . . wmymσy(w1y1w2y2 . . . wmym)w1y1w2y2 . . . wmym
︸ ︷︷ ︸

head

σy(w1head)w1head

and the segmentσy(w1y1w2y2 . . . wmym)w1y1w2y2 . . . wmym can be concate-
nated any finite number of times in the head: this gives addresses of infinitely
many nestedC generating the same cycle. The more concatenations of this seg-
ment the head contains, the more the startingC and its firstN − 1 descendants
r(C), . . . , rN−1

(C) converge to the orbit points.
The three2–cycles for classes of infinite triangles are generated by2i = Πω12

,
2iv2i and1i1iv1iv1i. In the same order as in Section 6 the seven2–cycles for
classes of finite triangles are generated by2iii2i, 1iii1ii1iv1i, 1i1ii1ii1i, 2ii2i,
1iii1iv1ii1i, 1ii1iii1iv1i and1iii1iii1i1i.

Table 1 contains the fundamental periods of periodic generators of the40 differ-
ent3–cycles. The explicit3–cycles of Section 10 are generated in order by3iii3i,
1i1iii1ii1ii1iv1i and2ii1iv2iii1i. The explicit8–cycle is generated by

2iii2iv1ii1iv1iv1ii σiv (2iii2iv1ii1iv1iv1ii) = (8.015 . . .◦ , 3.715 . . .◦).

Theorem 18. Under the reflection mapr, there are inT1 uncountably many dis-
joint infinite forward orbits of classes of both finite and infinite triangles.

Proof. The infinite sequencez = 1i
︸︷︷︸

1×

1ii1i 1i1i
︸︷︷︸

2×

1ii1i 1i1i1i
︸ ︷︷ ︸

3×

. . . codes a class of

finite triangles with unique representation and generates an infinite forward orbit
in P1: z begins indeed with one copy of1i, r3

(z) with two copies,r7
(z) with

three copies,r12
(z) with four copies and so on. The backward orbit of this (and

of every) infinite forward orbit is countable. One can thus replace the occurrence
numbers1, 2, 3, 4, . . . of 1i in the successive groups (separated by1ii1i) by the
successive digits of uncountably many irrational numbers in such a way that all
generated forward orbits, which are infinite, are disjoint.By replacingii by iv in
z one gets an infinite orbit of infinite triangles. Note that onecan also consider the
infinite trianglex = 021102021102020211 . . . �

z = w1y1w2y2 . . . with wk = k for all k ≥ 1 and(yk)k≥1 = i, ii, iii, iv gener-
ates an infinite forward orbit of classes of finite triangles,too (with accumulation
pointO).

Theorem 19.A is a dense open subset ofT =

{

(α, β) | 0◦ ≤ β ≤ α ≤ 90
◦− β

2

}

.
Any neighborhood of a point ofT \ A intersects countably many periodic orbits
and uncountably many disjoint divergent forward orbits; the rest of the neighbor-
hood consists of uncountably many points ofD, uncountably many points ofA and
countably many other points that become eventually periodic.

Proof. A point ofAn, n ∈ N, has some neighborhood inAn−1 ∪ An if one sets
A−1 = A0. The rest follows from the fact that every neighborhood of a point of
T \A contains (infinitely many) fractal copies ofP1\α–axis: take such a copy and
let w1y1 . . . wM be its address; this head can be prolonged to get the given number
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1i1i1ii1ii1ii1i : (77.992, 5.4261), (61.422, 14.969), (32.443, 31.271)
1i1i1iii1iii1iii1i : (77.137, 5.2765), (59.569, 14.357), (28.774, 27.798)
1i1i1iv1iv1iv1i : (78.072, 0.0000), (62.116, 0.0000), (24.228, 0.0000) ←
1i1ii1i : (77.538, 5.7639), (60.431, 15.811), (32.623, 31.329)
1i1ii1iii1iii1iv1i : (64.111, 12.369), (35.593, 26.667), (24.946, 3.6423)
1i1ii1iv1iv1iii1i : (76.703, 5.5669), (58.628, 15.057), (28.720, 27.668)
1i1iii1i : (63.351, 7.1712), (31.121, 13.087), (29.183, 26.185)
1i1iii1ii1ii1iv1i : (62.432, 12.277), (32.460, 24.998), (25.479, 3.6819)
1i1iii1iv1iv1ii1i : (61.950, 7.8678), (28.710, 13.651), (35.158, 30.232)
1i1iv1i : (69.448, 0.0000), (41.773, 0.0000), (26.919, 0.0000) ←
1i1iv1ii1ii1iii1i : (63.532, 6.4266), (31.070, 11.546), (29.295, 26.539)
1i1iv1iii1iii1ii1i : (62.337, 6.7728), (28.805, 11.523), (34.391, 30.234)
1ii1i1iii1iv1iii1i : (45.654, 26.671), (50.356, 18.460), (27.406, 16.857)
1ii1i1iv1iii1iv1i : (53.737, 20.669), (39.419, 24.424), (25.777, 6.4984)
1ii1iii1i : (39.242, 25.752), (34.431, 7.9491), (28.909, 15.731)
1ii1iii1ii1i1iv1i : (36.334, 27.318), (36.353, 5.6518), (29.022, 10.379)
1ii1iv1i : (53.953, 18.520), (33.152, 22.790), (26.294, 5.8906)
1ii1iv1ii1i1iii1i : (47.415, 21.434), (32.805, 15.325), (28.339, 18.663)
1iii1i1iv1ii1iv1i : (31.077, 14.761), (32.071, 23.138), (34.174, 7.1741)
1iii1ii1iii1i1iv1i : (31.634, 24.738), (35.739, 5.4231), (30.966, 10.501)
2i1i : (17.076, 0.0000), (76.815, 0.0000), (59.165, 0.0000) ←
2i1ii2ii1i : (14.181, 2.6145), (64.753, 11.579), (36.335, 25.097)
2i1iii2iii1i : (13.882, 2.5866), (63.564, 11.512), (34.082, 23.968)
2i1iv2iv1i : (15.623, 0.0000), (71.266, 0.0000), (46.083, 0.0000) ←
2ii1i : (10.110, 5.3306), (46.937, 24.481), (43.827, 17.928)
2ii1ii2i1i : (8.2127, 6.0759), (38.467, 28.345), (50.539, 10.136)
2ii1iii2iv1i : (8.3357, 5.7834), (39.101, 27.004), (42.786, 9.3457)
2ii1iv2iii1i : (10.468, 4.8401), (48.639, 22.211), (37.866, 18.062)
2iii1i : (6.3707, 4.0384), (30.697, 19.423), (40.263, 15.637)
2iii1ii2iv1i : (6.4310, 4.7667), (30.826, 22.812), (43.381, 9.8110)
2iii1iii2i1i : (6.2608, 4.8616), (30.025, 23.283), (49.365, 10.426)
2iii1iv2ii1i : (6.2109, 4.2180), (29.925, 20.291), (44.884, 15.582)
2iv1i : (6.8623, 0.0000), (33.576, 0.0000), (49.511, 0.0000) ←
2iv1ii2iii1i : (6.2470, 1.7815), (30.485, 8.6796), (36.590, 21.684)
2iv1iii2ii1i : (6.1133, 1.7573), (29.860, 8.5706), (38.323, 22.175)
2iv1iv2i1i : (6.4721, 0.0000), (31.739, 0.0000), (54.842, 0.0000) ←
3i : (2.2468, 0.0000), (11.207, 0.0000), (53.139, 0.0000) ←
3ii3i : (1.7190, 0.7883), (8.5745, 3.9322), (40.696, 18.552)
3iii3i : (1.6847, 0.7779), (8.4041, 3.8806), (39.952, 18.346)
3iv3i : (2.1646, 0.0000), (10.798, 0.0000), (51.375, 0.0000) ←

Table 1. Periodic generators of the forty3–cycles with their approximate an-
gles (in◦) and the approximate angles of their child and grandchild inorder (←
denotes classes of infinite triangles)
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of points of the desired type in the same copy; the given neighborhood cannot
contain uncountably many eventually periodic triangles outsideA ∪ D since their
total number inT is countable. �

One can construct codesz with almost any behavior under iteration of the re-
flection map, as for the sequences of pedal triangles [1]. We design for example
a codez whose forward orbit is dense inT \ A: write all wordsw1y1 . . . w.y. of
finite length with digitsw ∈ N \ {0} andy ∈ {i, ii, iii, iv}; order these words
by lexicographic order of thew’s and then of they’s for each sum1, 2, 3, . . . of
thew’s; concatenate the words and submit each of them in order to an appropri-
ate permutationσi,ii,iii,iv such that the original word will appear as head of the
corresponding descendant ofz.

Theorem 20. The backward orbit of a class of proper triangles ofT \ A is dense
in T \ A.

Proof. Consider a class of proper triangles∆0 ∈ T \ A and suppose that∆0 ∈
PN \ α–axis. Fix a neighborhood of∆ ∈ T \ A and choose a fractal copyC of
P1 \ α–axis in this neighborhood. Taken ≥ 1 such thatrn mapsC bijectively to
P1 \ α–axis (such an exists) and take the copyC′ ⊂ C that is the inverse image of
S lb

N \ α–axis under this mapping.rn+1 maps thenC′ bijectively toPN \ α–axis:
there is thus some∆′ ∈ C′ with rn+1

(∆
′
) = ∆0. �

Note that the backward orbit of the degenerate class contains the backward orbit
of Iπ/6 – and of every class∆ of proper triangles withs(∆) =

5

4
– and is thus

also dense inT \ A. If ∆0 is a class of proper triangles outsideA ∪ D with
codez0, the code of some ancestor of∆0 in a fixed neighborhood of∆ ∈ T \ A
can be constructed as follows: take a fractal copyC of P1 \ α–axis with address
w1y1 . . . wM in this neighborhood; take this address as head of a codez whose
tail is z0 and fill the space between head and tail with onei, ii, iii or iv in such a
way thatz0 will appear as a descendant ofz: the triangle class with codez is an
ancestor of∆0 in the given neighborhood of∆.
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Correction to Gr égoire Nicollier,
Reflection Triangles and Their Iterates,

Forum Geom., 12 (2012) 83–128.

An error was regretfully introduced in the statement of Theorem 11 in the bottom
of p.108 during the typesetting process. Here is the corrected statement.

Theorem 11. The parents inT of Iα, α 6= π
3
, are – up to the exceptions mentioned

below – the two non-isosceles classes{α′

±
, β′

±
, γ′

±
} given by the non-obtuse angles

α′

±
=

π
4
± α

2
, β′

±
= arccot





2 cos α + 2

√

2 −

(

1

2

± sinα

)

2



 ,

and by

γ′

±
= arccot





2 cos α − 2

√

2 −

(

1

2

± sin α

)2





in ]0, π[ – with coordinates
(

5

4
± sin α, (1±sin α)

2

64(1−sin
2 α)

)

∈ T ∗ – and the isosceles

triangle classes with coordinates(s, p) (automatically on the roof) corresponding
to each real roots of Q3(s) given by(23) for t = sin

2 α, with p as in Theorem 10.
For α = ω66 the triangle class{α′

+
, β′

+
, γ′

+
} is isosceles with equal anglesω50

and corresponds to the triple roots =

√
2+

3

4
of v(s) = Pmin for S = 12

√
2− 59

4
.

For α > ω66 the non-isosceles class{α′

+
, β′

+
, γ′

+
} doesn’t exist: it corresponds to

the parent outsideT ∗ andβ′

+
, γ′

+
/∈ R.
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Three Conics Derived from Perpendicular Lines

Alberto Mendoza

Abstract. Given a triangleABC and a generic pointP on its plain, we con-
sider the rectangular hyperbolaH which is the isogonal conjugate of the line
OP whereO is the circumcenter of the triangle. We also consider the line L

perpendicular toOP at the pointP , the conicE which is the isogonal conjugate
of this line and the inscribed parabolaP, tangent to the lineL. We discuss some
relations between this three conics.

Let ABC be a triangle with sidesa, b and c. Let P be a generic point with
homogenous barycentric coordinates(u : v : w) and

O = (a2SA : b2SB : c2SC),

the circumcenter of the triangleABC. The lineOP is given by
∑

cyclic

(c2SCv − b2SBw)x = 0. (1)

Let us define

pa = −u + v + w, pb = u − v + w, pc = u + v − w,

and

λa = pb SB − pc SC , λb = pc SC − pa SA, λc = pa SA − pb SB.

Lemma 1. In terms of these expressions,
(a) the lineOP can be expressed as

∑

cyclic

(b2λc + c2λb)x = 0, (2)

(b) the point at infinity of the line OP is given by

IOP = (λb SB − λc SC : λc SC − λa SA : λa SA − λb SB) , (3)

(c) and the infinite point of perpendicular lines to OP is given by

IL = (λa : λb : λc). (4)

Publication Date: April 20, 2012. Communicating Editor: Paul Yiu.
The author would like to thank the referee as his suggestionsled to improvements of the original

version of this paper.
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Equations (2), (3) and (4) follow easily from (1) and the definitions.
Let L be the line perpendicular to the lineOP at the pointP , with equation

L : (λc v − λb w) x + (λa w − λc u) y + (λb u − λa v) z = 0.

Next we shall consider the isogonal conjugates of the linesOP and L. The
isogonal conjugate of the lineOP is the rectangular hyperbola

H :

∑

cyclic

a2
(

b2λc + c2λb

)

y z = 0.

The fourth point of intersection of the hyperbolaH with the circumcircle is the
isogonal conjugate of the pointIOP :

H ′
=

(

a2

λb SB − λc SC
:

b2

λc SC − λa SA
:

c2

λa SA − λb SB

)

.

The centerM of H (on the nine point circle) is the midpoint of the pointsH and
H ′, whereH is the orthocenter of the triangleABC,

M =

((

b2λc + c2λb

)

λa :

(

c2λa + a2λc

)

λb :

(

a2λb + b2λa

)

λc

)

.

The circumconicE is the isogonal conjugate ofL:

E :

∑

cyclic

a2
(λc v − λb w) yz = 0.

The center of the circumconicE is the point

N =

(

a2
(λc v − λb w)

(

b2λcw − c2λbv + λbλc

)

: · · · : · · ·
)

.

The fourth intersection ofE with the circumcircle is the isogonal conjugate of
the pointIL

E =

(

a2λbλc : b2λcλa : c2λaλb

)

.

The pointsH ′ andE are antipodes in circumcenter being the isogonal conjugates
of points at infinity on perpendicular lines.

Finally we will consider the inscribed parabola tangent to the lineL. This is the
parabola

P :

∑

cyclic

(

λ2

a (λc v − λb w)

2 x2 − 2λb λc (λa w − λc u) (λb u − λa v) y z
)

= 0.

The center of the parabolaP is the infinite point

J = ((λc v − λb w) λa : (λa w − λc u) λb : (λb u − λa v)λc) .

The focus ofP is the isogonal conjugate ofJ

F =

(

a2λb λc

λc v − λb w
:

b2λc λa

λa w − λc u
:

c2λa λb

λb u − λa v

)

,

and the perspector ofP, on the Steiner circumellipseE0, is the isotomic conjugate
of J :

Q =

(

λb λc

λc v − λb w
:

λc λa

λa w − λc u
:

λa λb

λb u − λa v

)

.
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The point of contact betweenP andL is the point

T =

(

λa

λc v − λb w
:

λb

λa w − λc u
:

λc

λb u − λa v

)

.

A

B

C

P

O

P∗

H′

E

H

F

N

M

Q

Figure 1. Three conics

Theorem 2. The tangent toE at E
(a)passes through the focusF of P;
(b) is parallel to the tangent toE at P ∗, the isogonal conjugate of the pointP ;
(c) has as its poleK with respect toP onH.

Proof. (a) The tangentT to E at the pointE has the equation

(λc v − λb w) λ2
a

a2
x +

(λa w − λc u) λ2

b

b2
y +

(λb u − λa v) λ2
c

c2
z = 0. (5)
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If (x : y : z) are the coordinates of the pointF , the left hand side of the above
expression simplifies to a constant multiplied byλa + λb + λc. But this sum is
equal to zero, verifying that the pointF is on the tangentT.

(b) The tangent toE at the pointP ∗ is given by

(λc v − λb w) u2

a2
x +

(λa w − λc u) v2

b2
y +

(λb u − λa v) w2

c2
z = 0.

The point of intersection of this line with the lineT may be written as
(

(λc v + λb w) a2
: (λa w + λc u) b2

: (λb u + λa v) c2
)

The sum of this coordinates gives
(

b2λc + c2λb

)

u +

(

c2λa + a2λc

)

v +

(

a2λb + b2λa

)

w.

The sum is equal to zero because this is the condition that thepointP is on the line
OP (2). This shows that the tangents toE atE andP ∗ are parallel.

(c) The polarK of the lineT with respect to the parabola is given by

K =

(

(

b2λc + c2λb

)

a2

(λc v − λb w) λa
:

(

c2λa + a2λc

)

b2

(λa w − λc u) λb
:

(

a2λb + b2λa

)

c2

(λb u − λa v)λc

)

.

Inserting the coordinates of the pointK in the left hand side of the equation ofH,
simplifies to





∏

cyclic

(

b2λc + c2λb

)

a2

(λc v − λb w) λa





∑

cyclic

((λc v − λb w) λa) .

But the sum is zero the as it represent the fact that the point(λa : λb : λc) is on the
line L. This shows that the pointK is on the hyperbolaH. �

Corollary 3. The centerN of the conicE is the midpoint of the pointsP ∗ andE.

Corollary 4. The directrix of the parabola is the lineHK.

Let R be the fourth intersection of the hyperbolaH with the Steiner circum-
ellipse.

Theorem 5. The linesFH ′, EP ∗ andQR concur at the pointK onH.

Proof. The equations of the linesFH ′ andEP ∗ are given by

FH ′
:

∑

cyclic

λa

a2
(λb SB − λc SC) (λc v − λb w) x = 0

and

EP ∗
:

∑

cyclic

λa

a2
(λc v − λb w) ux = 0.

It is easy to verify that the cross product of the line coordinates of this lines are
proportional to the coordinates of the pointK. The constant of proportionality is

λaλbλc

2a2b2c2
(u + v + w) (λc v − λb w) (λa w − λc u) (λb u − λa v) .
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On the other hand, the equation of the lineQR is given by
∑

cyclic

a2λa

(

b2λc − c2λb

)

(λc v − λb w) x = 0.

Inserting the coordinates of the pointK gives

a4
(

b4λ2

c − c4λ2

b

)

+ b4
(

a4λ2

c − c4λ2

a

)

+ c4
(

a4λ2

b + b4λ2

a

)

,

which is clearly equal to zero. �

Let D be the fourth intersection of the conicE with the Steiner circum-ellipse
E0,

D =

(

1

(λa w − λc u) b2
+ (λa v − λb u) c2

: · · · : · · ·

)

.

Theorem 6. The pointD is on the lineEQ.

A

B

C

P

O

P∗

H′

E

F

N K Q

D

R

Figure 2. Collinearities

Proof. The lineEQ can be written as
∑

cyclic

λa

(

(λa w − λc u) b2
+ (λa v − λb u) c2

)

(λc v − λb w) x = 0

A direct calculation shows that, inserting the coordinatesof the pointD in this
equation, simplifies to zero. �
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Theorem 7. The following pairs of(perpendicular) lines are parallel to the asymp-
totes ofH:
(a) the axes ofE,
(b) the tangents fromK to the parabolaP.

Proof. Let us denote withL1 andL2 the points of intersection of the lineOP with
the circumcircle of the triangle

L1 =

(

a b c (λb SB − λc SC) + a2SAµ : · · · : · · ·
)

,

L2 =

(

a b c (λb SB − λc SC) − a2SAµ : · · · : · · ·
)

,

whereµ =

√

λ2
a SA + λ2

b SB + λ2
c SC .

(a) The isogonal conjugatesL∗

1
andL∗

2
, are the points where the asymptotes of

the hyperbolaH meet the line at infinity. The polars ofL∗

1
andL∗

2
with respect to

the conicE are diameters of the conic. If this diameters are conjugate with respect
to E, then they are orthogonal and are the axis of the said conic [1, page 220,§297].
But the polar of a point is conjugate to the one of another point if this last point is
on the polar of the first point. The polar of the pointL∗

1
is the line

∑

cyclic

(

b2c2
(λb u − λa v)

abc (λc SC − λa SA) + b2SBµ
+

b2c2
(λa w − λc u)

abc (λa SA − λb SB) + c2SCµ

)

x = 0

and a (not so short) calculation shows that, indeedL∗

2
is on this polar. Thus the

diameters are orthogonal and conjugate, and are the axis of the conicE.
(b) As the pointK lies on the directrix ofP the tangents fromK to P are

perpendicular. Thus it suffice to show that the lineKL∗

1
is tangent toP. The line

KL∗

1
can be expressed as

∑

cyclic

(

b2c
(

c2λa + a2λc

)

λb (λa w − λc u) f(c, a, b)
−

bc2
(

a2λb + b2λa

)

λc (λb u − λa v) f(b, c, a)

)

x = 0

wheref(a, b, c) = b c (λb SB − λcSC)+aSAµ. A long calculation shows that the
line KL∗

1
is tangent toP. �

Let S be the second intersection of the lineEP ∗ with the circumcircle,

S =

(

a2

(λc v − λb w) u
:

b2

(λa w − λc u) v
:

c2

(λb u − λa v) w

)

.
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A

B C

P

O

P∗

H′

E

E

H

H

F

P

N

M

K

Figure 3. Asymptotes, axis and tangents

Theorem 8. The poleP ′ of the lineL is on the lineFS.

Proof. The lineFS is given by

λa (λc v − λb w)

2 u

a2
x +

λb (λa w − λc u)

2 v

b2
y +

λc (λb u − λa v)

2 w

c2
z = 0,

and the pointP ′ by

P ′
=

(

(λc v − λb w) a2 − (λa w − λc u) b2 − (λb u − λa v) c2
: · · · : · · ·

)

.

Inserting the coordinates ofP ′ in the equation of the lineFS simplifies to




∏

cyclic

(λc v − λb w)





∑

cyclic

(

b2λc + c2λb

)

u

and, as already seen, the sum is equal to zero. �

P ′ is also the inverse in circumcircle of the pointP . If T , on the lineL, is the
pole of the lineFS it follows that pointsO, P , F , S, andT are concyclic.

The pointT can be expressed as

T =

(

(λc v + λb w) a2

(λc v − λb w)

:

(λa w + λc u) b2

(λa w − λc u)

:

(λb u + λa v) c2

(λb u − λa v)

)

.

The pointT is also the center of a circleC through the pointsF andS. The circle
C is orthogonal to the circumcircle.
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Theorem 9. Points onC are
(a) the pointK,
(b) the intersections of the lineL with the tangents from the pointK to the parabola
P.

A

B

C
O

P

P∗

E

S

F

K

T

P ′

Figure 4. Circles

Proof. (a) A long calculation allows one to show that indeed, the pointT is equidis-
tant to the pointsF andK. 1 The common distance of the pointT to the pointsF
andS can be expressed asd1/(d2d3) where

d1 =

∑

cyclic

a4SA

(

b2w2ν2

c − c2v2ν2

b

)2
,

d2 = (a2νb νc v w + b2νc νa w u + c2νa νb u v)
2,

d3 =





∑

cyclic

a2
(wλb + vλc)

νa





2

,

and
νa = λc v − λb w, νb = λa w − λc u, νc = λb u − λa v.

1For an equation of the distance of two points in barycentric coordinates see [2, Chapter 7].
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(b) Consider the triangle whose sides are the lineL and the tangents to the
parabola from the pointK. The three sides of this triangle are tangent to the
parabola. Thus the focusF is on the circumcircle of this triangle and the center of
this circle is on the lineL. But by part (a) of the proof, the only circle through the
pointsF andK with center onL is the circleC. �

Interesting examples of the relations shown in this work arise if one takes the
point P as the inverse in circumcircle of the symmedian point of the triangle2,
the inverse in circumcircle of the orthocenter, or whenP is the intersection of the
line OI, whereI is the incenter, with the radical axis of the circumcircle and the
incircle.
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On the Intersections of the Incircle and the Cevian
Circumcircle of the Incenter

Luiz González and Cosmin Pohoata

Abstract. We give a characterization of the other point of intersection of the
incircle with the circle passing through the feet of the internal angle bisectors,
different from the Feuerbach point.

1. Introduction

The famous Feuerbach theorem states that the nine-point circle of a triangle is
tangent to the incircle and to each of the excircles. Of particular interest is the
tangency between the nine-point circle and the incircle, for it is this tangency point
among the four that is a triangle center in the sense of Kimberling [5]. Thus, it
is this point which was coined as theFeuerbach pointof the triangle. Besides, its
existence, being perhaps one of the first more difficult results that arise in trian-
gle geometry, has been the subject of many discussions over the years, and conse-
quently, many proofs, variations, and related results haveappeared in the literature.
A celebrated collection of such results is provided by Emelyanov and Emelyanova
in [3]. In this note, we shall dwell on a particular theorem, for which they gave a
magnificient synthetic proof in [2].

A

B C

I

F

Figure 1

Theorem 1 (Emelyanov and Emelyanova). The circle through the feet of the inter-
nal angle bisectors of a given triangle passes through the Feuerbach point of the
triangle.
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We focus on the second intersection of the incircle with thiscevian circumcircle
of the incenter. Following an idea of Suceavă and Yiu [7], wegive a natural char-
acterization of this point in terms of the reflections of a given line in the sidelines
of the cevian triangle of the incircle. We begin with some preliminaries on thePon-
celet pointof a quadrilateral and theanti-Steiner pointof a line passing through the
orthocenter of the triangle.

2. Preliminaries

In essence, the result that lies at the heart of the theory of anti-Steiner point is
the following concurrency due to Collings [1].

Theorem 2 (Collings). If L is a line passing through the orthocenterH of a tri-
angleABC, then the reflections ofL in the sidesBC, CA, AB are concurrent on
the circumcircle ofABC at a point called theanti-Steiner pointofL .

A

B C

O

H

Figure 2

The proof for this is quite straightforward and it consists of a simple angle chas-
ing (see [1] or [4]). It is also well-known that the orthocenter of the intouch triangle
lies on the line determined by the circumcenterO and the incenterI of the trian-
gle. This can be proved in many ways synthetically. The most beautiful approach
however is by using inversion with respect to the incircle; we refer to [6] for this
proof. Given this fact, it is natural now to ask about the anti-Steiner point ofOI
with reference to the intouch triangle. Suceavă and Yiu didthis and obtained the
following result.
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Theorem 3 (Suceavă and Yiu). The reflections of theOI-line in the sides of the
intouch triangle ofABC concur at the Feuerbach point ofABC.

A

B
C

O
IB′

C′

A′

Figure 3

We proceed to give a geometric characterization of the “second” intersection of
the cevian circumcenter of the incenter with the incircle, apart from the Feuerbach
point.

3. The main result

Theorem 4. Let I be the incenter of triangleABC, and H1 the orthocenter of
cevian triangleA1B1C1 of I. The anti-Steiner point of the lineIH1 (with respect to
A1B1C1) is the “second” intersection of the incircle with the ceviancircumcircle
of I.

A

B C

I

C′

B′

A′ A1

B1

C1

H′

F ′

Figure 4
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In other words, the anti-Steiner point of the lineIH1 with respect to triangle
A1B1C1 lies on the incircle ofABC. This is in general different from the Feuer-
bach point ofABC, unless the incircle and the cevian circumcircle of the incenter
are tangent to one another.

We prove Theorem 4 synthetically, with the aid of a few lemmas. Lemma 5
provides more insight on the standard anti-Steiner point configuration.

Lemma 5. LetP be a point in the plane of a given triangleABC with orthocenter
H. Let A1, B1, C1 be the points where the linesAP , BP , and CP , intersect
again the circumcircle. Furthermore, letA2, B2, C2 be the reflections ofP across
the sidelinesBC, CA, andAB, respectively. Then, the circumcircles of triangles
ABC, PA1A2, PB1B2, andPC1C2 are concurrent at the anti-Steiner point of
the linePH with respect to triangleABC.

A

B C

P
H

O

A2

D
A1

T

Figure 5

Proof. The lineAH cuts the circumcircle of triangleABC again at the reflection
D of H acrossBC. Thus, the lineDA2 is the reflection ofPH with respect to
BC and intersects the circumcircle of triangleABC again at the anti-Steiner point
T of PH with respect toABC. Since the directed angles

(TA1, TA2) = (TA1, TD) = (AA1, AD) = (PA1, PA2) mod 180
◦,

it follows thatT lies on the circumcircle ofPA1A2. Similarly, T lies on the cir-
cumcircles of trianglesPB1B2 andPC1C2. �

Lemma 6 is a property of Poncelet points of general quadrilaterals. By definition
(see [4]), the Poncelet pointT associated with the four pointsA, B, C, D is the
concurrency point of8 circles: the nine-point circles of trianglesABC, BCD,
CDA, DAB, and the pedal circles of the pointsA, B, C, andD, with respect to
the trianglesBCD, CDA, DAB, andABC, respectively.
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Lemma 6. LetP be a point in the plane of triangleABC andPAPBPC its pedal
triangle with respect toABC. LetA′, B′, C ′ be the midpoints of the segmentsPA,
PB, andPC, respectively, and letP1, P2, P3 be the points where the linesPPA,
PPB , PPC meet again the pedal circlePAPBPC . Then, the linesP1A

′, P2B
′, and

P3C
′ concur at a point on the pedal circlePAPBPC .

A

B C

P

PC
PB

PA

A′

B′ C′

P1

P2

P3

Figure 6

Proof. Let U be the Poncelet point of the quadrilateralABCP . By definition, this
point lies on the pedal circle ofP with respect to triangleABC. Now, let D be
the second intersection ofBC with the pedal circlePAPBPC and letR be the
orthogonal projection ofA on PC. We have thatURA′C ′ is the nine-point circle
of triangleAPC. Furthermore, we also get that

∠DUC ′
= ∠DUPB − ∠C ′UPB

= 180
◦ − ∠CPPB − ∠PRPB

= ∠PAC − ∠CPPB

= ∠PAC − ∠RAC

= 90
◦ − ∠APC.

Thus,

∠DUA′
= ∠DUC ′

+ ∠C ′UA′

= 90
◦ − ∠APC + ∠APC

= 90
◦.

Therefore, since∠DUP1 = 90
◦, it follows thatU lies on the lineP1A

′. Simi-
larly, P2B

′ andP3C
′ pass through the Poncelet pointP . �
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Finally, we prove the lemma which lies at the core of the proofof the main
Theorem 4.

Lemma 7. Given a triangleABC with circumcenterO and medial triangleDEF ,
let P be a point with orthogonal projectionsP1, P2, P3 on these sides. LetA′ be
the intersection of the linesEF and P2P3, and defineB′, C ′ cyclically. Then,
the linesP1A

′ P2B
′ P3C

′ concur at the intersection pointU of the circumcircles
P1P2P3 and DEF that is different from the Poncelet point ofA, B, C and P .
Furthermore,U is the anti-Steiner point of the lineOP with respect to the medial
triangle DEF .

A

B C

P
O

D

E

F

P1

P2

P3

A′

B′

C′

U

Figure 7

Proof. The orthogonal projectionV of A onOP is clearly the second intersection
of the circumcircles of the cyclic quadrilateralsPP2AP3 andOEAF with diam-
etersAP andAO, respectively. Also, note thatV is the Miquel point of the com-
plete quadrilateral bounded by the linesAB, AC, EF , andP2P3. Thus, it follows
by the standard characterization of Miquel points thatV lies on the circumcircle of
FA′P3.

On the other hand, letPP1 intersect the circleAP2P3 again atT . SinceAP is
a diameter ofAP2P3, ∠ATP = 90

◦, andAT is parallel toEF . In other words,
EF is the perpendicular bisector ofTP1, and∠TAF = ∠AFE. We have shown
aboveV lies on the circumcircle ofFA′P3. Therefore,∠A′V P3 = ∠AFE, and
A′ lies onV T . Furthermore, sinceA′ lies on the radical axisP2P3 of the circum-
circlesAP2P3 andP1P2P3, it also follows thatA′ has equal powers with respect
to AP2P3 andP1P2P3. Consequently, ifP1A

′ cuts the circleP1P2P3 again atU ,



Cevian circumcircle of the incenter 147

thenTUV P1 is an isosceles trapezoid with basesUV andTP1. Therefore,U is
the reflection ofV acrossEF . Finally, since the circumcirclesAEF andDEF are
symmetric with respect toEF , the pointU , which lies on the circumcircleDEF ,
is the anti-Steiner point ofOP with respect to triangleDEF . �

Now we conclude with a proof of Theorem 4.
Let DEF be the intouch triangle ofABC, andA0B0C0 the antimedial triangle

of DEF . Since the linesB0C0, C0A0, A0B0 are perpendicular to the linesIA,
IB, IC respectively, the feet of the internal angle bisectors,A1, B1, C1, are the
poles ofB0C0, C0A0, A0B0 with respect to the incircle(I). Therefore, by duality,
the pointsA0, B0, C0 are the poles of the linesB1C1, C1A1, A1B1 with respect to
(I).

A

B CA1

B1

C1

I

H1

D

E

F

A0

B0

C0

Q

R

P

X

Y

Z

Q′

R′

P ′

X′

Y ′

Z′

O0

Figure 8

Now, let the segmentsIA, IB, IC intersect the cevian circumcircle(A1B1C1)

of I at P , Q, R respectively, and letX, Y , Z be the reflections ofI across the
linesB1C1, C1A1, andA1B1, respectively. Inversion with respect to(I) takesω
into the pedal circleω′ of I with respect to triangleA0B0C0. Thus, the segments
IA, IB, IC cut ω′ at the inverse imagesP ′, Q′, R′ of P , Q, R respectively, and
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the midpointsX ′, Y ′, Z ′ of IA0, IB0, IC0 are the inverse images ofX, Y , Z. It
follows from Lemma 6 thatP ′X ′, Q′Y ′, R′Z ′ all meet at the Poncelet pointF ′

of A0B0C0I, which, as a matter of fact, lies onω′. On the other hand, by Lemma
5, the inverses of these lines are the circles(IXP ), (IY Q), and(IZR) concur-
ring at the anti-Steiner point ofI with respect to triangleA1B1C1. Therefore, the
intersection points of(A1B1C1) and the incircle(I) are precisely the anti-Steiner
pointF ′ of IH1 with respect to triangleA1B1C1 and the Feuerbach point ofABC.
Moreover, ifO0 is the circumcenter of triangleA0B0C0, then according to Lemma
7, F ′ is in general different from the anti-Steiner point ofIO0 with respect to tri-
angleDEF . Thus, we conclude that the anti-Steiner pointF ′ of IH1 with respect
to triangleA1B1C1 is indeed the intersection of(I) ∩ ω, which is different from
the Feuerbach point, since by Theorem 3 the anti-Steiner point of IO0 with respect
to DEF is the Feuerbach point ofABC.

This completes the proof of Theorem 4.

References

[1] S. N. Collings: Reflections on a triangle 1,Math. Gazette, 57 (1973) 291–293.
[2] L. A. Emelyanov and T. L. Emelyanova, A note on the Feuerbach point,Forum Geom., 1 (2001)

121–124.
[3] L. A. Emelyanov and T. L. Emelyanova, Semejstvo Feuerbacha, Matematicheskoe Prosveshje-

nie, 2002, 1–3.
[4] D. Grinberg, Anti-Steiner points with respect to a triangle, available at

http://www.cip.ifi.lmu.de/ grinberg
[5] C. Kimberling, Triangle centers and central triangles,Congressus Numerantium, 129 (1998)

1–285.
[6] C. Pohoata, Homothety and Inversion, AwesomeMath Year-Round Program material, 2012.
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Some Properties of the Newton-Gauss Line

Cătălin Barbu and Ion Pătraşcu

Abstract. We present some properties of the Newton-Gauss lines of thecom-
plete quadrilaterals associated with a cyclic quadrilateral.

1. Introduction

A complete quadrilateral is the figure determined by four lines, no three of which
are concurrent, and their six points of intersection. Figure 1 shows a complete
quadrilateralABCDEF , with its three diagonalsAC, BD, andEF (compared
to two for an ordinary quadrilateral). The midpointsM , N , L of these diagonals
are collinear on a line, called theNewton-Gauss line of the complete quadrilateral
([1, pp.152–153]). In this note, we present some propertiesof the Newton - Gauss
lines of complete quadrilaterals associated with a cyclic quadrilateral.

A

B C

D

E

F

N
M

L

Figure 1.

2. An equality of angles determined by Newton - Gauss line

Given a cyclic quadrilateralABCD, denote byF the point of intersection at the
diagonalsAC andBD, E the point of intersection at the linesAB andCD, N the
midpoint of the segmentEF , andM the midpoint of the segmentBC (see Figure
2).

Theorem 1. If P is the midpoint of the segment BF , the Newton - Gauss line of the
complete quadrilateral EAFDBC determines with the line PM an angle equal
to ∠EFD.

Proof. We show that trianglesNPM andEDF are similar.
SinceBE‖PN andFC‖PM , ∠EAC = ∠NPM and BE

PN
=

FC
PM

= 2.
In the cyclic quadrilateralABCD, we have

∠EDF = ∠EDA + ∠ADF = ∠ABC + ∠ACB = ∠EAC.

Publication Date: May 2, 2012. Communicating Editor: Paul Yiu.
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Therefore,∠NPM = ∠EDF .
Let R1 andR2 be the radii of the circumcircles of trianglesBED andDFC

respectively. Applying the law of sines to these triangles,we have

BE

FC
=

2R1 sin EDB

2R2 sin FDC
=

R1

R2

=

2R1 sinEBD

2R2 sin FCD
=

DE

DF
.

SinceBE = 2PN andFC = 2PM , we have shown thatPN
PM

=
DE
DF

. The
similarity of trianglesNPM andEDF follows, and∠NMP = ∠EFD. �

Remark. If Q is the midpoint of the segmentFC, the same reasoning shows that
that∠NMQ = ∠EFA.
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N
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P

Figure 2
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Figure 3

3. A parallel to the Newton-Gauss line

Theorem 2. The parallel from E to the Newton - Gauss line of the complete
quadrilateral EAFDBC and the line EF are isogonal lines of angle BEC .

Proof. Since trianglesEDF andNPM are similar, we have∠DEF = ∠PNM .
Let E′ be the intersection of the sideBC with the parallel ofNM throughE.

BecausePN‖BE andNM‖EE′, ∠BEF = ∠PNF and∠FNM = ∠E′EF .
Thus,

∠CEE′
= ∠DEF − ∠E′EF = ∠PNM − ∠FNM = ∠PNF = ∠BEF.

�
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4. Two cyclic quadrilaterals determined the Newton-Gauss line

Let G andH be the orthogonal projections of the pointF on the linesAB and
CD respectively (see Figure 4).

Theorem 3. The quadrilaterals MPGN and MQHN are cyclic.

Proof. By Theorem 1,∠EFD = ∠PMN . The pointsP and N are the cir-
cumcenters of the right trianglesBFG and EFG, respectively. It follows that
∠PGF = ∠PFG and∠FGN = ∠GFN . Thus,

∠PGN + ∠PMN = (∠PGF + ∠FGN) + ∠PMN

= ∠PFG + ∠GFN + ∠EFD

= 180
◦.

Therefore,MPGN is a cyclic quadrilateral. In the same way, the quadrilateral
MQHN is also cyclic. �
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Figure 4
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Figure 5

5. Two complete quadrilaterals with the same Newton-Gauss line

Extend the linesGF andHF to intersectEC andEB at I andJ respectively
(see Figure 5).

Theorem 4. The complete quadrilaterals EGFHJI and EAFDBC have the
same Newton-Gauss line.

Proof. The two complete quadrilaterals have a common diagonalEF . Its midpoint
N lies on the Newton-Gauss lines of both quadrilaterals. NotethatN is equidistant
from G andH since it is the circumcenter of the cyclic quadrilateralEGFH. We
show that trianglesMPG andHQM are congruent. From this, it follows thatM
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lies on the perpendicular bisector ofGH. Therefore, the lineMN contains the
midpoint ofGH, and is the Newton-Gauss line ofEGFHJI.

Now, to show the congruence of the trianglesMPG andHQM , first note that
sinceM andP are the midpoints ofBF andBC, PMQF is a parallelogram.
From these, we conclude
(i) MP = QF = HQ,
(ii) GP = PF = MQ,
(iii) ∠MPF = ∠FQM .

Note also that

∠FPG = 2∠PBG = 2∠DBA = 2∠DCA = 2∠HCF = ∠HQF.

Together with (iii) above, this yields

∠MPG = ∠MPF+∠FPG = ∠FQM+∠HQF = ∠HQF+∠FQM = ∠HQM.

Together with (i) and (ii), this proves the congruence of trianglesMPG andHQM .
�

Remark. BecauseMPG andHQM are congruent triangles, their circumcircles,
namely,(MPGN) and(MQHN) are congruent (see Figure 4).
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Harmonic Conjugate Circles Relative to a Triangle

Nikolaos Dergiades

Abstract. We use the term harmonic conjugate conics, for the conicsC, C∗ with
equationsC : fx

2
+ gy

2
+ hz

2
+ 2pyz + 2qz + 2rxy = 0 andC∗

: fx
2

+

gy
2
+hz

2 − 2pyz− 2qz− 2rxy = 0, in barycentric coordinates because ifA1,
A2 are the points whereC meets the sidelineBC of the reference triangle ABC,
thenC∗ meets the same side at the pointsA

′

1, A
′

2 that are harmonic conjugates
of A1, A2 respectively relative toBC and similarly for the other sides ofABC

[1]. So we investigate the interesting case where bothC andC∗ are circles.

1. Introduction

We work with barycentric coordinates with reference to a given triangleABC.
A conicC with matrix

M =





f r q
r g p
q p h





and equation

fx2
+ gy2

+ hz2
+ 2pyz + 2qzx + 2rxy = 0 (1)

intersects the sidelineBC of triangleABC at the pointsA1 = (0 : y1 : z1) and
A2 = (0 : y2 : z2) with yi, zi (i = 1, 2) satisfyinggy2

+2pyz+hz2
= 0. Similarly,

the conicC∗ with matrix

M∗
=





f −r −q
−r g −p
−q −p h





and equation

fx2
+ gy2

+ hz2 − 2pyz − 2qzx − 2rxy = 0 (2)

intersects the sidelineBC of triangleABC at the pointsA′

1
= (0 : −y1 : z1) and

A′

2
= (0 : −y2 : z2). For i = 1, 2, the pointsAi andA′

i are harmonic conjugates
with respect toB andC. Similarly the intersections ofC andC∗ with the other
two sidesCA, AB are also harmonic conjugates. We call these conics harmonic
conjugates relative to triangleABC (see Figure 1), and it is very interesting to
consider their properties and construction if these conicsare both circles. If the
conicC is a bicevian conic (passing through the vertices of the cevian triangles of
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two pointsP , Q), then its harmonic conjugate conic is a pair of lines (the trilinear
polars ofP andQ).

A

B C

C1
B1

B2

A1

C2

A2

B′

1

B′

2
C′

2

C′

1

A′

1 A′

2

Figure 1. Harmonic conjugate conics

2. Harmonic conjugate circles relative to ABC

Theorem 1. The harmonic conjugate conic of the circle

a2yz + b2zx + c2xy − (x + y + z)(Px + Qy + Rz) = 0 (3)

is a circle if and only if (P,Q,R) = m(SA, SB, SC) for some m.

Proof. The matrix of the circle (3) being




−2P c2 − P − Q b2 − R − P
c2 − P − Q −2Q a2 − Q − R
b2 − R − P a2 − Q − R −2R



 ,

its harmonic conjugate conic has matrix




−2P −c2
+ P + Q −b2

+ R + P
−c2

+ P + Q −2Q −a2
+ Q + R

−b2
+ R + P −a2

+ Q + R −2R



 .

This is the conic

(2Q+2R−a2
)yz+(2R+2P−b2

)zx+(2P+2Q−c2
)xy−(x+y+z)(Px+Qy+Rz) = 0.

It is a circle if and only if

2Q + 2R − a2
: 2R + 2P − b2

: 2P + 2Q − c2
= a2

: b2
: c2,

i.e.,

P : Q : R = b2
+ c2 − a2

: c2
+ a2 − b2

: a2
+ b2 − c2

= SA : SB : SC .

This is the case if and only if(P,Q,R) = m(SA, SB , SC) for somem. �
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Denote byCm the circle with equation

a2yz + b2zx + c2xy − m(x + y + z)(SAx + SBy + SCz) = 0.

A simple application of the formula in [3,§10.7.2] shows that the center ofCm is
the point

Om = ((1−m)a2SA+m·2SBC : (1−m)b2SB+m·2SCA : (1−m)c2SC+m·2SAB),

which dividesOH in the ratio

OOm : OmH = m : 1 − m.

Proposition 2. If m 6= 1

2
, the harmonic conjugate circle of Cm is the circle Cm′ ,

where m′
=

m
2m−1

.

Proof. By the proof of Theorem 1, the harmonic conjugate circle ofCm is the circle

(2m(SB + SC) − a2
)yz + (2m(SC + SA) − b2

)zx + (2m(SA + SB) − c2
)xy

− m(x + y + z)(SAx + SBy + SCz) = 0,

namely,

a2yz + b2zx + c2xy −
m

2m − 1

(x + y + z)(SAx + SBy + SCz) = 0.

This is the circleCm′ with m′
=

m
2m−1

. �

A

B

C

O

H

H′

Om

Om′

Figure 2. Harmonic conjugate circles



156 N. Dergiades

Remark. Form =
1

2
, Cm is the nine-point circle, the bicevian circle of the centroid

and the orthocenter. Its harmonic conjugate conic is the pair of lines consisting of
the line at infinity and the orthic axis.

Proposition 3. The centers of a pair of harmonic conjugate circles divide the seg-
ment OH harmonically.

Proof. Let the harmonic conjugate circles beCm andCm′ , with m′
=

m
2m−1

. Their
centers are pointsOm andOm′ satisfying

OOm′ : Om′H = m′
: 1 − m′

=

m

2m − 1

:

m − 1

2m − 1

= m : −(1 − m)

= OOm : −OmH.

ThereforeOm andOm′ divide OH harmonically. �

Sincem = m′ if and only if m = 0 or 1, we have the following corollary.

Corollary 4. The circumcircle and the polar circle (with center H) are the only
circles which are their own harmonic conjugate circles.

Remark. The polar circle is real only when the triangle contains an angle ≥ 90
◦.

For the construction of the polar circle, see§4.2 below.

3. Construction of coaxial circles

3.1. Prescribed center. Given a circleO(R) and a lineL generating a coaxial
family of circles, we address the construction problem of the circle in the family
with a prescribed centerP on the line throughO perpendicular toL.

Any intersection ofL andO(R) is common to the circles in the coaxial family.
The construction problem is trivial whenL andO(R) intersect.

A

B C

O
H

H′

Om

Figure 3. Construction of circles in coaxial family
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SupposeL does not intersect the circleO(R). Let H ′ be the orthogonal projec-
tion of O on the lineL. Set up a Cartesian coordinates with origin atH ′, y-axis
alongL, and positivex-axis along the half-lineH ′O. If the pointO has coordi-
nates(k0, 0) for k0 > R, the circleO(R) has equation(x − k0)

2
+ y2

= R2,
or

x2
+ y2 − 2k0x + k2

0 − R2
= 0.

Construct the circle(H ′
) orthogonal to(O). This circle has radius

√

k2

0
− R2.

The real circles in the coaxial family have equations

x2
+ y2 − 2kx + k2

0 − R2
= 0, k2 ≥ k2

0 − R2.

Given the centerK(k, 0), here is a simple construction of the circle.
(i) Supposek > 0. Construct the circle with diameterH ′K to intersect the

circle (H ′
) at a pointP . Then the circleK(P ) is the one in the coaxial family with

centerK (see Figure 3).
(ii) Supposek < 0. Apply (i) to construct the circle in the family with center

(−k, 0). Reflect this in the lineL to yield the circle with centerK(k, 0).

3.2. Through a given point. Given a pointP not on the lineL, to construct the
circle in the coaxial family which containsP , we need only note that this circle,
being orthogonal to(H ′

), should also contain the inversive imageP ′ of P in (H ′
).

The intersection of the perpendicular bisector ofPP ′ and the perpendicular toL
from O is the centerK of the circle.

4. Harmonic conjugate circles for special triangles

4.1. Equilateral triangles. If ABC is equilateral with circumcenterO and circum-
radiusR, the only harmonic conjugate circle pairs are concentric circles atO, with
radii ρ andρ′ related by

(

ρ2 −
R2

4

)(

ρ′2 −
R2

4

)

=

(

3R2

4

)2

.

B C

A

O

Figure 4. Harmonic conjugate circles of an equilateral triangle
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4.2. Nonacute triangles. If ABC contains an angle≥ 90
◦, then its orthic axis in-

tersects the circumcircle at real points.1 Therefore the harmonic conjugate circles
pairs can be easily constructed knowing that their centers are harmonic conjugates
with respect toOH.

A

B C
O

H

Om

H′

Om′

Figure 5. Harmonic conjugate circles of an obtuse triangle

5. Congruent harmonic conjugate circles

There is a unique pair of congruent harmonic conjugate circles. Their centers
on the Euler line are symmetric with respect toH ′. These two points are therefore
the intersection of the Euler line with the circle, centerH ′, orthogonal to the circle
with diameterOH.

A

B C

O

H

Om

Om′

H′

Figure 6. Congruent harmonic conjugate circles

1If ABC contains a right angle, then the right angle vectex is on the orthic axis (and the
circumcircle).
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The Perpendicular Bisector Construction, the Isoptic
point, and the Simson Line of a Quadrilateral

Olga Radko and Emmanuel Tsukerman

Abstract. Given a noncyclic quadrilateral, we consider an iterativeprocedure
producing a new quadrilateral at each step. At each iteration, the vertices of the
new quadrilateral are the circumcenters of the triad circles of the previous gener-
ation quadrilateral. The main goal of the paper is to prove a number of interesting
properties of the limit point of this iterative process. We show that the limit point
is the common center of spiral similarities taking any of thetriad circles into
another triad circle. As a consequence, the point has the isoptic propertyi.e.,
all triad circles are visible from the limit point at the sameangle. Furthermore,
the limit point can be viewed as a generalization of a circumcenter. It also has
properties similar to those of the isodynamic point of a triangle. We also char-
acterize the limit point as the unique point for which the pedal quadrilateral is a
parallelogram. Continuing to study the pedal properties with respect to a quadri-
lateral, we show that for every quadrilateral there is a unique point (which we
call the Simson point) such that its pedal consists of four points on a line, which
we call the Simson line, in analogy to the case of a triangle. Finally, we define
a version of isogonal conjugation for a quadrilateral and prove that the isogonal
conjugate of the limit point is a parallelogram, while that of the Simson point is
a degenerate quadrilateral whose vertices coincide at infinity.

1. Introduction

The perpendicular bisector construction that we investigate in this paper arises
very naturally in an attempt to find a replacement for a circumcenter in the case of a
noncyclic quadrilateralQ(1)

= A1B1C1D1. Indeed, while there is no circle going
through all four vertices, for every triple of vertices there is a unique circle (called
the triad circle) passing through them. The centers of these four triad circles can
be taken as the vertices of a new quadrilateral, and the process can be iterated to
obtain a sequence of noncyclic quadrilaterals:Q(1), Q(2), Q(3), . . . .

To reverse the iterative process, one finds the isogonal conjugates of each of
the vertices with respect to the triangle formed by the remaining vertices of the
quadrilateral.

It turns out that all odd generation quadrilaterals are similar, and all even gener-
ation quadrilaterals are similar. Moreover, there is a point that serves as the center
of spiral similarity for any pair of odd generation quadrilaterals as well as for any
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pair of even generation quadrilaterals. The angle of rotation is0 or π depending
on whether the quadrilateral is concave or convex, and the ratio r of similarity is a
constant that is negative for convex noncyclic quadrilaterals, zero for cyclic quadri-
laterals, and≥ 1 for concave quadrilaterals. If|r| 6= 1, the same special point turns
out to be the limit point for the iterative process or for the reverse process.

The main goal of this paper is to prove the following theorem.

Theorem 1. For each quadrilateralQ(1)
= A1B1C1D1 there is a unique pointW

that has any (and, therefore, all) of the following properties:

(1) W is the center of the spiral similarity for any two odd (even) generation
quadrilaterals in the iterative process;

(2) Depending on the value of the ratio of similarity in the iterative process,
there are the following possibilities:
(a) If |r| < 1, the quadrilaterals in the iterated perpendicular bisectors

construction converge toW ;
(b) If |r| = 1, the iterative process is periodic (with period2 or 4); W

is the common center of rotations for any two odd (even) generation
quadrilaterals;

(c) If |r| > 1, the quadrilaterals in the reverse iterative process (obtained
by isogonal conjugation) converge toW ;

(3) W is the common point of the six circles of similitudeCS(oi, oj) for any
pair of triad circles oi, oj , i, j ∈ {1, 2, 3, 4}, whereo1 = (D1A1B1),
o2 = (A1B1C1), o3 = (B1C1D1), o4 = (C1D1A1).

(4) (isoptic property) Each of the triad circles is visible fromW at the same
angle.

(5) (generalization of circumcenter) The (directed) angle subtended by any of
the quadrilateral’s sides atW equals to the sum of the angles subtended
by the same side at the two remaining vertices.

(6) (isodynamic property) The distance fromW to any vertex is inversely pro-
portional to the radius of the triad circle determined by theremaining three
vertices.

(7) W is obtained by inversion of any of the vertices of the original quadrilat-
eral in the corresponding triad-circle of the second generation:

W = Inv
o
(2)

1

(A) = Inv
o
(2)

2

(B) = Inv
o
(2)

3

(C) = Inv
o
(2)

4

(D),

whereo
(2)

1
= (D2A2B2), o

(2)

2
= (A2B2C2), o

(2)

3
= (B2C2D2), o

(2)

4
=

(C2D2A2).
(8) W is obtained by composition of isogonal conjugation of a vertex in the

triangle formed by the remaining vertices and inversion in the circumcircle
of that triangle.

(9) W is the center of spiral similarity for any pair of triad circles (of possibly
different generations). That is,W ∈ CS(o

(k)

i , o
(l)
j ) for all i, j, k, l.

(10) The pedal quadrilateral ofW is a (nondegenerate) parallelogram. More-
over, its angles equal to the angles of the Varignon parallelogram.
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Many of these properties ofW were known earlier. In particular, several authors
(G. T. Bennett in an unpublished work, De Majo [11], H. V. Mallison [12]) have
considered a point that is defined as the common center of spiral similarities. Once
the existence of such a point is established, it is easy to conclude that all the triad
circles are viewed from this point under the same angle (thisis the so-calledisoptic
property). Since it seems that the oldest reference to the point with such an isoptic
property is to an unpublished work of G. T. Bennett given by H.F. Baker in his
Principles of Geometry, volume 4 [1, p.17], in 1925, we propose to call the center
of spiral similarities in the iterative processBennett’s isoptic point.

C. F. Parry and M. S. Longuet-Higgins [14] showed the existence of a point with
property 7 using elementary geometry.

Mallison [12] definedW using property 3 and credited T. McHugh for observing
that this implies property 5.

Several authors, including Wood [19] and De Majo [11], have looked at the
properties of the isoptic point from the point of view of the unique rectangular
hyperbola going through the vertices of the quadrilateral,and studied its properties
related to cubics. For example, P.W. Wood [19] considered the diameters of the
rectangular hyperbola that go throughA,B,C,D. Denoting by ¯A, ¯B, ¯C, ¯D the
other endpoints of the diameters, he showed that the isogonal conjugates of these
points in trianglesBCD, CAD,ABD, ABC coincide. Starting from this, he
proved properties 4 and 7 of the theorem. He also mentions thereversal of the
iterative process using isogonal conjugation (also found in [19], [17], [5]). Another
interesting property mentioned by Wood is thatW is the Fregier point of the center
of the rectangular hyperbola for the conicABCDO, whereO is the center of the
rectangular hyperbola.

De Majo [11] uses the property that inversion in a point on thecircle of simili-
tude of two circles transforms the original circles into a pair of circles whose radii
are inversely proportional to those of the original circlesto show that that there
is a common point of intersection of all6 circles of similitude. He describes the
iterative process and states property 1, as well as several other properties ofW
(including 8). Most statements are given without proofs.

Scimemi [17] describes a Möbius transformation that characterizesW : there
exists a line going throughW and a circle centered atW such that the product of
the reflection in the line with the inversion in the circle maps each vertex of the first
generation into a vertex of the second generation.

The question of proving that the third generation quadrilateral is similar to the
original quadrilateral and finding the ratio of similarity was first formulated by J.
Langr [8]. Independently, the result appeared in the form ofa problem by V.V.
Prasolov in [15, 16]. The expression for the ratio (under certain conditions) was
obtained by J. Langr [8] , and the expression for the ratio (under certain conditions)
was obtained by D. Bennett [2] (apparently, no relation to G.T. Bennett mentioned
above), and J. King [7]. A paper by G. C. Shepard [18] found an expression for the
ratio as well. (See [3] for a discussion of these works).

Properties 9 and 10 appear to be new.
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For the convenience of the reader, we give a complete and selfcontained exposi-
tion of all the properties in the Theorem above, as well as proofs of several related
statements.

In addition to investigating properties ofW , we show that there is a unique point
for which the feet of the perpendiculars to the sides lie on a straight line. In analogy
with the case of a triangle, we call this line theSimson lineof a quadrilateral and
the point – theSimson point.The existence of such a point is stated in [6] where it
is obtained as the intersection of the Miquel circles of the complete quadrilateral.

Finally, we introduce a version of isogonal conjugation fora quadrilateral and
show that the isogonal conjugate ofW is a parallelogram, and that of the Simson
point is a degenerate quadrilateral whose vertices are at infinity, in analogy with
the case of the points on the circumcircle of a triangle.

2. The iterative process

Let A1B1C1D1 be a quadrilateral. IfA1B1C1D1 is cyclic, the center of the
circumcircle can be found as the intersection of the four perpendicular bisectors to
the sides of the quadrilateral.

Assume thatQ(1)
= A1B1C1D1 is a noncyclic quadrilateral.1 Is there a point

that, in some sense, plays the role of the circumcenter? LetQ(2)
= A2B2C2D2 be

the quadrilateral formed by the intersections of the perpendicular bisectors of the
sides ofA1B1C1D1. The verticesA2, B2, C2,D2 of the new quadrilateral are the
circumcenters of the trianglesD1A1B1 , A1B1C1, B1C1D1 andC1D1A1 formed
by vertices of the original quadrilateral taken three at a time.

A D

C

B

A2

D2

C2

B2

A D

C

B

A2

D2

C2

B2

A3

B3
C3

D3

Figure 1. The perpendicular bisector construction andQ
(1)

, Q
(2)

, Q
(3).

Iterating this process,i.e., constructing the vertices of the next generation quadri-
lateral by intersecting the perpendicular bisectors to thesides of the current one,
we obtain the successive generations,Q(3)

= A3B3C3D3, Q(4)
= A4B4C4D4

and so on, see Figure 1.

1Sometimes we drop the lower index1 when denoting vertices ofQ(1), so ABCD and
A1B1C1D1 are used interchangeably throughout the paper.
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The first thing we note about the iterative process is that it can be reversed using
isogonal conjugation. Recall that given a triangleABC and a pointP , theisogonal
conjugateof P with respect to the triangle (denoted by IsoABC(P )) is the point
of intersection of the reflections of the linesAP , BP andCP in the bisectors of
anglesA, B andC respectively. One of the basic properties of isogonal conjugation
is that the isogonal conjugate ofP is the circumcenter of the triangle obtained by
reflectingP in the sides ofABC (see, for example, [5] for more details). This
property immediately implies

Theorem 2. The original quadrilateralA1B1C1D1 can be reconstructed from the
second generation quadrilateralA2B2C2D2 using isogonal conjugation:

A1 = IsoD2A2B2
(C2),

B1 = IsoA2B2C2
(D2),

C1 = IsoB2C2D2
(A2),

D1 = IsoC2D2A2
(B2).

The following theorem describes the basic properties of theiterative process.

Theorem 3. LetQ(1) be a quadrilateral. Then

(1) Q(2) degenerates to a point if and only ifQ(1) is cyclic.
(2) If Q(1) is not cyclic, the corresponding angles of the first and second gen-

eration quadrilaterals are supplementary:

∠A1 + ∠A2 = ∠B1 + ∠B2 = ∠C1 + ∠C2 = ∠D1 + ∠D2 = π.

(3) If Q(1) is not cyclic, all odd generation quadrilaterals are similar to each
other and all the even generation quadrilaterals are similar to each other:

Q(1) ∼ Q(3) ∼ Q(5) ∼ . . . ,

Q(2) ∼ Q(4) ∼ Q(6) ∼ . . . .

(4) All odd generation quadrilaterals are related to each othervia spiral sim-
ilarities with respect to a common center.

(5) All even generation quadrilaterals are also related to eachother via spiral
similarities with respect to a common center.

(6) The angle of rotation for each spiral similarity isπ (for a convex quadri-
lateral) or a0 (for a concave quadrilateral). The ratio of similarity is

r =

1

4

(cot α + cot γ) · (cot β + cot δ), (1)

whereα = ∠A1, β = ∠B1, γ = ∠C1 and δ = ∠D1 are the angles of
Q(1).

(7) The center of spiral similarities is the same for both the oddand the even
generations.

Proof. The first and second statements follow immediately from the definition of
the iterative process. To show that all odd generation quadrilaterals are similar
to each other and all even generation quadrilaterals are similar to each other, it is
enough to notice that both the corresponding sides and the corresponding diagonals
of all odd (even) generation quadrilaterals are pairwise parallel.
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Let W1 := A1A3∩B1B3 be the center of spiral similarity takingQ(1) into Q(3).
Similarly, letW2 be the center of spiral similarity takingQ(2) into Q(4). Denote the
midpoints of segmentsA1B1 andA3B3 by M1 andM3. (See fig. 2). To show that
W1 andW2 coincide, notice thatB1M1A2 ∼ B3M3A4. Since the corresponding
sides of these triangles are parallel, they are related by a spiral similarity. Since
B1B3 ∩ M1M3 = W1 andM1M3 ∩ B2B4 = W2, it follows thatW1 = W2. Let
now W3 be the center of spiral similarity that takesQ(3) into Q(5). By the same
reasoning,W2 = W3, which implies thatW1 = W3. Continuing by induction, we
conclude that the center of spiral similarity for any pair ofodd generation quadrilat-
erals coincides with that for any pair of even generation quadrilaterals. We denote
this point byW . �

A1

B1

C1D1

A2

B2

C2

D2

A3B3

C3 D3

W

A1

B1

C1D1

A2

B2

C2

D2

A3B3

C3 D3

W

A4

B4

C4

D4

W

M1

M3

Figure 2. W as the center of spiral similarities.

From parts (2) and (3) of Theorem 3 we obtain the following corollary.

Corollary 4. The even and odd generation quadrilaterals are similar to each other
if and only ifQ(1) is a trapezoid.

The ratio of similarityr = r(α, β, γ, δ) takes values in(−∞, 0] ∪ [1,∞) and
characterizes the shape ofQ(1) in the following way:

(1) r ≤ 0 if and only if Q(1) is convex. Moreover,r = 0 if and only if Q(1) is
cyclic.

(2) r ≥ 1 if and only if Q(1) is concave. Moreover,r = 1 if and only if Q(1)

is orthocentric(that is, each of the vertices is the orthocenter of the trian-
gle formed by the remaining three vertices. Alternatively,an orthocentric
quadrilateral is characterized by being a concave quadrilateral for which
the two opposite acute angles are equal).

For convex quadrilaterals,r can be viewed as a measure of how noncyclic the orig-
inal quadrilateral is. Recall that since the opposite angles of a cyclic quadrilateral
add up toπ, the difference

|(α + γ) − π| = |(β + δ) − π| (2)

can be taken as the simplest measure of noncyclicity. This measure, however, treats
two quadrilaterals with equal sums of opposite angles as equally noncyclic. The
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ratio r provides a refined measure of noncyclicity. For example, fora fixed sum of
opposite angles,α + γ = C, β + δ = 2π − C, whereC ∈ (0, 2π), the convex
quadrilateral with the smallest|r| is the parallelogram withα = γ =

C
2

, β = δ.
Similarly, for concave quadrilaterals,r measures how different the quadrilateral

is from being orthocentric.
Since the angles between diagonals are the same for all generations, it follows

that the ratio is the same for all pairs of consecutive generations:

Area(Q(n)
)

Area(Q(n−1)
)

= |r|.

Assuming the quadrilateral is noncyclic, there are the following three possibilities:

(1) When |r| < 1 (which can only happen for convex quadrilaterals), the
quadrilaterals in the iterative process converge toW .

(2) When|r| > 1, the quadrilaterals in the inverse iterative process converge
to W .

(3) When |r| = 1, all the quadrilaterals have the same area. The iterative
process is periodic with period4 for all quadrilaterals with|r| = 1, except
for the following two special cases. IfQ(1) is either a parallelogram with
angleπ

4
(so thatr = −1) or forms an orthocentric system (so thatr = 1),

we haveQ(3)
= Q(1), Q(4)

= Q(2), and the iterative process is periodic
with period2.

By settingr = 0 in formula (1), we obtain the familiar relations between the
sides and diagonals of a cyclic quadrilateralABCD:

AC · BD = AB · CD + BC · AD, (Ptolemy’s theorem) (3)
AC

BD
=

AB · AD + CB · CD

BA · BC + DA · DC.
(4)

Since the vertices of the next generation depend only on the vertices of the pre-
vious one (but not on the way the vertices are connected), onecan see thatW and
r for the (self-intersecting) quadrilateralsACBD andACDB coincide with those
for ABCD. This observation allows us to prove the following

Corollary 5. The angles between the sides and the diagonals of a quadrilateral
satisfy the following identities:

(cot α + cot γ) · (cot β + cot δ) = (cot α1 − cot β2) · (cot δ2 − cot γ1),

(cot α + cot γ) · (cot β + cot δ) = (cot δ1 − cot α2) · (cot β1 − cot γ2)

whereαi, βi, γi, δi, i = 1, 2 are the directed angles formed between sides and
diagonals of a quadrilateral (see Figure 3).

Proof. Since the (directed) angles ofACBD are−α1, β2, γ1,−δ2 and the directed
angles ofACDB areα2, β1,−γ2,−δ1, the identities follow from formula (1) for
the ratio of similarity. �
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A

D

CB

I

α1

α2

β1

β2
γ1

γ2

δ1
δ2

Figure 3. The angles between the sides and diagonals of a quadrilateral.

3. Properties of the center of spiral similarity

We will show thatW , defined as the limit point of the iterated perpendicular
bisectors construction in the case that|r| < 1 (or of its reverse in the case that
|r| > 1), is the common center of all spiral similarities taking anyof the triad
circles into another triad circle in the iterative process.

First, we will prove that any of the triad circles of the first generation quadrilat-
eral can be taken into another triad circle of the first generation by a spiral similarity
centered atW (Theorem 9). This result allows us to viewW as a generalization of
the circumcenter for a noncyclic quadrilateral (Corollary10 and Corollary 13), to
prove its isoptic (Theorem 11), isodynamic (Corollary 14) and inversive (Theorem
15) properties, as well as to establish some other results. We then prove several
statements that allow us to conclude (see Theorem 24) thatW serves as the center
of spiral similarities for any pair of triad circles of any two generations.

Several objects associated to a configuration of two circleson the plane will
play a major role in establishing properties ofW . We will start by recalling the
definitions and basic constructions related to these objects.

3.1. Preliminaries: circle of similitude, mid-circles and theradical axis of two cir-
cles. Let o1 ando2 be two (intersecting2) circles on the plane with centersO1 and
O2 and radiiR1 andR2 respectively. LetA andB be the points of intersection of
the two circles. There are several geometric objects associated to this configuration
(see Figure 4):

(1) Thecircle of similitudeCS(o1, o2) is the set of pointsP on the plane such
that the ratio of their distances to the centers of the circles is equal to the
ratio of the radii of the circles:

PO1

PO2

=

R1

R2

.

In other words,CS(o1, o2) is the Apollonian circle determined by points
O1, O2 and ratioR1/R2.

2Most of the constructions remain valid for non-intersecting circles. However, they sometimes
have to be formulated in different terms. Since we will only deal with intersecting circles, we will
restrict our attention to this case.
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(2) Theradical axisRA(o1, o2) can be defined as the line through the points
of intersection.

(3) The twomid-circles(sometimes also called thecircles of antisimilitude)
MC1(o1, o2) andMC2(o1, o2) are the circles that inverto1 into o2, and
vice versa:

InvMCi(o1,o2)
(o1) = o2, i = 1, 2.

O1 O2

B

A

MC1

CS MC2

RA

Figure 4. Circle of similitude, mid-circles and radical axis.

Here are several important properties of these objects (see[6] and [4] for more
details):

(1) CS(o1, o2) is the locus of centers of spiral similarities takingo1 into o2.
For anyE ∈ CS(o1, o2), there is a spiral similarity centered atE that
takeso1 into o2. The ratio of similarity isR2/R1 and the angle of rotation
is ∠O1EO2.

(2) Inversion with respect toCS(o1, o2) takes centers ofo1 ando2 into each
other:

InvCS(o1,o2)(O1) = O2.

(3) Inversion with respect to any of the mid-circles exchanges the circle of
similitude and the radical axis:

InvMCi(o1,o2)
(CS(o1, o2)) = RA(o1, o2), i = 1, 2.

(4) The radical axis is the locus of centers of all circlesk that are orthogonal
to botho1 ando2.

(5) For anyP ∈ CS(o1, o2), inversion in a circle centered atP takes the circle
of similitude of the original circles into the radical axis of the images, and
the radical axis of the original circles into the circle of similitude of the
images:

CS(o1, o2)
′
= RA(o′

1
, o′

2
),

RA(o1, o2)
′
= CS(o′1, o

′

2).

Here ′ denotes the image of an object under the inversion in a circlecen-
tered atP ∈ CS(o1, o2).
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(6) LetK,L,M be points on the circleso1, o2, CS(o1, o2) respectively. Then

∠AMB = ∠AKB + ∠ALB, (5)

where the angles are taken in the sense of directed angles.
(7) LetA1B1 be a chord of a circlek1 andA2B2 be a chord of a circlek2. Then

A1, B1, A2, B2 are on a circleo if and only if A1B1∩A2B2 ∈ RA(k1, k2).

It is also useful to recall the construction of the center of aspiral similarity given
the images of two points. Suppose thatA and B are transformed intoA′ and
B′ respectively. LetP = AA′ ∩ BB′. The centerO of the spiral similarity
can be found as the intersectionO = (ABP ) ∩ (A′B′P ). (Here and henceforth
(ABP ) stands for the circle going throughA,B,P ). We will call point P in this
construction thejoint point associated to two given pointsA,B and their images
A′, B′ under spiral similarity.

There is another spiral similarity associated to the same configuration of points.
LetP ′

= AB∩A′B′ be the joint point for the spiral similarity takingA andA′ into
B andB′ respectively. A simple geometric argument shows that the center of this
spiral similarity, determined as the intersection of the circles(AA′P ′

)∩ (BB′P ′
),

coincides withO. We will call such a pair of spiral similarities centered at the same
point associated spiral similarities.

Let HW
i,j be the spiral similarity centered atW that takesoi into oj. The fol-

lowing Lemma will be useful when studying properties of the limit point of the
iterative process (or of its inverse):

Lemma 6. Let o1 and o2 be two circles centered atO1 and O2 respectively and
intersecting at pointsA andB. LetW,R,S ∈ CS(o1, o2) be points on the circle
of similitude such thatR and S are symmetric to each other with respect to the
line of centers,O1O2. Then the joint points corresponding to takingO1 → O2,
R → R1,2 := HW

1,2(R) by HW
1,2 and takingO2 → O1, S → S2,1 := HW

2,1(S) by
HW

2,1 coincide. The common joint point lies onO1O2.

O2 O1

R

S
W

R1,2

S2,1

P

CS

Figure 5. Lemma 6.
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Proof. Perform inversion in the mid-circle. The image ofCS(o1, o2) is the radical
axis RA(o1, o2), i.e., the line throughA andB. The images ofR andS lie on
the lineAB and are symmetric with respect toI := AB ∩ O1O2. Similarly, the
images ofO1 andO2 are symmetric with respect toI and lie on the line of centers.
By abuse of notation, we will denote the image of a point underinversion in the
mid-circle by the same letter.

The lemma is equivalent to the statement thatP := (WO1R)∩O1O2 lies on the
circle (WO2S). To show this, note that sinceP,R,O1 and W lie on a circle, we
have|IP | · |IO1| = |IW | · |IR|. Since|IO2| = |IO1| and|IR| = |IS|, it follows
that |IP | · |IO2| = |IW | · |IS|, which implies thatW,P,O2, S lie on a circle.
After inverting back in the mid-circle, we obtain the resultof the lemma. �

Notice that the lemma is equivalent to the statement that

RR1,2 ∩ SS2,1 = (WRO1) ∩ (WSO2) ∈ O1O2.

3.2. W as the center of spiral similarities for triad circles ofQ(1). Denote by
o1, o2, o3 ando4 the triad circles(D1A1B1), (A1B1C1), (B1C1D1) and(C1D1A1)

respectively.3 For triad circles in other generations, we add an upper indexindi-
cating the generation. For example,o

(3)

1
denotes the first triad-circle in the3rd

generation quadrilateral,i.e., circle (D3A3B3). Let T1, T2, T3 andT4 be the triad
trianglesD1A1B1, A1B1C1, B1C1D1 andC1D1A1 respectively.

Consider two of the triad circles of the first generation,oi and oj , i 6= j ∈
{1, 2, 3, 4}. The set of all possible centers of spiral similarity takingoi into oj is
their circle of similitudeCS(oi, oj). If Q(1) is a nondegenerate quadrilateral, it
can be shown thatCS(o1, o2) andCS(o1, o4) intersect at two points and are not
tangent to each other. LetW be the other point of intersection ofCS(o1, o2) and
CS(o1, o4).

4

Let HW
k,l be the spiral similarity centered atW that takesok into ol for any

k, l ∈ {1, 2, 3, 4}.

Lemma 7. Spiral similaritiesHW
k,l have the following properties:

(1) HW
1,2(B1) = A1⇐⇒HW

2,4(A1) = C1.
(2) HW

1,2(B1) = A1⇐⇒HW
1,4(B1) = C1.

Proof. Assume thatHW
1,2(B1) = A1. Let P1,2 := A1B1 ∩ A2B2 be the joint point

of the spiral similarity (centered atW ) taking B1 into A1 andA2 into B2. Since
pointsB1, P1,2,W,A2 lie on a circle (see Lemma 6), it follows that∠BWA1 =

∠BP1,2A2 = π/2. Thus,A2B1 is a diameter ofk1 := (B1P1,2WA2). Sinceo1

is centered atA2, the circleso1 andk1 are tangent atB1. It is easy to see that the
converse is also true: ifo1 and(B1WA2) are tangent atB1, thenHW

1,2(B1) = A1.

3In short, the middle vertex defining the circleoi is vertex numberi (the first vertex beingA1,
the second beingB1, the third beingC1 and the last beingD1).

4This will turn out to be the same point as the limit point of theiterative process defined in section
2, so the clash of notation is intentional.
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SinceA1, P1,2,W,B2 lie on a circle, it follows that∠A1WB2 = ∠A1P1,2B2 =

π/2. SinceB1 7→ A1 andA2 7→ B2 underHW
1,2, ∠B1WA2 = ∠A1WB2 = π/2.

This implies that the circlesk2 := (A1P1,2WB2) ando2 are tangent atA1. It is
easy to see thatk2 is tangent too2 if and only if k1 is tangent too1.

Similarly to the above, letP2,4 := A1H
W
2,4(A1)∩B2D2 be the joint point of the

spiral similarity centered atW and takingo2 into o4. ThenP2,4 ∈ k2. Similarly
to the argument above,k2 is tangent too2 if and only if k4 := (C1P2,4WD2) is
tangent too4. This is equivalent toHW

2,4(A1) = C1.
The second statement follows sinceHW

1,4(B1) = HW
2,4◦H

W
1,2(B1) = HW

2,4(A1) =

C1. (Here and below the compositions of transformations are read right to left).
�

A

B

C
D

A2

B2
C2

D2

W
P2,4

P1,2

k1

k2

k3

A

B

C

D

A2

B2

C2

D2

W

P2,4

P1,2

k1

k2

k3

Figure 6. Proofs of Lemma 7 and Lemma 8.

Notice that circleso1 ando4 have two common vertices,A1 andD1. The next
Lemma shows thatHW

1,4 takesB1 (the third vertex ono1) to C1 (the third vertex on
o4). This property is very important for showing that any triadcircle from the first
generation can be transformed into another triad circle from the first generation
by a spiral similarity centered atW . Similar properties hold forHW

1,2 andHW
2,4.

Namely, we have

Lemma 8. HW
1,4(B1) = C1, HW

1,2(D1) = C1, HW
4,2(D1) = B1.

Proof. Lemma 7 shows thatHW
1,2(B1) = A1 impliesHW

1,4(B1) = C1. Assume that
HW

1,2(B1) 6= A1. To find the image ofB1 underHW
1,4, represent the latter as the

compositionHW
2,4 ◦ HW

1,2. First,HW
1,2(B1) = P1,2B1 ∩ (P1,2B2W ), whereP1,2 is

as in Lemma 7, see Figure 6. For brevity, letB1,2 := HW
1,2(B1). (The indices refer

to the fact thatB1,2 is the image ofB under spiral similarity takingo1 into o2).
Now we constructHW

1,4(B1) = HW
2,4(B1,2). By Lemma 6,HW

1,4(B1) = P2,4B1,2∩
(WP2,4D2), whereP2,4 is as in Lemma 7. Applying Lemma 6 to the circle
(WP2,4D2), we conclude that it passes throughC1. Since by assumptionHW

1,2(B1) 6=
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A1, it follows thatHW
2,4 ◦ HW

1,2(B1) = C1. Thus,HW
1,4(B1) = C1. The other state-

ments in the Lemma can be shown in a similar way. �

The last Lemma allows us to show thatW lies on all of the circles of similitude
CS(oi, oj).

Theorem 9. W ∈ CS(oi, oj) for all i, j ∈ {1, 2, 3, 4}.

Proof. By definition,W ∈ CS(o1, o2) ∩ CS(o1, o4) ∩ CS(o2, o4). We will show
thatW ∈ CS(o3, oi) for anyi ∈ {1, 2, 4}.

Recall thatB1 ∈ CS(o1, o2) ∩ CS(o2, o3). Let ˜W be the second point in the
intersectionCS(o1, o2)∩CS(o2, o3), so thatCS(o1, o2)∩CS(o2, o3) = {B1, ˜W}.

By Lemma 8,H˜W
1,2(D1) = C1. SinceH˜W

1,2(A2) = B2, it follows thatH˜W
1,2 = HW

1,2,

which implies that˜W = W . Therefore,W is the common point for all the circles
of similitudeCS(oi, oj), i, j ∈ {1, 2, 3, 4}. �

3.3. Properties of W.The angle property (5) of the circle of similitude implies

Corollary 10. The angles subtended by the quadrilateral’s sides atW are as fol-
lows (see Figure 7):

∠AWB = ∠ACB + ∠ADB,

∠BWC = ∠BAC + ∠BDC,

∠CWD = ∠CAD + ∠CBD,

∠DWA = ∠DBA + ∠DCA.

A

B

C

D

W

β2

α1

Figure 7. ∠CWD = ∠CAD + ∠CBD.

This allows us to viewW as a replacement of the circumcenter in a certain sense:
the angle relations above are generalizations of the relation ∠AOB = ∠ACB +

∠ADB between the angles in a cyclic quadrilateralABCD with circumcenterO.
(Of course, in this special case,∠ACB = ∠ADB).

SinceW ∈ CS(oi, oj) for all i, j, W can be used as the center of spiral sim-
ilarity taking any of the triad circles into another triad circle. This implies the
following
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Theorem 11. (Isoptic property) All the triad circlesoi subtend equal angles atW.

In particular,W is inside of all of the triad circles in the case of a convex quadri-
lateral and outside of all of the triad circles in the case of aconcave quadrilateral.
(This was pointed out by Scimemi in [17]). IfW is inside of a triad circle, the
isoptic angle equals to∠TOT ′, whereT andT ′ are the points on the circle so
thatTT ′ goes throughW andTT ′ ⊥ OW . (See Figure 8, where∠T1A2W and
∠T4B2W are halves of the isoptic angle ino1 ando4 respectively). IfW is outside
of a triad circle centered atO andWT is the tangent line to the circle, so thatT is
point of tangency,∠OTW is half of the isoptic angle. Inverting in a triad circle of
the second generation, we get that the triad circles are viewed at equal angles from
the vertices opposite to their centers (see Figure 8).

B

A

C
D

B2

D2

W

T2

T4

A

B

C

D

B2

C2

D2

A2

W

Figure 8. The isoptic angles before and after inversion.

Recall that thepower of a pointP with respect to a circleo centered atO with
radiusR is the square of the length of the tangent fromP to the circle, that is,

h = |PO|2 − R2.

The isoptic property implies the following

Corollary 12. The powers ofW with respect to triad circles are proportional to
the squares of the radii of the triad circles.

This property of the isoptic point was shown by Neville in [13] using tetracyclic
coordinates and the Darboux-Frobenius identity.

Let a, b, c, d be sides of the quadrilateral. For anyx ∈ {a, b, c, d}, let Fx be
the foot of the perpendicular bisector of sidex on the opposite side. (E.g.,Fa is
the intersection of the perpendicular bisector to the sideAB and the sideCD).
The following corollary follows from Lemma 8 and expressesW as the point of
intersection of several circles going through the verticesof the first and second
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generation quadrilaterals, as well as the intersections ofthe perpendicular bisectors
of the original quadrilateral with the opposite sides (see Figure 9).

A B

C

D

Fb

Fc

Fd

A2

B2 C2

D2

W

Figure 9. W as the intersection of circles(A1FcD2) and(B1FcC2) in (6).

Corollary 13. W is a common point of the following eight circles:

(A1FbB2), (A1FcD2), (B1FcC2), (B1FdA2),
(C1FdD2), (C1FaB2), (D1FaA2), (D1FbC2).

(6)

Remark.This property can be viewed as the generalization of the following prop-
erty of the circumcenter of a triangle:

Given a triangleABC with sidesa, b, c opposite to verticesA,B,C, let Fkl de-
note the feet of the perpendicular bisector to sidek on the sidel (or its extension),
wherek, l ∈ {a, b, c}. Then the circumcenter is the common point of three cir-
cles going through vertices and feet of the perpendicular bisectors in the following
way 5:

O = (ABFabFba) ∩ (BCFbcFcb) ∩ (CAFcaFac), (7)

see Figure 10.

The similarity between (7) and (6) supports the analogy of the isoptic point with
the circumcenter.

The last corollary provides a quick way of constructingW . First, construct two
vertices (e.g.,A2 andD2) of the second generation by intersecting the perpendic-
ular bisectors. LetFd be the intersection of the linesA2D2 andB1C1. ThenW
is obtained as the second point of intersection of the two circles (B1FbA2) and
(C1FbD2).

5Note also that this statement is related to Miquel’s theoremas follows. Take any three points
P, Q, R on the three circles in (7), so thatA, B,C are points on the sidesPQ, QR, PQ of PQR.
Then the statement becomes Miquel’s theorem forPQR and pointsA,B, C on its sides, with the
extra condition that the point of intersection of the circles (PAC), (QAB), (RBC) is the circum-
center ofABC.
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A

B C

Fab

Fac

Fbc

FbaFca

Fcb

O

Figure 10. Circumcenter as intersection of circles in (7).

Recall the definition of isodynamic points of a triangle. LetA1A2A3 be a tri-
angle with sidesa1, a2, a3 opposite to the verticesA1, A2, A3. For eachi, j ∈
{1, 2, 3}, wherei 6= j, consider the circleoij centered atAi and going through
Aj. The circle of similitudeCS(oij , okj) of two distinct circlesoij andokj is the
Apollonian circle with respect to pointsAi, Ak with ratio rik =

a
k

ai

. It is easy to
see that the three Apollonian circles intersect in two points, S andS′, which are
called theisodynamic pointsof the triangle.

Here are some properties of isodynamic points (see, e.g., [6], [4] for more de-
tails):

(1) The distances fromS (andS′) to the vertices are inversely proportional to
the opposite side lengths:

|SA1| : |SA2| : |SA3| =

1

a1

:

1

a2

:

1

a3

. (8)

Equivalently,

|SAi| : |SAj | = sin αj : sinαi, i 6= j ∈ {1, 2, 3},

whereαi is the angle∠Ai in the triangle. The isodynamic points can be
characterized as the points having this distance property.Note that since
the radii of the circles used to define the circles of similitude are the sides,
the last property means that distances from isodynamic points to the ver-
tices are inversely proportional to the radii of the circles.

(2) The pedal triangle of a point on the plane ofA1A2A3 is equilateral if and
only if the point is one of the isodynamic points.
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(3) The triangle whose vertices are obtained by inversion ofA1, A2, A3 with
respect to a circle centered at a pointP is equilateral if and only ifP is one
of the isodynamic points ofA1A2A3.

It turns out thatW has properties (Corollary 14, Theorem 30, Theorem 27) similar
to properties 1–3 ofS.

Corollary 14. (Isodynamic property ofW ) The distances fromW to the vertices
of the quadrilateral are inversely proportional to the radii of the triad-circles going
through the remaining three vertices:

|WA1| : |WB1| : |WC1| : |WD1| =

1

R3

:

1

R4

:

1

R1

:

1

R2

,

whereRi is the radius of the triad-circleoi. Equivalently, the ratios of the distances
fromW to the vertices are as follows:

|WA1| : |WB1| = |A1C1| sin γ : |B1D1| sin δ,

|WA1| : |WC1| = sin γ : sin α,

|WB1| : |WD1| = sin δ : sinβ.

From analysis of similar triangles in the iterative process, it is easy to see that
the limit point of the process satisfies the above distance relations. Therefore,
W (defined at the beginning of this section as the second point of intersection of
CS(o1, o2) andCS(o1, o4)) is the limit point of the iterative process.

One more property expressesW as the image of a vertex of the first generation
under the inversion in a triad circle of the second generation. Namely, we have the
following

Theorem 15(Inversive property of W).

W = Inv
o
(2)

1

(A1) = Inv
o
(2)

2

(B1) = Inv
o
(2)

3

(C1) = Inv
o
(2)

4

(D1). (9)

B C

D

A

A2

B2
C2

D2

W

A3

Figure 11. Inversive property ofW

Proof. To prove the first equality, perform inversion in a circle centered atA1. The
image of a point under the inversion will be denoted by the same letter with a prime.
The images of the circles of similitudeCS(o1, o2), CS(o4, o1) andCS(o2, o4) are
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the perpendicular bisectors of the segmentsA′

2
B′

2
, D′

2
A′

2
andB′

2
D′

2
respectively.

By Theorem 9, these perpendicular bisectors intersect inW ′. SinceW ′ is the
circumcenter ofD′

2
A′

2
B′

2
, it follows that Inv

o
(2)′

1

(W ′
) = A′

1
. Inverting back in the

same circle centered atA1, we obtain Inv
o
(2)

1

(W ) = A1. The rest of the statements

follow analogously. �

The fact that the inversions of each of the vertices in triad circles defined by the
remaining three vertices coincide in one point was proved byParry and Longuet-
Higgins in [14].

Notice that the statement of Theorem 15 can be rephrased in a way that does
not refer to the original quadrilateral, so that we can obtain a property of circum-
centers of four triangles taking a special configuration on the plane. Recall that an
inversion takes a pair of points which are inverses of each other with respect to a
(different) circle into a pair of points which are inverses of each other with respect
to the image of the circle, that is ifS = Invk(T ), thenS′

= Invk′(T ′
), where′

denotes the image of a point (or a circle) under inversion in agiven circle. Using
this and property 2 of circles of similitude, we obtain the corollary below. In the
statement,A,B,C, P,X, Y, Z,O play the role ofA′

2
, B′

2
,D′

2
, A1, B

′

1
, C ′

1
,D′

1
,W ′

1

in Theorem 15.

Corollary 16. Let P be a point on the plane ofABC. Let pointsO, X, Y andZ
be the circumcenters ofABC, APB, BPC andCPA respectively.Then

Inv(ZOX)(A) = Inv(XOY )(B) = Inv(Y OZ)(C) = Inv(XY Z)(P ). (10)

Furthermore,

IsoZOX(A) = Y, IsoXOY (B) = Z, IsoY OZ(C) = X.

A

B C

O

X

YZ

P

Figure 12. Corollary 16.

Combining the description of the reverse iterative process(Theorem 2) and the
inversive property ofW (Theorem 15), we obtain one more direct way of con-
structingW without having to refer to the iterative process:
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Theorem 17. LetA,B,C,D be four points in general position. Then

W = Invo3
◦IsoT3

(A1) = Invo4
◦IsoT4

(B1) = Invo1
◦IsoT1

(C1) = Invo2
◦IsoT2

(D1),

whereoi is theith triad circle, andTi is theith triad triangle.

This property suggests a surprising relation between inversion and isogonal con-
jugation.

Taking into account that the circumcenter and the orthocenter of a triangle are
isogonal conjugates of each other, we obtain the following

Corollary 18. W is the point at infinity if and only if the vertices of the quadrilat-
eral form an orthocentric system.

3.4. W as the center of similarity for any pair of triad circles.To show thatW
is the center of spiral similarity for any pair of triad circles (of possibly different
generations), we first need to prove Lemmas 19—21 below.

The following lemma shows that given three points on a circle— two fixed and
one variable — the locus of the joint points of the spiral similarities taking one
fixed point into the other applied to the variable point is a line.

Lemma 19. LetM,N ∈ o andW /∈ o. For every pointL ∈ o, define

J := (MWL) ∩ NL.

The locus of pointsJ is a straight line going throughW .

O

M

L

N

W

J

K

k o

Figure 13. Lemma 19.

Proof. For each pointL ∈ o, let K be the center of the circlek := (MWL). The
locus of centers of the circlesk is the perpendicular bisector of the segmentMW .
SinceM ∈ o ∩ k, there is a spiral similarity centered atM with joint point L that
takesk into o. This spiral similarity takesK 7→ O andJ 7→ N , whereO is the
center ofo. Thus,MOK ≃ MNJ . SinceM,O,K are fixed and the locus ofK
is a line (the perpendicular bisector), the locus of pointsJ is also a line.

To show that the line goes throughW , let L = NW ∩ o. ThenJ = W . �
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In the setup of the lemma above, letHW
L,N be the spiral similarity centered atW

that takesL into N . Let M ′ be the image ofM under this spiral similarity. Then
J is the joint point for the spiral similarity takingL 7→ N andM 7→ M ′.

The following two results are used for proving thatW lies on the circle of simil-
itude ofo3 ando

(2)

1
.

Lemma 20. LetAC, ZX be two distinct chords of a circleo, andW be the center
of spiral similarity takingZX into AC. LetHW

B,C be the spiral similarity centered

at W that takes a pointB ∈ o into C. ThenHW
B,C(Z) ∈ o.

O

A
B

C

W

X

Y

Z

J1

J2

Figure 14. Lemma 20.

Proof. Let l be the locus of the joint points corresponding toM = Z, N = C in
Lemma 19. LetJ1 be the joint point corresponding toL = B. ThenJ1,W ∈ l.

Let J2 be the joint point corresponding toM = C, N = Z andL = B in
Lemma 19.

Let Y = J2C ∩ J1Z. By properties of spiral similarity,Y = HW
B,C(Z).

Notice that by definition ofJ1, pointsJ1, B,C are on a line. Similarly, by defini-
tion of J2, pointsJ2, B, Z are on a line as well. By definition ofY , pointsY, J2, C
are on a line, as are pointsZ, Y, J1. The intersections of these four lines form
a complete quadrilateral. By Miquel’s theorem, the circumcircles of the triangles
BJ1Z, BJ2C, J2Y Z, CJ1Y have a common point, the Miquel point for the com-
plete quadrilateral. By definitions ofJ1 andJ2 , (BJ2C) ∩ (BZJ1) = {B,W}.
Thus, the Miquel point is eitherB or W . It is easy to see thatB can not be the
Miquel point (if B 6= C,Z). Thus,W is the Miquel point of the complete quadri-
lateral. This implies that(Y CJ1), (Y ZJ2) both go throughW .

Consider the circlesk1 = (ZWJ2Y ) andk2 = (CWJ2B). ThenRA(k1, k2) =

l. SinceZY ∩ BC = J1 ∈ l = RA(k1, k2), by property 7 in section 3.1, points
Z, Y,B,C are on a circle. Thus,Y ∈ o. �
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Remark.Notice that in the proof of the Lemma above there are three spiral simi-
larities centered atW that take each of the sides ofXY Z into the corresponding
side ofCBA. We will call such a construction across-spiraland say that the two
triangles are obtained from each other via a cross-spiral.6

Lemma 21. LetPQ be a chord on a circleo centered atO. If W /∈ (POQ), there
is a spiral similarity centered atW that takesPQ into another chord of the circle
o.

O OQ

Q

W
P

oQ

o

Figure 15. Proof of Lemma 21.

Proof. Let HW
P,P ′ be the spiral similarity centered atW that takesP into another

pointP ′ on circleo. AsP ′ traces outo, the imagesHW
P,P ′(Q) of Q trace out another

circle, oQ. To see this, consider the associated spiral similarity andnotice that
HW

P,Q(P ′
) = Q′. SinceP ′ traces outo, HW

P,Q(o) = oQ. SinceQ = HW
P,P (Q) ∈

oQ, it follows thatQ ∈ o ∩ oQ.
Suppose thato andoQ are tangent atQ. FromHP,Q(o) = oQ it follows that

the joint point isQ, and therefore the quadrilateralPQWO must be cyclic. Since
W /∈ (POQ), this can not be the case. Thus, the intersectiono ∩ oQ contains two
points,Q andQ′. This implies that there is a unique chord,P ′Q′, of o to which
PQ can be taken by a spiral similarity centered atW . �

Theorem 22. W ∈ CS(o3, o
(2)

1
).

Proof. We’ve shown previously thatW is on all six circles of similitude ofA1B1C1D1.
SinceW has the property that

HW
C1,B2

: C1 7→ B2,D1 7→ A2,

HW
B1,A2

: B1 7→ A2, C1 7→ D2,

it follows that
HW

B2,C1
HW

B1,A2
(B1) = HW

B2,C1
(A2) = D1.

6Clearly, the sides of any triangle can be taken into the sidesof any other triangle by three spiral
similarities. The special property of the cross-spiral is that the centers of all three spiral similarities
are at the same point.
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Since the spiral similarities centered atW commute, it follows that

HW
B2,C1

HW
B1,A2

(B2) = HW
B1,A2

HW
B2,C1

(B2) = HW
B1A2

(C1) = D2.

This means that there is a spiral similarity centered atW that takesB1D1 into
B2D2. Therefore,B1C1D1 andD2A2B2 are related by a cross-spiral centered at
W .

We now show that there is a cross-spiral that takesD2A2B2 into another trian-
gle, XY Z, with vertices on the same circle,o

(2)

1
= (D2A2B2). This will imply

that there is a spiral similarity centered atW that takesB1C1D1 into XY Z. This,
in turn, implies thatW is a center of spiral similarity takingo3 into o

(2)

1
.

Assume thatW ∈ (B2A3D2). Since inversion in(D2A2B2) takesW into A1

and(B2A3D2) into B2D2, it follows thatA1 ∈ B2D2. This can not be the case
for a nondegenerate quadrilateral. Thus,W ∈ (B2A3D2).

By Lemma 21, there is a spiral similarity centered atW that takes the chord
B2D2 into another chord,XZ, of the circle(D2A2B2). Thus, there is a spiral
similarity takingB2D2 into XZ and centered atW .

By Lemma 20, there is a pointY ∈ o
(2)

1
such thatXY Z andB2A2D2 are related

by a cross-spiral centered atW . (See also the remark after Lemma 20).
By composing the two cross-spirals, we conclude thatXY Z ∼ D1C1B1. Since

(XY Z) = o
(2)

1
and(D1C1B1) = o3, it follows thatW ∈ CS(o

(2)

1
, o3). �

Corollary 23. W ∈ CS(o
(1)

i , o
(k)

j ) for anyi, j, k.

Proof. Since there is a spiral similarity centered atW that takesA1B1 into C2D2,
Theorem 22 implies thatW ∈ CS(o1, o

(2)

4
). SinceW ∈ CS(o1, o2), it follows

that W ∈ CS(o
(2)

4
, o2). SinceW is on two circles of similitude for the second

generation, it follows that it is on all four. Furthermore, we can apply Theorem 22
to the triad circles of the second and third generation to show thatW is also on all
four circles of similitude of the third generation.

Finally, a simple induction argument shows thatW ∈ CS(o
(1)

j , o
(k)

i ). Assuming

W ∈ CS(o
(1)

j , o
(k−1)

i ), Theorem 22 implies thatW ∈ CS(o
(k−1)

i , o
(k)

i ). Thus,

W ∈ CS(o
(1)

j , o
(k)

i ). �

Using this, we can show thatW lies on all the circles of similitude:

Theorem 24. W ∈ CS(o
(k)

i , o
(l)
j ) for all i, j ∈ {1, 2, 3, 4} and anyk, l.

Recall that thecomplete quadrangleis the configuration of6 lines going through
all possible pairs of4 given vertices.

Theorem 25. (Inversion in a circle centered atW ) Consider the complete quad-
rangle determined by a nondegenerate quadrilateral. Inversion inW transforms

• 6 lines of the complete quadrilateral into the6 circles of similitude of the
triad circles of the image quadrilateral;

• 6 circles of similitude of the triad circles into the6 lines of the image quad-
rangle.
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Proof. Observe that the6 lines of the quadrangle are the radical axes of the triad
circles taken in pairs. SinceW belongs to all the circles of similitude of triad
circles, by property 5 in section 3.1, inversion in a circle centered inW takes
radical axes into the circles of similitude. This implies the statement. �

4. Pedal properties

4.1. Pedal ofW with respect to the original quadrilateral.SinceW has a distance
property similar to that of the isodynamic points of a triangle (see Corollary 14), it
is interesting to investigate whether the analogy between these two points extends
to pedal properties. In this section we show that the pedal quadrilateral ofW
with respect toA1B1C1D1 (and, more generally, with respect to anyQ(n)) is a
nondegenerate parallelogram. Moreover,W is the unique point whose pedal has
such a property. These statements rely on the fact thatW lies on the intersection
of two circles of similitude,CS(o1, o3) andCS(o2, o4).

First, consider the pedal of a point that lies on one of these circles of similitude.

Lemma 26. LetPaPbPcPd be the pedal quadrilateral ofP with respect toABCD1.
Then

• PaPbPcPd is a trapezoid withPaPd||PbPc if and only ifP ∈ CS(o2, o4);
• PaPbPcPd is a trapezoid withPaPb||PcPd if and only ifP ∈ CS(o1, o3).

Proof. Assume thatP ∈ CS(o2, o4). Let K = AC ∩ PaPd andL = AC ∩ PbPc.
We will show that∠AKPd + ∠CLPc = π, which impliesPaPd||PbPc.

Let θ = ∠APPa. SinceAPaPPd is cyclic,∠APdPa = θ. Then

∠AKPd = π − α1 − θ. (11)

On the other hand,∠CLPc = π−γ2−∠LPcC. SincePPbCPc is cyclic, it follows
that∠LPcC = ∠PbPC.

We now find the latter angle. SinceP ∈ CS(o2, o4), by property (5) of the
circle of similitude (see§3.1), it follows that∠APC = π + δ + β. SincePaPPbB
is cyclic,∠PaPPb = π − β. Therefore,∠PbPC = δ − θ. This implies that

∠CLPc = π − γ2 − δ + θ. (12)

Adding (11) and (12), we obtain∠AKPd + ∠CLPc = π.
Reasoning backwards, it is easy to see thatPaPd||PbPc implies thatP ∈ CS(o2, o4).

�

Let S be the second point of intersection ofCS(o1, o3) andCS(o2, o4), so that
CS(o1, o3) ∩ CS(o2, o4) = {W,S}. The Lemma above implies that the pedal
quadrilateral of a point is a parallelogram if and only if this point is eitherW or S.

Theorem 27.The pedal quadrilateral ofW is a parallelogram whose angles equal
to those of the Varignon parallelogram.

Proof. SinceW ∈ CS(o1, o2)∩CS(o3, o4), property (5) of the circle of similitude
implies that

∠AWB = ∠ACB + ∠ADB = γ1 + δ2,

∠CWD = ∠CAD + ∠CBD = α1 + β2,
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A

B C

D

P

Pa

Pb

Pc

Pd

Figure 16. The pedal quadrilateral of a point onCS(o2, o4) has two parallel sides.

whereαi, βi, γi, δi are the angles between the quadrilateral’s sides and diagonals,
as before (see Figure 3). Let∠AWWa = x and∠WcWC = y. Since the quadri-
lateralsWaWWdA andWcWWbC are cyclic,∠WaWdA = x and∠WcWbC = y.
Therefore,

∠WaWbB = ∠AWB − ∠AWWa = γ1 + δ2 − x,

∠WcWdD = ∠CWD − ∠WcWC = α1 + β2 − y.

Finding supplements and adding, we obtain

∠WaWdWc + ∠WaWbWc = (π − x − α1 − β2 + y) + (π − y − γ1 − δ2 + x)

= 2π − α1 − β2 − γ1 − δ2

= 2π − (2π − 2∠AIC) = 2∠AIC,

where∠AIC is the angle formed by the intersection of the diagonals. Thus,
WaWbWcWd is a parallelogram with the same angles as those of the Varignon
parallelogramMaMBMbMc, whereMx is the midpoint of sidex, for any x ∈
{a, b, c, d}. �

B C

D

A

Wa

Wb

Wc

Wd

W

Figure 17. The pedal parallelogram of W.

It is interesting to note the following
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Corollary 28. The pedal ofW with respect to the self-intersecting quadrilateral
ACBD (whose sides are the two diagonals and two opposite sides of the original
quadrilateral) is also a parallelogram.

The Theorem above also implies that the pedal ofW is nondegenerate. (We will
see later that the pedal ofS degenerates to four points lying on a straight line).
While examples show that the pedal ofW and the Varignon parallelogram have
different ratios of sides (and, therefore, are not similar in general), it is easy to see
that they coincide in the case of a cyclic quadrilateral:

Corollary 29. The Varignon parallelogramMaMbMcMd is a pedal parallelogram
of a point if and only if the quadrilateral is cyclic and the point is the circumcenter.
In this case,MaMbMcMd = WaWbWcWd.

Theorem 30. The pedal quadrilateral of a point with respect to quadrilateral
ABCD is a nondegenerate parallelogram if and only if this point isW .

Proof. By Lemma 26, ifP ∈ CS(o1, o3)∩CS(o2, o4), then both pairs of opposite
sides of the pedal quadrilateralPaPbPcPd are parallel.

Assume that the pedal quadrilateralPaPbPcPd of P is a nondegenerate parallel-
ogram. SincePdAPaP is a cyclic quadrilateral,

|PaPd| =

|PA|

2 sin α
,

|PbPc| =

|PC|

2 sin γ
.

The assumption|PaPd| = |PbPc— implies that|PA| : |PC| = sin γ : sinα. Sim-
ilarly, |PaPb| = |PcPd| implies |PB| : |PD| = sin δ : sin β, so thatP must be on
the Apollonian circle with respect toA,C with ratio sin γ : sinα and on the Apol-
lonian circle with respect toB,D with ratio sin δ : sin β. These Apollonian circles
are easily shown to beCS(o

(0)

1
, o

(0)

3
) andCS(o

(0)

2
, o

(0)

4
), the circles of similitude

of the previous generation quadrilateral. One of the intersections of these two cir-
cles of similitude isW . Let Y be the other point of intersection. Computing the
ratios of distances fromY to the vertices, one can show that the pedal ofY is an
isosceles trapezoid. That is, instead of two pairs of equal opposite sides, it has one
pair of equal opposite sides and two equal diagonals. This, in particular, means
thatY does not lie onCS(o1, o3)∩CS(o2, o4). It follows thatW is the only point
for which the pedal is a nondegenerate parallelogram. �

Remark.Note that another interesting pedal property of a quadrilateral was proved
by Lawlor in [9, 10]. For each vertex, consider its pedal triangle with respect to
the triangle formed by the remaining vertices. The four resulting pedal triangles
are directly similar to each other. Moreover, the center of similarity is the so-called
nine-circle point, denoted byH in Scimemi’s paper [17].

4.2. Simson line of a quadrilateral.Recall that for any point on the circumcircle
of a triangle, the feet of the perpendiculars dropped from the point to the triangle’s
sides lie on a line, called theSimson linecorresponding to the point (see Figure
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18). Remarkably, in the case of a quadrilateral, Lemma 26 andTheorem 30 imply
that there exists a unique point for which the feet of the perpendiculars dropped to
the sides are on a line (see Theorem 31 below).

In the case of a noncyclic quadrilateral, this point turns out to be the second
point of intersection ofCS(o1, o3) andCS(o2, o4), which we denote byS. For
a cyclic quadrilateralABCD with circumcenterO, even though all triad circles
coincide, one can view the circles(BOD) and (AOC) as the replacements of
CS(o1, o3) andCS(o2, o4) respectively. The second point of intersection of these
two circles,S ∈ (BOD) ∩ (AOC), S 6= W also has the property that the feet of
the perpendiculars to the sides lie on a line. Similarly to the noncyclic case (see
Lemma 26), one can start by showing that the pedal quadrilateral of a point is a
trapezoid if and only if the point lies on one of the two circles, (BOD) or (AOC).

In analogy with the case of a triangle, we will call the lineSaSbScSd theSimson
line andS theSimson point of a quadrilateral, see Fig. 18.

P

B C

Pa

Pb

Pc

A

A

B C

D

Wa

Wb

Wc

Wd

S

Figure 18. A Simson line for a triangle and the Simson line of aquadrilateral.

Theorem 31. (The Simson line of a quadrilateral) The feet of the perpendiculars
dropped to the sides from a point on the plane of a quadrilateral lie on a straight
line if and only if this point is the Simson point.

Unlike in the case of a triangle, where every point on the circumcircle produces
a Simson line, the Simson line of a quadrilateral is unique. When the original
quadrilateral is a trapezoid, the Simson point is the point of intersection of the two
nonparallel sides. In particular, when the original quadrilateral is a parallelogram,
the Simson point is point at infinity. The existence of this point is also mentioned
in [6].

Recall that all circles of similitude intersect atW . The remaining
(

6

2

)

= 15

intersections of pairs of circles of similitude are the Simson points with respect
to the

(

6

4

)

= 15 quadrilaterals obtained by choosing4 out of the lines forming
the complete quadrangle. Thus for each of the15 quadrilaterals associated to a
complete quadrangle there is a Simson point lying on a pair ofcircles of similitude.



The perpendicular bisector construction, isoptic point and Simson line 187

4.3. Isogonal conjugation with respect to a quadrilateral.Recall that the isogonal
conjugate of the first isodynamic point of a triangle is the Fermat point, i.e., the
point minimizing the sum of the distances to vertices of the triangle. Continuing to
explore the analogy ofW with the isodynamic point, we will now define isogonal
conjugation with respect to a quadrilateral and study the properties ofW andS
with respect to this operation.

Let P be a point on the plane ofABCD. Let lA, lB , lC , lD be the reflections of
the linesAP,BP,CP,DP in the bisectors of∠A, ∠B, ∠C and∠D respectively.

Definition. Let PA = lA ∩ lB, PB = lB ∩ lC , PC = lC ∩ lD, PD = lD ∩ lA. The
quadrilateralPAPBPCPD will be called theisogonal conjugate ofP with respect
to ABCD and denoted byIsoABCD(P ).

B C

D

A

PA

PB

PC

PD

P

Figure 19. Isogonal conjugation with respect to a quadrilateral

The following Lemma relates the isogonal conjugate and pedal quadrilaterals of
a given point:

Lemma 32. The sides of the isogonal conjugate quadrilateral and the pedal quadri-
lateral of a given point are perpendicular to each other.

Proof. Let bA be the bisector of the∠DAB. LetI = lA∩PaPd andJ = bA∩PaPd.
SinceAPaPPd is cyclic, it follows that∠PdAP = ∠PdPaP . SincePPa ⊥ PaA,
it follows thatAI ⊥ PaPd. Therefore,PAPD ⊥ PaPd. The same proof works for
the other sides, of course. �

The Lemma immediately implies the following properties of the isogonal con-
jugates ofW andS:

Theorem 33. The isogonal conjugate ofW is a parallelogram. The isogonal con-
jugate ofS is the degenerate quadrilateral whose four vertices coincide at infinity.

The latter statement can be viewed as an analog of the following property of
isogonal conjugation with respect to a triangle: the isogonal conjugate of any point
on the circumcircle is the point at infinity.
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B C
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A

PA

Pa

Pd

I J

PD

P

bA

Figure 20. Lemma 32.

4.4. Reconstruction of the quadrilateral.The paper by Scimemi [17] has an exten-
sive discussion of how one can reconstruct the quadrilateral from its central points.
Here we just want to point out the following 3 simple constructions:

(1) GivenW and its pedal parallelogramWaWbWcWd with respect toA1B1C1D1,
one can reconstructA1B1C1D1 by drawing lines throughWa,Wb,Wc,Wd

perpendicular toWWa,WWb,WWc,WWd respectively. The construc-
tion is actually simpler than reconstructingA1B1C1D1 from midpoints of
sidesi.e., vertices of the Varignon parallelogram and the point of intersec-
tion of diagonals.

(2) Similarly, one can reconstruct the quadrilateral from the Simson pointS
and the four pedal points ofS on the Simson line.

(3) Given three verticesA1, B1, C1 andW , one can reconstructD1. Here is
one way to do this. The given points determine the circleso2 = (A1B1C1),
CS(o2, o1) = (A1WB1) and CS(o2, o3) = (B1WC1). Given o2 and
CS(o2, o1), we construct the center ofo1 asA2 = InvCS(o2,o1)

(B2) (see
property 2 in the Preliminaries of Section 3). Similarly,C2 = InvCS(o2,o3)

(B2).
ThenD1 is the second point of intersection ofo1 (the circle centered at
A2 and going throughA1, B1) ando3 (the circle centered atC2 and go-
ing throughB1, C1). Alternatively, one can use the property thatD1 =

IsoT2
◦ Invo2

(W ).
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A Highway from Heron to Brahmagupta

Albrecht Hess

Abstract. We give a simple derivation of Brahmagupta’s area formula for a
cyclic quadrilateral from Heron’s formula for the area of a triangle.

Brahmagupta’s formula

A =

1

4

√

(−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)

for the area of a cyclic quadrilateral is very similar to Heron’s formula

∆ =

1

4

√

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)

for the area of a triangle, which is itself a consequence of Brahmagupta’s formula
for d = 0. Although I have searched extensively ([1,§3], [2, §9], [3], [4, The-
orem 3.22], [5, Theorem 109]), the following derivation of the area of a cyclic
quadrilateral from Heron’s formula seems to be unknown.

d

b

y

a

c

x

A

B

C

D

X

Figure 1

Let ABCD be a cyclic quadrilateral with sidesAB = a, BC = b, CD = c,
DA = d. Brahmagupta’s formula is obvious if both pairs of oppositesides are
parallel. We may assume thatAB andCD intersect at pointX and thatXD = x,
XB = y. Let S1, S2, S3, S4 be the four factors under the radical in Heron’s

Publication Date: June 6, 2012. Communicating Editor: PaulYiu.
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formula for the area of triangleXBC. Note that from the similarity of triangles
XBC andXDA (with ratioλ),

4A = 4∆(XBC) − 4∆(XDA)

=

√

S1S2S3S4 −
√

(λS1)(λS2)(λS3)(λS4)

=

√

(S1 − λS1)(S2 − λS2)(S3 + λS3)(S4 + λS4).

Upon simplification,x andy vanish in these factors:

S1 − λS1 = (b + (c + x) + y) − (d + (y − a) + x) = a + b + c − d,

S2 − λS2 = (−b + (c + x) + y) − (−d + (y − a) + x) = a − b + c + d,

S3 + λS3 = (b − (c + x) + y) + (d − (y − a) + x) = a + b − c + d,

S4 + λS4 = (b + (c + x) − y) + (d + (y − a) − x) = −a + b + c + d,

and Brahmagupta’s formula appears.
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Alhazen’ s Circular Billiard Problem

Debdyuti Banerjee and Nikolaos Dergiades

Abstract. In this paper we give two simple geometric constructions oftwo ver-
sions of the famous Alhazen’s circular billiard problem.

1. Introduction

The famous Alhazen problem [2, Problem 156] has to do with a circular billiard
and there are two versions of the problem. The first case is to find at the edge of
the circular billiard two pointsB, C such that a billiard ball moving from a given
point A inside the circle of the billiard after reflection atB, C passes through the
pointA again (see Figure 1A). It is obvious that ifO is the center of the circle and
the pointsO, A, B, C are collinear then the problem is trivial.

O
A

C

B

Figure 1A: The first case

B

A
O

P

Figure 1B: The second case

The second case is, given two fixed pointsA andB inside the circle, to find a point
P on the edge of the circular billiard such that the ball movingfrom A after one
reflection atP will pass fromB (see Figure 1B). It is obvious again that if the
pointsA, B andO are on a diameter of the circle then the problem is trivial.

2. Alhazen’ s problem 1

Given a pointA inside a circle(O), to construct pointsB andC on the circle
such that the reflection ofAB at B passes throughC and the reflection ofBC at
C passes throughA.

Since the radiiOB andOC are bisectors of anglesB andC of triangleABC,
O is the incenter ofABC, which is isosceles withAB = AC (see Figure 2). The
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O
A

O1

B0

B2

D

D1

C1

B1

C

B

A1

Figure 2.

points B and C are symmetric inOA. The tangents to the circle atB and C,
together with the perpendicular toOA atA, bound the antipedal triangleA1B1C1

of O (relative toABC). Hence,O is the orthocenter of triangleA1B1C1, and
BB1, CC1 are altitudes ofA1B1C1 passing throughO. Therefore, to construct
the reflection pointsB andC, it is sufficient to constructB1 andC1.

Suppose the circle(O) has radiusR andOA = d. If OB1 = x, then from the
similar right trianglesB1AO andB1BC1, we have

B1A

B1O
=

B1B

B1C1

=⇒
B1A

x
=

x + R

2B1A
.

SinceB1A
2

= x2 − d2, this reduces tox(x + R) = 2(x2 − d2
), or

x2 − Rx − 2d2
= 0. (1)

This has a unique positive solutionx. This leads to the following construction.
(i) Let B0 be an intersection of the given circle with the perpendicular to OA at
A, O1 the symmetric ofO in A, andB2 the symmetric ofB0 in O1. Note that
O1B0 = OB0 = R.
(ii) Construct the segmentOB2 to intersect the given circle atD, and letD1 be the
midpoint ofDB2.
(iii) Construct the circle with centerO to pass throughD1. The intersections of
this circle with the lineAB0 are the pointsB1 andC1.

To validate this, letOD1 = y. ThenOB2 = 2y − R. Applying Apollonius’
theorem to the medianOO1 of triangleOB0B2, we have

(2y − R)
2
+ R2

= 2(2d)
2

+ 2R2.

This leads to
y2 − Ry − 2d2

= 0. (2)

Comparison of (1) and (2) givesy = x.
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3. Alhazen’s problem 2

Given two pointsA andB inside a circle(O), to construct a pointP on the
circle such that the reflection ofAP atP passes throughB.

It is well known thatP cannot be constructed with ruler and compass only; see,
for example, [3]. The analysis below leads to a simple construction with conics.

O

B

A

B′

A′

O′

H′

P

P ′

M

Figure 3

Let A′ andB′ be the inverses ofA andB in the circle(O). SinceOA · OA′
=

OP 2, the trianglesPA′O andAPO are similar, and∠PA′O = ∠APO. Similarly,
∠PB′O = ∠BPO. Since∠APO = ∠BPO, we have∠PA′O = ∠PB′O. Con-
sider the reflections ofPA′ andPB′ respectively in the bisectors of anglesA′ and
B′ of triangleOA′B′. These reflection lines intersect at the isogonal conjugateP ′

of P (in triangleOA′B′). Note that∠P ′A′B′
= ∠PA′O = ∠PB′O = ∠P ′B′A′.

Therefore,P ′ is a point on the perpendicular bisector ofA′B′ (which contains the
circumcenter center ofO′A′B′). It follows thatP lies on the isogonal conjugate
of the perpendicular bisector ofA′B′. This is a rectangular circum-hyperbola of
triangleOA′B′, whose center is the midpoint ofA′B′. It also contains the ortho-
center of the triangle. This leads to the following construction of the pointP .
(i) Construct the orthocenterH ′ of triangleOA′B′ and complete the parallelogram
OA′O′B′.
(ii) The pointP can be constructed as an intersection of the given circle(O) with
the conic (rectangular hyperbola) containingO, A′, B′, H ′ andO′.

We conclude with two special cases whenP can be constructed easily with ruler
and compass.

3.1. Special case:A and B on a diameter.If the pointsA, B, O are collinear,
then the triangleOA′B′ degenerates into a line. LetO1 be the harmonic conjugate
of O relative toAB; see Figure 4. The pointP lies on the circle with diameter
OO1 ([1]).
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B AO
O1

P

Figure 4

O

AB

A′

B′ P
E

F

Figure 5

3.2. Special case:OA = OB. If OA = OB = d, thenOA′B′ is isosceles and
the rectangular circum-hyperbola degenerates into a pair of perpendicular lines, the
perpendicular bisector ofAB and the lineA′B′. The first line gives the endpoints
E andF of the diameter perpendicular toAB. The second lineA′B′ intersects
the circle(O) at two real points (solution to Alhazen’s problem) if and only if
∠AOB < 2 arccos

d
R

(see Figure 5).
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Non-Euclidean Versions of
Some Classical Triangle Inequalities

Dragutin Svrtan and Darko Veljan

Abstract. In this paper we recall with short proofs of some classical triangle
inequalities, and prove corresponding non-Euclidean,i.e., spherical and hyper-
bolic versions of these inequalities. Among them are the well known Euler’s
inequality, Rouché’s inequality (also called “the fundamental triangle inequal-
ity”), Finsler–Hadwiger’s inequality, isoperimetric inequality and others.

1. Introduction

As it is well known, the Euclid’s Fifth Postulate (through any point in a plane
outside of a given line there is only one line parallel to thatline) has many equiv-
alent formulations. Recall some of them: sum of the angles ofa triangle isπ (or
180

◦), there are similar (non-congruent) triangles, there is the area function (with
usual properties), every triangle has unique circumcircle, Pythagoras’ theorem and
its equivalent theorems such as the law of cosines, the law ofsines, Heron’s for-
mula and many more.

The negations of the Fifth Postulate lead to spherical and hyperbolical geome-
tries. So, negations of some equalities characteristic forthe Euclidean geometry
lead to inequalities specific for either spherical or hyperbolic geometry. For exam-
ple, for a triangle in the Euclidean plane we have the law of cosines

c2
= a2

+ b2 − 2ab cos C,

where we stick with standard notations (that isa, b andc are the side lengths and
A, B andC are the angles opposite, respectively to the sidesa, b andc).

It can be proved that the following Pythagoras’ inequalities hold. In spherical
geometry one has the inequality

c2 < a2
+ b2 − 2ab cos C,

and in the hyperbolic geometry the opposite inequality

c2 > a2
+ b2 − 2ab cos C.

In fact, in the hyperbolic case we have

a2
+ b2 − 2ab cos C < c2 < a2

+ b2
+ 2ab cos(A + B).

See [13] for details.
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On the other hand, there are plenty of interesting inequalities in (ordinary or
Euclidean) triangle geometry relating various triangle elements. In this paper we
prove some of their counterparts in non-Euclidean cases.

Let us fix (mostly standard) notations. For a given triangle△ABC, let a, b, c
denote the side lengths (a opposite to the vertexA, etc.),A,B,C the corresponding
angles,2s = a+ b+ c the perimeter,S its area,R the circumradius,r the inradius,
andra, rb, rc the radii of excircles.

We use the symbols of cyclic sums and products such as:
∑

f(a) = f(a) + f(b) + f(c),
∑

f(A) = f(A) + f(B) + f(C),
∑

f(a, b) = f(a, b) + f(b, c) + f(c, a),
∏

f(a) = f(a)f(b)f(c),
∏

f(x) = f(x)f(y)f(z).

2. Euler’s inequality

In 1765, Euler proved that the triangle’s circumradiusR is at least twice as big
as its inradiusr, i.e.,

R ≥ 2r,

with equality if and only if the triangle is equilateral.Here is a short proof.
R ≥ 2r ⇔ abc

4S
≥ 2S

s
⇔ sabc ≥ 8S2

= 8s (s− a)

︸ ︷︷ ︸

=x

(s− b)
︸ ︷︷ ︸

=y

(s − c)
︸ ︷︷ ︸

=z

⇔
∏

(s− x) ≥

8

∏

x⇔ s
∑

xy−
∏

x ≥ 8

∏

x⇔
∑

x·
∑

xy ≥ 9

∏

x⇔
∑

x2y ≥ 6

∏

x
A−G
⇐⇒

∑

x2y ≥ 6(

∏

x2y)

1

6 = 6

∏

x. 1 The equality case is clear.
The inequality8S2 ≤ sabc (equivalent to Euler’s) can also be easily obtained

as a consequence (viaA−G) of the ”isoperimetric triangle inequality”:

S ≤

√
3

4

(abc)
2

3 ,

which we shall prove in§4.
The Euler inequality has been improved and generalized (e.g., for simplices)

many times. A recent and so far the best improvement of Euler’s inequality is
given by (see [11], [14]) (and it improves [17]):

R

r
≥

abc + a3
+ b3

+ c3

2abc
≥

a

b
+

b

c
+

c

a
− 1 ≥

2

3

(

a

b
+

b

c
+

c

a

)

≥ 2.

Now we turn to the non-Euclidean versions of Euler’s inequality. Let k be the
(constant) curvature of the hyperbolic plane in which a hyperbolic triangle△ABC
sits. Letδ = π− (A + B + C) be the triangle’s defect. The area of the hyperbolic
triangle is given byS = k2δ.

1Yet another way to prove the last inequality:x
2
y + yz

2
= y(x

2
+ z

2
) ≥ 2xyz, and add such

three similar inequalities.
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Theorem 1 (Hyperbolic Euler’s inequality). Suppose a hyperbolic triangle has a
circumcircle and letR be its radius. Letr be the radius of the triangle’s incircle.
Then

tanh

R

k
≥ 2 tanh

r

k
. (1)

The equality is achieved for an equilateral triangle for anyfixed defect.

Proof. Recall that the radiusR of the circumcircle of a hyperbolic triangle (if it
exists) is given by

tanh

R

k
=

√

sin
δ
2

∏

sin(A +
δ
2
)

=

2

∏

sinh
a
2k

√

sinh
s
k

∏

sinh
s−a
k

(2)

Also, the radius of the incircle (radius of the inscribed circle) r of the hyperbolic
triangle is given by

tanh

r

k
=

√

∏

sinh
s−a
k

sinh
s
k

(3)

See,e.g., [5], [6], [7], [8], [9]. We can takek = 1 in the above formulas. Then it is
easy to see that (1) is equivalent to

∏

sinh(s− a) ≤
∏

sinh

a

2

,

or, by putting (as in the Euclidean case)x = s− a, y = s− b, z = s− c, to
∏

sinhx ≤
∏

sinh

s− x

2

. (4)

By writing 2x instead ofx etc., (4) becomes
∏

sinh 2x ≤
∏

sinh(s− x) =

∏

sinh(y + z).

Now by the double formula and addition formula forsinh, after multiplications we
get

8

∏

sinhx·
∏

cosh x ≤
∑

sinh
2 x sinh y cosh y cosh

2 z+2

∏

sinh x
∏

cosh x.

Hence,

6

∏

sinhx ·
∏

cosh x ≤
∑

sinh
2 x sinh y cosh y cosh

2 z. (5)

However, (5) is simply theA − G inequality for the six (nonnegative) numbers
sinhx, cosh x, . . . , cosh z. The equality case follows easily. This proves the hy-
perbolic Euler’s inequality. �

Note also that (5) can be proved alternatively in the following way, using three
times the simplestA−G inequality:

sinh
2 x sinh y cosh y cosh

2 z + cosh
2 x sinh y cosh y sinh

2 z

= sinh y cosh y[(sinh x cosh z)
2

+ (cosh x sinh z)
2
]

≥ 2 sinh y cosh y sinhx cosh z cosh x sinh z.
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In the spherical case the analogous formula to (2) and (3) andsimilar reasoning
to the previous proof boils down to proving analogous inequality to (4):

∏

sin x ≤
∏

sin

s− x

2

(6)

But (6) follows in the same manner as above. So, we have the following.

Theorem 2(Spherical Euler’s inequality). The circumradiusR and the inradiusr
of a spherical triangle on a sphere of radiusρ are related by

tan

R

ρ
≥ 2 tan

r

ρ
. (7)

The equality is achieved for an equilateral triangle for anyfixed spherical excess
ε = (A + B + C)− π.

Remark.At present, we do not know how to improve these non-EuclideanEuler
inequalities in the sense of the previous discussions in theEuclidean case. It would
also be of interest to have the non-Euclidean analogues of the Euler inequality
R ≥ 3r for a tetrahedron (and simplices in higher dimensions).

3. Finsler–Hadwiger’s inequality

In 1938, Finsler and Hadwiger [3] proved the following sharpupper bound for
the areaS in terms of side lengthsa, b, c of a Euclidean triangle (improving upon
Weitzenboeck’s inequality):

∑

a2 ≥
∑

(b− c)2 + 4

√
3S. (8)

Here are two short proofs of (8). First proof ([10]): Start with the law of cosines
a2

= b2
+c2−2bc cos A, or equivalentlya2

= (b−c)2 +2bc(1−cos A). From the
area formula2S = bc sin A, it then followsa2

= (b− c)2 + 4S tan
A
2

. By adding
all three such equalities we obtain

∑

a2
=

∑

(b− c)2 + 4S
∑

tan

A

2

.

By applying Jensen’s inequality to the sum
∑

tan
A
2

(i.e., using convexity oftan x
2
,

0 < x < π) and the equalityA + B + C = π, (8) follows at once.
Second proof ([8]): Putx = s− a, y = s− b, z = s− c. Then

∑

[a2 − (b− c)2] = 4

∑

xy.

On the other hand, Heron’s formula can be written as4

√
3S = 4

√

3

∑

x
∏

x.

Then (8) is equivalent to
√

3

∑

x ·
∏

x ≤
∑

xy, and this is equivalent to
∑

x2yz ≤
∑

(xy)
2, which in turn is equivalent to

∑

[x(y − z)]

2 ≥ 0, and
this is obvious.

Remark.The seemingly weaker Weitzenboeck’s inequality
∑

a2 ≥ 4

√
3S

is, in fact, equivalent to (8) (see [17]).
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There are many ways to rewrite Finsler–Hadwiger’s inequality. For example,
since

∑

[a2 − (b− c)2] = 4r(r + 4R),

it follows that (8) is equivalent to

r(r + 4R) ≥
√

3S,

or, sinceS = rs, it is equivalent to

s
√

3 ≤ r + 4R.

There are also many generalizations, improvements and strengthening of (8) (see
[4]). Let us mention here only two recent ones. One is (see [1]):

∑

(b + c) ·
∑

1

b + c
≤ 10−

r

s2
[s
√

3 + 2(r + 4R)],

and the other one is (see [15])
∑

a2 ≥ 4

√
3S +

∑

(a− b)2 +

∑

[

√

a(b + c− a)−
√

b(c + a− b)]2.

The opposite inequality of (8) is (see [17]):
∑

a2 ≤ 4

√
3S + 3

∑

(b− c)2.

Note that all these inequalities are sharp in the sense that equalities hold if and only
if the triangles are equilateral (regular).

For the hyperbolic case, we need first an analogue of the area formula2S =

bc sin A. It is not common in the literature, so for the reader’s convenience we
provide its short proof (seee.g., [5]).

Lemma 3 (Cagnolli’s first formula). The areaS = k2δ of a hyperbolic triangle
ABC is given by

sin

S

2k2
=

sinh
a
2k

sinh
b
2k

sinC

cosh
c
2k

(9)

Proof. From the well known second (or “polar”) law of cosines in elementary hy-
perbolic geometry

cosh

a

k
=

cos A + cos B cos C

sin B sin C
,

we get

cosh

a

2k
=

√

sin

(

B +
δ
2

)

sin

(

C +
δ
2

)

sin B sinC
, sinh

a

2k
=

√

sin

(

δ
2

)

sin

(

A +
δ
2

)

sin B sin C
.

(10)
By multiplying two expressionssinh

a
2k
· sinh

b
2k

, and using (10) we get

sinh

a

2k
· sinh

b

2k
=

sin
δ
2

sin C
cosh

c

2k
.

This implies (9). �
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Theorem 4(Hyperbolic Finsler–Hadwiger’s inequality). For a hyperbolic triangle
ABC we have:

∑

cosh

a

k
≥
∑

cosh

b− c

k
+ 12 sin

S

2k2

∏

cosh

a

2k
tan

π − δ

6

(11)

The equality in(11) holds if and only if for any fixed defectδ, the triangle is equi-
lateral.

Proof. The idea is to try to mimic (as much as possible) the first proofof (8). Start
with the hyperbolic law of cosines

cosh

a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cos A.

By adding and subtractingsinh
b
k

sinh
c
k
, we obtain

cosh

a

k
= cosh

b− c

k
+ sinh

b

k
sinh

c

k
− sinh

b

k
sinh

c

k
cos A

= cosh

b− c

k
+ sinh

b

k
sinh

c

k
· 2 sin

2
A

2

= cosh

b− c

k
+ 4 sinh

b

2k
sinh

c

2k
cosh

b

2k
cosh

c

2k
· 2 sin

2
A

2

.

By Cagnolli’s formula (9), substitute here the partsinh
b
2k

sinh
c
2k

to obtain

cosh

a

k
= cosh

b− c

k
+ 4cosh

a

2k
cosh

b

2k
cosh

c

2k
sin

S

2k2
tan

A

2

. (12)

Apply to both sides of (12) the cyclic sum operator
∑

, and (again) apply Jensen’s
inequality (i.e., convexity oftan x

2
):

1

3

∑

tan

A

2

≥ tan

(

1

3

∑ A

2

)

= tan

π − δ

6

.

This implies (11). The equality claim is also clear from the above argument. �

The corresponding spherical Finsler–Hadwiger inequalitycan be obtained mu-
tatis mutandis from the hyperbolic case. The areaS of a spherical triangleABC
on a sphere of radiusρ is given byS = ρ2ε, whereε = A + B + C − π is the
triangle’s excess. The spherical Cagnolli formula (like 9)reads as follows:

sin

S

2ρ2
=

sin
a
2ρ

sin
b
2ρ

sin C

cos
c
2ρ

. (13)

So, starting with the spherical law of cosines, using (13) and Jensen’s inequality,
one can show the following.

Theorem 5 (Spherical Finsler–Hadwiger’s inequality). For a spherical triangle
ABC on a sphere of radiusρ we have
∑

cos

a

ρ
≥
∑

cos

b− c

ρ
+ 12 sin

S

2ρ2
cos

a

2ρ
cos

b

2ρ
cos

c

2ρ
tan

ε− π

6

. (14)

The equality in(14) holds if and only if for any fixedε, the triangle is equilateral.



Non-Euclidean versions of some classical triangle inequalities 203

Remark.Note that both hyperbolic and spherical inequalities (11) and (14) reduce
to Finsler–Hadwiger’s inequality (8) whenk → ∞ in (11), orρ → ∞ in (14).
This is immediate from the power sum expansions of trigonometric or hyperbolic
functions.

4. Isoperimetric triangle inequalities

In the Euclidean case, if we multiply all three area formulas, one of which is
S =

1

2
bc sin A, we obtain a symmetric formula for the triangle area

S3
=

1

8

(abc)2 sin A sin B sin B. (15)

By using theA−G inequality and the concavity of the functionsin x on [0, π] (or,
Jensen’s inequality again), we have:

sin A sin B sin C ≤

(

sin A + sin B + sinC

3

)3

≤

(

sin

A + B + C

3

)3

= sin
3

π

3

=

3

√
3

8

.

This and (15) imply the so called “isoperimetric inequality” for a triangle:

S3 ≤
3

√
3

64

(abc)2, or in a more appropriate form

S ≤

√
3

4

(abc)
2

3 . (16)

Inequality (16) andA−G imply thatS ≤
√

3

36
(a + b + c)2, and this is why we call

it the “isoperimetric inequality”.
By Heron’s formula we have(4S)

2
= 2sd3(a, b, c), where2s = a + b + c and

d3(a, b, c) := (a+ b− c)(b+ c− a)(c+ a− b). By [11, Cor. 6.2], we have a sharp
inequality

d3(a, b, c) ≤
(2abc)2

a3
+ b3

+ c3
+ abc

. (17)

From Heron’s formula and (17) it easily follows

S ≤
1

2

abc

√

a + b + c

a3
+ b3

+ c3
+ abc

. (18)

We claim that (18) improves the “isoperimetric inequality”(16). Namely, we claim

1

2

abc

√

a + b + c

a3
+ b3

+ c3
+ abc

≤

√
3

4

3
√

(abc)2. (19)

But (19) is equivalent to
(

a3
+ b3

+ c3
+ abc

4

)3

≥ (abc)2
(

a + b + c

3

)

3

. (20)
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To prove (20) we can takeabc = 1 and prove

a3
+ b3

+ c3
+ 1

4

≥
a + b + c

3

. (21)

Instead, we prove an even stronger inequality

a3
+ b3

+ c3
+ 1

4

≥
3

√

a3
+ b3

+ c3

3

. (22)

Inequality (22) is stronger than (21) because the means are increasing,i.e.,

Mp(a, b, c) ≤Mq(a, b, c) for a, b, c > 0 and0 ≤ p ≤ q,

whereMp(a, b, c) =

[

(ap
+bp

+cp
)

3

]
1

p

. To prove (22), denotex = a3
+ b3

+ c3 and

consider the function

f(x) =

(

x + 1

4

)

3

−
x

3

.

Since (byA − G) x
3
≥ abc = 1, i.e., x ≥ 3, we considerf(x) only for x ≥ 3.

Sincef(3) = 0 and the derivativef ′
(x) ≥ 0 for x ≥ 3, we concludef(x) ≥ 0 for

x ≥ 3 and hence prove (19).
Putting all together, we finally have a chain of inequalitiesfor the triangle area

S symmetrically expressed in terms of the side lengthsa, b, c.

Theorem 6(Improved Euclidean isoperimetric triangle inequalities).

S ≤
1

2

abc

√

a + b + c

a3
+ b3

+ c3
+ abc

≤
1

4

6

√

3(a + b + c)3(abc)4

a3
+ b3

+ c3
≤

√
3

4

(abc)
2

3

(23)

We shall now make an analogue of the “isoperimetric inequality” (16) in the
hyperbolic case.

Start with Cagnolli’s formula (9) and multiply all such three formulas to get
(sinceS = δk2):

sin
3

δ

2

=

∏

sinh

a

2k

∏

tanh

a

2k

∏

sin A. (24)

As in the Euclidean case we have
∏

sin A ≤

(

sin A + sin B + sinC

3

)3

≤

(

sin

A + B + C

3

)3

=

(

sin

π − δ

3

)3

So, this inequality together with (24) implies the following.

Theorem 7. The areaS = δk2 of a hyperbolic triangle with side lengthsa, b, c
satisfies the following inequality

(

sin
δ
2

sin
π−δ

3

)

3

≤
∏

sinh

a

2k
·
∏

tanh

a

2k
. (25)

For an equilateral triangle(a = b = c,A = B = C) and any fixed defectδ, the
inequality(25) becomes an equality(by Cagnolli’s formula (9)).
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The corresponding isoperimetric inequality can be obtained for a spherical tri-
angle:

(

sin
ε
2

sin
ε−π

3

)3

≤
∏

sin

a

2ρ
·
∏

tan

a

2ρ
. (26)

Remark. In the 3–dimensional case we have a well known upper bound of the
volumeV of a (Euclidean) tetrahedron in terms of product of lengths of its edges
(like (16)) :

V ≤

√
2

12

√

abcdef

with equality if and only if the tetrahedron is regular (and similarly in any dimen-
sion); see [12].

Non–Euclidean tetrahedra (and simplices) lack good volumeformulas of Heron’s
type, except the Cayley–Menger determinant formulas in allthree geometries. Ka-
han’s formula2 for volume of a Euclidean tetrahedron is known only for the Eu-
clidean case. There are some volume formulas for tetrahedrain all three geometries
now available on Internet, but they are rather involved. We don’t know at present
how to use them to obtain a good and simple enough upper bound.

In dimension2, Heron’s formula in all three geometries can very easily be de-
duced. A very short proof of Heron’s formula is as follows. Start with the triangle
area4S = 2ab sin C and the law of cosinesa2

+ b2− c2
= 2ab cos C. Now square

and add them. The result is a form of the Heron’s formula(4S)
2
+(a2

+b2−c2
)
2

=

(2ab)2. In a similar way one can get triangle area formulas in the non-Euclidean
case by starting with Cagnolli’s formula ((9) or (13)) and the appropriate law of
cosines.

The result in the hyperbolic geometry is the formula

(

4 sin

δ

2

∏

cosh

a

2k

)

2

+

(

cosh

a

k
cosh

b

k
− cosh

c

k

)

2

=

(

sinh

a

k
sinh

b

k

)

2

or
(

4 sin

δ

2

∏

cosh

a

2k

)

2

+

∑

cosh
2

a

k
= 1 + 2

∏

cosh

a

k
.

Remark. In order to improve the non-Euclidean2–dimensional isoperimetric in-
equality analogous to (23) we would need an analogue of the function d3(a, b, c)
and a corresponding inequality like (17). This inequality was proved in [11] as a
consequence of the inequalityd3(a

2, b2, c2
) ≤ d2

3
(a, b, c), and this follows from

an identity expressing the differenced2

3
(a, b, c) − d3(a

2, b2, c2
) as a sum of four

squares. But at present we do not know the right hyperbolic analoguedH
3

(a, b, c)
or spherical analoguedS

3
(a, b, c) of the functiond3(a, b, c).

2see www.cs.berkeley.edu/w̃kahan/VtetLang.pdf, 2001.



206 D. Svrtan and D. Veljan

5. Rouch́e’s inequality and Blundon’s inequality

The following inequality is a necessary and sufficient condition for the existence
of an (Euclidean) triangle with elementsR, r ands (see [4]):

2R2
+ 10Rr − r2 − 2(R− 2r)

√

R2 − 2Rr ≤ s2

≤ 2R2
+ 10Rr − r2

+ 2(R− 2r)
√

R2 − 2Rr. (27)

This inequality (sometimes called “the fundamental triangle inequality”) was
first proved byÉ. Rouché in 1851, answering a question of Ramus. It was recently
improved in [16].

A short proof of (27) is as follows. Letra, rb, rc be the excircle radii of the
triangleABC. It is well known (and easy to check) that

∑

ra = 4R+r,
∑

rarb =

s2 andrarbrc = rs2. Hencera, rb, rc are the roots of the cubic

x3 − (4R + r)x2
+ s2x− rs2

= 0. (28)

Now consider the discriminant of this cubic,i.e., D =

∏

(ra − rb)
2.

In terms of the elementary symmetric functionse1, e2, e3 in the variablesra, rb, rc,

D = e2

1
e2

2
− 4e3

2
− 4e3

1
e3 + 18e1e2e3 − 27e2

3
. (29)

Sincee1 =

∑

ra = 4R + r, e2 =

∑

rarb = s2, e3 =

∏

ra = rs2, we have

D = s2
[(4R + r)2s2 − 4s4 − 4(4R + r)3r + 18(4R + r)rs2 − 27r2s2

].

From D ≥ 0, (27) follows easily. In fact, the inequalityD ≥ 0 reduces to the
quadratic inequality ins2:

s4 − 2(2R2
+ 10Rr − r2

)s2
+ (4R + r)3r ≤ 0. (30)

The “fundamental” inequality (27) implies a sharp linear upper bound ofs in terms
of r andR, known as Blundon’s inequality [2]:

s ≤ (3

√
3− 4)r + 2R. (31)

To prove (31), it is enough to prove that

2R2
+ 10Rr − r2

+ 2(R− 2r)
√

R2 − 2Rr ≤ [(3

√
3− 4)r + 2R]

2.

A little computation shows that this is equivalent to the following cubic inequality
(with x = R/r):

f(x) := 4(3

√
3−5)x3−3(60

√
3−103)x2

+12(48

√
3−83)x+4(229−132

√
3) ≥ 0.

By Euler’s inequalityx ≥ 2, f(2) = 0 and hence clearlyf(x) ≥ 0 for x ≥ 2.
Yet another (standard) way to prove Blundon’s inequality (31) is to use the con-

vexity of the biquadratic function on the left hand side of the inequality (30).
Blundon’s inequality is also sharp in the sense that equality holds in (31) if and

only if the triangle is equilateral. (Recall by the way that atriangle is a right triangle
if and only if s = r + 2R).

Let us turn to non-Euclidean versions of the “fundamental triangle inequality”.
Suppose a hyperbolic triangle has a circumscribed circle. As before, denote

by R, r, andra, rb, rc, respectively, the radii of the circumscribed, inscribed and
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escribed circles of the triangle. Then by (2) and (3) we knowR andr, while ra

(and similarlyrb andrc) is given by

tanh

ra

k
= sinh

s

k
tan

A

2

, (32)

and by using

tan

A

2

=

√

sinh
s−b
k

sinh
s−c
k

sinh
s
k

sinh
s−a
k

. (33)

The combination of these two expressesra in terms ofa, b, andc. In order to obtain
for the hyperbolic triangle the analogue of the cubic equation (28) whose roots are
x1 = tanh

ra

k
, x2 = tanh

r
b

k
, x3 = tanh

rc

k
, we have to compute the elementary

symmetric functionse1, e2, e3 in the variablesx1, x2, x3. We compute first (the
easiest)e3. Equations (32), (33) and (3) yield

e3 =

∏

tanh

ra

k
= sinh

2
s

k
tanh

r

k
. (34)

Next, by (32) and (33):

e2 =

∑

tanh

ra

k
·tanh

rb

k
= sinh

2
s

k

∑

tan

A

2

tan

B

2

= sinh

s

k

∑

sinh

s− a

k
.

Applying the identity

sinh(x+y+z)−(sinh x+sinh y+sinh z) = 4 sinh

y + z

2

sinh

z + x

2

sinh

x + y

2

,

with x =
s−a
2

, y =
s−b
2

, z =
s−c
2

, we obtain

sinh

s

k
−
∑

sinh

s− a

k
= 4

∏

sinh

a

2k
. (35)

And now from (2) and (3) we get

e2 = sinh
2

s

k

(

1− 2 tanh

r

k
tanh

R

k

)

. (36)

Finally, to computee1, we use the identity

tan(x + y + z) =

tan x + tan y + tan z − tan x tan y tan z

1− tan x tan y − tan y tan z − tan z tan x
. (37)

By (32),e1 = sinh
s
k

∑

tan
A
2

. Now from (37):

∑

tan

A

2

= tan

A + B + C

2

(

1−
∑

tan

A

2

tan

B

2

)

+

∏

tan

A

2

,

tan

A + B + C

2

= tan

π − δ

2

= cot

δ

2

.

From (3), we have
∏

tan

A

2

=

tanh
r
k

sinh
s
k

.

By (33), (35), and (2), (3) it follows easily

1−
∑

tan

A

2

tan

B

2

= 2 tanh

r

k
tanh

R

k
sinh

s

k
.
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Finally, putting all together yields

e1 = tanh

r

k

(

1 + 2 tanh

R

k
sinh

s

k
cot

δ

2

)

. (38)

Equations (34), (36) and (38) yield viax3−e1x
2
+e2x−e3 = 0 the cubic equation

x3 − tanh

r

k

(

1 + 2 tanh

R

k
sinh

s

k
cot

δ

2

)

x2

+ sinh
2

s

k

(

1− 2 tanh

r

k
tanh

R

k

)

x− sinh
2

s

k
tanh

r

k
= 0. (39)

This cubic (with rootstanh
ra

k
etc.) reduces to the cubic (28) by lettingk → ∞.

This follows from the identity

sinh
s
k
· tanh

r
k

sin
δ
2

= 2

∏

cosh

a

2k
.

If k →∞, then the right hand side tends to2 and therefore the coefficient byx2 in
(39) goes tor + 4R which appears in (28); similarly for the other coefficients.

Consider the discriminant of (39)

D =

∏

(

tanh

ra

k
− tanh

rb

k

)2

.

Now, by applying (29) and (34), (36) and (38) we obtain the quartic polynomial (in
fact degree6) in sinh

s
k

for an expressionD. By the following legend

r ←→ tanh
r
k

δ←→ cot
δ
2

R←→ tanh
R
k

s←→ sinh
s
k

(40)

we can writeD as follows (after some computation); note that it has almostdouble
number of terms than the corresponding Euclidean discriminant

D = s2
[(r2R2δ2

+ 4r4R4δ2 − 4r3R3δ2 − 1 + 6rR− 12r2R2
+ 8r3R3

)s4

+r2Rδ(1− 4rR + 4r2R2δ − 8r2R2δ2
+ 9δ + 18rRδ)s3

+r2
(r2R2 − 10rR − 12r2R2δ2 − 2)s2

−6r4Rδs − r4
].

(41)
By definition D ≥ 0, so the quartic polynomial ins (in fact in sinh

s
k
), i.e., the

polynomial in brackets in (41) is≥ 0.
So the hyperbolic analogue of the “fundamental triangle inequality” (27), or

rather degree–four polynomial inequality (30) is the quartic (in s) polynomial in-
equality D

s2 ≥ 0.

Theorem 8 (Hyperbolic “fundamental triangle inequality”). For a hyperbolic tri-
angle that has a circumcircle of radiusR, incircle of radiusr, semiperimeters,
and excessδ, we have

D

s2
≥ 0, (42)
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whereD is given by(41) together with the legend(40). Whenk →∞, (42) reduces
to (30).

Blundon’s hyperbolic inequality can also be derived as a corollary of Theorem
8.

The spherical version of the “fundamental inequality” as well as the correspond-
ing spherical Blundon’s inequality can also be obtained, but we omit them here.

In conclusion, we may say that all these triangle inequalities give more informa-
tion and better insight to the geometry of 2– and 3– manifolds.
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Finding Integer-Sided Triangles With P 2

= nA

John F. Goehl, Jr.

Abstract. A surprising property of certain parameters leads to algorithms for
finding integer-sided triangles withP 2

= nA, whereP is the perimeter,A is the
area, andn is an integer. Examples of triangles found for each of two values of
n are given.

1. Introduction

MacLeod [1] considered the problem of finding integer-sidedtriangles with
sidesa, b, andc andP 2

= nA, whereP is the perimeter,A is the area, andn
is an integer. He showed that they could be found from solutions of the equation:

16(a + b + c)3 = n2
(a + b − c)(a + c − b)(b + c − a). (1)

It was shown thatn must be an integer greater than or equal to21. Define

2α = a + b − c, 2β = a + c − b, 2γ = b + c − a,

then

16(α + β + γ)
3

= n2αβγ. (2)

Note that the parametersα, β, andγ are the lengths of the segments into which the
inscribed circle divides the sides.

2. Special case: n a prime number

Consider the special case whenn is a prime number. Thenα + β + γ = nw
for some integerw. So equation (2) becomes16nw3

= αβγ. Then one of the
parametersα, β, or γ must be divisible byn. Chooseγ = nγ′ and so16w3

=

αβγ′. Let α = 2
iα1, β = 2

jβ1, andγ′
= 2

kγ1, wherei + j + k = 4. Then
w3

= α1β1γ1. Note that it can be assumed thatα1, β1, andγ1 have no common
factor since the sides of the corresponding triangle can be reduced by that factor to
an equivalent triangle with the sameP 2/A ratio. Hencew = w′α0 for somew′ and
a factor unique toα1 soα1 = α3

0
. Similarly, β1 = β3

0
, γ1 = γ3

0
, andw = α0β0γ0.

Finally, the sides can be found fromα = 2
iα3

0
, β = 2

jβ3

0
, andγ = 2

knγ3

0
.

Publication Date: July 6, 2012. Communicating Editor: PaulYiu.
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3. Algorithms

From equation (2),16(α + β + γ)
3

= n2αβγ = n2
2

iα3

0
2

jβ3

0
2

knγ3

0
, or

2
iα3

0
+ 2

jβ3

0
+ 2

knγ3

0
= nα0β0γ0. (3)

First note that

2
iα3

0 + 2
jβ3

0 = nv (4)

for somev. Equation (4) is used to find allowed integer values ofα0, β0, andv.
Then allowed integer values ofγ0 are found from solutions of the cubic equation:

2
kγ3

0 − α0β0γ0 + v = 0. (5)

4. An example

Considern = 31. Values forα0 andβ0 up to600 resulted in the integer solutions
of equations (4) and (5) shown in Table 1. Solutions for whichα0 andβ0 have a
common factor result in duplicate triangles and have been omitted. Entries forα0,
β0, andv that result in duplicate triangles have also been omitted. In both tables
that follow, the values forα, β, andγ and the values of the corresponding sides,
a = α + β, b = α + γ, andc = β + γ have been reduced by the common factor.
The second solution in Table 1 is the triangle found by MacLeod.

i 4 3 3 3 3

j 0 1 1 0 0

k 0 0 0 1 1

α0 2 1 5 17 29

β0 3 3 13 18 35

v 5 2 174 1456 7677

γ0 1 1 6 7 9

α 128 8 500 19652 195112

β 27 54 2197 2916 42875

γ 31 31 3348 10633 45198

a 155 62 2697 22568 237987

b 159 39 3848 30285 240310

c 58 85 5545 13549 88073

Table 1

5. General case: n a composite number

Consider a possible factorization ofn: n = n1n2n3. Similar arguments lead to
α = 2

in1α
3

0
, β = 2

jn2β
3

0
, andγ = 2

kn3γ
3

0
, wherei+j+k = 4. All the MacLeod

triangles are of this form.
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6. General algorithm

With the above choices forα, β, andγ, equation (2) becomes

2
in1α

3

0
+ 2

jn2β
3

0
+ 2

kn3γ
3

0
= n1n2n3α0β0γ0. (6)

First note that
2

in1α
3

0
+ 2

jn2β
3

0
= n3v (7)

for somev. Equation (7) is used to find allowed integer values ofα0, β0, andv.
Then allowed integer values ofγ0 are found from solutions of the cubic equation:

2
kγ3

0
− n1n2α0β0γ0 + v = 0. (8)

7. An example

Considern = 42. Integer solutions of equations (7) and (8) are shown in Table
2. Note that the fourth entry in Table 2 is the triangle found by MacLeod.

i 0 2 2 0 0 0 0

j 0 2 2 2 2 2 2

k 4 0 0 2 2 2 2

n1 1 1 1 2 2 2 2

n2 1 1 1 3 3 3 3

n3 42 42 42 7 7 7 7

α0 11 43 227 1 4 92 109

β0 19 47 487 1 1 53 121

v 195 17460 12114132 2 20 477700 3406970

γ0 3 9 129 1 1 17 49

α 1331 159014 23394166 1 32 389344 1295029

β 6859 207646 231002606 6 3 446631 10629366

γ 18144 15309 45080469 14 7 34391 1647086

a 8190 366660 254396772 7 35 835975 11924395

b 19475 174323 68474635 15 39 423735 2942115

c 25003 222955 276083075 20 10 481022 12276452

Table 2

Reference
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The Spheres Tangent Externally to the Tritangent Spheres
of a Triangle

Floor van Lamoen

Abstract. We consider the tritangent circles of a triangle as the great circles of
spheres in three dimensional space, and identify the spheres tangent externally
to these four spheres.

In the plane of a triangleABC we consider the tritangent circles, the incircle
and the three excircles. It is well known that the nine-pointcircle is tangent to the
excircles externally and to the incircle internally. Together with the sidelines of
ABC, considered as degenerate circles, this is the only circle tangent to all four
tritangent circles. Considering the tritangent circles asthe sections of spheres by
the plane containing their centers, we wonder if there are spheres quadritangent to
these “tritangent spheres”, apart from the one containing the nine-point circle. In
this paper we identify the spheres tangent externally to thefour tritangent spheres.
We use methods similar to [4]. By symmetry it is enough to consider spheres on
one side of the plane.

Let us start with the excirclesCa = Ia(ra), Cb = Ib(rb) andCc = Ic(rc), and the
excircle-spheresSa, Sb, Sc in 3-dimensional space with the same centers and radii.
Consider a sphere with radiusρ, and centerD at a distanced above the plane of
triangleABC, and tangent to the three excircle-spheres. Clearly,ρ ≥ R

2
, whereR

is the circumradius of triangleABC. The orthogonal projection of the center onto
the plane is the radical center of the circlesIa(ra+ρ), Ib(rb+ρ) andIc(rc+ρ). For
ρ =

R
2

, this is the nine-point centerN . In general, this projection lies on the line
joining N to the radical center of the excircles, namely, the Spieker centerSp. The
power ofSp with respect to each excircle isr

2
+s2

4
, wherer ands are the inradius

and semiperimeter of the triangle (see, for example, [2, Theorem 4]).
Let P be the reflection ofSp in N . A simple application of Menelaus’ theo-

rem (to trianglePISp with transversalGNH) shows that it is also the midpoint
between the incenterI and the orthocenterH (see Figure 1).

Theorem 1. The sphere Q with radius R, and center at
√

bc+ac+ab
2

above the point
P , is tangent externally to the four tritangent spheres.

Proof. Consider triangleIaPSp with medianIaN . Note thatIaN =
R
2

+ ra and
NSp =

1

2
OI, whereO is the circumcenter. It follows thatNS2

p
=

1

4
R(R− 2r) by

Euler’s formula. Since the power ofSp with respect to each excircle is1
4
(r2

+ s2
),
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H

I

P

G
Sp

N

A

B C

Figure 1.

IaS
2
p =

r2
+s2

4
+ r2

a. Applying Apollonius’ theorem to triangleIaPSp, we have

IaP
2

= 2IaN
2
+ 2NS2

p
− IaS

2

p

= 2

(

R

2

+ ra

)

2

+

1

2

R(R − 2r) −
r2

+ s2

4

− r2

a

= (R + ra)
2 −

r2
+ s2

+ 4Rr

4

= (R + ra)
2 −

ab + bc + ca

4

.

The last equality follows fromR =
abc
4∆

, r =
∆

s
and Heron’s formula for the area

∆. Similarly,

IbP
2

= (R + rb)
2 −

ab + bc + ca

4

and IcP
2

= (R + rc)
2 −

ab + bc + ca

4

.

By letting D be the point at a distanced :=

√

ab+bc+ca
2

=

√

r2+s2+4Rr
2

aboveP ,
we have

IaD = R + ra, IbD = R + rb, IcD = R + rc.

Therefore the sphereQ with centerD, radiusR, is tangent to each ofSa, Sb, Sc.
Since the pointP is also the midpoint ofIH, andIH2

= 4R2
+ 4Rr + 3r2 − s2

(see [1, p.50]), we have

DI2
=

r2
+ s2

+ 4Rr

4

+

4R2
+ 4Rr + 3r2 − s2

4

= (R + r)2.

This shows thatQ is also tangent to the incircle-sphereS. �
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The pointP , which is the reflection ofSp in N (also the midpoint ofIH), is the
triangle center

X946 = (a3
(b + c) + (b − c)2(a2 − a(b + c) − (b + c)2) : · · · : · · · )

in [3].
The orthogonal projections to the plane ofABC of the points of contact ofQ

with the excircle-spheres form a triangleA′B′C ′. The pointA′, for instance, is the
point that divides the segmentPIa in ratioR : ra. Let AA′ intersect the lineIP at
Q (see Figure 2). Applying Menelaus’ theorem to trianglePIIa with transversal
AXA′, we have

PQ

QI
·

IA

AIa
·
IaA

′

A′P
= −1 =⇒

PQ

QI
·
−r

ra
·
ra

R
= −1 =⇒

PQ

QI
=

R

r
.

Similarly, the linesBB′ andCC ′ intersectIP at the same pointQ, which divides
PI in the ratioR : r. This is the orthogonal projection of the point of tangency of
Q with the incircle-sphereS. It has barycentric coordinates

(

b + c

b + c − a
:

c + a

c + a − b
:

a + b

a + b − c

)

,

and is the triangle centerX226 in [3].

I

P

A

B
C

Ia

A′

Q

Figure 2.
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Sherman’s Fourth Side of a Triangle

Paul Yiu

Abstract. We give two simple ruler-and-compass constructions of theline which,
like the sidelines of the triangle, is tangent to the incircle and cuts the circumcir-
cle in a chord with midpoint on the nine-point circle.

1. Introduction

Consider the sides of a triangle as chords of its circumcircle. Each of these is
tangent to the incircle and has its midpoint on the nine-point circle. Apart from
these three chords, B. F. Sherman [3] has established the existence of a fourth
one, which is also tangent to the incircle and bisected by thenine-point circle (see
Figure 1). While Sherman called this thefourth sideof the triangle, we refer to
the line containing this fourth side as the Sherman line of the triangle. In this note
we provide a simple euclidean construction of this Sherman line as a result of an
analysis with barycentric coordinates.

A

B C

O

I

E

F

M

T
N

Figure 1. The fourth side of a triangle

2. Lines tangent to the incircle

Given a triangleABC with sidelengthsa, b, c, we say that the line with barycen-
tric equationpx+qy+rz = 0 has line coordinates[p, q, r]. A line px+qy+rz = 0

Publication Date: July 18, 2012. Communicating Editor: Nikolaos Dergiades.
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is tangent to a conicC if and only if [p : q : r] lies on the dual conicC ∗ (see, for
example, [4,§10.6]).

Proposition 1. If C is the inscribed conic tangent to the sidelines at the tracesof
the point

(

1

u
:

1

v
:

1

w

)

, its dual conicC ∗ is the circumconic

u

x
+

v

y
+

w

z
= 0.

Proof. Since the barycentric equation ofC is

u2x2
+ v2y2

+ w2z2 − 2vwyz − 2wuzx − 2uvxy = 0,

the conic is represented by the matrix

M =





u2 −uv −uw
−uv v2 −vw
−uw −vw w2



 .

This has adjoint matrix

M∗
= 8uvw ·





0 w v
w 0 u
v u 0



 .

It follows that the dual conicC ∗ is the circumconicuyz + vzx + wxy = 0. �

Applying this to the incircle, we have the following characterization of its tan-
gent lines.

Proposition 2. A linepx + qy + rz = 0 is tangent to the incircle if and only if

b + c − a

p
+

c + a − b

q
+

a + b − c

r
= 0. (1)

3. Lines bisected by the nine-point circle

Suppose a lineL : px + qy + rz = 0 cuts out a chordEF of the circumcircle.
The chord is bisected by the nine-point circle if and only if the pedal (orthogonal
projection)P of the circumcenterO on L lies on the nine-point circle. We shall
simply say that the line is bisected by the nine-point circle.

Proposition 3. A line px + qy + rz = 0 is bisected by the nine-point circle if and
only if

a2
(b2

+ c2 − a2
)

p
+

b2
(c2

+ a2 − b2
)

q
+

c2
(a2

+ b2 − c2
)

r
= 0. (2)

Proof. The pedal ofO on the linepx + qy + rz = 0 is the point

P = − b2q2 − c2r2
+ (b2

+ c2 − 2a2
)qr + a2rp + a2pq

: − c2r2 − a2p2
+ (c2

+ a2 − 2b2
)rp + b2pq + b2qr

: − a2p2 − b2q2
+ (a2

+ b2 − 2c2
)pq + c2qr + c2rp.
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The superior of the pedalP is the point

Q = a2p2 − a2qr + (b2 − c2
)rp − (b2 − c2

)pq

: b2q2 − b2rp + (c2 − a2
)pq − (c2 − a2

)qr

: c2r2 − c2pq + (a2 − b2
)qr − (a2 − b2

)rp.

The linepx + qy + rz = 0 is bisected by the nine-point circle if and only ifQ
lies on the circumcirclea2yz + b2zx + c2xy = 0. This condition is equivalent to

a
2
(b

2
q
2 − b

2
rp + (c

2 − a
2
)pq − (c

2 − a
2
)qr)(b

2
q
2 − b

2
rp + (c

2 − a
2
)pq − (c

2 − a
2
)qr)

+ b
2
(b

2
q
2 − b

2
rp + (c

2 − a
2
)pq − (c

2 − a
2
)qr)(a

2
p
2 − a

2
qr + (b

2 − c
2
)rp − (b

2 − c
2
)pq)

+ c
2
(a

2
p
2 − a

2
qr + (b

2 − c
2
)rp − (b

2 − c
2
)pq)(b

2
q
2 − b

2
rp + (c

2 − a
2
)pq − (c

2 − a
2
)qr)

= 0.

The quartic polynomial inp, q, r above factors as−F · G, where

F = a2
(b2

+ c2 − a2
)qr + b2

(c2
+ a2 − b2

)rp + c2
(a2

+ b2 − c2
)pq,

G = a2p2
+ b2q2

+ c2r2 − (b2
+ c2 − a2

)qr − (c2
+ a2 − b2

)rp − (a2
+ b2 − c2

)pq.

Now G can be rewritten as

G = SA(q − r)2 + SB(r − p)
2
+ SC(p − q)2.

As such, it is the square length of a vector of componentp, q, r along the respective
sidelines. Therefore,G > 0, and we obtainedF = 0 as the condition for the line
to be bisected by the nine-point circle. �

Corollary 4. A line is bisected by the nine-point circle(N) if and only if it is
tangent to the inscribed conic with center the nine-point center N .

Proof. Let px + qy + rz = 0 be a line bisected by the nine-point circle. By
Proposition 3, it is tangent to the inscribed conic with perspector

(

1

u
:

1

v
:

1

w

)

,
where

u : v : w = a2
(b2

+ c2 − a2
) : b2

(c2
+ a2 − b2

) : c2
(a2

+ b2 − c2
).

The center of the inscribed conic is

v + w : w + u : u + v

= b2
(c2

+ a2
) − (b2 − c2

)
2

: b2
(c2

+ a2
)
2 − (c2 − a2

)
2

: c2
(a2

+ b2
) − (a2 − b2

)
2.

This is the centerN of the nine-point circle. �

The inscribed conic with centerN is called the MacBeath inconic. It is well
known that this has fociO andH, the circumcenter and the orthocenter (see [4,
§11.1.5]). The Sherman line is thefourth common tangent of the incircle and the
inscribed conic with centerN .

N. Dergiades has kindly suggested the following alternative proof of Corollary
4. The orthogonal projection of a focus on a tangent of a coniclies on the auxiliary
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A

B C

O

H

I

E

F

T
N T ′

M

O′

Q

P

P ′ G

Figure 2. The fourth side of a triangle as a common tangent

circle. Since the MacBeath inconic has the nine-point circle as auxiliary circle ([1,
Problem 130]), and the orthogonal projection of the focusO on the Sherman line
lies on the nine-point circle, the Sherman line must be tangent to the MacBeath
inconic.

4. Construction of the Sherman line

The Sherman line, being tangent to the incircle and bisectedby the nine-point
circle, has its line coordinates[p : q : r] satisfying both (1) and (2). Regarding

px + qy + rz = 0 as the trilinear polar of the pointS =

(

1

p
:

1

q
:

1

r

)

, we have a

simple characterization ofS leading to an easy ruler-and-compass construction of
the Sherman line.

Proposition 5. The Sherman line is the trilinear polar of the intersection of
(i) the trilinear polar of the Gergonne point,
(ii) the isotomic line of the trilinear polar of the circumcenter(see Figure 2).

Proof. The pointS is the intersection of the two lines with equations

(b + c − a)x + (c + a − b)y + (a + b − c)z = 0, (3)

a2
(b2

+ c2 − a2
)x + b2

(c2
+ a2 − b2

)y + c2
(a2

+ b2 − c2
)z = 0. (4)

These two lines can be easily constructed as follows.

(3) is the trilinear polar of the Gergonne point
(

1

b+c−a
:

1

c+a−b
:

1

a+b−c

)

.
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A

B C

O
I

M
TN

XX′

Z

Z′

X0

S

Z0

Figure 3. Construction of the tripole of the Sherman line

(4) is the trilinear polar of the isotomic conjugate of the circumcenter. It can also
be constructed as follows. If the trilinear polar of the circumcenterO intersects the
sidelines atX, Y , Z respectively, and ifX ′, Y ′, Z ′ are points on the respective
sidelines such that

BX ′
= XC, CY ′

= Y A, AZ ′
= ZB,

then (4) is the line containingX ′, Y ′, Z ′. This is called the isotomic line of the
line containingX, Y , Z. �

5. Coordinates

For completeness, we record the barycentric coordinates ofvarious points asso-
ciated with the Sherman line configuration.

5.1. Points on the Sherman line.The Sherman line is the trilinear polar of

S = (f(a, b, c) : f(b, c, a) : f(c, a, b)),

where
f(a, b, c) := (b − c)(a2

(b + c) − 2abc − (b + c)(b − c)2).
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The point of tangency with the incircle is

T = ((b + c − a)f(a, b, c)2 : (c + a − b)f(b, c, a)
2

: (a + b − c)f(c, a, b)2).

This is the triangle centerX3326 in [2]. The point of tangency with the MacBeath
inconic is the point

T ′
= (a2SA · f(a, b, c)2 : b2SB · f(b, c, a)

2
: c2SC · (c, a, b)2).

See [5].
The pedal ofO on the Sherman line is the point

M = ((b + c − a)(b − c)SAf(a, b, c) · g(a, b, c) : · · · : · · · ),

where

g(a, b, c) = −2a4
+ a3

(b + c) + a2
(b − c)2 − a(b + c)(b − c)2 + (b2 − c2

)
2.

The triangle centersS, T ′, andM do not appear in Kimberling’sEncyclopedia
of Triangle Centers[2]. However, the superior ofM is the point

P ′
=

(

1

SA · f(a, b, c)
: · · · : · · ·

)

on the circumcircle, and the lineHP ′ is perpendicular to the Sherman line (see
Figure 2).P ′ is the triangle centerX1309.

5.2. A second construction of the Sherman line.It is known that the MacBeath
inconic is the envelope of the perpendicular bisector ofHP as P traverses the
circumcircle ([4,§11.1.5]). Therefore, the reflection ofH in the Sherman line, like
those in the three sidelines ofABC, is a point on the circumcircle. This reflection
is the point

P =

(

a
2

2a4 − 2a3(b + c) − a2(b2 − 4bc + c2) + 2a(b + c)(b − c)2 − (b2 − c2)2
: · · · : · · ·

)

,

According to [2],P is the triangle centerX953, the isogonal conjugate of the
infinite point

X952 = (2a4−2a3
(b+c)−a2

(b2−4bc+c2
)+2a(b+c)(b−c)2−(b2−c2

)
2

: · · · : · · · ).

This is the infinite point of the line joining the incenter to the nine-point center,
namely,

∑

cyclic

(b − c)(b + c − a)(a2 − b2
+ bc − c2

)x = 0.

This observation leads to a very easy (second) constructionof the Sherman line:
(i) Construct lines throughA, B, C parallel to the lineIN .
(ii) Construct the reflections of the lines in (i) in the respective angle bisectors of
the triangle.
(iii) The three lines in (ii) intersect at a pointP on the circumcircle.
(iv) The perpendicular bisector ofHP is the Sherman line.
See Figure 4. For a simpler construction, it is sufficient to construct one line in (i)
and the corresponding reflection in (ii).
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A
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E

F

T
N T ′

Q

P

Figure 4. Construction of the Sherman line

5.3. Pedal of orthocenter on the Sherman line.The midpoint of the segmentHP
is the point

Q = ((b+c−2a)(b−c)f(a, b, c) : (c+a−2b)(b−c)f(b, c, a) : (a+b−2c)(b−c)f(c, a, b))

on the nine-point circle. This is the triangle centerX3259 in [2] (see Figure 2).

5.4. Distances.Finally, we record the length of the fourth sideEF of the triangle:

EF 2
=

16r(4R2
+ 5Rr + r2 − s2

)(4R3 − (2r2
+ s2

)R + r(s2 − r2
))

(4R2
+ 4Rr + 3r2 − s2

)
2

,

whereR, r, ands are the circumradius, inradius, and semiperimeter of the given
triangle. The distance fromO to the Sherman line is

OM =

(R − 2r)(2R + r − s)(2R + r + s)

4R2
+ 4Rr + 3r2 − s2

.
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Improving Upon a Geometric Inequality of Third Order

Toufik Mansour and Mark Shattuck

Abstract. We show that the best possible positive constantk in a certain geo-
metric inequality of third order lies in the interval[0.14119, 0.14364], which
improves upon a previous known result wherek = 0. We also consider a com-
parable question concerning a fourth order version of the inequality.

1. Introduction

Given a pointP in the plane of triangleABC, let R1, R2, andR3 denote the
respective distancesAP , BP , andCP . Let a, b, andc be the lengths of the sides
of triangleABC, s the semi-perimeter,L the area,R the circumradius, andr the
inradius.

Liu [4] conjectured the following geometric inequality which holds for all points
P in the plane of an arbitrary triangleABC:

(R1R2)

3

2 + (R2R3)

3

2 + (R3R1)

3

2 ≥ 24r3. (1)

This inequality was proven by Wu, Zhang and Chu in [5], where it was strength-
ened to

(R1R2)

3

2 + (R2R3)

3

2 + (R3R1)

3

2 ≥ 12Rr2. (2)

Observe that (1) and (2) both reduce to Euler’s inequalityR ≥ 2r, see [1, p. 48,
Th. 5.1], wheneverP is taken to be the circumcenter of triangleABC.

Note that (2) cannot be improved upon by a multiplicative factor since there
is equality in the case when triangleABC is equilateral withP its center. The
following question involving an additional non-negative term on the right-hand
side is raised by the authors at the end of [5]:

Problem. For a triangleABC and an arbitrary pointP , determine the best possible
k such that the following inequality holds:

(R1R2)

3

2 + (R2R3)

3

2 + (R3R1)

3

2 ≥ 12[R + k(R − 2r)]r2. (3)

In this paper, we will prove the following result by a different method than that
used in [5] to show (1) and (2).
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Theorem 1. The best possiblek such that inequality(3) holds lies in the interval
[y, z], wherey ≈ 0.14119 andz ≈ 0.14364. In particular, we have

(R1R2)

3

2 + (R2R3)

3

2 + (R3R1)

3

2 ≥ 12[R +

7

50

(R − 2r)]r2.

2. Preliminary results

Lemma 2. [5, Eq. 3.1]If j > 1, then

(R1R2)
j
+ (R2R3)

j
+ (R3R1)

j ≥
(abc)j

[a
j

j−1
+ b

j

j−1
+ c

j

j−1
]
j−1

.

Lemma 3. Supposep is a fixed number with0 < p ≤ 8

27
. Let t := w(a, b, c) =

ab + bc + ca, wherea, b andc are real numbers, and letM denote the maximum
value oft subject to the constraintsa + b + c = 2 andabc = p.
(i) M is achieved by some point(a, b, c), where two ofa, b, c are the same and
a, b, c > 0.
(ii) One may assume further thatM is achieved by some point(a, b, c), where
a = b and 2

3
≤ a < 1.

(iii) If v :=
M−1

p
, thenv satisfiesp = g(v), whereg is the function given by

g(x) =

−8x2
+ 36x − 27 − (9 − 8x)

3

2

8x3
. (4)

Proof. (i) A standard argument using the method of Lagrange multipliers with two
constraints shows that two of{a, b, c} must be the same whent is maximized. Note
thata, b, c > 0 whent is maximized, for if sayb, c < 0, thenr = ab + bc + ca =

2(b + c) − (b + c)2 + bc < 0, and clearlyt can achieve positive values for all
choices ofp (for example, choosinga, b > 0 andc =

2

3
). Note further that there is

no minimum fort, for if c is negative, then

t = ab + bc + ca = ab + c(2 − c) < ab =

p

c
,

so choosingc near zero impliest can assume arbitrarily large negative values.
(ii) By part (i) and symmetry, the equalityw(a, b, c) = M subject to the con-

straints is achieved by some point(a, b, c), wherea = b and0 < a < 1 (note
that c > 0 implies a < 1). Then a is a positive root ofα(x) = p, where
α(x) := 2x2

(1 − x). Note that the functionα is increasing on(0, 2

3
), decreas-

ing on (
2

3
, 1), and has a maximum of8

27
at x =

2

3
, with α(0) = α(1) = 0.

If p =
8

27
, thena = b = c =

2

3
, by the equality condition in the geometric-

arithmetic mean inequality, so we will assumep < 8

27
. Then the equationα(x) = p

has two roots in the interval(0, 1), which we will denote byr1 < r2; note that
0 < r1 < 2

3
< r2 < 1.

We will now show that the maximum valueM is achieved whena = b = r2 >
2

3
by comparing it to the value ofw(a, b, c) when a = b = r1. Let β(x) :=

w(x, x, 2−2x) = 4x−3x2. Note thatβ(r2) > β(r1) iff r1 +r2 < 4

3
. To show the

latter, first observe thatα(x) > α(
4

3
− x) for all x ∈ (0, 2

3
) since, for the function
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γ(x) := α(x) − α(
4

3
− x), we haveγ(

2

3
) = 0 with γ′

(x) = −4

3
(2 − 3x)

2 < 0.
Thenα(

4

3
− r1) < α(r1) = α(r2) impliesr2 < 4

3
− r1, as desired, sinceα(x) is

decreasing whenx > 2

3
.

(iii) By part (ii), we havev =

β(a)−1

p
, where2

3
≤ a < 1 satisfies2a2

(1−a) = p.
Thus,

v =

4a − 3a2 − 1

2a2
(1 − a)

=

3a − 1

2a2
. (5)

Note that1 < v ≤ 9

8
since1 < 3x−1

2x2 ≤ 9

8
if x ∈ [

2

3
, 1). Solving fora in terms ofv

in (5) gives

a =

3 + (9 − 8v)

1

2

4v
, (6)

where we reject the other root sincea ≥ 2

3
. From (5) and (6), we may write

p = 2a2
(1 − a) =

(1 − a)(3a − 1)

v
=

−3

(

3a−1

2v

)

+ 4a − 1

v

=

−2v + 3 − (9 − 8v)a

2v2
=

−8v2
+ 12v − (3 + (9 − 8v)

1

2 )(9 − 8v)

8v3
,

which gives the requested relation. �

Lemma 4. Leta, b, c be real numbers such thata+ b+ c = 2 with 0 < a, b, c < 1.
Then we have

1 + abc < ab + bc + ca ≤ 1 +

9

8

abc.

Proof. The proof of Lemma 3 shows the right inequality. The left one follows
from expanding the obvious inequality(1 − a)(1 − b)(1 − c) > 0, and noting
a + b + c = 2. �

Lemma 5. Let D consist of the set of ordered pairs(p, u) such that there ex-
ists a triangle of perimeter2 having side lengthsa, b, c with p = abc and u =

ab+bc+ca−1

abc
. If 1 < u′ ≤ 9

8
is fixed, thenp = g(u′

) is the smallestp such that
(p, u′

) ∈ D.

Proof. Note first that(p, u) ∈ D implies0 < p ≤ 8

27
and1 < u ≤ 9

8
, the latter by

Lemma 4. Givenpo ∈ (0, 8

27
], letuo denote the solution of the equationg(u) = po,

whereu ∈ (1, 9

8
] andg is given by (4) above. Note thatuo is uniquely determined

sinceg(1) = 0 andg(
9

8
) =

8

27
, with g(x) increasing on(1, 9

8
] as

g′(x) =

81 − 8x(9 − x) + (27 − 12x)(9 − 8x)

1

2

8x4
> 0.

Observe further that the proof of the third part of Lemma 3 canbe modified slightly
to show that points of the form(g(u), u) always belong toD wheneveru ∈ (1, 9

8
].

Thus, from the third part of Lemma 3, we see thatuo is the largest u such that
(po, u) ∈ D.

Sou ≤ uo = g−1
(po) for all u such that(po, u) ∈ D, which impliesg(u) ≤ po

for all suchu. Conversely, ifu′ ∈ (1, 9

8
] is fixed and(p, u′

) ∈ D, theng(u′
) ≤ p

for all suchp. In particular,p = g(u′
) is the smallestp such that(p, u′

) ∈ D. �
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Lemma 6. Letf(u) be given by

f(u) =

[(3 − 6u)g(u) + 2]
−

1

2 − 3(u − 1)

1

2

3(u − 1)

1

2 − 24(u − 1)

3

2

,

whereg(u) is given by

g(u) =

−8u2
+ 36u − 27 − (9 − 8u)

3

2

8u3
.

If m is the minimum value off(u) on the interval(1, 9

8
], thenm ≈ 0.141194514.

Proof. From the definitions, we have

d

du
f(u) =

6g(u)−(3−6u)
d

du
g(u)

2((3−6u)g(u)+2)
3

2

− 3

2(u−1)
1

2

3(u − 1)

1

2 (9 − 8u)

−

(25 − 24u)

(

1

((3−6u)g(u)+2)
1

2

− 3(u − 1)

1

2

)

6(u − 1)

3

2 (9 − 8u)
2

,

where

d

du
g(u) =

36 − 16u + 12(9 − 8u)

1

2

8u3
+

3(8u2 − 36u + 27 + (9 − 8u)

3

2 )

8u4
.

The equationd
du

f(u) = 0 can be written as

(3 − z)
1

2 (3z
6
− 21z

5
+ 40z

4
− 21z

3
− 3z

2
+ 24z − 18) + 6(3 − 3z + 3z

2
− z

3
)

3

2 (1 − z
2
)

3

2

(3 − 3z + 3z2
− z3)

3

2 (1 − z2)
3

2 z4

= 0,

whereu = (9 − z2
)/8. The last equation implies

36z12 − 324z11
+ 1197z10 − 2421z9

+ 3111z8 − 2877z7
+ 2014z6

− 702z5 − 897z4
+ 1983z3 − 2097z2

+ 1125z − 180 = 0.

With the aid of mathematical programming (such as Maple), one can show that the
above polynomial equation has four real roots

z1 ≈ −0.876333426, z2 ≈ 0.257008823, z3 ≈ 0.891710246, z4 ≈ 2.374529908,

which implies

u1 ≈ 1.029004966, u2 ≈ 1.116743308, u3 ≈ 1.025606605, u4 ≈ 0.420200965.

Now d
du

f(u)|u=u2
= 0, with d

du
f(u)|u=u1

< 0 and d
du

f(u)|u=u3
< 0. Thus, the

equation d
du

f(u) = 0 has a unique real solutionu∗
= u2 ≈ 1.116743308 on the

interval(1, 9

8
).

Sincelimu→1+ f(u) = ∞, f(u∗
) = 0.141194514, andf(

9

8
) = lim

u→ 9

8

− f(u) =

1

6
, we see that the minimum value off(u) on the interval(1, 9

8
] is approximately

0.141194514. �

Lemma 7. Leth(a) be given by

h(a) =

a3
(1 − a)

3
+ 2[a(1 − a)(−a2

+ 4a − 2)]

3

2 − 6a2
(1 − a)

2
(2a − 1)

2

6(1 − a)
2
(2a − 1)

2
(3a − 2)

2
.

If n is the minimum value ofh(a) on the interval(2−
√

2, 1), thenn ≈ 0.143630168.



Improving upon a geometric inequality of third order 231

Proof. Using mathematical programming such as Maple, one can show that the
equation d

da
h(a) = 0 has a unique real solutiona∗ ≈ 0.741049808 on the interval

2 −
√

2 < a < 1. Sinceh(2 −
√

2) = 2.178511254, h(
2

3
) = lima→ 2

3

h(a) =
1

4
,

h(a∗) = 0.143630168, andlima→1− h(a) = ∞, we see that the minimum ofh(a)

on the interval2 −
√

2 < a < 1 is approximately0.143630168. �

3. Proof of the main result

3.1. The lower bound.We first treat the lower bound in Theorem 1. By Lemma 2
with j =

3

2
, we may consider the inequality

(abc)
3

2

(a3
+ b3

+ c3
)

1

2

≥ 12[R + k(R − 2r)]r2,

which can be rewritten as

(abc)
3

2

(a3
+ b3

+ c3
)

1

2

≥
3(1 + k)abcL

s2
−

24kL3

s3
, (7)

using the factsabc = 4Rrs andL = rs, see [3, Section 1.4]. By homogeneity,
we may takes = 1 in (7). RecallingL =

√

s(s − a)(s − b)(s − c) (see [2,
p. 12, 1.53]), we wish to find the best possiblek such that the inequality

(abc)
3

2

(a3
+ b3

+ c3
)

1

2

≥ 3(1+k)abc[(1−a)(1−b)(1−c)]
1

2 −24k[(1−a)(1−b)(1−c)]
3

2

(8)
holds for alla, b, c satisfyinga + b + c = 2 with 0 < a, b, c < 1.

Let p = abc andt = ab + bc + ca. From the algebraic identity,

a3
+ b3

+ c3 − 3abc = (a + b + c)(a2
+ b2

+ c2 − ab − bc − ca)

= (a + b + c)((a + b + c)2 − 3(ab + bc + ca)),

anda + b + c = 2, we get

a3
+ b3

+ c3
= 3p + 2(2

2 − 3t) = 3p − 6t + 8.

Furthermore, we have

(1 − a)(1 − b)(1 − c) = 1 − (a + b + c) + (ab + bc + ca) − abc = t − p − 1.

Thus, (8) may be rewritten in terms ofp andt as

p
3

2

(3p − 6t + 8)

1

2

≥ 3(1 + k)p(t − p − 1)

1

2 − 24k(t − p − 1)

3

2 . (9)

Dividing both sides of (9) byp
3

2 , and lettingu =
t−1

p
, we obtain the following

inequality inp andu over the domainD defined above in Lemma 5:

1

(3p − 6pu + 2)

1

2

≥ 3(1 + k)(u − 1)

1

2 − 24k(u − 1)

3

2 . (10)
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Next consider the functionh(p, u, k) defined by

h(p, u, k) =

1

(3p − 6pu + 2)

1

2

− 3(1 + k)(u − 1)

1

2 + 24k(u − 1)

3

2 .

Since for each givenu ∈ (1, 9

8
], we have

d

dp
h(p, u, k) =

6u − 3

2(3p − 6pu + 2)

3

2

> 0

for all p ∈ (0, 8

27
), we may consider for eachu, thesmallestp such that(p, u) ∈ D

when determining the best possible constantk. That is, we may replacep with
g(u) when determining the best possiblek in (10), by Lemma 5, whereu ∈ (1, 9

8
]

andg is given by (4).
We rewrite (10) whenp = g(u) asf(u) ≥ k, where

f(u) =

[(3 − 6u)g(u) + 2]
−

1

2 − 3(u − 1)

1

2

3(u − 1)

1

2 − 24(u − 1)

3

2

.

Therefore, we seek the minimum valuem of f(u) over the interval(1, 9

8
], and

choosingk = m will yield the largestk for which inequality (10), and hence (7),
holds. By Lemma 6, we havem ≈ 0.14119. By Lemma 2, we see that inequality
(3) holds withk = m and thus the best possiblek in that inequality is at leastm,
which establishes our lower bound.

3.2. The upper bound.We now treat the upper bound given in Theorem 1. For
this, we consider the original inequality (3), rewritten as

(R1R2)

3

2 + (R2R3)

3

2 + (R3R1)

3

2

p
3

2

≥ 3(1 + k)(u − 1)

1

2 − 24k(u − 1)

3

2 , (11)

where we have divided through both sides byp
3

2 , andu andp are as before with
a + b + c = 2. Equivalently, we consider the inequality

(R1R2)
3
2 +(R2R3)

3
2 +(R3R1)

3
2

p
3
2

− 3(u − 1)

1

2

3(u − 1)

1

2 − 24(u − 1)

3

2

≥ k, (12)

and seek to find a triangleABC of perimeter2 and a pointP in its plane such
that the left-hand side is small. We takeABC to be an acute isosceles triangle and
the pointP to be the orthocenter of triangleABC. Note that the sides of triangle
ABC area, a, and2 − 2a for somea, where2 −

√
2 < a < 1. After several

straightforward calculations, we see that (12) in this casemay be rewritten in terms
of a ash(a) ≥ k, where

h(a) =

a3
(1 − a)

3
+ 2[a(1 − a)(−a2

+ 4a − 2)]

3

2 − 6a2
(1 − a)

2
(2a − 1)

2

6(1 − a)
2
(2a − 1)

2
(3a − 2)

2
.

By Lemma 7, we see that the minimum value ofh(a) on the interval(2 −
√

2, 1)
is approximately0.14364, which gives our upper bound fork.
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4. Fourth order inequalities

Liu [4] conjectured the following geometric inequality of fourth order,

(R1R2)
2
+ (R2R3)

2
+ (R3R1)

2 ≥ 8(R2
+ 2r2

)r2, (13)

which was proven in [5], where it was strengthened to

(R1R2)
2
+ (R2R3)

2
+ (R3R1)

2 ≥ 8(R + r)Rr2. (14)

Note that, sinceR ≥ 2r, both (13) and (14) imply the inequality

(R1R2)
2
+ (R2R3)

2
+ (R3R1)

2 ≥ 48r4, (15)

which is thek = 2 case of Theorem 4.4 in [5]. Here, we apply the prior reasoning
and sharpen inequality (15), obtaining a new lower bound forthe sum which is
incomparable to the bounds given in (13) and (14). We also provide an alternate
proof of inequality (14), though it does not appear that we are able to sharpen it
using the present method.

4.1. Sharpened form of(15). We prove the following strengthened version of in-
equality (15).

Theorem 8. For any triangleABC and pointP in its plane, we have

(R1R2)
2
+ (R2R3)

2
+ (R3R1)

2 ≥ 6(7R − 6r)r3. (16)

Proof. By Lemma 2 whenj = 2, it suffices to show

(abc)2

a2
+ b2

+ c2
≥ 6(7R − 6r)r3 (17)

for all trianglesABC with sidesa, b, andc such thata + b + c = 2. Note that
4Rr = abc, r2

= L2
= (1 − a)(1 − b)(1 − c) = ab + bc + ca − abc − 1, and

a2
+ b2

+ c2
= 4 − 2(ab + bc + ca), sincea + b + c = 2. Letting p = abc and

t = ab + bc + ca, we see that inequality (17) may thus be reexpressed as

p2

4 − 2t
≥

21

2

p(t − p − 1) − 36(t − p − 1)
2.

Dividing through both sides of the last inequality byp2, letting u =
t−1

p
, and

rearranging, we see that it is equivalent to

w(p, u) :=

1

1 − pu
− 21(u − 1) + 72(u − 1)

2 ≥ 0. (18)

Since for eachu ∈ (1, 9

8
], we have

d

dp
w(p, u) =

u

(1 − pu)
2

> 0

for all p ∈ (0, 8

27
), it suffices to prove (18) in the case whenp = g(u), by Lemma

5, whereg is given by (4). Rearranging inequality (18) whenp = g(u), and
cancelling a factor of9 − 8u, we show equivalently thatℓ(u) ≥ 0, where

ℓ(u) = (72u2 − 165u + 93)(9 − 8u)

1

2 − 144u3
+ 492u2 − 619u + 279.
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To do so, first observe that

ℓ′(u) =

−1440u2
+ 3276u − 1857

(9 − 8u)

1

2

− 432u2
+ 984u − 619,

whenceℓ′(1) = −88 < 0 andlim
u→ 9

8

− ℓ′(u) = ∞. Since

ℓ′′(u) =

17280u2 − 39024u + 22056

(9 − 8u)

3

2

+ (984 − 864u) > 0, 1 < u <
9

8

,

being the sum of two positive terms, it follows that the equation ℓ′(u) = 0 has a
unique real solutionu∗ on the interval(1, 9

8
). By any numerical method, we have

u∗ ≈ 1.123717946. It follows thatℓ(u∗
) ≈ 0.205071273 is the minimum value of

the functionℓ on the interval(1, 9

8
]. In particular, we haveℓ(u) ≥ 0 if 1 < u ≤ 9

8
,

which establishes (18) and completes the proof of (16). �

Remark:Note that right-hand side of (16) is at least as large as the right-hand
side of (14) whenR ≤ 9

4
r and is smaller whenR > 9

4
r.

4.2. An alternate proof of(14). Here, we provide an alternative proof for (14) to
the one given in [5]. By thej = 2 case of Lemma 2, it is enough to show

(abc)2

a2
+ b2

+ c2
≥ 8(R + r)Rr2 (19)

for a triangleABC with side lengthsa, b andc, where we may assumea+b+c = 2.
Upon dividing through both sides of inequality (19) by(abc)2, we see that it may
be rewritten in terms ofp = abc andu =

ab+bc+ca−1

abc
as

1

2(1 − pu)

≥
1

2

+ 2(u − 1). (20)

It suffices to show (20) in the case whenp = g(u), whereg is given by (4), by
Lemma 5, since the difference of the two sides is an increasing function ofp for
eachu. To show the inequality

(4u − 3)(1 − ug(u)) ≤ 1, 1 < u ≤
9

8

,

i.e.,
(4u − 3)(16u2 − 36u + 27 + (9 − 8u)

3

2 )

8u2
≤ 1,

we first rewrite it as

−64u3
+ 200u2 − 216u + 81 ≥ (4u − 3)(9 − 8u)

3

2 .

Cancelling factors of9 − 8u from both sides of the last inequality then gives

8u2 − 16u + 9 ≥ (4u − 3)(9 − 8u)

1

2 . (21)

Finally, to show that (21) holds for1 < u ≤ 9

8
, note that for the function

v(u) :=

8u2 − 16u + 9

4u − 3

− (9 − 8u)

1

2 ,
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we havev(1) = 0 with

v′(u) = 2 −
6

(4u − 3)
2

+

4

(9 − 8u)

1

2

> 0, 1 < u <
9

8

.
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Maximal Area of a Bicentric Quadrilateral

Martin Josefsson

Abstract. We prove an inequality for the area of a bicentric quadrilateral in
terms of the radii of the two associated circles and show how to construct the
quadrilateral of maximal area.

1. Introduction

A bicentric quadrilateral is a convex quadrilateral that has both an incircle and
a circumcircle, so it is both tangential and cyclic. Given two circles, one within
the other with radiir andR (wherer < R), then a necessary condition that there
can be a bicentric quadrilateral associated with these circles is that the distanceδ
between their centers satisfies Fuss’ relation

1

(R + δ)2
+

1

(R − δ)2
=

1

r2
.

A beautiful elementary proof of this was given by Salazar (see [8], and quoted at
[1]). According to [9, p.292], this is also a sufficient condition for the existence
of a bicentric quadrilateral. Now if there for two such circles exists one bicentric
quadrilateral, then according to Poncelet’s closure theorem there exists infinitely
many; any point on the circumcircle can be a vertex for one of these bicentric
quadrilaterals [11]. That is the configuration we shall study in this note. We derive
a formula for the area of a bicentric quadrilateral in terms of the inradius, the
circumradius and the angle between the diagonals, concludefor which quadrilateral
the area has its maximum value in terms of the two radii, and show how to construct
that maximal quadrilateral.

2. More on the area of a bicentric quadrilateral

In [4] and [3, §6] we derived a few new formulas for the area of a bicentric
quadrilateral. Here we will prove another area formula using properties of bicentric
quadrilaterals derived by other authors.

Theorem 1. If a bicentric quadrilateral has an incircle and a circumcircle with
radii r andR respectively, then it has the area

K = r
(

r +

√

4R2
+ r2

)

sin θ

Publication Date: October 18, 2012. Communicating Editor:Paul Yiu.
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whereθ is the angle between the diagonals.

Proof. We give two different proofs. Both of them uses the formula

K =
1

2
pq sin θ (1)

which gives the area of a convex quadrilateral with diagonals p, q and angleθ
between them.

b

O

b

A

b

B

b
C

bD p

R

Figure 1. Using the inscribed angle theorem

First proof. In a cyclic quadrilateral it is easy to see that the diagonalssatisfy
p = 2R sin B andq = 2R sin A (see Figure 1). Inserting these into (1) we have
that a cyclic quadrilateral has the area1

K = 2R2
sin A sin B sin θ. (2)

In [13] Yun proved that in a bicentric quadrilateralABCD (which he called a
double circle quadrilateral),

sinA sin B =

r2
+ r

√
4R2

+ r2

2R2
.

Inserting this into (2) proves the theorem.
Second proof.In [2, pp.249, 271–275] it is proved that the inradius in a bicentric

quadrilateral is given by

r =

pq

2

√

pq + 4R2
.

Solving for the product of the diagonals gives

pq = 2r
(

r +

√

4R2
+ r2

)

where we chose the solution of the quadratic equation with the plus sign since
the product of the diagonals is positive. Inserting this into (1) directly yields the
theorem. �

1A direct consequence of this formula is the inequalityK ≤ 2R
2 in a cyclic quadrilateral, with

equality if and only if the quadrilateral is a square.



Maximal area of a bicentric quadrilateral 239

Remark. According to [12, p.164], it was Problem 1376 in the journal Crux
Mathematicorum to derive the equation

pq

4r2
−

4R2

pq
= 1

in a bicentric quadrilateral. Solving this also gives the productpq in terms of the
radii r andR.

Corollary 2. If a bicentric quadrilateral has an incircle and a circumcircle with
radii r andR respectively, then its area satisfies

K ≤ r
(

r +

√

4R2
+ r2

)

where there is equality if and only if the quadrilateral is a right kite.

Proof. There is equality if and only if the angle between the diagonals is a right
angle, sincesin θ ≤ 1 with equality if and only ifθ =

π
2
. A tangential quadrilateral

has perpendicular diagonals if and only if it is a kite according to Theorem 2 (i)
and (iii) in [5]. Finally, a kite is cyclic if and only if two opposite angles are right
angles since it has a diagonal that is a line of symmetry and opposite angles in a
cyclic quadrilateral are supplementary angles. �

We also have that the semiperimeter of a bicentric quadrilateral satisfies

s ≤ r +

√

4R2
+ r2

where there is equality if and only if the quadrilateral is a right kite. This is a direct
consequence of Corollary 2 and the formulaK = rs for the area of a tangential
quadrilateral. To derive this inequality was a part of Problem 1203 in Crux Mathe-
maticorum according to [10, p.39]. Another part of that problem was to prove that
in a bicentric quadrilateral, the product of the sides satisfies

abcd ≤ 16

9
r2

(4R2
+ r2

).

It is well known that the left hand side gives the square of thearea of a bicentric
quadrilateral (a short proof is given in [4, pp.155–156]). Thus the inequality can
be restated as

K ≤ 4

3
r
√

4R2
+ r2.

This is a weaker area inequality than the one in Corollary 2, which can be seen in
the following way. An inequality between the two radii of a bicentric quadrilateral
is R ≥

√
2r. 2 From this it follows that4R2 ≥ 8r2, and so

3r ≤
√

4R2
+ r2.

Hence, from Theorem 1, we have
K

r
≤ r +

√

4R2
+ r2 ≤ 4

3

√

4R2
+ r2

so the expression in Corollary 2 gives a sharper upper bound for the area.

2References to several different proofs of this inequality are given at the end of [6], where we
provided a new proof of an extension to this inequality.
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3. Construction of the maximal bicentric quadrilateral

Given two circles, one within the other, and assuming that a bicentric quadrilat-
eral exist inscribed in the larger circle and circumscribedaround the smaller, then
among the infinitely many such quadrilaterals that are associated with these cir-
cles, Corollary 2 states that the one with maximal area is a right kite. Since a kite
has a diagonal that is a line of symmetry, the construction ofthis is easy. Draw a
line through the two centers of the circles. It intersect thecircumcircle atA andC.
Now all that is left is to construct tangents to the incircle throughA. This is done by
constructing the midpointM between the incenterI andA, and drawing the circle
with centerM and radiusMI according to [7]. This circle intersect the incircle at
E andF . Draw the tangentsAE andAF extended to intersect the circumcircle at
B andD. Finally connect the pointsABCD, which is the right kite with maximal
area of all bicentric quadrilaterals associated with the two circles having centersI
andO.

b

I

b

O

b

A

b C

b

M

bF

b

E

bD

b

B

Figure 2. Construction of the right kiteABCD
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The Maltitude Construction in a Convex Noncyclic
Quadrilateral

Maria Flavia Mammana

Abstract. This note is linked to a recent paper of O. Radko and E. Tsukerman.
We consider the maltitude construction in a convex noncyclic quadrilateral and
we determine a point that can be viewed as a generalization ofthe anticenter.

1. Introduction

In [5] it is investigated the perpendicular bisector construction in a noncyclic
quadrilateralQ = Q(0)

= ABCD. The perpendicular bisectors of the sides of
Q determine a noncyclic quadrilateralQ(1)

= A1B1C1D1, whose vertices are the
centers of the triad circles,i.e., the circles passing through three vertices ofQ. This
process can be iterated to obtain a sequence of noncyclic quadrilaterals:Q(0),Q(1),
Q(2), . . . .

D C

B

A

A1

B1 C1

D1

A2

D2C2

B2

W

Figure 1.

All even generation quadrilaterals are similar, and all oddgeneration quadrilat-
erals are similar. Further, there is a point W that serves as the center of the spiral
similarity for any pair of quadrilateralsQ(n), Q(n+2). If Q is a convex noncyclic
quadrilateral, the quadrilateralsQ(n), Q(n+2) are homotetic, the ratio of similarity
is a negative constant and the quadrilaterals in the iterated perpendicular bisectors
construction converge toW . In a convex noncyclic quadrilateral the limit pointW
can be viewed as a generalization of the circumcenter.
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2. Characteristic and affinity

In [3] it is proved that ifQ is a convex quadrilateral, thenQ(1) is affine toQ. It
follows that, for anyn, Q(n+1) is affine toQ(n).

D C

B

A

A1

B1
C1

D1

E1

E

Figure 2.

For the convenience of the reader, we give a proof of this property. In [2] it is
defined the characteristic of a quadrilateralQ as follows. LetE be the common
point of the diagonalsAC andBD of Q. For the ratiosAE

EC
and CE

EA
, let h be the

one not greater than1. Also for the ratiosBE
ED

and DE
EB

, let k be the one not greater
than1. The pair{h, k} is the characteristic ofQ. In [2] it is proved that two con-
vex quadrilaterals are affine if and only if they have the samecharacteristic. We
consider now the quadrilateralQ(1)

= A1B1C1D1. The lineA1C1 is perpendic-
ular to the radical axisBD of the circle passing throughB, C, D and the circle
passing throughA, B, D. Similarly, the lineB1D1 is perpendicular to the line
AC. Further, the linesA1B1, B1C1, C1D1, D1A1 are perpendicular to the lines
DC, AD, BA, CB, respectively. It follows that, ifE1 is the common point of
diagonalsA1C1 andB1D1 of Q(1), the triangle pairsABE andC1D1E1, BCE
andA1D1E1, CDE andA1B1E1 are similar. Therefore we have

AE

BE
=

E1D1

E1C1

,
BE

EC
=

A1E1

E1D1

,
EC

ED
=

B1E1

A1E1

,

from which
AE

EC
=

A1E1

E1C1

,
BE

ED
=

B1E1

E1D1

.

Thus,Q andQ(1) have the same charactristic and are affine.

3. Maltitudes

In [3] it is considered also the quadrilateralQm determined by the maltitudes
of a convex noncyclic quadrilateralQ. A maltitude ofQ is the perpendicular line
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through the midpoint of a side to the opposite side [1]. In [4]it is proved that the
maltitudes are concurrent in a point, called anticenter, ifand only ifQ is cyclic.

In [3] it is proved that the quadrilateralQm = A′

1
B′

1
C ′

1
D′

1
is the symmetric of

Q(1) with respect to the centroidG of Q.This property follows from the fact that
the maltitudes ofQ are transformed into the perpendicular bisectors ofQ in the
half-turn aboutG.

D C

B

A

A1

B1
C1

D1

A′

1

B′

1

C′

1

D′

1

M3

M2

M1

M4

G

Figure 3.

The existence of the pointW , as the limit point in the iterated perpendicular
bisectors construction, implies that the symmetricW ′ of W with respect toG is
the limit point in the iterated maltitudes construction. Furthermore, in a convex
noncyclic quadrilateral the limit pointW ′ can be viewed as a generalization of the
anticenter.

We observe that in a cyclic quadrilateral the circumcenter and the anticenter are
symmetric with respect to the centroid. IfQ is a convex noncyclic quadrilateral, in
analogy with the case of a cyclic quadrilateral, we call the line containingG, W
andW ′ theEuler line of Q.
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Using Complex Weighted Centroids
to Create Homothetic Polygons

Harold Reiter and Arthur Holshouser

Abstract. After first defining weighted centroids that use complex arithmetic,
we then make a simple observation which proves Theorem 1. We next define
complex homothety. We then show how to apply this theory to triangles (or
polygons) to create endless numbers of homothetic triangles (or polygon). The
first part of the paper is fairly standard. However, in the final part of the paper, we
give two examples which illustrate that examples can easilybe given in which
the simple basic underpinning is so disguised that it is not at all obvious. Also,
the entire paper is greatly enhanced by the use of complex arithmetic.

1. Introduction to the basic theory

SupposeA,B,C, x, y are complex numbers that satisfyxA+yB = C, x+y =

1. It easily follows thatA+y (B −A) = C andx (A−B)+B = C. This simple
observation with its geometric interpretation is the basisof this paper.

Definition. SupposeM1,M2, . . . ,Mm are points in the complex plane andk1,

k2, . . . ,km are complex numbers that satisfy
m
∑

i=1

ki = 1. Of course, each complex

pointMi is also a complex number. The weighted centroid of these complex points
{M1,M2, . . . ,Mm} with respect to{k1, k2, . . . , km} is a complex pointGM de-

fined byGM =

m
∑

i=1

kiMi.

The complex numbersk1, k2, . . . ,km are called weights and in the notationGM
it is always assumed that the reader knows what these weightsare.

If k1, k2, . . . , km, k1, k2, . . . , kn are complex numbers, we denote the sums

Sk =

m
∑

i=1

ki, Sk =

n
∑

i=1

ki.

SupposeM1,M2, . . . ,Mm,M1,M2, . . . ,Mn are points in the complex plane.

Also, k1, k2, . . . , km, k1, k2, . . . , kn are complex numbers that satisfy
m
∑

i=1

ki +

n
∑

i=1

ki = 1. Thus,Sk + Sk = 1.
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DenoteGM∪M =

m
∑

i=1

kiMi +

n
∑

i=1

kiMi.

Thus,GM∪M is the weighted centroid of
{

M1, . . . ,Mm,M1, . . . ,Mn

}

with
respect to the weights

{

k1, . . . , km, k1, . . . , kn
}

.

It is obvious that
m
∑

i=1

ki

S
k

= 1 and
n
∑

i=1

ki

S
k

= 1.

DenoteGM =

m
∑

i=1

ki

S
k

Mi andGM =

n
∑

i=1

ki

S
k

Mi.

Thus,GM is the weighted centroid of{M1,M2, . . . ,Mm} with respect to the

weights
{

k1
S

k

, k2
S

k

, . . . , km

S
k

}

andGM is the weighted centroid of
{

M1,M2, . . . ,Mn

}

with respect to the weights
{

k1
S

k

, k2
S

k

, . . . , kn

S
k

}

.

As always, these weights are understood in the notationGM , GM .

SinceGM∪M =

m
∑

i=1

kiMi +

n
∑

i=1

kiM i = Sk ·
m
∑

i=1

ki

S
k

Mi + Sk ·
n
∑

i=1

ki

S
k

M i it is

obvious that(∗) is true.
(∗) Sk ·GM + Sk ·GM = GM∪M whereSk + Sk = 1.
From equation(∗) andSk + Sk = 1 it is easy to see that (1) and (2) are true.
(1)GM + Sk

(

GM −GM
)

≡ GM∪M .

(2)GM + Sk
(

GM −GM
)

≡ GM∪M .

2. Basic theorem

The identity(∗) and the formula (1) of§ 1 proves the following Theorem 1.

Theorem 1. SupposeM1, M2, . . . ,Mm, M1, M2, . . . ,Mn are points in the com-

plex plane. Also, supposeP =

m
∑

i=1

kiMi +

n
∑

i=1

kiMi wherek1, . . . , km, k1, . . . ,

kn are complex numbers that satisfy
m
∑

i=1

ki +

n
∑

i=1

ki = 1. Then there exists com-

plex numbersx1, x2, . . . , xm where
m
∑

i=1

xi = 1 and there exists complex numbers

y1, y2, . . . , yn where
n
∑

i=1

yi = 1 and there exists a complex numberz such that the

following are true.
(1). x1, . . . , xm, y1, . . . , yn, z are rational function ofk1, . . . ,km, k1, . . . ,kn.

(2). P = Q + z (R−Q) whereQ,R are defined byQ =

m
∑

i=1

xiMi, R =

n
∑

i=1

yiMi.

As we illustrate in Section 6, the values ofx1, . . . ,xm, y1, . . . ,yn, z as rational
functions ofk1, k2, . . . ,km, k1, k2, . . . ,kn can be computed adhoc from any spe-
cific situation that we face in practice. We observe thatQ is the weighted centroid
of the complex pointsM1,M2, . . . ,Mm using the weightsx1, x2, . . . ,xm andR is



Using complex weighted centroids to create homothetic polygns 249

the weighted centroid of the complex pointsM1, M2, . . . , ,Mn using the weights
y1, y2, . . . ,yn. Of course, Theorem 1 is completely standard.

3. Complex homothety

If A, B are points in the complex plane, we denoteAB = B − A. This also
means thatAB is the complex vector fromA toB. Also, we define|AB| to be the
length of this vectorAB. If k is any complex number, thenk = r (cos θ + i sin θ),
r ≥ 0, is the polar form ofk. It is assumed that the reader knows that

[r (cos θ + i sin θ)] · [r (cosφ+ i sin φ)] = r · r (cos (θ + φ) + i sin (θ + φ)) .

SupposeS,P, P whereS 6= P, S 6= P are points in the complex plane and
k = r (cos θ + i sin θ), r > 0, is a non-zero complex number. Also, suppose
SP = k (SP ) whereas alwaysSP = P − S andSP = P − S. Since

SP = k (SP ) = [r (cos θ + i sin θ)] · (SP ) = (cos θ + i sin θ) · [r · (SP )] ,

we see that the complex vectorSP can be constructed from the complex vector
SP in the following two steps.

First, we multiply the vectorSP by the positive real number (or scale factor)r
to define a new vector,SP ′

= r · (SP ). SinceSP ′
= P ′ − S, the new pointP ′ is

collinear withS andP with P,P ′ lying on the same side ofS and|SP ′| = r·|SP | .
Next, we rotate the vectorSP ′ by θ radians counterclockwise about the origin

O as the axis to define the final vectorSP . Of course, the final pointP itself is
computed by rotating the pointP ′ by θ radians counterclockwise about the axisS.
If A,B,C, x, y are complex andxA+yB = C, x+y = 1, thenA+y (B −A) =

C. Therefore,AC = y · AB and if y = r (cos θ + i sin θ) ,, r ≥ 0, we see how to
construct the pointC.

From this construction, the following is obvious. SupposeS 6= P are arbitrary
variable points in the complex plane andSP = k · (SP ) wherek 6= 0 is a fixed
complex number.

Then the triangles△SPP will always have the same geometric shape (up to
similarity) since∠PSP = θ and

∣

∣SP
∣

∣

: |SP | = r : 1 whenk = r (cos θ + i sin θ),
r > 0. Next, let us suppose that the complex triangles△ABC and△ABC and
the complex pointS are related as follows:

SA = k · (SA) , SB = k · (SB) , SC = k · (SC) ,

wherek 6= 0 is some fixed complex number.
We call this relation complex homothety (or complex similitude). Also,S is

the center of homothety (or similitude) andk is the homothetic ratio (or ratio of
similitude). Whenk is real we have the usual homothety of two triangle. Of course,
for both real or complexk, it is fairly obvious that△ABC, and△ABC are always

geometrically similar and
|AB|
|AB|

=

|AC|
|AC|

=

|BC|
|BC|

= |k| .

Of course, this same definition of complex homothety also holds for two poly-
gonsABCDE, . . . andA B C D E, . . ..
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4. Using Theorem 1 to create endless homothetic triangles

Let M1, M2, . . . ,Mm, Ma1, Ma2, . . . ,Man, Mb1, Mb2, . . . ,Mbn, Mc1, Mc2,
. . . ,Mcn be any points in the plane.

As a specific example of this, we could start with a triangle△ABC and let
M1,M2, . . . ,Mm be any fixed points in the plane of△ABC such as the centroid,
orthocenter, Lemoine point, incenter, Nagel point, etc.

Also,Ma1, . . . ,Man are fixed points that have some relation to sideBC. Mb1,
. . . ,Mbn are fixed points that have some relation to sideAC andMc1,. . . ,Mcn are
fixed points that have some relation to sideAB.

Let k1, k2, . . . ,km, k1, k2, . . . ,kn be arbitrary but fixed complex numbers that

satisfy
m
∑

i=1

ki +
n
∑

i=1

ki = 1.

Define pointsPa, Pb, Pc as follows.

(1) Pa =

m
∑

i=1

kiMi +

n
∑

i=1

kiMai.

(2) Pb =

m
∑

i=1

kiMi +

n
∑

i=1

kiM bi.

(3) Pc =

m
∑

i=1

kiMi +

n
∑

i=1

kiM ci.

Note that these pointsPa, Pb, Pc are being defined in an analogous way. From

Theorem 1, there exists complex numbersx1, x2, . . . ,xm where
m
∑

i=1

xi = 1, y1, y2,

. . . ,yn where
n
∑

i=1

yi = 1, andz such that the following statements are true.

(1) x1, . . . ,xm, y1, y2, . . . ,yn, z are rational functions ofk1, . . . ,km, k1, . . . ,
kn.

(2) Pa = Q+z (Ra −Q),Pb = Q+z (Rb −Q),Rc = P+z (Rc −Q), where

Q =

m
∑

i=1

xiMi, andRa =

n
∑

i=1

yiMai, Rb =

n
∑

i=1

yiM bi,Rc =

n
∑

i=1

yiM ci.

(3) QPa = z · (QRa),QPb = z · (QRb),QPc = z · (QRc).

(3) follows from (2) since, for example,Pa −Q = QPa.
From (3) it also follows that△PaPbPc is homothetic to△RaRbRc with a center

of homothetyQ and a ratio of homothetyQPa

QRa

=
QP

b

QR
b

=
QPc

QRc

= z. Also, of

course,△PaPbPc ∼ △RaRbRc with a ratio of similarity |PaPb
|

|RaRb
|

=

|PaPc|

|RaRc|
=

|P
b
Pc|

|R
b
Rc|

= |z|.
In the above construction, we could lump some (but not all) ofthe points in

{M1, M2, . . . , Mm} with each of the three sets of points
{

Ma1, . . . , Man

}

,
{

Mb1, . . . , Mbn

}

,
{

Mc1, . . . , Mcn

}

. For example, we could deal with the four
sets{M2, . . . ,Mm},

{

M1,Ma1 , . . . ,Man

}

,
{

M1,Mb1, . . . ,Mbn

}

,
{

M1,Mc1, . . . ,Mcn

}

. We then use the same formulas as above and we have

QPa = z · (QRa) , QPb = z · (QRb) , QPc = z · (QRc) ,
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whereQ =

m
∑

i=2

xiMi, Ra =

(

n
∑

i=1

yiMai

)

+ yn+1M1, Rb =

(

n
∑

i=1

yiMbi

)

+

yn+1M1,Rc =

(

n
∑

i=1

yiMci

)

+ yn+1M1 with
m
∑

i=2

xi = 1 and
n+1
∑

i=1

yi = 1.

As we illustrate in Section 7, by redefining our four sets{Mi},
{

Mai

}

,
{

Mbi

}

,
{

Mci

}

in different ways, we can vastly expand our collections of homothetic tri-
angles.

5. Two specific examples

5.1. Problem 1.Suppose△ABC lies in the complex plane. In△ABC let AD,
BE, CF be the altitudes to sidesBC, AC, AB respectively, where the points
D, E, F lie on sidesBC, AC, AB. The△DEF is called the orthic triangle of
△ABC. The three altitudesAD, BE, CF always intersect at a common point
H which is called the orthocenter of△ABC. Also, letO be the circumcenter of
△ABC and letA′, B′, C ′ denote the midpoints of sidesBC, AC, AB respec-
tively. The lineHO is called the Euler line of△ABC. Define the pointsPa, Pb,
Pc as follows wherek, e,m, n, r are fixed real numbers.

(1) APa = k ·AH + e ·HD +m ·AO + n ·AA′
+ r ·OA′.

(2) BPb = k ·BH + e ·HE +m · BO + n · BB′
+ r ·OB′.

(3) CPc = k · CH + e ·HF +m · CO + n · CC ′
+ r ·OC ′.

Show that there exists a pointQ on the Euler lineHO of △ABC, a pointRa on
sideBC, a pointRb on sideAC, a pointRc on sideAB, and a real numberz such
that△PaPbPc and△RaRbRc are homothetic with center of homothetyQ and real
ratio of homothetyQPa

QRa

=
QP

b

QR
b

=
QPc

QRc

= z.

We can also show that there exists a pointS on the Euler lineOH such that this
△RaRbRc is the pedal triangle ofS formed by the feet of the three perpendiculars
from S to sidesBC,AC,BC.

Solution. We first deal with equation (1) given in Problem 1. Equations(2), (3)
give analogous results.

SinceAPa = Pa −A,AH = H −A,HD = D −A, etc, we see that equation
(1) is equivalent to

Pa −A = k (H −A) + e (D −H) +m (O −A) + n
(

A′ −A
)

+ r
(

A′ −O
)

.

This is equivalent to(∗∗).
(∗∗) Pa = (1 − k −m− n)A+ (k − e)H + eD + (m− r)O + (n+ r)A′.

From geometry, we know thatAH = 2 ·OA′, BH = 2 ·OB′, CH = 2 ·OC ′.
Thus,H −A = 2 (A′ −O) andA = H + 2 (O −A′

).
Substituting this value forA in (∗∗) we have

Pa = (1 − k −m− n)

(

H + 2O − 2A′
)

+ (k − e)H + eD

+ (m− r)O + (n+ r)A′.

This is equivalent to the following.
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Pa = (1 −m− n− e)H + (2 − 2k −m− 2n − r)O + eD

+ (−2 + 2k + 2m+ 3n+ r)A′.

Calling1−m− n− e = θ, 2− 2k −m− 2n− r = φ, e = λ, and−2 + 2k +

2m+ 3n+ r = ψ, we have

Pa = θH + φO + λD + ψA′,

whereθ + φ+ λ+ ψ = 1.
As in Theorem 1, we now lumpH,O together and lumpD,A′ together. There-

fore,

Pa = [θH + φO] +

[

λD + ψA′
]

= (θ + φ)

[

θH

θ + φ
+

φO

θ + φ

]

+ (λ+ ψ)

[

λD

λ+ ψ
+

ψA′

λ+ ψ

]

.

Calling θH
θ+φ

+
φO
θ+φ

= Q, and λD
λ+ψ

+
ψA′

λ+ψ
= Ra, we have

Pa = (θ + φ)Q+ (λ+ ψ)Ra

= Q+ (λ+ ψ) (Ra −Q)

= Q+ z (Ra −Q)

wherez = λ+ ψ = −2 + 2k + 2m+ 3n+ r + e.
Of course,Q lies on the Euler lineHO andRa lies on the sideBC since

θ, φ, λ, ψ are real.
By symmetry, equations (2), (3) yield the following analogous results.

Pb = Q+ z (Rb −Q) and Pc = Q+ z (Pc −Q) ,

whereRb =
λE
λ+ψ

+
ψB′

λ+ψ
, ndRc =

λF
λ+ψ

+
ψC′

λ+ψ
.

Of course,Q lies on the Euler lineHO,Ra lies on sideBC, Rb lies on sideAC
andRc lies on sideAB.

SinceQPa = (λ+ ψ) (QRa) = z · QRa, QPb = (λ+ ψ) (QRb) = z · QRb,
andQPc = (λ+ ψ) (QRc) = z · QRc, we see that△RaRbRc ∼ △PaPbPc are
homothetic with ratio of homothetyQPa

QRa

=
QP

b

QR
b

=
QPc

QRc

= z.

Also, △RaRbRc ∼ △PaPbPc with ratio of similarity |PaPb
|

|RaRb
|

=

|PaPc|

|RaRc|
=

|P
b
Pc|

|R
b
Rc|

= |z| .

SinceD, E, F lie at the feet of the perpendicularsHD, HE, HF and since
A′, B′, C ′ lie at the feet of the perpendicularsOA′, OB′, OC ′, it is easy to see
that there exists a pointS on the Euler lineHO such that△RaRbRc is the pedal
triangle ofS with respect to△ABC.

We now deal with a special case of Problem 1. Letk = e,m = n = r = 0.
Thenθ = 1 − e = 1 − k, φ = 2 − 2k, λ = k, ψ = −2 + 2k. Also, θ + φ =

3 − 3k, λ+ ψ = −2 + 3k. Therefore,Q =
θH
θ+φ

+

φO
θ+φ

=
1

3
H +

2

3
O.
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From geometry, we see that the center of homothety isQ = G whereG is the
centroid of△ABC. Also, G is still the center of homothety of△PaPbPc and
△RaRbRc even for the case wherek is complex.

Also, we see thatRa =
kD

−2+3k
+

(−2+2k)A′

−2+3k
, and the ratio of homothety is

z = −2 + 3k.
If we let k = e = 2,m = n = r = 0, we see thatRa =

1

2
D +

1

2
A′, Rb =

1

2
E +

1

2
B′, Rc =

1

2
F +

1

2
C ′.

From geometry we know that the nine point centerN of △ABC lies at the mid
point of the line segmentHO.

Therefore, ifk = e = 2,m = n = r = 0, we see that△RaRbRc is the pedal
triangle of the nine point centerN . Also, whenk = e = 2,m = n = r = 0, we
see that△PaPbPc is geometrically just the (mirror) reflections of verticesA,B,C
about the three sidesBC,AC,AB respectively. Also, the ratio of homothetyz is
z = −2 + 3k = 4. Thus,△PaPbPc is four times bigger than△RaRbRc.

5.2. Problem 2.Suppose△ABC lies in the complex plane. As in Problem 1, let
AD,BE, CF be the altitudes for sidesBC,AC,AB respectively whereD, E, F
lie on sidesAB, AC, BC. Let I be the incenter of△ABC and let the incircle
(I, r) be tangent to the sidesAB,AC,BC at the pointsX,Y,Z respectively.

Define the pointsPa, Pb, Pc as follows.

(1) Pa = D + i (IX),
(2) Pb = E + i (IY ),
(3) Pc = F + i (IZ), wherei is the unit imaginary.

We wish to find△RaRbRc and a complex numberz such that△PaPbPc and
△RaRbRc are homothetic with a center of homothetyI and a complex ratio of
homothetyz =

IPa

IRa

=
IP

b

IR
b

=
IP

b

IR
b

.

Solution.
We first study what△PaPbPc is geometrically. First, we note thati · IX, i ·

IY , i · IZ simply rotates the vectorsIX, IY, IZ by 90
◦ in the counterclockwise

direction about the origin O as the axis. Also, we note that|IX| = |X − I| =

|IY | = |Y − I| = |IZ| = |Z − I| = r wherer is the radius of the inscribed circle
I(r).

Therefore, the pointsPa, Pb, Pc lie on sidesAB, AC, BC respectively and the
distance fromD to Pa is r (going in the counterclockwise direction), the distance
from E to Pb is r (going counterclockwise) and the distance fromF to Pc is r
(going counterclockwise).

We next analyze equation (1) in the problem. The analysis of equations (2), (3)
is analogous.

Now equation (1) is equivalent to

Pa = D + i (X − I) = −i · I + [iX +D] = −i · I + (1 + i)

[

iX

1 + i
+

D

1 + i

]

.

Observe that−i+ (1 + i) = 1 and i
1+i

+
1

1+i
= 1.
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DefineRa =
iX
1+i

+
D

1+i
= D+

i
1+i

(X −D) = D+
i

1+i
(DX) sinceX−D =

DX.
Therefore,DRa =

i
1+i

(DX) =

(

1+i
2

)

(DX) sinceRa −D = DRa.

Also, Pa = −iI + (1 + i)Ra = I + (1 + i) (Ra − I). Therefore,IPa =

(1 + i) (IRa) sincePa − I = IPa andRa − I = IRa.
Therefore, by symmetry, we have the following equations.

(1) DRa =

(

1+i
2

)

(DX) , ERb =

(

1+i
2

)

(EY ) , FRc =

(

1+i
2

)

(FZ) .
(2) IPa = (1 + i) (IRa) , IPb = (1 + i) (IRb) , IPc = (1 + i) (IRc) .

Equation (1) tells us how to construct△RaRbRc from the points{D,X} ,{E,Y },
{F,Z}.

Also,△PaPbPc and△RaRbRc are homothetic with center of homothetyI and
complex ratio of homothetyz = 1 + i =

IPa

IRa

=
IP

b

IR
b

=
IPc

IRc

.

Also, △PaPbPc ∼ △RaRbRc and |IPa|

|IRa|
=

|IP
b
|

|IR
b
|

=

|IPc|

|IRc|
= |1 + i| =

√
2.

Also, |PaPb
|

|RaRb
|
=

|PaPc|

|RaRc|
=

|P
b
Pc|

|R
b
Rc|

.

6. Discussion

For a deeper understanding of the many applications of Theorem 1, we invite
the reader to consider the following alternative form of Problem 1 in§5.1.

Problem 1 (alternate form) The statement of the definitionsPa, Pb, Pc is the
same as in Problem 1.

However, we now defineA′′, B′′, C ′′ to be the (mirror) reflections ofO about
the sidesAB,AC,BC respectively. Therefore,OA′′

= 2 ·OA′,OB′′
= 2 ·OB′,

OC ′′
= 2 · OC ′. We now substituteA′′, B′′, C ′′ for A′, B′, C ′ in the problem by

usingA′′ − O = 2(A′ − O), etc. and ask the reader to solve the same problem
when we deal withA, B,C, H, D, E, F , O, A′′, B′′ ,C ′′ instead ofA, B, C, H,
D, E, F , O, A′, B′, C ′. Also, we show thatRa, Rb, Rc will lie on linesDA′′,
EB′′, FC ′′ instead of lying on sidesAB, AC, BC. The pedal triangle part of the
problem is ignored. The center of homothetyQ will still lie on the Euler lineHO.
This illustrates the endless way that Theorem 1 can be used tocreate homothetic
triangles (and polygons).
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Generalizing Orthocorrespondence

Manfred Evers

Abstract. In [3] B. Gibert investigates a transformationP 7→ P
⊥ of the plane

of a triangleABC, which he callsorthocorrespondence. Important for the def-
inition of this transformation is the tripolar line ofP⊥ with respect toABC.
This line can be interpreted as a polar-euclidean equivalent of the orthocenter
H of the triangleABC, the pointP getting the role of the absolute pole of the
polar-euclidean plane. We propose to substitute the centerH by other triangle
centers and will investigate the properties of such correspondences.

1. Foundations

1.1. Introduction. In [3] B. Gibert investigates the properties of orthocorrespon-
dence, a mapping that every pointP in the planeE of a triangleABC assigns a
pointP⊥, the tripole of the orthotransversal (line)L of P with respect to the trian-
gleABC. This orthotransversalL is described as follows: The perpendicular lines
at P to AP , BP , CP intersect the linesBC, CA, AB respectively at pointsPa,
Pb, Pc which are collinear with the lineL.

We give an alternative description of the orthotransversalline L, limiting our-
selves to a pointP which is neither an edge-point nor a point on the line at infinity.
Let A∗B∗C∗ be the polar triangle ofABC with respect to a circleS with center
P . ThenL is the polar line with respect toS of the orthocenterH∗ of A∗B∗C∗.

Because of this construction of the orthocorrespondent point P⊥, we would like
to call orthocorrespondenceH∗-correspondence and generalize this by replacing
H∗ by some other pointQ∗ (especially by a center of the triangleA∗B∗C∗).

1.2. Notations. We always look on lines, conics, cubics,etc. as sets of points.
Given a pointR, a triangle∆ and a conicΓ, we write

- R = (ra : rb : rc)∆ if (ra : rb : rc) are homogeneous barycentric coordi-
nates with respect to∆,

- L∆(R) for the tripolar line ofR with respect to∆,
- C∆(R) for the circumconic andJ∆(R) for the inconic of∆ with perspec-

tor R,
- ∂∆ for the union of the three sidelines of∆.

We suppose that the pointR,R = (ra : rb : rc)∆, is not a point on∂∆, so we have
rarbrc 6= 0. In this case we say:
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with respect to∆, R is of type



















0, if sgn(ra) = sgn(rb) = sgn(rc),

a, if sgn(rb) = sgn(rc) 6= sgn(ra),

b, if sgn(rc) = sgn(ra) 6= sgn(rb),

c, if sgn(ra) = sgn(rb) 6= sgn(rc).

In the plane of the original triangleABC we useL∞ for the line at infinity
(instead ofLABC(G) whereG is the centroid ofABC), and we denoteE −L∞ by
E−. By d we denote the euclidean distance function. As usual, we do not define
d(P,Q) for two pointsP andQ on the lineL∞, and we putd(P,Q) = ∞ if
exactly one of the points is infinite.

1.3. Q∗-correspondent point and calculation of its coordinates.
Let P = (pa : pb : pc)ABC be a point in the plane of the triangleABC, lying
neither on a sideline of this triangle nor onL∞. Let A∗B∗C∗ be the polar triangle
of ABC with respect to a circleS with centerP . For every pointQ∗

= (q∗a : q∗b :

q∗c )A∗B∗C∗ , we call the lineLS(Q∗
) theQ∗-transversal ofP and its tripole with

respect toABC theQ∗-correspondent ofP . The tripole we denote byP♯Q∗.

Remark.While the triangleA∗B∗C∗ and the pointQ∗ depend on the radiusr > 0

of S, theQ∗-transversal and theQ∗-correspondent ofP do not.

Proposition. (1) TheQ∗-transversal ofP has the equation

(q∗apbpc)x + (q∗bpcpa)y + (q∗cpapb)z = Σcyclic(q
∗

apbpc)x = 0.

(2) If Q∗ is not a vertex of the triangleA∗B∗C∗, then

P♯Q∗
= (paq

∗

bq
∗

c : pbq
∗

cq
∗

a : pcq
∗

aq
∗

b )ABC = (pa/q
∗

a : · · · : · · · )ABC .

Proof. (A) First, we calculate lengthsa∗, b∗, c∗ of the sides ofA∗B∗C∗ for a finite
pointP not lying on any sideline of the triangleABC. Let (pa, pb, pc) = (pa, · · · ),
pa + pb + pc = 1, be the exact barycentric coordinates ofP with respect to the
triangleABC and leta, b, c be the lengths of the sides andS be twice the area of
ABC 1. For a simpler calculation, we set the radius of the circleS to 1.

We then getA∗
= P +(B−C)

⊥/p′a with p′a := paS = a · sgn(pa) ·d(P,BC).
The difference of two points is interpreted as a vector of thetwo-dimensional vector
spaceV = R

2 with euclidean norm‖ · · · ‖, and⊥ indicates a rotation of a vector
by +90

◦: (v1, v2)
⊥

= (−v2, v1).
Fora∗ we get

(a∗)2 = ‖B∗ − C∗‖2
= ‖(C − A)/p′b − (A − B)/p′c‖

2

= (b/p′b)
2
+ 2SA/(p′bp

′

c) + (c/p′c)
2

= [(b/pb)
2
+ 2SA/(pbpc) + (c/pc)

2
]/S2.

Note: We want to point out the following connection between the sidelengths
a∗, b∗, c∗ of the triangleA∗B∗C∗, the exact barycentric coordinates(pa, pb, pc)

1We use Conway’s triangle notation:S = bc sin A, SA = (b
2
+ c

2 − a
2
)/2 = bc cos A, etc.
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of the pointP and the (exact) tripolar coordinates(d(P,A), d(P,B), d(P,C)) of
P (with respect toABC):

d(P,A) =

√

(cpb)
2
+ 2SApbpc + (bpc)

2
= Sa∗|pbpc|. (∗)

We also mention that the verticesA∗, B∗, C∗ are finite points in the plane of trian-
gleABC as long asP is a finite point in this plane withpapbpc 6= 0.

(B) Calculation of the coordinates of theQ∗-correspondentP♯Q∗. Given a point
Q∗ with exact barycentric coordinates(q∗a, q

∗

b , q
∗

c ) with respect toA∗B∗C∗, we
want to find an equation of the lineLS(Q∗

) as well as the coordinates of its tripole
with respect toABC. To achieve the results easily, we borrow a method from
the theory of vector spaces which - in case of the two-dimensional vector space
V = R

2 - considers an element of the dual spaceV∗ of linear forms (often such a
linear form is called a covector) as a one-dimensional affinesubspace (a line) ofV,
see for example [2, Chapter I]. This method is not essential for the calculation of
the polar line but will simplify it. We do not even have to knowthe coordinates of
Q∗ with respect toABC, which are in fact

(p2

apbpcS
2
+ papbq

∗

cSB + papcq
∗

bSC − pbpcq
∗

aa
2

: · · · : · · · ).

Given a vector~v = (v1, v2) ∈ R
2, the dual vector is a 1-formv∗ = v1x + v2y.

To visualize this object, we identifyv∗ with the linev1x+ v2y = v2

1
+ v2

2
, which is

the polar line of~v with respect to the unit circle{~w ∈ R
2| w2

1
+ w2

2
= 1}. Within

this interpretation,V∗ is formed by all the lines ofV that do not contain the zero
vector, and additionally we have to include the line at infinity which represents
o∗ = 0x + 0y.

Obviously, the mappingΛ: VxV∗ → R, (~v,w∗
) = ((v1, v2), w1x + w2y) 7→

v1w1 + v2w2 is a bilinear pairing. The mappingχP : E− → R
2, R 7→ R − P , is

an affine chart withχP (P ) = ~o andχP (S) = {~w ∈ R
2| w2

1
+w2

2
= 1}. By means

of this chart, we get a bilinear mapping

ΛP : E−x {lines inE not passing throughP} → R

with
{

ΛP (R, l) = 0, if R = P or l = L∞ or l ‖ PR,

ΛP (R, l) = 1/t, if P + t(R − P ) is a point onl.

For every linel not passing throughP , we get a linear formλ = ΛP (· · · , l).
Starting with a linear formλ, we find the corresponding line byl = {R | λ(R) =

1}.
Since we assume thatP is not a point on any of the linesL∞, BC,CA,AB,

we have well defined 1-formsα := ΛP (· · · , BC), β := ΛP (· · · , CA), γ :=

ΛP (· · · , AB). For every pointR ∈ E − P , we can calculate the valuesα(R),
β(R), γ(R) quite quickly once we know the valuesα(A), α(B), . . . ,γ(C). But
we already know thatα(B) = α(C) = 1 and can easily calculateα(A) = 1−1/pa.
Figure 1 gives an illustration of the mappingΛP .

BecauseA∗, B∗, C∗ are the poles with respect toS of the linesα = 1, β =

1, γ = 1, the pointQ∗
= q∗aA

∗
+ q∗bB

∗
+ q∗cC

∗ has a polar lineLS(Q∗
) with the

equationq∗aα + q∗bβ + q∗cγ = 1.
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Figure 1. For the constellation shown here, we haveΛP (A, BC) = 0,
ΛP (B, CA) = −1, ΛP (C,AB) = 1/3.

We can now calculate the coordinates of the points of intersection of thisQ∗-
transversal with the sidelines of the triangleABC. For example, theQ∗-transversal
and the lineBC intersect at(0 : pbq

∗

c : −pcq
∗

b )ABC . Having calculated the three
intersection points, the statements (1) and (2) of the proposition follow immedi-
ately. �

We introduce the pointQ[P ]
:= (q∗a : · · · : · · · )ABC , so we can write the point

P♯Q∗
= P/Q[P ] as a barycentric quotient of two points.

1.4. A first example.For Q∗ we choose the centroidG∗
= X ∗

2
of the triangle

A∗B∗C∗.2 For every finite pointP not lying on any side line of the triangleABC,
we have the equationsG[P ]

= G andP♯G∗
= P. Of course, we like to extend

the domain of the correspondence mapping to points on∂ABC and onL∞. For
Q∗

= G∗ we can get a continuous extension♯G∗
= idE .

Before investigatingQ∗-correspondence for different triangle centers Q*, we
contribute some

1.5. Basic properties ofQ∗-correspondence.

1.5.1. If we take the cevian triangle ofQ∗ with respect toA∗B∗C∗ und construct
its polar triangle with respect toS then we get the anticevian triangle ofP♯Q∗ with
respect toABC, see Figure 2. The polar triangle of the anticevian triangleof Q∗

with respect toA∗B∗C∗ is the cevian triangle ofP♯Q∗ with respect toABC.

2We adopt the notationXn of [7] for triangle centers.
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Q*-transversal

B

C

Figure 2. Besides the trianglesABC andA
∗

B
∗

C
∗, the picture shows the cevian

triangle ofP with respect toA∗

B
∗

C
∗ (light green) and the anticevian triangle

of P♯Q
∗ with respect toABC (green).

1.5.2. The polar triangle of the pedal resp. antipedal triangle ofQ∗ with respect to
A∗B∗C∗ is the antipedal resp. pedal triangle ofP♯Q∗ with respect toABC.

1.5.3. If Q∗ is a point onB∗C∗ different fromB∗ andC∗ thenP♯Q∗
= A.

1.5.4. SupposeQ∗
= (q∗a : q∗b : q∗c )A∗B∗C∗ is a point satisfying the equation

P♯Q∗
= G = X2, then we haveQ∗

= Q[P ]
= P .

In the following we denote the tripolar line ofQ∗ with respect toA∗B∗C∗ by
q∗.

1.5.5. In 1.2 the pointP♯Q∗ was defined as the tripole with respect toABC of the
line LS(Q∗

). But we can getP♯Q∗ as the pole ofq∗ with respect toS, as well.

1.5.6. The setP♯q∗ := {P♯R∗ | R∗ ∈ q∗} is the circumconic ofABC with
perspectorP♯Q∗, so we can write

P♯q∗ = CABC(P♯Q∗
) = CABC(P/Q[P ]

).

Two examples:

• For q∗ = LA∗B∗C∗(G∗
) = L∞ we getP♯q∗ = CABC(P ).

• If q∗ = LA∗B∗C∗(X∗

648
) is the Euler line ofA∗B∗C∗, we getP♯q∗ =

CABC(P♯X∗

648
). For special cases, see 3.1 and 3.2.

1.5.7. The polar lines with respect toS of points onCA∗B∗C∗(Q∗
) agree with the

tangent lines ofJABC(P♯Q∗
). In other words: TheS-dual of CA∗B∗C∗(Q∗

) is
JABC(P♯Q∗

).
Example: TheS-dual of the Steiner circumellipseCA∗B∗C∗(G∗

) isJABC(P ).
As special cases we get
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• for P = G the Steiner inellipse with centerG ,
• for P = Ge (Gergonne point) the incircle with centerI (incenter),
• for P = Na (Nagel point) the Mandart inellipse with centerM (Mitten-

punkt),
• for P = K (symmedian point) the Brocard inellipse with centerX39.

1.5.8. TheS-dual of the inconicJA∗B∗C∗(Q∗
) of A∗B∗C∗ with perspectorQ∗ is

CABC(P♯Q∗
).

Examples:

• JA∗B∗C∗(K∗
) is the Brocard inellipse ofA∗B∗C∗. ItsS-dual isCABC(P♯K∗

),
with P♯K∗ = (1/(pa(p

2

bc
2

+ 2pbpcSA + p2
cb

2
)) : · · · : · · · )ABC . For the

special caseP = O, we getP♯K∗
= K; theS-dual of the Brocard inel-

lipse ofA∗B∗C∗ is the circumcircle ofABC.
• TheS-dual of the Steiner inellipseJA∗B∗C∗(G∗

) is CABC(P ). As special
cases we get

– the circumellipse which is shown in Figure 5 forP = I,
– the Steiner circumellipse forP = G,
– the circumcircle forP = K,
– the Kiepert hyperbola forP = X523,
– the Jerabek hyperbola forP = X647.

1.6. TheI∗-correspondence (first part).As mentioned above, we are mainly in-
terested in the special case ofQ∗ being a triangle center ofA∗B∗C∗. For further
definitions we orient ourselves on the mappingP 7→ P♯I∗ becauseI∗ is the most
important weak center ofA∗B∗C∗, and it is a center for which the anticevians
agree with extraversions:τI

∗
= I∗τ , τ = 0, a, b, c.

(d(P,A)∆|pa| : · · · : · · · ) are the homogeneous barycentric coordinates ofI∗

with respect toA∗B∗C∗ and ofI [P ] with respect toABC. It can be easily seen
that the mappingE− − ∂ABC → E,P 7→ P/I [P ]

= (sgn(pa)d(P,B)d(P,C) :

· · · : · · · )ABC , cannot be extended to a continuous mapping with domainE− −
{A,B,C}. But if we introduce the point

I [P,0]
:= (aP

: bP
: cP

)ABC

:= (sgn(pa)a
∗

: sgn(pb)b
∗

: sgn(pc)c
∗
)ABC

= (pad(P,A) : pbd(P,B) : pcd(P,C))ABC

and its anticeviansI [P,a]
:= (−aP

: bP
: cP

)ABC , · · · , all the mappingsE− −

{A,B,C} → E,P 7→ P/I [P,τ ]
=: (P♯I∗)τ , τ = 0, a, b, c, are continuous. We

get (P♯I∗)0 = (d(P,B)d(P,C) : · · · : · · · )ABC , which is a point of type 0, and
the points(P♯I∗)τ , τ = a, b, c, are the anticevians of(P♯I∗)0.

We can see here that the same way the weak triangle centerI∗ comes in four
versions (a main centerI0 and its three matesIa, Ib, Ic), I∗-correspondence splits
into four parts.

For P ∈ {A,B,C} we have the equations(P♯I∗)τ = P , τ = 0, a, b, c; the
vertices are fixed points of all fourI∗-correspondences.
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Let us suppose now that the pointP is a point onL∞. Since we havelimR→P (aR
:

bR
: cR

) = limR→P (pad(R,A) : pbd(R,B) : pcd(R;C))) = (pa : pb : pc), we
put (aP

: bP
: cP

) := (pa : pb : pc) and defineI [P,0]
:= (aP

: bP
: cP

)ABC , · · ·

We get(P♯I∗)τ := P/I [P,τ ]
= τG, τ = 0, a, b, c.

Conclusion: All four mappingsE− − {A,B,C} → E , P 7→ (P♯I∗)τ , τ =

0, a, b, c, can be extended to continuous mappingsE → E .

1.6.1. Special cases.

• P = I = X1 : (I♯I∗)0 = X174 (Yff-center of congruence).
• P = G = X2 : (G♯I∗)0 = (1/

√
2b2

+ 2c2 − a2
: · · · : · · · )ABC =√

X598.
• P = O = X3, and supposeO is of typeτ : (O♯I∗)τ = τG.
• P = H = X4, and supposeH is of typeτ : (H♯I∗)τ = τX52.
• (L∞♯I∗)τ = τG. (More accurately, we should write:(L∞♯I∗)τ = {τG}.)

1.7. The Definition ofQ∗-correspondence for other centers ofA∗B∗C∗.
Let Q∗

= (q∗a : q∗b : q∗c )A∗B∗C∗ be any triangle center ofA∗B∗C∗ and letf∗ be a
barycentric center function, homogeneous in its arguments, with
Q∗

= ((f∗
(a∗ : b∗ : c∗) : f∗

(b∗ : c∗ : a∗) : f∗
(c∗ : a∗ : b∗))A∗B∗C∗ .

We take the definition of(aP
: bP

: cP
) from the last subsection, introduce the

points










Q[P,0]
:= (f∗

(aP
: bP

: cP
) : f∗

(bP
: cP

: aP
) : f∗

(cP
: aP

: bP
))ABC ,

Q[P,a]
:= (f∗

(−aP
: bP

: cP
) : f∗

(bP
: cP

: −aP
) : f∗

(cP
: −aP

: bP
))ABC ,

etc.

and put(P♯Q∗
)
τ

:= P/Q[P,τ ], τ = 0, a, b, c.
TheQ∗-correspondent(P♯Q∗

)
τ of P is well defined if and only if at least one

of the three coordinates in the definition is not zero. We denote the set of pointsP
where all the points(P♯Q∗

)
τ , τ = 0, a, b, c, are defined by dom(Q∗

).
The mappings(· · · ♯Q∗

)
τ

: dom(Q∗
) → E , τ = 0, a, b, c, are continuous.

If Q∗ is a strong center ofA∗B∗C∗ then for every pointP in dom(Q∗
) the set

{(P♯Q∗
)
τ | τ = 0, a, b, c} consists of only one point,P♯Q∗.

Examples.

1.7.1. Taking P = H, we have(aP
: bP

: cP
) = (a : b : c). So we get

I [H,0]
= I, G[H,0]

= G[H]
= G, O[H,0]

= O[H]
= O, · · · (see also 3.2.)

1.7.2. Let P be a point onL∞. We getP♯G∗
= P, P♯O∗

= P♯H∗
= G.

The pointsG∗, O∗, H∗ are points on the Euler line of the (degenerate) triangle
A∗B∗C∗. If Q∗ is any point on this line,P♯Q∗ is a point on the circumconic of
ABC throughG andP . The perspector of this conic isP♯(X648)

∗.
Two special cases:

• TakingP = X30 (Euler infinity point), we getX [P ]

648
= X648 andP♯X∗

648
=

X30/X648.
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• If P is one of the two infinite points of the Kiepert hyperbolaCABC(X523),
we getP♯X∗

648
= X523.

1.7.3. If we takeQ∗
= K∗

= X ∗

6
, we get

• K [P ]
= (p 2

a (c2 p 2

b + 2SA pb pc + b2 p 2
c ) : · · · : · · · )ABC .

• P♯K∗
= (pbpc d2

(P,B)d2
(P,C) : · · · : · · · )ABC

= (1/(pa(c
2p 2

b + 2SApbpc + b2p 2

c )) : · · · : · · · )ABC .
• dom(K∗

) = E − {A,B,C}.

Special cases:

• K [I]
= M = X9; I♯K∗

= Ge = X7.
• K [G]

= X599; G♯K∗
= X598.

• K [O]
= X577; O♯K∗

= X264 = G/O.

• K [H]
= K; H♯K∗

= X264.
• K [K]

= X574; K♯K∗
= X598.

• If P is not a point on a sideline ofABC then we havelimt→0(A +

tP )/K [A+tP ]
= A.

• If P is a point on a sideline ofABC but not a triangle vertex thenP♯K∗

is the vertex opposite this sideline. For a pointP on AB, different from
A, we therefore getlimt→0(A + tP )/K [A+tP ]

= C. This shows thatK∗-
correspondence♯K∗

: dom(K∗
) → E , P 7→ P♯K∗, does not have any

extension that is continuous inA,B,C.
• L∞♯K∗

= CABC(G) (Steiner circumellipse).

If instead ofP we take its isogonal conjugateK/P , we get
K [K/P ]

= (a2
(c2p 2

b +2SApbpc +b2p2
c) : · · · : · · · )ABC and(K/P )♯K∗

= P♯K∗.

1.7.4. We takeQ∗
= Ge∗ = X∗

7
and get

(P♯Ge∗)0 = (pa(−aP
+ bP

+ cP
) : pb(a

P − bP
+ cP

) : pc(a
P

+ bP − cP
)),

(P♯Ge∗)a = (pa(a
P

+ bP
+ cP

) : pb(−aP − bP
+ cP

) : pc(−aP
+ bP − cP

)),

...

A careful analysis shows that dom(Ge∗) = E .
Special cases:

• The verticesA,B,C are fixed points of all fourGe∗-correspondences.
• If P = (0 : t : 1 − t)ABC is a point onBC and t(1 − t) > 0 then

(P♯Ge∗)τ =











( 2t(1 − t)a : tg(t) : (1 − t)g(t))ABC for τ = 0,

(−2t(1 − t)a : tg(t) : (1 − t)g(t))ABC for τ = a,

(0 : −t : 1 − t)ABC for τ = b, c,
where the polynomial functiong is defined by

g(t) :=

√

−t(1 − t)a2
+ (1 − t)b2

+ tc2.
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• If P = (0 : t : 1 − t)ABC is a point onBC and t(1 − t) < 0 then

(P♯Ge∗)τ =











(0 : −t : 1 − t)ABC for τ = 0, a

( 2|t|(1 − t)a : tg(t) : (1 − t)g(t))ABC for τ = b,

(−2|t|(1 − t)a : tg(t) : (1 − t)g(t))ABC for τ = c.

• For a pointP = (pa : pb : pc)ABC onL∞ we get
(P♯Ge∗)0 = (p2

a : p2

b : p2
c)ABC (this is a point on the Steiner inellipse of

ABC),
(P♯Ge∗)a = (0 : 1 : 1)ABC etc.

1.8. Fixed points ofQ∗-correspondence.
(A) Fixed points on a sideline ofABC. For different centersQ∗ the situation

can be quite different: ForQ∗
= H∗ (see [7]),Q∗

= I∗ (see 1.6),Q∗
= Ge∗

(see 1.7.3), the vertices ofABC are the only edgepoints which are fixed points of
the correspondence mapping. (In case of the weak centerQ∗

= I∗, the vertices
are fixed points for all four correspondences(· · · ♯I∗)τ , τ = 0, a, b, c.) The corre-
spondence ofQ∗

= (X110)
∗

= (a2/(b2 − c2
) : · · · : · · · )ABC has exactly six fixed

points on the sidelines, the vertices ofABC and the vertices of the orthic triangle.
For some centers, as forQ∗

= (X76)
∗

= G∗/K∗, every point on a sideline of
ABC is a fixed point. In contrast,K∗-correspondence has no proper fixed point
on a sideline ofABC (see 1.7.2).

(B) Fixed points not lying on a sideline ofABC. If we assumeP is a finite
point not lying on any side line of the triangleABC, the equationP♯Q∗

= P is
true if and only ifQ∗

= G∗ or A∗B∗C∗ is equilateral.A∗B∗C∗ is equilateral if
and only ifP is one of the two Fermat pointsX13,X14.

Suppose thatF is a Fermat point and thatQ∗ is a weak center ofA∗B∗C∗. If F
is of type 0 then(F♯Q∗

)
0

= F , (F♯Q∗
)
a is a point on the lineAF , etc. If P = F

is of typea then((F♯Q∗
)
a

= F and(F♯Q∗
)
0 is a point on the lineAF , (F♯Q∗

)
b

is a point on the lineBF , etc. We give a proof of the last statement: IfP = F is of
typea thenaQ

∗ is identical with the centerG∗ of the equilateral triangleA∗B∗C∗

and the points0Q∗, bQ
∗, cQ

∗ lie on the linesG∗A∗, G∗B∗, G∗C∗, respectively.
The polar line of0Q∗ with respect toS passes through the pole ofG∗A∗ which is
the point(0 : −pb : pc)ABC . Therefore,(F♯Q∗

)
0 is a point on the line through

A and(0 : pb : pc)ABC . But this line also goes throughP = F . The same way
follows that(F♯Q∗

)
b, (F♯Q∗

)
c are points onBF resp.CF .

1.9. PointsP with an isosceles triangleA∗B∗C∗. We assume thatA∗B∗C∗ is an
isosceles triangle withb∗ = c∗. The last equation leads to the following condition
for the exact coordinates(pa, pb, pc) of the pointP :

p2

b((pb − 1)c2
+ pc(b

2 − c2
)) = p2

c((pc − 1)b2
+ pb(c

2 − a2
)).

The locus of pointsP satisfying the last equation is (after completion) a cubic
which passes through the pointsA,B,C, A being a dubble point. We denote
this algebraic curve (a strophoide) byK(A;B,C). SinceA is a dubble point of
this curve, one can find a rational parametrisation for it.K(A;B,C) also passes
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through the vertexHA of the orthic triangleHAHBHC , the two Fermat points and
the infinite point(−2 : 1 : 1)ABC on the triangle medianAG (see Figure 3).

Figure 3. Here are shown the cubicsK(A; B, C), K(B; C, A), K(C; A, B).
See 1.9 for a definition of these curves.

1.10. The image of the circumcircle ofABC underQ∗-correspondence.If P is a
point on this circle but not a triangle vertex thenABC andA∗B∗C∗ are similar
triangles:a∗ : b∗ : c∗ = a : b : c. Therefore, ifQ∗ is a center ofA∗B∗C∗ with a
center functionf∗, we getQ[P ]

= (f∗
(a, b, c) : · · · : · · · )ABC andP♯Q∗ is a point

on the circumconicCABC(K/Q[P ]
).

Examples.

• CABC(K)♯G∗
:= {P/G[P ] | P ∈ CABC(K)} = CABC(K/G) = CABC(K).

• CABC(K)♯I∗τ = CABC(K/Iτ ) = CABC(Iτ ) for τ = 0, a, b, c (see Figure
4.)

• CABC(K)♯O∗
= CABC(K/O) = CABC(H).

• CABC(K)♯H∗
= CABC(K/H) = CABC(O), see [7].

• If we put P♯K∗
= P for P = A,B,C (see 1.7.3) thenCABC(K)♯K∗

=

CABC(G).

We also look at the isotomic conjugates of these circumconics:

• {G[P ]/P | P ∈ CABC(K)}= LABC(K).

• {I
[P ]

τ /P | P ∈ CABC(K)}= LABC(Iτ ), τ = 0, a, b, c.

• {O[P ]/P | P ∈ CABC(K)}= LABC(H).

• {H [P ]/P | P ∈ CABC(K)}= LABC(O).

• {K [P ]/P | P ∈ CABC(K)}= L∞.
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Figure 4. This shows the circumcircle (grey) and the cubicsV(K
∗

, O) (cyan)
andV(K

∗

, H) (red) for the triangleABC, see 1.11.1.

1.11. The preimage underQ∗-correspondence /Q∗-associates.The mapping♯G∗
:

E → E is bijective. But in general,Q∗-correspondence is neither injective nor
surjective. Gibert proved (see [3]) that forQ∗

= H∗ there are up to two points
having the same correspondent3. Points having the same correspondent he calls
associates. We shall take this terminus here. As we could see in 1.7.3, a point P is
aK∗-associate of its isogonal conjugate. There are centersQ∗ with more than two
Q∗-associates,Q∗

= O∗ for example (see in 2.3.4 ).Q∗-correspondence doesn’t
have to be surjective, either. For example, forQ∗

= K∗ there is no pointP♯Q∗ on
a sideline of the triangleABC except for the vertices of this triangle.

We now describe a way of constructing the preimage of a pointR = (ra :

rb : rc)ABC underQ∗-correspondence. We want to determine all pointsP with
P♯Q∗

= R and omit all the special cases(P♯Q∗
)
τ , τ = 0, a, b, c. (These can be

easily adapted.)
We start with a pointP and choose a pointQ∗ which is a triangle center of

A∗B∗C∗ with barycentric center functionf∗
(a∗, b∗, c∗). TheQ∗-transversal ofP ,

LS(Q∗
), is the set of points(x : y : z)ABC satisfying the equation

Σcyclicpbpcf
∗
(a∗, b∗, c∗)x = 0.

Given a pointT , we denote the set of pointsP with T a point onLS(Q∗
) by

V(Q∗, T ). If T is not an edgepoint, the set dom(Q∗
) ∩ V(Q∗, T ) is the preimage

of the circumconicCABC(T ). If T = (0 : t : 1 − t)ABC , t(1 − t) 6= 0, is a

3Gibert proved in fact that - using proper multiplicity - there are exactly two real or two complex
points having the same correspondent.
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point onBC but not a vertex then dom(Q∗
)∩V(Q∗, T ) is the preimage of the line

through the pointsA and(0 : t : t − 1)ABC . Finally, if T is a triangle vertex then
dom(Q∗

) ∩ V(Q∗, T ) is the preimage of this vertex.
Now we can present the preimage of a pointR which is not a vertex ofABC:

It is the setV(Q∗, T1) ∩ V(Q∗, T2) ∩ dom(Q∗
) for any two different pointsT1, T2

onLABC(R).

1.11.1. Example. We want to determine the preimage of the pointX648, the tripole
of the Euler line, underK∗-correspondence. So we choose two different points on
LABC(X648), G andO for instance. For every pointT , the setV(K∗, T ) is a cubic
curve. ForT = G, this cubic is the union of the line at infinity and the circumcircle
of ABC. We now look atV(K∗, O). There is exactly one infinite point, let us say
P1, on this curve, so this point is mapped toX648 by K∗-correspondence. In
general,V(K∗, O) and the circumcircle have four common points. Three of them
are the pointsA,B,C; the fourth common point is a the finite point,P2, which
is mapped toX648 by K∗-correspondence. For an isosceles but not equilateral
triangleABC, the pointX648 agrees with one of the edgesA,B,C, and so does
the pointP2. See Figure 4 for a picture. For more examples, see 2.1.4 and 2.3.4.

1.12. Pivotal curves.In [3] Gibert introduces algebraic curves consisting of all
pointsP for which the line throughP and its orthocorrespondentP♯H∗ passes
through a given pointR. Such a curve Gibert callsorthopivotal, the pointR being
the orthopivot. We transfer Gibert’s concept to other correspondences. Given a
point R = (ra : rb : rc)ABC , the set of pointsP such that the pointsR,P, P ♯Q∗

are collinear is

{P = (pa : pb : pc)ABC ∈ dom(Q∗
) | Σcyclicraq

∗

a(q
∗

b − q∗c )pbpc = 0 }.

We call this setQ∗-pivotal set with pivot pointR. For a triangle centerQ∗ the
coordinatesq∗a, q

∗

b , q
∗

c depend onP , of course.
For a strong centerQ∗, the Q∗-pivotal set is an open set (with respect to the

Zariski topology) of an algebraic curve which we denote byP(Q∗, R). For most
strong centers, these curves are of high degree (> 4) and rather complicated. Thus,
we do not go into an analysis of these. But for all of the curvesP(Q∗, R), one can
state that ifR is not an edgepoint, they pass through the verticesA,B,C, the two
Fermat points and the pointR. Gibert gives a detailed description of the orthopiv-
otal curvesP(H∗, R). These are cubics. The question arises: What are the other
pivotal curves of degree 3? The answer is: There aren’t any!Proof: If P(Q∗, R)

has degree 3 then the correspondent centerQ∗ must have a (homogeneous and
bisymmetric) barycentric centerfunctionf∗

(a∗, b∗, c∗) = 1/(ma∗2 +n(b∗2 +c∗2))
with two different real numbersn,m. (For i < 100 there are just three such cen-
tersXi, namely,X4,X76 andX83.) For all of these centersQ∗ one getsP(Q∗, R)

= P(H∗, R) because the pointsP,P♯Q∗, P ♯H∗ are always collinear, as one can
verify by simple calculation.

For a weak centerQ∗, the set of pointsP so that for someτ ∈ {0, a, b, c} the
three pointsP, (P♯Q∗

)
τ andR are collinear is an open set of an algebraic curve

which we denote byP(Q∗, R). In 3.1 we present a picture ofP(I∗, R).
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2. Q∗-correspondence for “classical” triangle centersQ∗.

2.1. I∗-correspondence (second part).

2.1.1. Geometric construction of the image and preimage points. For each point
P ∈ E− − {A,B,C} we define six pointsPA, P

′

A , PB , P
′

B , PC , P
′

C by: PA is the
intersection ofBC with the internal bisector of the angle∠BPC, andP

′

A is the
intersection ofBC with the external bisector of this angle. Similarly we definethe
pointsPB , P

′

B , PC , P
′

C .
P. Yiu [10] shows the following properties of these six points: The triangle

PAPBPC is the cevian triangle of some point that lies inside the triangle and that
we call0R. The tripolar lineLABC(0R) of 0R intersects the side linesBC,CA,AB

in P
′

A , P
′

B , P
′

B , respectivly. The pointsP
′

A , PB , PC are collinear with the line
LABC(aR), the pointsPB

′, PC , PA collinear with the lineLABC(bR) and the
pointsP

′

C , PA, PB collinear with the lineLABC(cR). Further more, Yiu shows:
The circles with diametersPAP

′

A , PBP
′

B , PCP
′

C - they are calledgeneralized Apol-
lonian circles[9], [10] 4 - have their centers on the lineLABC(R2

), R2
= (r 2

a :

r 2

b : r 2
c )ABC , and they are in the same pencil of circles through the pointP and

its imageP ′ under the reflection in the circumcircle ofABC. (If P is a point on
the circumcircle then all three circles are mutually tangent to each other andP is
the point of tangency.)

Figure 5.

4The original Apollonian circles we get forP = I .
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Since0R = (d(P,B)d(P,C) : · · · : · · · )ABC , this point agrees with(P♯I)
0,

and τR agrees with(P♯I)
τ for τ = a, b, c. P ′ is theI∗-associate ofP . A rou-

tine calculation gives its coordinates:P ′
= (p2

aa
2b2c2

+ papba
2c2

(a2 − c2
) +

papca
2b2

(a2 − b2
) + pbpca

4 · (a2 − b2 − c2
) : · · · : · · · )ABC .

Question: Given a pointR, what is the numbernR of (real) pointsP with R =

(P♯I∗)τ for someτ ∈ {0, a, b, c}? In [10] Yiu gives the following answer: The
numbernR is 2, 1, or0 according as the lineLABC(R2

) intersects the circumcircle
of ABC in 0, 1, or 2 points. Additionally, one could ask for a partition ofE
illustrating the domains of pointsR with nR = 0 resp. 1 resp. 2. The set of points
R with nR = 1 is the union of circumconicsCABC(Iτ ), τ = 0, a, b, c. The set of
pointsR with nR = 2 is the union of the open green domains shown in Figure
5. We also can get a partition of the plane by lines showing thedomains of points
R−1

= G/R with nR = 0, 1, 2 (see Figure 6).

Figure 6.

The set of pointsR−1 with nR = 1 is the union of linesLABC(Iτ ). The set
of pointsR−1 with nR = 2 is the union of the green areas. This way we can link
Yiu’s [10] and Weaver’s [9] work to a problem that was put and solved by Bottema
in [1]: Given a triplet(ra, rb, rc) of real numbers, what is the number of pointsP
satisfying(ra : rb : rc) = (d(P,A) : d(P,B) : d(P,C))? Identifying(ra : rb : rc)

with the pointR = (ra : rb : rc)ABC , Bottema’s answer can be formulated as
follows: The number of points depends on d(R,BC), d(R,CA) and d(R,AB)

being the sidelengths of a triangle (two points), a degenerate triangle (one point) or
not a triangle (zero points).

Given a pointR = (ra, rb, rc)ABC of typeτ , the pointsP andP ′ with (P♯I∗)τ =

(P ′♯I∗)τ = R have coordinates
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((b2
+ c2

+ (r 2

b − r 2

c ))

√

a4
+ b4

+ c4 − 2a2b2 − 2b2c2 − 2c2a2

± [(c2
+ a2 − b2

)

√

c4 − 2c2
(r 2

a + r 2

b ) + (r 2
a − r 2

b )
2

+ (a2
+ b2 − c2

)

√

b4 − 2b2
(r 2

c + r 2
a ) + (r 2

c − r 2
a )

2
]

: · · · : · · · )ABC .

We get real values for pointsR with nR ≥ 1.

2.1.2. There is a direct connection betweenI∗-correspondence and orthocorres-
pondence: TheI∗-correspondentP♯I∗ agrees with the orthocorrespondent ofP
for the cevian triangle ofP♯I∗. This is a consequence of the well known fact that
the orthocenterH∗ of the triangleA∗B∗C∗ is the incenter of its orthic triangle
which we denote by∆∗. Since the tripolar of any point with respect to a given
triangle agrees with the tripolar of this point with respectto its cevian triangle, we
haveLA∗B∗C∗(H∗

) = L∆∗(H∗
). The polar triangles ofA∗B∗C∗ and∆

∗ with
respect toS areABC and the cevian triangle ofP♯I∗, respectivly.
Consequences: (1) P ′ is the orthoassociate ofP with respect to the cevian triangle
of P♯I∗.
(2) The circumcircle ofABC is identical with the polar circle of the cevian triangle
of P♯I∗.
(3) The orthocorrespondentP♯H∗ of P with respect toABC agrees with theI∗-
correspondent ofP for the anticevian triangle ofP♯H∗.
(4) The polar circle ofABC is identical with the circumcircle of the anticevian
triangle ofP♯H∗.

2.1.3. The image of the sidelines.
⋃

τ=0,a,b,c(AB♯I∗)τ is an analytic curve which
is shown in Figure 7.

Figure 7. The red curve is the image of the sidelineAB under the mappings
(I

∗

)
τ

, τ = 0, a, b, c.
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2.1.4. The preimage ofL∞ under I∗-correspondence.A point P has the image
point (P♯I∗)a on the line of infinity if and only if1/d(P,A) = 1/d(P,B) +

1/d(P,C). The set of pointsP satisfying the last equation is an analytic curve
(an oval)Oa which is invariant under inversion with respect to the circumcircle
CABC(K). The union of the three ovalsOτ , τ = a, b, c, is the algebraic curve
{P | Σcyclic d

2
(P,B)d

2
(P,C)(d

2
(P,B)d

2
(P,C)−2d

4
(P,A)) = 0} (see Figure

8).

Figure 8. The set of pointsP with (P♯Q
∗

)
τ a point onL∞, τ = a, b, c, is an

algebraic curve which is the union of the three (red) ovals.

2.1.5. TheS-duals of the incircle and the excircles of the triangleA∗B∗C∗.
Because of the strong connection between the incenter and the incircle and the
excenters and their correspondent excircles, we take a brief look at the incircle
and the excircles ofA∗B∗C∗, JA∗B∗C∗(Ge∗τ ), τ = 0, a, b, c, and theirS-duals,
CABC((P♯Ge∗)τ ), τ = 0, a, b, c. The pointP is a focus of each of these circum-
conics, and the linesLABC(P♯I∗)τ ), τ = a, b, c, are the corresponding directrices.
Figure 9 shows the situation forP = O.

2.1.6. I∗-pivotal curves.We take the notationP(Q∗, R) from 1.11. For the weak
centerQ∗

= I∗, this set is an algebraic curve, given by the equation

Σcyclic (d2

ad
2

b(xrb − yra)
4 − 2d2

adbdc(xrb − yra)
2
(xrc − zra)

2
) = 0,

with da := c2y2
+ 2yzSA + b2z2, etc. For a picture, see Figure 10.

2.2. G∗-correspondence.In 1.4 we already saw thatP♯G∗
= P for every pointP

in the triangle plane.
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Figure 9. This shows the (pink) circumcircleCABC((O♯Ge
∗

τ
)
0) = CABC(K)

and the (red) circumconicsCABC((O♯Ge
∗

)
τ

), τ = a, b, c. The three (green)
linesLABC((O♯I

∗

)
τ

), τ = a, b, c, are the sidelines of the medial triangle.

Figure 10. Besides the (red) algebraic curveP(I
∗

, O), the picture shows the
linesAO, BO, CO (green). Without any proof, we state that all (ten) singular
points ofP(I

∗

, O) lie on these lines. Six singular points are points on∂ABC.
And for eachτ = 0, a, b, c, one is of typeτ .
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2.3. O∗-correspondence.

2.3.1. Calculation of dom(O∗). We have

O[P ]
= ((pbpc(b

2p2

c + 2pbpcSA + c2p2

b)(−p2

aSA + papbSB + papcSC + pbpca
2
)

: · · · : · · · )ABC .

First, we look at the sets{(pa : pb : pc)ABC | b2p2

c + 2pbpcSA + c2p2

b = 0} and
{(pa : pb : pc)ABC | − p2

aSA + papbSB + papcSC + pbpca
2

= 0}. The first set
contains one real point, the vertexA. The second set is the circle with diameter
BC. From this it follows that the first coordinate ofP♯O∗ is zero if and only ifP
is a point of the lineBC or a point on one of the circles with diameterAB resp.
AC. This implies: dom(O∗

) = E −{A,B,C,HA,HB,HC}, whereHA,HB,HC

are the vertices of the orthic triangle ofABC.

2.3.2. Special images.As special cases forO[P ] andP♯O∗ we get

• for P = I : O[I]
= I andI♯O∗

= G,
• for P = G : O[G]

= ((a2 − 2b2 − 2c2
)(5∆a2 − b2 − c2

) : · · · : · · · )ABC

= X1384/X1383 andG♯O∗
= X1383/X1384,

• for P = O : O[O]
= X1147 andO♯O∗

= O/X1147,
• for P = H : O[H]

= O andH♯O∗
= X2052.

2.3.3. The image of the sidelines.If P = (0 : t : 1 − t) is a point onBC,
different fromB,C andHA, thenP♯O∗

= (t(t − 1)(a2
(2t − 1) − b2

+ c2
) :

−2t(a2t(t − 1) + b2
(1 − t) + c2t) : 2(1 − t)(a2t(t − 1) + b2

(1 − t) + c2t))ABC .
The infinite point onBC is mapped to the pointG. The image setBC♯O∗ can be
extended to a connected analytic curve. This curve we denotebyA(BC,O∗

). See
Figure 11 for a picture.

Figure 11. This picture shows the curvesA(BC, O
∗

) (green),A(CA, O
∗

) (pur-
ple) andA(AB, O

∗

) (red).
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2.3.4. Connection betweenO∗- andH∗-correspondence.The pointO∗ of the tri-
angleA∗B∗C∗ is identical with the orthocenter of the pedal triangle ofO∗ which
is the cevian triangle ofG∗. Therefore, theO∗-transversal ofP agrees with ortho-
transversal ofP for the anticevian triangle ofP = P♯G∗ (with respect toABC).

2.3.5. TheS-dual of the circumcircle of the triangleA∗B∗C∗. TheS-dual of the
circumcircleCA∗B∗C∗(K∗

) is the conicJABC(P♯K∗
). The foci of this conic are

P and its isogonal conjugateK/P . The lineLABC(P♯O∗
) is the polar line ofP

with respect toJABC(P♯K∗
), so it is a directrix of the conic.

Two examples:

• ForP = O, JABC(P♯K∗
) is Brocard inellipse ofABC.

• For P = Iτ , τ = 0, a, b, c, we getP♯O∗
= G. Therefore,LABC(P♯O∗

)

is the line at infinity, and the conicJABC(P♯K∗
) is a circle. Forτ = 0

it is the incircle, forτ = a, b, c the corresponding excircle ofABC. O∗-
correspondence maps the pointsIτ , τ = 0, a, b, c, to G. Let us determine
the preimage ofG under♯O∗. Obviously, the incenter and the excenters
are the only finite points that are mapped toG by ♯O∗. But the equation
P♯O∗

= G is also correct for every point onL∞, as can be easily checked.

2.3.6. The preimage of a point underO∗-correspondence.There are several pos-
sibilities to determine the preimage of a pointR underO∗-correspondence. We
describe two. Afterwards, we determine the preimage ofL∞.

Figure 12. This ”insect” consists of the triangleABC, the (red) Neuberg cubic,
the (green) quarticV(O

∗

, X647) and the (cyan) quarticV(O
∗

, X650). For the
triangle shown here, one real point is (and four more complexpoints are) mapped
to H by O

∗-correspondence.
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(A) First, we determine the preimages ofG and H and the associates of the
Gibert pointX1141 using the way that was described in 1.11. We start with the
quarticV(O∗,X523), given by the equation

Σcyclic(c
2y2

+ 2yzSA + b2z2
)(x(−xSA + ySB + zSC) + yza2

)(b2 − c2
) = 0.

X523 = (b2 − c2
: · · · : · · · )ABC is a point onL∞ (the orthopoint of the Euler

line). The quartic splits into the line at infinity and a cubic, which is called the
Neuberg cubic and we denote byKN . SinceL∞♯O∗

= G, ♯O∗ maps the Neuberg
cubic onto the Kiepert hyperbola.

• There are five points onKN which are mapped toG byO∗-correspondence,
the in- and excenters and the Euler infinity pointX30.

• The orthocenterH is the fourth (the non trivial) common point of the
Kiepert hyperbola and the Jarabek hyperbolaCABC(X647). Hence, the
preimage ofH underO∗-correspondence is the intersection ofKN with
the quarticV(O∗,X647). See Figure 12.

• The orthocenterH is the fourth common point of the Kiepert hyperbola
and the Feuerbach hyperbolaCABC(X650). Therefore, we can get the
preimage ofH underO∗- correspondence as the intersection of the Neu-
berg cubic with the quarticV(O∗,X650). See Figure 12.

Figure 13. For an obtuse triangleABC, the quarticV(O
∗

, H) splits into two
circles, the circum circle (green) and the polar circle (cyan) of the triangle. The
red curve is the Neuberg cubic. For the triangle presented here, there are four
O

∗-associates ofX1141 , all lying on the polar circle.

• Apart fromA,B,C, the Gibert pointX1141 is the only common point of
the circumcircle and the Neuberg cubicKN , see [3]. TheO∗-correspondence
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maps the circumcircle to the circumconicCABC(H) (see 1.10) and the
Neuberg cubic toCABC(X523). Therefore,X1141♯O

∗ is the fourth com-
mon point ofCABC(H) andCABC(X523). The lineLABC(X1141♯O

∗
) is

a line troughH, perpendicular to the Euler line. (The pointX1141♯O
∗ is

not in the current edition of [7].) The quarticV(O∗,H) is the union of the
circumcircle and the algebraic set{(pa : · · · : · · · )ABC |SAp2

a + SBp2

b +

SCp2
c = 0}. This set is the polar circle ofABC (the circle with center

H and radiusρ =

√
−SASBSC/(

√
8S) if ABC is obtuse, the set{H}

if ABC is right-angled, and the empty set (set without any real point) if
ABC is acute. See Figure 13.

Another example:The preimage of the verticesA,B,C. The quarticV(Q∗, A)

consists of the circle with diameterBC and the pointA. Therefore, the preimage
of A consists of all points lying on the circle with diameterBC but not on a sideline
of ABC.

Figure 14. This shows the curvesK(A; RB , RC) (purple), K(B; RC , RA)

(green) andK(C; RA, RA) (light blue) and the (black) lineLS(R). For the tri-
angleABC drawn here, the preimage ofR underO∗-correspondence consists
of three (real and two nonreal/complex) points. See 2.3.6.(B).

(B) A second way to determine the preimage of a point. The tripolar line
LABC(R) of a pointR intersects the triangle linesBC,CA,AB in RA := (0 :

−rb : rc)ABC , RB := (ra : 0 : −rc)ABC , RC := (−ra : rb : 0)ABC , respec-
tivly. Supposing that a pointP is neither an edge-point nor a point on the line of
infinity, this pointP can be in the preimage ofR only if the corresponding polar
triangleB∗C∗Q∗ of RBRCA is an isosceles triangle with d(Q∗, B∗

) = d(Q∗, C∗
).

Here,Q∗
= (pa/ra : · · · : · · · )ABC is the pole ofLABC(R) with respect toS.
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The locus of pointsP satisfying the last equation is (after completion) the cubic
K(A;RB , RC). See 1.9 for a definition of the cubicsK and Figure 14 for a picture.

(C) The preimage ofL∞. The pointsP whose coordinates satisfy the equation
Σcyclic pa/[(a

∗2
(b∗2 + c∗2 − a∗2)] = 0, a∗ = a∗(pa, pb, pc), · · · ,

are points on one of the sidelines ofABC or points on an octic which passes twice
through each of the verticesA,B,C and also passes through the vertices of the
orthic triangle, see Figure 15.

Figure 15. The preimage ofL∞ under♯O∗ consists of all points of dom(O∗

)

lying on the (red) octic, see 2.3.6.(C).

2.4. H∗-correspondence.For a nearly complete analysis of orthocorrespondence,
see [3] and [4].

2.5. N∗-correspondence.

2.5.1. Calculation of dom(N∗). N [P ]
= (a∗2(b∗2 + c∗2) − (b∗2 − c∗2)2) : · · · :

· · · )ABC , a∗ = a∗(pa, pb, pc), · · · . The algebraic set{(pa : pb : pc)ABC | a∗2(b∗2+
c∗2) − (b∗2 − c∗2)2) = 0} splits into the lineBC and the quarticV(N∗, A) which
passes through all the vertices ofABC (A being a dubble point) and the vertices
HB andHC of the orthic triangle.HB andHC are the only intersection points of
V(N∗, A) with AC resp.AB. The two quarticsV(N∗, B) andV(N∗, C) meet at
six points, the verticesA,B,C, the pointHA and two more points, one of type0
and one of typea, see Figure 15. If the triangleABC is neither perpendicular nor
equilateral, we have dom(N∗

) = E− 12 points.
Special images

• N [I]
= X10, I♯N∗

= X81.
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Figure 16. The picture shows the curvesV(N
∗

, A) (light blue),V(N
∗

, B) (pur-
ple) andV(N

∗

, C) (green).

• O♯N∗
= (1/(SA((a2

(b2
+ c2

) − (b + c)2(b − c)2)2 − 2a4b2c2
) : · · · :

· · · )ABC .
• G♯N∗

= (1/(2a4 − 18b2c2
+ 7SA(b2

+ c2
)
2
) : · · · : · · · )ABC .

• N [H]
= H, H♯N∗

= H/N = X275.
• L∞♯N∗

= G.
• ♯N∗ maps a pointP = (0 : pb : pc)ABC , pbpc 6= 0 onto the point

(pbpc((pb − pc)a
2 − (b2 − c2

)) : pbfa(pa, pb, pc) : pcfa(pa, pb, pc))ABC ,
with fa(pa, pb, pc) = ((p2

b + p2
c)a

4 − 2(pbb
2
+ pcc

2
) − (b2 − c2

)
2
).

2.5.2. TheS-dual of the nine-point-circle of the triangleA∗B∗C∗. We start from
the well known fact that for any two different pointsP andQ in the plane of a
triangle∆, both not lying on∂∆, there exists a conic which passes through the
vertices of the cevian triangles ofP and ofQ, see [5] (for instance). This conic is
uniquely determined byP andQ and we denote it byC∆(P,Q).

Of course, the dual of this statement is also true: Given two different pointsP
andQ, both not lying on∂∆, there exists exactly one conic which is an inconic of
the anticevian triangles ofP and ofQ. This conic we denote byJ∆(P,Q). We now
specialize in the nine-point-circleCA∗B∗C∗(G∗,H∗

) and itsS-dualJABC(P,P♯H∗
).

Figure 17 shows a picture of this conic.
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P#H*

Figure 17. For the triangleABC and the pointP , the picture shows the (purple)
conicJABC(P, P ♯H

∗

), which is an inconic of the (red) anticevian triangle of
P♯G

∗

= P and of the (green) anticevian triangle ofP♯H
∗. The pointP is a

focus of this conic, and the purple line is the correspondingdirectrix which is
also the tripolar line of the pointP♯N

∗.

3. Description of the algebraic setP♯q∗ for q∗ = G∗O∗.

We refer to results given in 1.5.5 and look at two special cases forP , P = I and
P = H.

3.1. P = I. We takeP = I. LetG∗O∗
= LA∗B∗C∗(X∗

648
) be the Euler line of the

triangleA∗B∗C∗. The linesG∗O∗
= LA∗B∗C∗(X∗

648
) andIO = LABC(X651)

are identical lines because we haveO∗
= I and the orthopointX∗

523
of G∗O∗

agrees with the orthopointX513 of IO. The S-dual of the lineG∗O∗ is the
point X513, so the linesLS(Q∗

) with Q∗ a point onG∗O∗ form a pencil through
X513. The S-dual of O∗ is the line at infinity, and for a point onG∗O∗, dif-
ferent fromO∗, the S-dual LS(Q∗

) is perpendicular toIO. As a special case
we have the lineLS(X∗

30
) which passes throughI = O∗. Because of the equa-

tion d(O∗, N∗
) = d(N∗,H∗

), the quadruplet(O∗,H∗
;N∗,X∗

30
) is an harmonic

range of points. Therefore,(LS(X∗

30
), LS(N∗

); LS(H∗
), LS(O∗

)) is an harmonic
range of lines, and we get d(I,LS(H∗

)) = d(LS(H∗
), LS(N∗

)). We also have
an harmonic range(O∗, N∗

;G∗,H∗
) which implies that the quadruplet(LS(H∗

),
LS(G∗

); LS(N∗
), LS(O∗

)) is harmonic and we have equal distances between the
linesLS(H∗

),LS(N∗
) and the linesLS(N∗

),LS(G∗
). After all, we involve the

DeLongchamps pointL. Because of the harmonic range(H∗, L∗
;O∗,X∗

30
), we

have equal distances between the linesLS(H∗
), LS(X∗

30
) and the linesLS(X∗

30
),

LS(L∗
). The constellation of these lines is shown in Figure 18.

IO intersects

• LS(H∗
) in X1319 (Bevan-Schröder-Point, midpoint ofI andX36 , see [6],

[7], [8],
• LS(N∗

) in X36 (inverse in circumcircle of the incenter; midpoint ofI and
X484, see [7]) ,

• LS(G∗
) in X1155 (Schröder-Point; midpoint ofX36 andX484 and inter-

section ofLABC(I) with IO, see [6], [7]),
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LS(X549*) LS(N*) LS(X30*)

LS(G*) LS(H*) LS(L*)

IO= G*O*

Figure 18. This shows the constellation of the linesLS(Q
∗

), Q
∗

= H
∗, N

∗,
G

∗, L
∗, X30

∗, X
∗

549, in case ofP = I .

• LS(L∗
) in (3a4

(b + c) + 2a3
(b2 − 13bc + c2

) + 4a2
(−b3

+ 4b2c + 4bc2 −
c3

)+2a(−b4
+5b3c−12b2c2

+5bc3−c4
)+(b+c)(b−c)4 : · · · : · · · )ABC ,

• LS(X∗

549
) in X3245 (X∗

549
is the midpoint of I* and O*;X3245 is the re-

flection ofI in X1155, see [7]).

I propose to call the pointI/Q the I-conjugateof Q. The set ofI-conjugates
of points onIO is the circumconicCABC(X513), for short: TheI-conjugate ofIO
is CABC(X513). This conic passes through the pointsI = I♯G∗ andG = I♯O∗,
so it is a hyperbola. It also passes through the pointsI♯H∗

= X57, I♯N∗
= X81

andI♯L∗
= X145. The center of the circumconic is the pointX1015 = X2

513
. It

should not be too difficult (but quite a bit of work) to calculate the center functions
of I♯Q∗ for all known centersQ∗ on the Euler lineq∗. A few of the pointsI♯Q∗

are listed in [7], many are not, even though some of them have relatively simple
center functions.

The circleS is concentric with the incircleJABC(Ge) of ABC, so we can
chooseS = JABC(Ge). In this case, the triangleA∗B∗C∗ is the intouch triangle
of ABC. The lineIO intersects the incircle inX2446 and inX2447, see [7]. In [7]
we also can findX30

∗
= X517, H∗

= X65, N∗
= X942, G∗

= X354 (Weill-point),
L∗

= X3057.
Note.ChoosingP = τI for τ ∈ {a, b, c}, the Euler line of the triangleA∗B∗C∗

is identical with the lineτIO of ABC.

3.2. P = H. We assume thatABC is an oblique triangle. TakingP = H, the
trianglesABC andA∗B∗C∗ are homothetic with centerH, and we have(a∗ : b∗ :

c∗) = (a : b : c). The pointH is an inner center ifABC is acute, and it is an
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outer center ifABC is obtuse. If we put the radius ofS to
√

|SASBSC |/(
√

8S),
the triangleA∗B∗C∗ agrees withABC in case of an obtuse triangleABC (S is
the polar circle ofABC), while for an acute triangle we getA∗B∗C∗ by reflecting
ABC in H.

We can state the following
Lemma. Real version: For every pointQ in the plane of an obtuse triangle

ABC, the lineLABC(H/Q) agrees with the polar line ofQ with respect to the
polar circle S. For every pointQ in the plane of an acute triangleABC, one gets
the lineLABC(H/Q) by reflecting the polar line ofQ (with respect to the circle
S) in H. Complex version: For every pointQ in the plane of an oblique triangle
ABC, the lineLABC(H/Q) agrees with the polar line ofQ with respect to the
quadricSAx2

+ SBy2
+ SCz2

= 0.
I propose to call the pointH/Q theH-conjugate of Q. TheH-conjugate of the

Euler line is the Kiepert hyperbola.
The constellation of the linesLS(Q∗

), Q∗
= N∗, G∗, O∗, L∗,X∗

30
, is shown in

Figure 19. The proof of this is quite similar to the proof of the constellation of lines
given in the previous subsection.

  LS(N*) LS(O*) LS(X30*)

LS(G*) LS(L*)

GO= G*O*

Figure 19.

GO intersects

• LS(G∗
) = LABC(H) in X486 (inner Vecten point),

• LS(O∗
) = LABC(X2052) in X403 (X403 is the pointX36 of the orthic

triangle, see [7]),
• LS(N∗

) = LABC(X275) in X186 (inverse in circumcircle ofH, see [7]),
• LS(L∗

) = LABC(K/L) in ((2a6 − a4
(b2

+ c2
)− 4a2

(b2 − c2
)
2
+ 3(b2 −

c2
)
2
(b2

+ c2
))/SA : · · · : · · · )ABC .
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An Elementary View on Gromov Hyperbolic Spaces

Wladimir G. Boskoff, Lucy H. Odom, and Bogdan D. Suceavă

Abstract. In the most recent decades, metric spaces have been studiedfrom a
variety of viewpoints. One of the important characterizations developed in the
study of distances is Gromov hyperbolicity. Our goal here isto provide two ap-
proachable, but also intuitive examples of Gromov hyperbolic metric spaces. The
authors believe that such examples could be of interest to readers interested in
advanced Euclidean geometry; such examples are in fact a familiar introduction
into coarse geometries. They are both elementary and fundamental. A scholar fa-
miliar with concepts like Ptolemy’s cyclicity theorem or various geometric loci
in the Euclidean plane could find a familiar environment by working with the
concepts presented here.

1. Motivation

The reader familiar with the advanced Euclidean geometry will already have a
major advantage when she/he pursues the study of specialized themes in metric ge-
ometry. On certain topics, the insight into some ideas developed historically within
the triangle geometry or alongside classes of fundamental inequalities serves as a
great aid in understanding the profound phenomena in metricspaces. Additionally,
from a mathematical standpoint, it is of particular interest to find connections of
advanced Euclidean geometry with other areas of mathematics.

One of the most accessible introductions into metric geometry is D. Burago, Y.
Burago, and S. Ivanov’s monograph [2]. In this well-writtenmonograph, section
8.4 (pp. 284–288) is dedicated to the study of Gromov hyperbolic spaces. The
chapter is particularly detailed, but we feel that some moreelementary examples
would serve the exposition well.

Our motivation in writing this note is to provide the reader who is familiar with
advanced Euclidean geometry with an idea of a possible research topic in a more
advanced context.

2. Gromov hyperbolic spaces: definition, notations, brief guidelines among
references

Following M. Gromov’s influential work [5], in recent years several investiga-
tors have been interested in showing that metrics, particularly in the area of geomet-
ric function theory, are Gromov hyperbolic (to mention herewith a few examples,

Publication Date: December 11, 2012. Communicating Editor: Paul Yiu.
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see [1, 7, 8, 9]). In the classical theory, an important classof examples of Gromov
hyperbolic spaces are the CAT(κ) spaces, withκ < 0 (see [4], p.106). The reader’s
ultimate goal is to understand the fundamental monograph [6], which serves as
guidelines to many researchers and attracts major interest.

For a formal definition, consider a metric space(M,d) whered satisfies the
usual definition of a distance. GivenX,Y,Z ∈ M, the quantity(X|Y )Z =

1

2
[d(X,Z) + d(Y,Z) − d(X,Y )] is called theGromov productof X andY with

respect toZ. Denotea∧ b = min{a, b}. The metric space(M,d) is calledGromov
hyperbolic(see Definition 8.4.6, p. 287 in [2]) if there exists some constantδ ≥ 0

such that
(X|Y )W ≥ (X|Z)W ∧ (Z|Y )W − δ,

for all X,Y,W,Z ∈ M.
Sometimes it is more convenient to study the pointwise characterization of Gro-

mov hyperbolic spaces. Using the fact thata ∨ b = max{a, b}, the Gromov hyper-
bolic condition can be rewritten in the following way:

(M,d) is a Gromov hyperbolic metric space if there exists a constant δ ≥ 0 such
that

d(X,Z) + d(Y,W ) ≤ [d(Z,W ) + d(Y,Z)] ∨ [d(X,Y ) + d(Z,W )] + 2δ,

∀X,Y,W,Z ∈ M.

The geometric idea is best captured in Mikhail Gromov’s description from [6,
p.19], where he writes: “It is hardly possible to find a convincing definition of the
curvature (tensor) for an arbitrary metric spaceX, but one can distinguish certain
classes of metric spaces corresponding to Riemannian manifolds with curvatures
of a given type. This can be done, for example, by imposing inequalities between
mutual distances of finite configurations of points inX”.

3. Examples of Gromov hyperbolic spaces

In this section we present two examples of Gromov hyperbolicspaces.

Proposition 1. Let A(−1, 0), B(0, 1), and D(0,−1) be points in the Cartesian
plane endowed with the Euclidean distanced. LetM ⊂ R

2 be the set

M = {A,B,D} ∪ {C|C(x, 0), x ≥ 0}.

Then the metric space(M,d) is Gromov hyperbolic withδ ∈
[

3−
√

2

2
, 4−

√

2

2

]

.

Proof. We check that there exists a constantδ ≥ 0 such that

d(X,Z) + d(Y,W ) ≤ [d(Z,W ) + d(Y,Z)] ∨ [d(X,Y ) + d(Z,W )] + 2δ,

for all X, Y , Z ∈ M . Note thatd(B,D) = 2, d(A,C) = x + 1, d(A,B) =

d(A,D) =

√
2, and

d(C,D) = d(C,B) =

√

x2
+ 1.



An elementary view on Gromov hyperbolic spaces 285

In order to determine our constantδ > 0, we require the following condition:

d(A,C) + d(B,D) ≤ [d(A,B) + d(C,D)] ∨ [d(A,D) + d(C,B)] + 2δ.

However,d(A,B) + d(C,D) = d(A,D) + d(C,B), thus findingδ reduces to the
following:

x + (3 −
√

2) − 2δ ≤
√

x2
+ 1, ∀x ≥ 0.

An inequality such asx + b ≤
√

x2
+ 1, for all x ≥ 0 leads toδ ≥ 3−

√

2

2
when

b ≤ 0 andδ ≤ 4−
√

2

2
whenb ≥ −1. In all the other cases, the basic inequality

holds forδ ≥ 0. That is, the metric space(M,d) is Gromov hyperbolic withδ ∈
[

3−
√

2

2
, 4−

√

2

2

]

. �

Proposition 2. LetA(0, 1), B(−1, 0), C(0,−1) D(a, 0), with a ∈ (0, 2) be points
in the interior of the disk centered at the origin of radius 2,endowed with the
Cayley distance (see[3])

d(X,Y ) =

1

2

ln

SX

SY
:

sX

sY
, (1)

where{s, S} = XY ∩ C((0, 0), 2). Then the set

M = {A,B,C} ∪ {D|D(a, 0), a ∈ (0, 2)}

endowed with the metric space induced by Cayley’s distance is a Gromov hyper-
bolic metric space if
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Proof. A direct computation shows that

d(A,D) = d(C,D) =

1
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ln
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2 − a
.

In order to determineδ > 0, we require the condition:

d(A,C) + d(B,D) ≤ [d(A,B) + d(C,D)] ∨ [(d(A,D) + d(C,B)] + 2δ.

On the other hand,d(A,B) + d(C,D) = d(A,D) + d(C,B), thus determiningδ
reduces to

ln

27(2 + a)
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≤ ln
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for anya ∈ (0, 2). In fact, the inequality

27(2 + a)

2 − a
≤

(√
7 + 1

√
7 − 1

)

2

·

√
3a2

+ 4 + 1

√
3a2

+ 4 − 1

· e4δ

holds exactly when
(√

7 + 1

√
7 − 1

)

2

· e4δ > 27

√
3.

Therefore

δ >
1

4

· ln 27

√
3

(√
7 + 1

√
7 − 1

)

2

.

�

In all the other cases one should consider in this proof, we obtain similar com-
putations; these computations have not been included here,to preserve the quality
of our presentation. Our goal is to underline the fundamental geometric core of
Gromov hyperbolic metric spaces by the use of these examples.

Note that in the second example, the order of the points in theCayley distance
in (1) is chosen so that the cross-ratio yields a value greater than 1.
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On Tripolars and Parabolas

Paris Pamfilos

Abstract. Starting with an analysis of the configuration of chords of contact
points with two lines, defined on conics circumscribing a triangle and tangent to
these lines, we prove properties relating to the case the conics are parabolas and
a resulting method to construct the parabola tangent to fourlines.

1. Introduction

It is well known ([3, p. 42], [10, p. 184], [7, II, p. 256]), that given three points
A,B,C and two lines in general position, there are either none or four conics
passing through the points and tangent to the given lines. A light simplification
of Chasles notation ([2, p. 304]) for these curves is3p2t conics. The conics exist
if either the two lines do not intersect the interior of the triangleABC or the two
lines intersect the interior of the same two sides ofABC. In all other cases there
are no conics satisfying the above requirements. In this article, we obtain a formal
condition (Theorem 6) for the existence of these conics, relating to the geometry of
the triangleABC. In addition we study the configuration of a triangle and two lines
satisfying certain conditions. In§2 we introduce themiddle-tripolar, which plays
a key role in the study. In§3 we review the properties of generalized quadratic
transforms, which are relevant for our discussion. In§§4, 5 we relate the classical
result of existence of3p2t conics to the geometry of the triangleABC. In the two
last sections we prove related properties and constructionmethods for parabolas.

2. The middle-tripolar

If a parabola circumscribes a triangleABC and is tangent to a linel (at a point
different from the vertices), thenl does not intersect the interior ofABC. In this
section we obtain a characterization of such lines. For this, we start with a point
P on the plane of triangleABC and consider its tracesA1, B1, C1 and their har-
monic conjugatesA2, B2, C2, with respect to the sidesBC,CA,AB, later lying
on the tripolartr(P ) of P (See Figure1). By applying Newton’s theorem ([5,
p. 62]) on the diagonals of the quadrilateralA1B1B2A2 we see that the middles
A′, B′, C ′ respectively of the segmentsA1A2, B1B2, C1C2 are on a line, which I
call themiddle-tripolar of the pointP and denote bymP . In the following dis-
cussion a crucial role plays a certain symmetry among the four lines defined by
the sides of the cevianA1B1C1 of P and the tripolartr(P ), in relation to thehar-
monic associates([13, p. 100])P1, P2, P3 of P . It is, namely, readily seen that
for each of these four points the corresponding sides of cevian triangle and tripolar
define the same set of four lines. A consequence of this fact isthat all four points
P,P1, P2, P3 define the same middle-tripolar, which lies totally in the exterior of

Publication Date: December 17, 2012. Communicating Editor: Paul Yiu.
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Figure 1. The middle-tripolarmP of P

the triangleABC. Combining these two properties, we see that for every pointP
of the plane, not coinciding with the side-lines or the vertices of the triangle, the
corresponding middle-tripolarmP lies always outside the triangle. It is easy to see
that all these properties are also consequences of the following algebraic relation,
which is proved by a trivial calculation.
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B C
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1

B
1

C
1

A
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B
2

C
2

B'

C'

A'

e

Figure 2. Givene find P such thate = mP

Lemma 1. If the pointP defines through its traceA1 the ratio A1B
A1C

= k, then the
corresponding middle-tripolarmP defines on the same side of the triangleABC

the ratio A′B
A′C

= k2.

Using this lemma, we can see that every linee exterior to the triangle and not
coinciding with a side-line or vertex, defines a pointP , interior to the triangle, such
thate = mP . It suffices for this to take the ratios defined bye on the side lines

k1 =

A′B

A′C
, k2 =

B′C

B′A
, k3 =

C ′A

C ′B
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and define the pointsA1, B1, C1 with corresponding ratios

A1B

A1C
= −

√

k1,
B1C

B1A
= −

√

k2,
C1A

C1B
= −

√

k3.

A simple application of Ceva’s theorem implies that these points define cevians
through the required pointP , and proves the following lemma.

Lemma 2. Every linee not intersecting the interior of the triangleABC and not
coinciding with a side-line or vertex of the triangle is the middle-tripolar mP of a
unique pointP in the interior of the triangleABC.

3. Quadratic transform associated to a base

If a conic circumscribes a triangleABC and is tangent to two linesl, l′ (at points
different from the vertices), then it is easily seen that either the lines do not intersect
the interior of the triangle or they intersect the interior of the same couple of sides
of the triangle. In this section we obtain a characterization of such lines. For this
we start with abaseA(1, 0, 0), B(0, 1, 0), C(0, 0, 1),D(1, 1, 1) of the projective
plane ( [1, I, p. 95]). To this base is associated a quadratic transformf , described
in the corresponding coordinates through the formulas

x′
=

1

x
, y′ =

1

y
, z′ =

1

z
.

This generalizes theIsogonaland theIsotomictransformations of a given triangle
ABC and has analogous to them properties ([9]). The most simple of them are,
thatf is involutive (f2

= I), fixesD and its three harmonic associates, and maps
lines to conics through the vertices ofABC. In addition, the harmonic associates
of D define analogously the same transformation. Of interest in our study is also
the induced transformationf∗ of the dual space(P 2

)
∗, consisting of all lines of

the projective planeP 2. The transformationf∗ can be defined by the requirement
of making the following diagram of maps commutative(f∗ ◦ tr = tr ◦ f).

−−−−−→
f

−−
−
−
−
−→

tr

−−
−
−
−
−→

tr

−−−→
f∗

P 2 P 2

(P 2
)
∗

(P 2
)
∗

Here tr denotes the operationlP = tr(P ) of taking the tripolar line of a point
with respect toABC. For every linel the linel′ = f∗

(l) is found by first taking
the tripolePl of l, then takingP ′

= f(Pl) and finally definingl′ = tr(P ′
). It is

easily seen that(f∗
)
2

= I and thatf∗ fixes the sides of the cevian triangle and the
tripolar of P . The next lemma follows from a simple computation, which I omit
(See Figure3).
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(l) intersectsBC onA
′′

= A
′

(A1A2)

Lemma 3. Let A1, B1, C1 be the traces ofD on BC,CA,AB and A2, B2, C2

their harmonic conjugates with respect to these side-endpoints. For every linel in-
tersecting these sides, correspondingly, atA′, B′, C ′, the linel′ = f∗

(l) intersects
these sides at the corresponding harmonic conjugatesA′′

= A′
(A1A2), B

′′
=

B′
(B1B2), C

′′
= C ′

(C1C2).

Lemma 4. LetA,B,C,D be a projective base andf the corresponding quadratic
transform. For every linel not coinciding with a side-line or vertex ofABC, the
lines l, l′ = f∗

(l) satisfy the following property: either both do not intersect the
interior of ABC or both intersect the interior of the same pair of sides ofABC.

The proof is again an easy calculation in coordinates, whichI omit. The next
theorem, a sort of converse of the preceding one, shows that this construction
characetrizes the lines tangent to a conic circumscribing atriangle.

Theorem 5. LetABC be a triangle andl, l′ be a pair of lines having the property
of the previous lemma. Then there is a pointD, such thatA,B,C,D is a projective
base with quadratic transformationf and such thatl′ = f∗

(l).

l

l'
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B CA'

A'' C'

C''
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C
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A
2

A
1

D

Figure 4. The common harmonics defined byABC and the two lines

To prove the theorem consider first the intersection pointsA′, B′, C ′ of l, and
A′′, B′′, C ′′ of l′ correspondingly with the sidesBC,CA,AB of the triangle. By
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the hypothesis follows that the pairs of segmentsA′A′′, BC either do not intersect
or one of them contains the other. The same is true for the pairs B′B′′, CA and
C ′C ′′, AB. It follows that there are exactly two real pointsA1, A2 on line BC,
which are common harmonics with respect to(B,C) and(A′, A′′

) i.e. (A1, A2)

are simultaneously harmonic conjugate with respect to(B,C) and(A′, A′′
). Anal-

ogously there are defined the common harmonics(B1, B2) of (C,A) and(B′, B′′
)

and the common harmonics(C1, C2) of (A,B) and(C ′, C ′′
) (See Figure4). To

prove the theorem, it is sufficient to show that three points out of the sixA1, A2,
B1, B2, C1, C2 are on a line. This can be done by a calculation or, more con-
veniently, by reducing it to lemma 2 (see also [6, p. 232]). Infact, consider the
projecitvity g fixing A,B,C and sending linel′ to the line at infinitym′

= g(l′).
Then linel maps to a linem = g(l). Since projectivities preserve cross ratios, the
common harmonic points ofl, l′ map to corresponding common harmonic points
of m,m′. By Lemma 2 linem is the middle-tripolar of some point and three of
these harmonic points are on a line. Consequently, their images underg−1 are also
on a line.

4. 3p2t conics

The structure of a triangleABC and two linesl, l′, studied in the preceding
section, is precisely the one for which we have four solutions to the problem of
constructing a conic passing through three points and tangent to two lines (a3p2t
conic). The standard proof of this classical theorem ([3, p.42], [10, p. 184], [7,
II, p. 256], [4], [12]) relies on a consequence of the theoremof Desargues ([11, p.
127]).
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Figure 5. A1, A2 fixed points of the involution interchanging(B, C), (A
′

, A
′′

)

By this, all conics, tangent to two fixed linesl, l′ at two fixed points, determine
through their intersections with a fixed line an involution ([11, p. 102]) on the
points of this line. Such an involution is completely definedby giving two pairs
of corresponding points, such as(B,C) and(A′, A′′

) in Figure 5. The chord of
contact points contains the fixed points of the involution, characterized by the fact
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to be simultaneous harmonic conjugate with respect to the two pairs defining the
involution. In Figure5, the fixed points of the involution on lineBC areA1, A2.
Analogously are defined the fixed points of the involutions operating on the two
other sides of the triangleABC. Thus, there are obtained three pairs of points
(A1, A2), (B1, B2), (C1, C2) on respective sides of the given triangle.

l
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D

L
1

L'
1
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2

L
2

L
3

L'
3

L'
4

L
4

tr(D)

l'=f  *(l)

Figure 6. The four circumconics ofABC tangent tol, l′ = f
∗

(l)

By the analysis made in the previous sections we see that these six points lie, by
three, on four lines, whose intersections withl, l′ define the contact points with the
conics. The ingredient added to this proof by our remarks is that these four lines
are the sides of a cevian triangle and the associated tripolar of a certain pointD,
defined directly by the triangleABC and the two linesl, l′ (See Figure6). Thus,
the theorem can be formulated in the following way, which brings into the play the
geometry of the triangle involved.

Theorem 6. Let A,B,C,D be a projective base andl a line not coinciding with
the side-lines or vertices of triangleABC. Let alsoLi, L

′

i, (i = 1, 2, 3, 4) be the
intersections of linesl, l′ = f∗

(l) with the side-lines of the cevian triangle ofD and
the tripolar tr(D). The four conics, passing, each, through(A,B,C,Li, L

′

i (i =

1, 2, 3, 4)), are tangent tol and l′. Conversely, every conic circumscribingABC
and tangent to two linesl, l′ is part of such a configuration for an appropriate point
D.

Remarks.(1) The transformationf∗ is a sort ofdual of f and operates in(P 2
)
∗

in the same wayf operates inP 2. As noticed in§3, f∗ is an involutive quadratic
transformation, which fixes the sides of the cevian triangleof D and the tripolar
tr(D). Analogously tof , which maps lines to circumconics ofABC, f∗ maps
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the lines of the pencil through a fixed pointQ, representing aline of (P 2
)
∗, to

the tangents of the conic inscribed inABC, whose perspector ([13, p. 115]) is
f(Q). The theorem identifies points(Li, L

′

i) with the lines of (P 2
)
∗ joining the

fixed pointsof this transformation, correspondingly, with thepointsl, l′ of (P 2
)
∗.

(2) In the converse part of the theorem the pointD is not unique. The structures,
though, defined by it and which are relevent for the problem athand, are indeed
unique. Any one of the harmonic associatesD1,D2,D3 of D will define the same
f andf∗ and the same four lines, intersecting the linesl, l′ in the same pairs of
points(Li, L

′

i). In each case, three of the lines will be the side-lines of theassoci-
ated cevian triangle and the fourth will be the associated tripolar. Thus, in the last
theorem, one can always select the pointD in the interior of the triangleABC, and
this choice makes it unique.

Corollary 7. Given the triangleABC, the pairs of linesl, l′ for which there is a
corresponding3p2t conic, are precisely the pairsl, l′ = f∗

(l), wherel is any line
not coinciding with the side-lines or vertices ofABC andf∗ is defined by a point
D lying in the interior of the triangle.

5. Four parabolas and a hyperbola

If one of the two lines of the last theorem,l′ say, is the line at infinity, then it
is easily seen that the other line can be identified with the middle-tripolar of some
pointD. This leads to the following theorem.

A

B

C

A
1

A
2

C
2

C
1

L
4

l

B
2

B
1

D

L
3

L
2

L
1

Figure 7. The four parabolas throughA, B, C tangent to linel = mD

Theorem 8. For every pointD in the interior of the triangleABC the sides of its
cevian triangle and its tripolar are parallel to the axes of the four parabolas cir-
cumscribing the triangle and tangent to its middle-tripolar mD. The intersections
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of these four lines withmD are the contact points of the parabolas withmD. Con-
versely, every parabola through the vertices of a triangleABC, touching a linel
is member of a quadruple of parabolas constructed in this way.

Figure7 shows a complete configuration of three pointsA,B,C, a linel = mD

and the four parabolas passing through the points and tangent to the line. By the
analysis made in§2, line l contains the middles of segmentsA1A2, B1B2 and
C1C2.

The theorem implies that if a parabolac circumscribes a triangleABC, then
for each tangentl to the parabola, at a point different from the vertices, there are
precisely three other parabolas circumscribing the same triangle and tangent to the
same line. These three parabolas can be then determined by first locating the cor-
responding pointD. The possibility to haveD lying in the interior of the triangle,
shows that one of the lines drawn parallel to the axes of theseparabolas from the
corresponding contact point does not intersect the interior of the triangle, whereas
the other three do intersect the interior, defining the cevian triangle of pointD.
Point D is the tripole of that parallel, which does not intersect theinterior. This
rises the interest for finding the locus ofD in dependence of the tangent to the
parabola. The next theorem lists some of the properties of this locus and its rela-
tions to the parabola.

B

C

A

Pe
P

D
P

e

G
E

F

K tr(F)

t([e])

e'

I

Figure 8. The hyperbola locus

Theorem 9. Letc be a parabola with axise circumscribing the triangleABC. The
locus of tripolesDP of linesep, which are the parallels to the axis from the points
P of the parabola, is a hyperbola circumscribing the triangleand has, among
others, the properties:
(1) The hyperbola passes through the centroidG and has its perspector at the point
at infinity [e] determined by the direction ofe. The perspectorE of the parabola is
on the inner Steiner ellipse ofABC and coincides with the center of the hyperbola.
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(2) Line EG passes through the fourth intersection pointF of the hyperbola with
the outer Steiner ellipse. This line contains also the isotomic conjugatet([e]) of
[e]. The tripole of this line is the fourth intersection pointI of the parabola with
the outer Steiner ellipse.
(3) The fourth intersection pointK of the parabola and the hyperbola is the tripole
of e′, wheree′ the parallel toe throughE. LineKG is parallel to the axise and
is also the tripolar ofF . It is alsoDK = F and lineFK is a common tangent to
the parabola and the outer Steiner ellipse. The tangents to the hyperbola atF,K
intersect on the parabola at its intersection point with line e′.
(4)The hyperbola is the imageg(c) of the parabola under the homographyg, which
fixesA,B,C and sendsK to F .
(5) All lines joiningP to DP pass throughK.

Most of the properties result by applying theorems on general conics circum-
scribing a triangle, adapted to the case of the parabola.

In (1) the result follows from the general property of circumconics to be gen-
erated by the tripoles of lines rotating about a fixed point (the perspectorof the
conic). In our case the fixed point is the point at infinity[e], determined by the
direction of the axis of the parabola, and the lines passing through[e] are all lines
parallel toe. That the conic is a hyperbola follows from the existence of two
tangents to the inner Steiner ellipse, which are parallel tothe axise. These two
parallels have their tripoles at infinity, as do all tangentsto the inner Steiner el-
lipse, implying that the conic is a hyperbola. That this hyperbola passes through
the centroidG results from its definition, sinceG is the tripole of the line at infin-
ity, which is a line of the pencil generating the conic. The claim on the perspector
E follows also from a well known property for circumscribed conics, according
to which the centerC and the perspectorP of a circumconic arecevian quotients
(C = G/P , [13, p. 109]). This is a reflexive relation, and since the perspector[e]
of the hyperbola coincides with the center of the parabola, their quotients will be
also identical.

In (2) point F is the symmetric ofG w.r. to E. It belongs to the outer Steiner
ellipse, which is homothetic to the inner one and lies also tothe hyperbola, since
E is its center. That pointsE = G/[e], G andt([e]) are collinear follows by the
vanishing of a simple determinant in barycentrics. The tripole I of line EG is the
claimed intersection, sinceE,G are the respective perspectors of these conics.

In (3) line e′ contains both the perspector of the parabola and the perspector of
the hyperbola, so its tripole belongs to both correspondingconics.

In (4, 5) and the rest of(3) the statements follow by an easy computation, and
the fact, that the matrix ofg−1 in barycentrics is





a 0 0

0 b 0

0 0 c



 ,

where(a, b, c) are the coordinates of the point at infinity of linee. This is a ho-
mography mapping the outer Steiner ellipse to the hyperbola, by fixing A,B,C
and sendingF to K.
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6. Relations to parabolas tangent to four lines

The two next theorems explore some properties of the parabolas tangent to four
lines, which are the sides of a triangle together with the tripolar of a point with
respect to that triangle. The focus is on the role of the middle tripolarmD.

Theorem 10. LetA1B1C1 be the cevian triangle of pointD with respect to trian-
gleABC. The parabola tangent to the sides ofA1B1C1 and the tripolar ofD has
its axis parallel to linel = mD. In addition, the triangleABC is self-polar with
respect to the parabola.
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Figure 9. Reduction to the equilateral

The proof of the first part is a consequence of the theorem of Newton ([3, p.
208]), according to which, the centers of the conics which are tangent to four given
lines is the line through the middles of the segments joiningthe diagonal points of
the quadrilateral defined by the four lines (theNewton lineof the quadrilateral [5, p.
62]). The parabolac tangent to the four lines has its center at infinity, thus later co-
incides with the point at infinity of this line and this provesthe first part of the theo-
rem. The second part results from a manageable calculation,but it can be given also
a proof, by reducing it to a special configuration via an appropriate homography.
In fact, consider the homographyf , which maps the vertices of the triangleABC
and pointD, correspondingly, to the vertices of the equilateralA′B′C ′ and its cen-
troid D′. Since homographies preserve cross ratios, they preserve the relation of a
line, to be the tripolar of a point. Thus, the line at infinity,which is the tripolar of
the centroidG, maps to the tripolartr(G′

) of point G′
= f(G) (See Figure9). It

follows that the image conicc′ = f(c) of the parabolac is also a parabola, since it
is tangent to five linesA′′B′′, B′′C ′′, C ′′A′′, tr(G′

), f(A2B2), one of which is the
line at infinity (f(A2B2)). HereA′′

= f(A1), B
′′

= f(B1), C
′′

= f(C1) denote
the middles of the sides of the equilateral. The proof of the second part results then
from the following lemma.
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Lemma 11. If a parabola is inscribed in a triangle, then the anticomplementary
triangle is self-polar with respect to the parabola.
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Figure 10.A′

B
′

C
′ is self-dual w.r. to the parabola inscribed inABC

To prove the lemma consider a parabolac inscribed in a triangleABC. Con-
sider also its anticomplementaryA′B′C ′ and the pointC ′′ of tangency with side
AB (See Figure10). The parallel toAB throughC, which is a side of the anti-
complementary, intersects the parabola at two pointsC1, C2 and by a well known
property of parabolas ([8, p. 58]), the tangents atC1, C2 meet at the symmetricC ′

of the middleC3 of C1C2 with respect toC ′′. ThusC ′ coincides with a vertex of
the anticomplementary, being also the pol of lineC1C2, as claimed.

Remark.The converse is also true:If a conic is inscribed in a triangle, such that
the anticomplementary is self-polar, then the conic is a parabola.

Theorem 12. Let the parabolac be tangent to the sides of the triangleABC
and to the tripolartr(D) of a pointD. Then its contact point withtr(D) is the
intersection point of this line with the middle-tripolarl = mD.
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1

A
2

C
2

C
1
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B
2

B
1

D

L
3

L
2L

1

l

tr(D)

Figure 11. The contact pointL4 with the tripolar
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This is proved by an argument similar to that, used in the preceding theorem.
In fact, define the homographyf mapping triangleABC to an equilateralA′B′C ′

and pointD to the centroid ofA′B′C ′. Then, see, as in the preceding theorem,
that the image conicc′ = f(c) of the parabolac is again a parabola. Let thenP
be the pole of linel = mD with respect toc. SinceP is on lineA2B2 = tr(D)

(See Figure11), which maps underf to the line at infinity, its imageP ′
= f(P )

is at infinity. Hence the image-linel′ = f(l) is parallel to the axis ofc′. Thus,l′

intersects the parabolac′ at its point at infinity, which is the imagef(Q), where
Q is the contact point ofc with the lineA2B2. From this follows that pointQ
coincides with the intersection point of linesl andA2B2, as claimed.

7. The points of tangency

Four lines in general position define a complete quadrilateral ABCDEF , four
trianglesADE,ABF,BCE,CDF , the diagonal triangleHIJ and four points
ADEp,ABFp,BCEp andCDFp, which are correspondingly the tripoles of one
of these lines with respect to the triangle of the remaining three (See Figure11).
The notation is such, that the tripolar of each of these four points, with respect to
the triangle appearing in its label, is the remaining line out of the four, carrying
the missing from the label letters (e.g. triangleABF , tripole ABFp and tripolar
DCE). The harmonic associates of each of these points with respect to the cor-
responding triangle are the vertices of the diagonal triangle HIJ . It is easily seen
that the harmonic associates of any of the four pointsADEp,ABFp,BCEp and
CDFp, with respect toHIJ , are the remaining three points.

A

B

C

D

E

F

CDFp

BCEp

ADEp

ABFp

H
I

J

Figure 12. Four lines, four triangles, four points
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Applying theorem-12 to each one of the four triangles and thecorresponding
tripole we obtain four middle-tripolarsADEn,ABFn,BCEn,CDFn, which in-
tersect the corresponding linesBCF,CDE,ADF,ABE at corresponding points
of tangencyADEq,ABFq, BCEq,CDFq with the parabola tangent to the four
given lines (See Figure12). This remark leads to a construction method of the
parabola tangent to four given lines. The method is not more complicated than
the classical one ([8, p. 57]), which uses the circumcirclesand orthocenters of the
triangles defined by the four lines. In fact, once the middle-tripolars are found, the
method uses only intersections of lines. The determinationof the middle-tripolars,
on the other side, requires either the construction of the harmonic conjugate of a
point w.r. to two other points, or the construction of pointson lines having a given
ratio of distances to two other points of the same line. For example, referring to
the last Figure 12, if the ratioBA

BE
= k, then the corresponding ratio of the intersec-

tion pointB′ of linesADEn andABE is B′A
B′E

= k2. PointB′ is also the middle
of segmentB′′B, whereB′′

= B(A,E) is the harmonic conjugate ofB w.r. to
(A,E). Once the four contact points are found, one can easily construct a fifth
point on the parabola and define it as a conic passing through five points. For this
it suffices to find the middleM of a chord, e.g. the one joiningBCEq,CDFq and
take the middle ofMA.

A

B

C

D

E

F

CDFp

BCEp

ADEp

ABFp

CDFq

ABFq

ADEq

BCEq

BC
En

ADEn

ABFn

C
D
F
n

Figure 13. The contact points of the parabola tangent to fourlines
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Abstract. We start with a proof of the original butterfly theorem, givewithout
proof Mackay’s generalization, and finally prove a full generalization of these
two versions of the butterfly theorem.

1. Introduction

We give the proof of the original version of the butterfly theorem (Theorem 2
below) with the aid of the following theorem concerning the intersection ratio of
two chords in a circle.

Theorem 1. If the chord BB′ in a circle intersects the chord AA′ at the point P ,
then the division ratio

AP

PA′
=

AB · AB′

A′B · A′B′
.

h
h′

A

A′B

B′

P

O

Figure 1

Proof. If R is the radius of the circle (see Figure 1) andh, h′ are the heights of
trianglesABB′, A′BB′ from A andA′ respectively, then

AP

PA′
=

h

h′
=

AB·AB′

2R
A′B·A′B′

2R

=

AB · AB′

A′B · A′B′
.

�

Publication Date: December 17, 2012. Communicating Editor: Paul Yiu.



302 N. Dergiades and S. H. Lim

Theorem 2 (Butterfly theorem, original version). If three chords AA′, BB′, CC ′

in a circle are concurrent at the midpoint M of AA′, then the lines BC and B′C ′

intersect the line AA′ at two points P , P ′ equidistant from M .

B

A A′

C′

P P ′M

O

B′C

Figure 2

Proof. It is sufficient to prove thatAP
PA′

=
A′P ′

P ′A′
(see Figure 2). From Theorem 1

we have

1 =

AM

MA′
=

AB · AB′

A′B · A′B′

implying

A′B′

AB′
=

AB

A′B
, (1)

A′C ′

AC ′
=

AC

A′C
. (2)

Hence from Theorem 1 and (1), (2) we have

A′P ′

P ′A
=

A′B′

AB′
·
A′C ′

AC ′
=

AB

A′B
·

AC

A′C
=

AP

PA′
.

�

Remark. SinceBCB′C ′ with the linesBC, B′C ′, BC ′, B′C is a complete quad-
rangle inscribed in a circle, we may considerAA′ as a line that cuts the pairBB′,
CC ′ not atM but at two equidistant points fromM or from O. So we have the
following generalization of the butterfly theorem.

Theorem 3(Butterfly theorem, Mackay’s version). Given a complete quadrangle
inscribed in a circle; if any line cuts two opposite sides at equal distances from the
center of the circle, it cuts each pair at equal distances from the center.

For a proof, see [1, p.105, Theorem 105].
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2. A complete generalization of the Butterfly theorem

Since the pairs(BC, B′C ′
), (BB′, CC ′

) and(BC ′, B′C) can be thought of as
conics that pass through the four concyclic pointsB, C, B′, C ′, Theorem 3 and the
butterfly theorem can be generalized as in Theorem 5. We first establish a lemma.

Lemma 4. Two points P and P ′ are conjugate relative to a circumconic of triangle
ABC if and only if the conic passes through the cevian product of P and P ′.

Proof. Let P = (u : v : w) andP ′
= (u′

: v′ : w′
) in barycentric coordinates with

respect to triangleABC. Their cevian product is the point

S =

(

1

vw′
+ v′w

:

1

wu′
+ w′u

:

1

uv′ + u′v

)

.

The two pointsP andP ′ are conjugate relative to the circumconicpyz + qzx +

rxy = 0 with matrix

M =





0 r q
r 0 p
q p 0





if and only if PMP ′t
= 0 (see [2,§10.6.1]). This amounts to

p(vw′
+ v′w) + q(wu′

+ w′u) + r(uv′ + u′v) = 0.

Equivalently, the conic passes throughS. �

Theorem 5. Let ABCD be a cyclic quadrilateral, and M be the orthogonal pro-
jection of circumcenter O on a line L . If a conic passing through A, B, C , D
intersects L at two points P and Q equidistant from M , then for every conic pass-
ing through A, B, C , D and intersecting L , the two intersections are equidistant
from M .

A

B
C

D

O

M

P

Q

L

Figure 3
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Proof. Let N be the infinite point of the lineL , which intersects the conic atP
andQ (Figure 3). SinceM andN are harmonic conjugate with respect toP andQ,
the pointsM andN are conjugate relative to the conic. The polar ofN relative to
the circumcircle ofABC is a line perpendicular toNO atO. This is the lineOM .
So the pointsM andN are also conjugate relative to the circumcircle ofABC.
Hence from Lemma 4 we conclude thatD must be the cevian product ofM and
N relative toABC. By Lemma 4 again, they must be conjugate relative to every
conic that passes throughA, B, C, D. If this conic meetsL , it must intersect the
line at two points equidistant fromM . �
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