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Characterizations of Trapezoids

Martin Josefsson

Abstract. We review eight and prove an additional 13 necessary and sufficient
conditions for a convex quadrilateral to be a trapezoid. Oneaim for this paper is
to show that many of the known properties of trapezoids are infact characteriza-
tions.

1. Introduction

A trapezoid (in British English it is called a trapezium) is aquadrilateral with
a pair of opposite parallel sides. But there is some disagreement if the definition
shall stateexactlyone pair orat leastone pair. The former is called an exclusive
definition and the latter an inclusive definition. The exclusive seems to be common
in textbooks at lower levels of education, whereas the inclusive is common among
mathematicians and at higher levels of education (beyond high school) [10, p. xiii].
What is the reason for and significance of the two possible definitions?

One likely explanation for the exclusive definition is that when students first en-
counter shapes like a trapezoid or a rhombus, they could get confused if a rhombus
also can be called a trapezoid. When proving properties of a trapezoid it is impor-
tant to actually draw it with only one pair of opposite parallel sides, so the proof
covers the general case. Here the exclusive definition has its merits. But when
students are to progress in their mathematical education, the exclusive definition
has some drawbacks.

First of all, the main strength of the inclusive definition isthe fact that a property
that is proved to hold for a trapezoid automatically also holds for all quadrilaterals
with two pairs of opposite parallel sides, that is, for parallelograms, rhombi, rect-
angles, and squares. This is a major advantage, since then wedo not have to repeat
arguments for those classes. Other benefits are that the taxonomy for quadrilaterals
is more perspicuous within the inclusive definition, and features like symmetry and
duality becomes more prominent. Also, there is the trapezoid rule for calculating
integrals. But these trapezoids do not always just have one pair of opposite parallel
sides; sometimes they are in fact rectangles. That would make the name of the
rule confusing if a rectangle was not considered to be a special case of a trapezoid.
These are some of the reasons why mathematicians nowadays prefer the inclusive
definition, that is,a trapezoid is a quadrilateral withat leastone pair of opposite
parallel sides.
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We claim that many geometry textbooks do not put much effort into summariz-
ing even the most basic characterizations of trapezoids. The trapezoid is one of the
six simplest types of quadrilaterals, so it is usually covered in books at lower levels
of education. In those texts the authors often covers quite extensively methods for
proving that a quadrilateral is one of the other five types: parallelograms, rhombi,
rectangles, squares, and isosceles trapezoids.1 But not the general trapezoid. Why
is that? One reason could be that authors consider the topic already covered in
connection with the treatment of parallel lines. But if so, then why not instead take
this opportunity to connect that theory with quadrilaterals to show how it all fits
together?

Anyway, we will now summarize a handful of the simplest characterizations of
trapezoids. These are the ones that rely only upon the theoryof parallel lines or
similarity. Then we shall prove a dozen of other characterizations, and in doing
so we will demonstrate that most of the well known propertiesof trapezoids are in
fact necessary and sufficient conditions for a quadrilateral to be a trapezoid.

First a comment on notations. The consecutive sides of a convex quadrilateral
ABCD will be denoteda = AB, b = BC, c = CD, andd = DA. In most of
the characterizations we only consider the case whena ‖ c anda ≥ c. We trust
the reader can then reformulate the characterizations in the other main caseb ‖ d

using symmetry.
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Figure 1. Two altitudes to the sideCD

If the extensions of opposite sidesAB andCD in a convex quadrilateral inter-
sect at an angleξ, then the quadrilateral is a trapezoid if and only ifξ = 0. A
second characterization is thatthe quadrilateralABCD is a trapezoid with paral-
lel sidesAB andCD if and only if∠ABD = ∠CDB, see Figure 1. An equivalent
necessary and sufficient condition is thata convex quadrilateral is a trapezoid if
and only if two pairs of adjacent angles are supplementary, that is

A + D = π = B + C. (1)

1The kite must also be considered to be one of the basic quadrilaterals. Perhaps since there are
only a few known characterizations of these, it usually don’t get that much attention. If we are to
include the possibility of a tangential quadrilateral as well (i.e. one that has an incircle), then there
are a further dozen of (less well known) characterizations of kites, see [6]. We note that Theorem 2
(ix) in that paper contained a misprint. It should state: Theincenter lies on the diagonal that is a line
of symmetry (which is not necessarily the longest one).
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From the theory of parallel lines we also have thatthe line segmentsAB andCD

are the bases of a trapezoidABCD if and only if the trianglesACD andBCD

have equal altitudes to the common sideCD (h1 = h2 in Figure 1).
Two characterizations concerning similarity are the following. A convex quadri-

lateral ABCD is a trapezoid if and only if the diagonals divide each other in the
same ratio, that is

AP

CP
=

BP

DP
, (2)

whereP is the intersection of the diagonals.A closely related necessary and suf-
ficient condition states thatthe diagonals divide a convex quadrilateral into four
non-overlapping triangles, of which two opposite are similar if and only if the
quadrilateral is a trapezoid(ABP ∼ CDP in Figure 1).

2. Trigonometric characterizations

As part of the proof of Theorem 2 in [7] we have already proved two trigono-
metric characterizations of trapezoids, so we just restatethem here. A convex
quadrilateralABCD is a trapezoid if and only if

sinA sin C = sin B sinD.

An equivalent necessary and sufficient condition is

cos (A − C) = cos (B − D).

In fact, both of these conditions incorporate the possibility for either pair of oppo-
site sides to be parallel, not justa ‖ c.

The first theorem and the subsequent proposition are trigonometric versions of
the adjacent angle characterization (1).

Theorem 1. A convex quadrilateralABCD is a trapezoid with parallel sidesAB

andCD if and only if

cos A + cos D = cos B + cos C = 0.

Proof. (⇒) If the quadrilateral is a trapezoid, thenA + D = π. Hence

cos A + cos D = cos A + cos (π − A) = cos A − cos A = 0.

The second equality is proved in the same way.
(⇐) We do an indirect proof of the converse. Assume the quadrilateral is not a

trapezoid and without loss of generality thatA > π−D. Since0 < A < π and the
cosine function is decreasing on that interval, we getcos A < cos (π − D). Hence

cos A + cos D < cos (π − D) + cos D = 0.

From the sum of angles in a quadrilateral we also have that

A > π − D ⇒ B < π − C ⇒ cos B + cos C > 0.

So if the quadrilateral is not a trapezoid, thencos A+ cos D 6= cos B + cos C, and
neither side is equal to 0. This completes the indirect proof. �
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Proposition 2. A convex quadrilateralABCD is a trapezoid with parallel sides
AB andCD if and only if

cot A + cot D = cot B + cot C = 0.

Proof. Since the cotangent function is decreasing on the interval0 < x < π and
cot (π − x) = − cot x, the proof is identical to that of Theorem 1. �

So far we have characterizations with sine, cosine and cotangent. Next we prove
one for the tangents of the half angles.

Theorem 3. A convex quadrilateralABCD is a trapezoid with parallel sidesAB

andCD if and only if

tan
A

2
tan

D

2
= tan

B

2
tan

C

2
= 1.

Proof. (⇒) If the quadrilateral is a trapezoid, thenA + D = π = B + C. Using
these, the equalities in the theorem directly follows sincetan D

2
= cot A

2
and

tan C

2
= cot B

2
.

(⇐) Assume the quadrilateral is not a trapezoid and without lossof generality
thatA + D > π andB + C < π. From the addition formula for tangent, we get

0 > tan

(

A

2
+

D

2

)

=
tan A

2
+ tan D

2

1 − tan A

2
tan D

2

.

The anglesA
2

and C

2
are acute, so the numerator is positive. Then the denominator

must be negative, sotan A

2
tan D

2
> 1. In the same waytan B

2
tan C

2
< 1. Hence

tan
A

2
tan

D

2
6= tan

B

2
tan

C

2

and neither side is equal to 1. �

3. Characterizations concerning areas

The first proposition about areas concerns a bimedian, that is, a line segment
that connects the midpoints of two opposite sides.

Proposition 4. A convex quadrilateral is a trapezoid if and only if one bimedian
divide it into two quadrilaterals with equal areas.

Proof. (⇒) In a trapezoid, the bimedian between the bases (see the left half of
Figure 2) divide it into two quadrilaterals with equal altitudes and two pairs of
equal bases. Hence these two quadrilaterals, which are alsotrapezoids, have equal
areas according to the well known formula for the area of a trapezoid.2

(⇐) If T1 + T2 = T3 + T4 in a convex quadrilateral with notations as in the
right half of Figure 2, then we haveT1 = T4 sinceT2 andT3 are equal due to
equal bases and equal altitudes. ButT1 andT4 also have equal bases, so then their
altitudes must be equal as well. This means that the quadrilateral is a trapezoid. �

2The area of a trapezoid is the arithmetic mean of the bases times the altitude.



Characterizations of trapezoids 27

T1

T2 T3

T4

Figure 2. A trapezoid (left) andT1 + T2 = T3 + T4 (right)

We will need the next proposition in the proofs of the following two character-
izations. A different proof was given as the solution to Problem 4.14 in [9, pp.80,
89].

Proposition 5. If the diagonals in a convex quadrilateralABCD intersect atP ,
then it is a trapezoid with parallel sidesAB andCD if and only if the areas of the
trianglesAPD andBPC are equal.

Proof. We have that the sidesAB andCD are parallel if and only if (see Figure 1)

hACD = hBCD ⇔ TACD = TBCD ⇔ TAPD = TBPC

wherehXY Z andTXY Z stands for the altitude and area of triangleXY Z respec-
tively. �

The following theorem was proved by us using trigonometry asTheorem 2 in
[7]. Here we give a different proof using the previous characterization.

Theorem 6. A convex quadrilateral is a trapezoid if and only if the product of the
areas of the triangles formed by one diagonal is equal to the product of the areas
of the triangles formed by the other diagonal.

Proof. We use notations on the subtriangle areas as in Figure 3. Thenwe have

(S + U1)(T + U2) = (S + U2)(T + U1)

⇔ SU2 + TU1 = SU1 + TU2

⇔ S(U2 − U1) = T (U2 − U1)

⇔ (S − T )(U2 − U1) = 0.

The last equality is equivalent toS = T or U2 = U1, where either of these
equalities is equivalent to that the quadrilateral is a trapezoid according to Propo-
sition 5. �

In the proof of the next theorem we will use the following lemma about a prop-
erty that all convex quadrilaterals have. Observe that the triangles in this lemma
are not the same as the ones in Theorem 6.

Lemma 7. The diagonals of a convex quadrilateral divide it into four non-over-
lapping triangles. The product of the areas of two opposite triangles is equal to the
product of the areas of the other two triangles.
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Figure 3. The diagonal parts and subtriangle areas

Proof. We denote the diagonal parts byw, x, y, z and the consecutive subtriangle
areas byS, U1, T , U2, see Figure 3. These areas satisfy

ST = 1

4
wxyz sin2 θ = U1U2

whereθ is the angle between the diagonals.3
�

Our last characterization concerning areas is a beautiful formula for the area of
a trapezoid. It can be proved using similarity as in [1, p.50]. We give a short proof
establishing it to be both a necessary and sufficient condition.

Theorem 8. The diagonals of a convex quadrilateral divide it into four non-over-
lapping triangles. If two opposite of these have areasS andT , then the quadrilat-
eral has the area

K =
(√

S +
√

T
)2

if and only if it is a trapezoid whose parallel sides are the two sides in the triangles
in question that are not parts of the diagonals.

Proof. A convex quadrilateral has the area (see Figure 3)

K = S + T + U1 + U2

= S + T + 2
√

ST − 2
√

U1U2 + U1 + U2

=
(√

S +
√

T
)2

+
(

√

U1 −
√

U2

)2

where we in the second equality used thatST = U1U2 according to the Lemma.
We have that the quadrilateral is a trapezoid if and only ifU1 = U2 (by Proposi-

tion 5), so it is a trapezoid if and only if it has the areaK =
(√

S +
√

T
)2

. �

As a corollary we note that the areaK of a convex quadrilateral satisfies the
inequality4

√
K ≥

√
S +

√
T ,

3This equality can also be proved without trigonometry. If the altitudes in the two triangles on
respective side of the diagonalw + y areh1 andh2, then we have thatST =

1

4
wyh1h2 = U1U2.

4We have seen this inequality before, but we cannot recall a reference.
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where there is equality if and only if the quadrilateral is a trapezoid.
Theorem 8 was formulated as if there could be only one pair of opposite parallel

sides (a general trapezoid). If there are two pairs of opposite parallel sides, then the
two triangles with areasS andT could be be any one of the two pairs of opposite
triangles formed by the diagonals.

4. Characterizations concerning sides and distances

The following simple characterization concerns the ratio of two opposite sides
and the ratio of the sine of two adjacent angles.

Proposition 9. The convex quadrilateralABCD is a trapezoid with parallel sides
AB andCD if and only if

DA

BC
=

sin C

sinD
.

Proof. The quadrilateral is a trapezoid if and only if the trianglesACD andBCD

have equal altitudes to the sideCD, which is equivalent to that the areas of these
two triangles are equal. This in turn is equivalent to

1

2
CD · DA sin D = 1

2
CD · BC sin C,

which is equivalent to the equality in the theorem. �

The parallelogram law states that in a parallelogram, the sum of the squares of
the four sides equals the sum of the squares of the two diagonals. Euler generalized
this to a convex quadrilateral with sidesa, b, c, d and diagonalsp, q as

a2 + b2 + c2 + d2 = p2 + q2 + 4v2 (3)

wherev is the distance between the midpoints of the diagonals. A proof can be
found in [2, p.126]. We shall now derive another generalization of the parallelo-
gram law, that will give us a characterization of trapezoidsas a special case. This
equality was stated in [4, p.249], but Dostor’s derivation was very scarce.

Theorem 10. If a convex quadrilateral has consecutive sidesa, b, c, d and diago-
nalsp, q, then

p2 + q2 = b2 + d2 + 2ac cos ξ

whereξ is the angle between the extensions of the sidesa andc.

Proof. In a convex quadrilateralABCD, let the extensions ofAB andCD inter-
sect atJ . Other notations are as in Figure 4, whereAC = p, BD = q, AB = a,
and AE = x. We constructGC parallel toAB. Then ∠DCG = ∠BJC.
We also haveEF = GC = c cos ξ, DG = c sin ξ, ED = h − c sin ξ, and
FB = a − c cos ξ − x.
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Figure 4. The alternate anglesξ

Applying the Pythagorean theorem in trianglesACF,BDE,BCF,AED, we
get respectively

p2 = h2 + (x + c cos ξ)2, (4)

q2 = (a − x)2 + (h − c sin ξ)2, (5)

b2 = h2 + (a − c cos ξ − x)2, (6)

d2 = x2 + (h − c sin ξ)2. (7)

Expanding the parentheses and adding (4) and (5), we get

p2 + q2 = 2(h2 + x2) + 2x(c cos ξ − a) + a2 + c2 − 2hc sin ξ. (8)

From (6) and (7),

b2 + d2 = 2(h2 + x2) + a2 + c2 − 2hc sin ξ − 2ac cos ξ + 2x(c cos ξ − a). (9)

Comparing (9) and (8), we see that

b2 + d2 = p2 + q2 − 2ac cos ξ

and the equation in the theorem follows. �

Corollary 11. A convex quadrilateral with consecutive sidesa, b, c, d and diago-
nalsp, q is a trapezoid with parallel sidesa andc if and only if

p2 + q2 = b2 + d2 + 2ac.

Proof. This characterization is a direct consequence of Theorem 10, since the
quadrilateral is a trapezoid if and only ifξ = 0. �

The next two theorems concerns the distances between the midpoints of the
diagonals and the midpoints of two opposite sides (a bimedian).

Theorem 12. A convex quadrilateral is a trapezoid with parallel sidesa and c if
and only if the distancev between the midpoints of the diagonals has the length

v =
|a − c|

2
.
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Proof. Inserting the equation in Corollary 11 into (3), we get that aconvex quadri-
lateral is a trapezoid if and only if

a2 + b2 + c2 + d2 = b2 + d2 + 2ac + 4v2 ⇔ (a − c)2 = 4v2.

Hence we get the characterizationv = 1

2
|a − c|. �

Remark.According to the formula, the diagonals bisect each other (v = 0) if
and only if a = c. In this case the quadrilateral is a parallelogram, which isa
special case of a trapezoid within the inclusive definition.

Theorem 13. A convex quadrilateral with consecutive sidesa, b, c, d is a trapezoid
with parallel sidesa andc if and only if the bimediann that connects the midpoints
of the sidesb andd has the length

n =
a + c

2
.

Proof. The length of the bimediann that connects the midpoints of the sidesb and
d in a convex quadrilateral is given by

4n2 = p2 + q2 + a2 − b2 + c2 − d2

according to [3, p.231] and post no 2 at [5] (both with other notations). Substituting
p2 + q2 from Corollary 11, we get that a convex quadrilateral is a trapezoid if and
only if

4n2 = b2 + d2 + 2ac + a2 − b2 + c2 − d2 ⇔ 4n2 = (a + c)2.

Hencen = 1

2
(a + c). �

The last characterization on sides and distances is about formulas for the length
of the diagonals.

Theorem 14. A convex quadrilateralABCD with consecutive sidesa, b, c, d is a
trapezoid witha ‖ c anda 6= c if and only if the length of the diagonalsAC and
BD are respectively

p =

√

ac(a − c) + ad2 − cb2

a − c
,

q =

√

ac(a − c) + ab2 − cd2

a − c
.

Proof. We prove the second formula first. Using the law of cosines in the two
triangles formed by diagonalBD = q in a convex quadrilateral, we haved2 =
a2 + q2 − 2aq cos u andb2 = c2 + q2 − 2cq cos v (see Figure 5). Thus

cos u =
a2 + q2 − d2

2aq

and

cos v =
c2 + q2 − b2

2cq
.
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Figure 5. A diagonal and two alternate angles

The quadrilateral is a trapezoid witha ‖ c if and only if u = v, which is equivalent
to cos u = cos v. This in turn is equivalent to

a2 + q2 − d2

2aq
=

c2 + q2 − b2

2cq

which we can rewrite as

ac(a − c) + ab2 − cd2 = (a − c)q2.

Now if a 6= c, the second formula follows.
The first formula can be proved in the same way, or we can use symmetry and

need only to make the changeb ↔ d in the formula we just proved. �

Remark.The quadrilateral is a trapezoid witha ‖ c anda = c if and only if it is
a parallelogram. In that case the sides alone do not uniquelydetermine neither the
quadrilateral nor the length of the diagonals.

5. A collinearity characterization

The following theorem has been stated as a collinearity, butanother possibility
is to state it as a concurrency:a convex quadrilateral is a trapezoid if and only if
the two diagonals and one bimedian are concurrent, in which case the two sides
that the bimedian connects are parallel.The proof of the converse is cited from
[11].

Theorem 15. Two opposite sides in a convex quadrilateral are parallel ifand
only if the midpoints of those sides and the intersection of the diagonals are three
collinear points.

Proof. (⇒) In a trapezoid, letE andG be the midpoints of the sidesAB andCD

respectively, andP the intersection of the diagonals. TrianglesCDP andABP

are similar due to two pairs of equal angles (see Figure 6). Note thatPG andPE

are medians in those triangles, but we do not yet know that∠DPG = ∠BPE.
This is what we shall prove. From the similarity, we get

PD

PB
=

CD

AB
=

2GD

2EB
=

GD

EB
.
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Figure 6. AreE, P andG collinear?

Also∠PDG = ∠PBE, so trianglesPDG andPBE are similar. Hence∠DPG =
∠BPE, and sinceBPD is a straight line, then so isEPG.
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Figure 7. IsABCD a trapezoid?

(⇐) In a convex quadrilateralABCD whereE andG are the midpoints ofAB

andCD andP is the intersection of the diagonals, we know thatE, P andG are
collinear. We shall prove thatAB andCD are parallel. ExtendAD andEG to
intersect atQ (see Figure 7). We apply Menelaus’ theorem to trianglesABD and
ACD using the transversalEPGQ. Then

AE

EB
· BP

PD
· DQ

QA
= 1 (10)

and
AP

PC
· CG

GD
· DQ

QA
= 1. (11)

SinceAE = EB andCG = GD, equations (10) and (11) yields

BP

PD
=

AP

PC
.

This equality states that the diagonals divide each other inthe same ratio, which is
the well known sufficient condition (2) for the sidesAB andCD to be parallel. �
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6. Can all convex quadrilaterals be folded into a trapezoid?

A convex quadrilateral is not uniquely determined by its sides alone. This means
that there can be different types of quadrilaterals having the same consecutive
sides.5 Let us make a model of a convex quadrilateral as four very thinrods con-
nected by hinges at their endpoints. We assume that the length of any rod is shorter
that the sum of the other three, which ensures that the rods can be the sides of a
convex quadrilateral. What we shall explore is if it’s always possible to fold the
model into a trapezoid?

c a − c

d

b

A
b

B

b
C

b

b
D c

d

b

E

Figure 8. AECD is a parallelogram

In a general trapezoid wherea ‖ c anda 6= c, we construct the triangleBCE

in Figure 8 such thatCE ‖ DA. This triangle exists whenever its sides satisfy the
three triangle inequalitiesa − c < b + d, d < a − c + b, andb < a − c + d. The
first of these is always satisfied if the quadrilateral exists. The second and third can
be merged into

|a − c| > |b − d|,
which is a necessary condition fora ‖ c whena 6= c. But it is also a sufficient
condition, since if it is satisfied, it is possible to construct the triangleBCE and
then the trapezoid. In the same way, we have that

|a − c| < |b − d|
is a necessary and sufficient condition forb ‖ d whenb 6= d. Thus the only case
when we can’t fold a convex quadrilateral into a trapezoid iswhen

|a − c| = |b − d|.
This is the characterization for when the quadrilateral hasan excircle (so it is an
extangential quadrilateral) according to [8, p.64].

Let us examine why we can’t get a trapezoid in this case. We usethe “semi
factored” version of Heron’s formula for the areaT of a triangle to get a formula
for the altitude in a trapezoid. In a triangle with sidesx, y, z, the altitudeh to the
sidex has the length

h =
2T

x
=

√

((y + z)2 − x2) (x2 − (y − z)2)

2x
.

5For instance, a quadrilateral having the sidesa, b, a, b can be either a (general) parallelogram or
a rectangle.
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The triangleBCE has the same altitude as the trapezoid. Insertingx = a − c,
y = b, andz = d yields the trapezoid altitude

h =

√

((b + d)2 − (a − c)2) ((a − c)2 − (b − d)2)

2|a − c|
which is valid whena 6= c. Here we see that when|a − c| = |b − d|, the trapezoid
altitude is zero. This means that the trapezoid has collapsed into a line segment.
If we don’t consider that degenerate case to be a trapezoid, this is the reason why
an extangential quadrilateral (with a finite exradius) can never be folded into a
trapezoid.

Finally we have the case|a − c| = |b − d| = 0. Then both pairs of opposite
sides have equal length, so the quadrilateral is a parallelogram.6 This is already a
trapezoid (within the inclusive definition), so no folding is needed.

We conclude by stating the conclusions above in the following theorem.

Theorem 16. If four line segmentsa, b, c, d have the property that any one of
them is shorter than the sum of the other three, then they can always constitute the
consecutive sides of a non-degenerate trapezoid except when |a− c| = |b−d| 6= 0.
In that case they will be the sides of an extangential quadrilateral.
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