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A Vector-based Proof of Morley’s Trisector Theorem

Cesare Donolato

Abstract. A proof is given of Morley’s trisector theorem using elementary vec-
tor analysis and trigonometry. The known expression for the side of Morley’s
equilateral triangle is also obtained.

Since its formulation in 1899, many proofs of Morley’s trisector theorem have
appeared, typically based on plane geometry or involving trigonometry; a historical
overview of this theorem with numerous references up to the year 1977 can be
found in [4]. Some of the more recent geometric proofs are of the “backward”
type [2, 5]; a group-theoretic proof was also given [3]. About fifteen different
methods that were used to prove Morley’s theorem are described in detailin [1],
with comments on their specific characteristics. The website [1] also providesthe
related references, which span from the year 1909 to 2010.

In this note we prove the theorem in two stages. First a lemma is proved by
use of the dot product of vectors and trigonometry, then the theorem itselfeasily
follows from elementary geometry.

Morley’s Theorem. In any triangle, the three points of intersection of the adja-
cent angle trisectors form an equilateral triangle.
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Figure 1

Let the angles of triangleABC be of amplitude3α, 3β, 3γ, thenα + β +
γ = 60◦. The adjacent trisectors meet to form Morley’s trianglePQR; the line
extensions ofBR andCQ intersect atD. In triangleBDC the bisector of angle
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D is concurrent with the other two bisectorsBP andCP atP , the incenter of the
triangle. First, a lemma is proved, from which the theorem easily follows.

Lemma. The line DP is perpendicular to the line RQ.
Proof. Here use is made of the vector method in conjunction with trigonometry.
Let e be the unit vector alongDP ands1 the vector representing the sideQR of
trianglePQR. Then the lemma can be restated as saying that the scalar product
s1 · e vanishes. Figure 1 shows thats1 = v3 − v2 so that we must prove that

(v3 − v2) · e = 0.

In triangleBDC we have2β + 2γ = 120◦ − 2α, therefore∠D = 60◦ + 2α.
This angle is bisected by the lineDP , hence∠QDP = ∠RDP = 30◦+α. By the
exterior angle theorem∠AQD = α+ γ and∠ARD = α+ β. The angle between
the vectorsv3 ande, being the difference between anglesRDP andARD, is
30◦ − β. Similarly, the angle betweenv2 ande is 30◦ − γ. From these,

(v3 − v2) · e = v3 · e− v2 · e

= v3 cos(30
◦
− β)− v2 cos(30

◦
− γ)

= v3 sin(60
◦ + β)− v2 sin(60

◦ + γ). (1)

The magnitudes ofv3 andv2 can be found by applying the law of sines to
trianglesARB andAQC respectively:

v3 =
c sinβ

sin(α+ β)
=

c sinβ

sin(60◦ − γ)
, v2 =

b sin γ

sin(α+ γ)
=

b sin γ

sin(60◦ − β)
.

Substituting these expressions into (1), we obtain

(v3 − v2) · e =
c sinβ sin(60◦ + β)

sin(60◦ − γ)
−

b sin γ sin(60◦ + γ)

sin(60◦ − β)

=
c sinβ sin(60◦ + β) sin(60◦ − β)− b sin γ sin(60◦ + γ) sin(60◦ − γ)

sin(60◦ − β) sin(60◦ − γ)

=
1

4
·

c sin 3β − b sin 3γ

sin(60◦ − β) sin(60◦ − γ)

with the aid of the identity

sinx sin(60◦ + x) sin(60◦ − x) =
1

4
sin 3x, (2)

which can be easily proved through the product-to-sum trigonometric formulas.
The law of sines for triangleABC yields c sin 3β − b sin 3γ = 0. Therefore,

(v3 − v2) · e = 0. �

Proof of Morley’s Theorem. Knowing thatDP ⊥ RQ, we see thatDP divides
DQR into two congruent right triangles (with a common leg and a pair of equal
acute angles) so thatDQ = DR. Consequently, trianglesDPQ andDPR are
also congruent (by SAS), ands2 = s3. The whole procedure can be used to prove
thats1 = s2. It follows thats1 = s2 = s3, and trianglePQR is equilateral. This
completes the proof of Morley’s theorem.
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Remark. Since triangleDQR is composed of two congruent right triangles, and
∠QDR = 30◦ + α, its complement∠DQR = 60◦ − α.

The side of Morley’s triangle. The side lengths of the equilateral trianglePQR

can be calculated by applying the law of sines to triangleAQR, whose angles are
now known. Since∠RAQ = α, and∠AQR = ∠AQD + ∠DQR = (α + γ) +
(60◦ − α) = 60◦ + γ, we find that

s =
v3 sinα

sin(60◦ + γ)
=

c sinα sinβ

sin(60◦ + γ) sin(60◦ − γ)
.

By multiplying both terms of the last fraction bysin γ, and using in the de-
nominator the identity (2), we get the known expression for the side of Morley’s
triangle

s =
4c sinα sinβ sin γ

sin 3γ
= 8R sinα sinβ sin γ,

whereR = c
2 sin 3γ

is the radius of the circumcircle of triangleABC.
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