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A Vector-based Proof of Morley’s Trisector Theorem

Cesare Donolato

Abstract. A proof is given of Morley'’s trisector theorem using elementary vec-
tor analysis and trigonometry. The known expression for the side ofeyter
equilateral triangle is also obtained.

Since its formulation in 1899, many proofs of Morley’s trisector theorenmehav
appeared, typically based on plane geometry or involving trigonometrytaibe
overview of this theorem with numerous references up to the year 19V beca
found in [4]. Some of the more recent geometric proofs are of the “baakiv
type [2, 5]; a group-theoretic proof was also given [3]. About fiftebfferent
methods that were used to prove Morley’s theorem are described in iteftaj)
with comments on their specific characteristics. The website [1] also protides
related references, which span from the year 1909 to 2010.

In this note we prove the theorem in two stages. First a lemma is proved by
use of the dot product of vectors and trigonometry, then the theorem sl
follows from elementary geometry.

Morley’sTheorem. Inany triangle, the three points of intersection of the adja-
cent angle trisectors form an equilateral triangle.

A

Figure 1

Let the angles of trianglel BC be of amplitude3«a, 35, 3, thena + 8 +
~v = 60°. The adjacent trisectors meet to form Morley’s trian$l@ R; the line
extensions ofB R andCQ intersect atD. In triangle BDC' the bisector of angle
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D is concurrent with the other two bisectdbs® andC P at P, the incenter of the
triangle. First, a lemma is proved, from which the theorem easily follows.

Lemma. Theline DP isperpendicular to theline RQ.

Proof. Here use is made of the vector method in conjunction with trigonometry.
Let e be the unit vector along P ands; the vector representing the sideR of
triangle PQR. Then the lemma can be restated as saying that the scalar product
s1 - e vanishes. Figure 1 shows thgat= v3 — vo so that we must prove that

(vg—va)-e=0.

In triangle BDC' we have2 + 2v = 120° — 2a, thereforeZD = 60° + 2a.
This angle is bisected by the lideP, hence/QDP = ZRDP = 30°+«. By the
exterior angle theore M AQD = o+~ andZARD = « + . The angle between
the vectorsvs ande, being the difference between anglB® P and ARD, is
30° — . Similarly, the angle betweew, ande is 30° — . From these,

(v3—vy)-e= v3-e—vy-e
= w3 c08(30° — ) — vg cos(30° — )
= v3sin(60° + B) — v2 sin(60° + 7). (1)
The magnitudes of/3 and vy can be found by applying the law of sines to
trianglesARB and AQC respectively:

_csin csinf _ bsiny bsin -~y

~sin(a+3)  sin(60° — )’ V2= sin(a +1v)  sin(60° — 3)°
Substituting these expressions into (1), we obtain

csin Bsin(60° + 3)  bsinysin(60° + )
sin(60° —~)  sin(60° — )
¢sin Bsin(60° 4 5) sin(60° — ) — bsiny sin(60° 4 ) sin(60° — ~)
sin(60° — B) sin(60° — )
1 csin 38 — bsin 3y

~ 4 sin(60° — B) sin(60° — )
with the aid of the identity

(v3 —va)-e=

1
sin x sin(60° + ) sin(60° — ) = 1 sin 3z, 2

which can be easily proved through the product-to-sum trigonometric fagnu
The law of sines for trianglel BC' yields csin 35 — bsin 3y = 0. Therefore,
(v —vy)-e=0. O

Proof of Morley's Theorem. Knowing thatDP | RQ, we see thaD P divides
DQR into two congruent right triangles (with a common leg and a pair of equal
acute angles) so thd?@) = DR. Consequently, triangle®PQ and DPR are
also congruent (by SAS), and = s3. The whole procedure can be used to prove
thats; = so. It follows thats; = sy = s3, and trianglePQR is equilateral. This
completes the proof of Morley’s theorem.
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Remark. Since triangleDQR is composed of two congruent right triangles, and
ZQDR = 30° + «, its complement DQR = 60° — «.

The side of Morley’s triangle. The side lengths of the equilateral trianglé’Q R
can be calculated by applying the law of sines to trianglg¢R, whose angles are
now known. Since’ RAQ = «, andZAQR = ZAQD + Z/DQR = (a+7) +
(60° — ) = 60° 4 ~, we find that

_ wvzsina csinasin 8
sin(60° ++)  sin(60° + ) sin(60° — )"
By multiplying both terms of the last fraction byn~, and using in the de-
nominator the identity (2), we get the known expression for the side of Merle

triangle

4csin asin Ssiny
S =

- = 8Rsin asin Bsin -y,
sin 3y

whereR = 5= 3 is the radius of the circumcircle of triangieBC'.

References

[1] A. Bogomolny, Morley’s Miracleht t p: / / ww. cut - t he- knot . org/tri angl e/
Mor | ey/ i ndex. sht n

[2] J. H. Conway, The Power of Mathematics,Rawer, (edited by A. Blackwell and D. MacKay),
Cambridge University Press, 2006; pp. 36-50.

[3] A. Connes, A new proof of Morley’s theorerRubl. Math. IHES, 88 (1998) 43—46.

[4] C. O. Oakley and J. C. Baker, The Morley Trisector Theor@mer. Math. Monthly, 85 (1978)
737-745.

[5] B. Stonebridge, A simple geometric proof of Morley’s trisector thesoyMath. Spectrum, 42
(2009) 2—4.

Cesare Donolato: Via dello Stadio 1A, 36100 Vicenza, Italy
E-mail address; cesar e. donol ato@l i ce. it



