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Distances Between the Circumcenter of the Extouch
Triangle and the Classical Centers of a Triangle

Marie-Nicole Gras

Abstract. We compute, in a triangle, the distances between the circumcenter
of the extouch triangle and the circumcenter, the incenter, and the orthocenter,
respectively. For this calculation, we use the absolute barycentric coordinates
and obtain relatively simple formulas which seem unknown. To conclude, we
compute the barycentric coordinates of the incenter of the extouch triangle.

1. Introduction

We consider a triangle ABC and we denote by O the circumcenter, I the in-
center, H the orthocenter, G the centroid, and N the nine-point center. We denote
the side-lengths by a, b, c, the semiperimeter by s, R the circumradius, and r the
inradius. The distances between the classical centers of the triangle ABC are well
known. We recall that

OI2 = R2 − 2Rr,

OH2 = R2 − 8R2 cosA cosB cosC,

HI2 = 2r2 − 4R2 cosA cosB cosC.
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Figure 1.

It is well known that the circle through the excenters of triangle ABC has center
I ′, the reflection of I in O, and that the radii through the excenters are perpendic-
ular to the corresponding sides of ABC. It follows that the extouch triangle XY Z
is the pedal triangle of I ′, and its circumcircle is the common pedal circle of I ′ and
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its isogonal conjugate I
′∗. The circumcenter Ω is the midpoint between I ′ and I

′∗.
In this note we compute the distances between Ω and the above classical triangle
centers.

Theorem 1.
(a) ΩO2 = R2 − 4R3(R−r)

r2
cosA cosB cosC.

(b) ΩI2 = 2R2 − 4Rr − 4R3(R−2r)
r2

cosA cosB cosC.

(c) ΩH2 = 2R2 − 4Rr − 2r2 − 4R2(R−r)(R−3r)
r2

cosA cosB cosC.

We collect a number of useful formulas for cyclic sums of trigonometrical ex-
pressions involving the angles of a triangle.

Lemma 2.
(a) cosA+ cosB + cosC = R+r

R .

(b)
∑

cyclic cosB cosC = (2R+r)r
2R2 + cosA cosB cosC.

(c)
∑

cyclic sinA cosA = rs
R2 .

(d)
∑

cyclic(cosB + cosC) sinA = sinA+ sinB + sinC = s
R .

(e) sinA sinB sinC =
∑

cyclic(cosB cosC) sinA = rs
2R2 .

2. Homogeneous barycentric coordinates of some centers

In the Encyclopedia of triangles centers [1], henceforth referred to as ETC, Kim-
berling publishes a list of more than 5600 triangle centers with homogeneous tri-
linear and barycentric coordinates. In this paper we consider barycentric coordi-
nates exclusively. An introduction to barycentric coordinates can be found in [3].
Sometimes it is useful to work with absolute barycentric coordinates. For a finite
point, the absolute barycentric coordinates can be found from a set of homogeneous
barycentric coordinates by dividing by its coordinate sum. If the triangle center
X(n) in ETC is a finite point, we denote by (αn, βn, γn) its absolute barycentric
coordinates.

n X(n) αn

1 I R sinA
rs · r

3 O R sinA
rs (R cosA)

4 H R sinA
rs (2R cosB cosC)

8 Na
R sinA

rs (2R(cosA+ cosB cosC)− 2r)

20 L R sinA
rs · 2R(cosA− cosB cosC)

40 I ′ R sinA
rs (2R cosA− r)

The isogonal conjugate of I ′ := X(40) is the triangle center X(84).

Proposition 3. α84 =
R sinA

rs · (2R cosB−r)(2R cosC−r)
r .

Proof. Since, in homogeneous barycentric coordinates,

X(40) = (sinA(2R cosA− r) : sinB(2R cosB − r) : sinC(2R cosC − r)),
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we have

X(84) =

(
sinA

2R cosA− r
:

sinB

2R cosB − r
:

sinC

2R cosC − r

)
.

Therefore,

α84 =
sinA

2R cosA−r
sinA

2R cosA−r +
sinB

2R cosB−r +
sinC

2R cosC−r

=
sinA(2R cosB − r)(2R cosC − r)∑

cyclic sinA(2R cosB − r)(2R cosC − r)
.

Using the formulas in Lemma 2, we have∑
cyclic

sinA(2R cosB − r)(2R cosC − r)

= 4R2
∑
cyclic

sinA cosB cosC − 2Rr
∑
cyclic

sinA(cosB + cosC) + r2
∑
cyclic

sinA

= 4R2 · rs

2R2
− 2Rr · s

R
+ r2 · s

R

=
r2s

R
.

From this the result follows. �

Lemma 4. The line joining X(40) and X(84) contains the Nagel point X(8).

Proof. With t = r
2R , we have

(1− t)α40 + tα84

=
R sinA

rs

((
1− r

2R

)
(2R cosA− r) +

r

2R
· (2R cosB − r)(2R cosC − r)

r

)

=
R sinA

rs

(
2R cosA− r cosA− r +

r2

2R
+ 2R cosB cosC − r(cosB + cosC) +

r2

2R

)

=
R sinA

rs

(
2R cosB cosC + 2R cosA− r(cosA+ cosB + cosC)− r +

r2

R

)

=
R sinA

rs

(
2R cosB cosC + 2R cosA− r · R+ r

R
− r +

r2

R

)

=
R sinA

rs
(2R cosB cosC + 2R cosA− 2r)

= α8.

�

Proposition 5. The circumcenter Ω of the extouch triangle lies on the line joining
X(40) and X(8). It has first absolute barycentric coordinate

α =
R sinA

rs

(
2R2

r
cosB cosC + 2R cosA− (R+ r)

)
.
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Proof. Since Ω is the midpoint of X(40) and X(84), it follows from Lemma 4 that
it lies on the line X(40)X(8). Furthermore,

α =
1

2
(α40 + α84)

=
R sinA

rs

(
2R cosA− r

2
+

(2R cosB − r)(2R cosC − r)

2r

)

=
R sinA

rs
· (2R cosA− r)r + (2R cosB − r)(2R cosC − r)

2r

=
R sinA

rs
· 4R

2 cosB cosC + 4Rr cosA− 2Rr(cosA+ cosB + cosC)

2r

=
R sinA

rs
· 4R

2 cosB cosC + 4Rr cosA− 2(R+ r)r

2r

=
R sinA

rs

(
2R2

r
cosB cosC + 2R cosA− (R+ r)

)
.

�

Remark. In ETC, Ω is the triangle center X(1158).
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Figure 2.

Figure 2 shows Ω on the line joining I ′ to Na. Since the deLongchamps point
L = X(20) is the reflection of H in O, O is the common midpoint of II ′ and HL.
From this, IH is parallel to I ′L. Also, the centroid G divides both segments INa

and HL in the ratio 1 : 2, HI is also parallel to Na. It follows that L lies on the
line I ′Na and I ′ is the midpoint of LNa.

Lemma 6. ΩI ′ = R
r ·HI .
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Proof. By Proposition 5,

α− α40 =
R sinA

rs

(
2R2

r
cosB cosC + 2R cosA− (R+ r)− (2R cosA− r)

)

=
R sinA

rs

(
2R2

r
cosB cosC −R

)

=
R

r
· R sinA

rs
(2R cosB cosC − r)

=
R

r
(α4 − α1).

�

3. Proof of Theorem 1

Lemma 7. (a) 2ΩO2 − ΩI2 = 4Rr − 4R4

r2
cosA cosB cosC.

(b) 2ΩO2 − ΩH2 = 4Rr + 2r2 − 4R2

r2

(
R2 + 2Rr − 3r2

)
cosA cosB cosC.
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Figure 3.

Proof. (a) Applying Apollonius to the median ΩO of triangle ΩII ′, we have

ΩI2 +ΩI ′2 = 2(ΩO2 +OI2).

From this,

2ΩO2 − ΩI2 = ΩI ′2 − 2OI2

=
R2

r2
HI2 − 2OI2

=
R2

r2
(2r2 − 4R2 cosA cosB cosC)− 2R(R− 2r)

= 4Rr − 4R4

r2
cosA cosB cosC.

(b) Applying Apollonius to the median ΩO of triangle ΩHL, we have

ΩH2 +ΩL2 = 2(ΩO2 +OH2).
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From this,

2ΩO2 − ΩH2 = ΩL2 − 2OH2

=
(R+ r)2

r2
HI2 − 2OH2

=
(R+ r)2

r2
(2r2 − 4R2 cosA cosB cosC)

− 2R2(1− 8 cosA cosB cosC)

= 4Rr + 2r2 − 4R2

r2
(
R2 + 2Rr − 3r2

)
cosA cosB cosC.

�
Lemma 8. ΩO2 − ΩI2 = −R2 + 4Rr − 4R3

r cosA cosB cosC.

Proof. We begin with AI2 = r2

sin2 A
2

= r2bc
(s−b)(s−c) = s−a

s bc = bc − abc
s =

4R2 sinB sinC − 4Rr; similarly for BI2 and CI2. Therefore,

αAI2 + βAB2 + γCI2

= 4R2 sinA sinB sinC

(
α

sinA
+

β

sinB
+

γ

sinC

)
− 4Rr(α+ β + γ)

= 2rs

(
α

sinA
+

β

sinB
+

γ

sinC

)
− 4Rr

= 2rs · R
rs

∑
cyclic

(
2R2

r
cosB cosC + 2R cosA− (R+ r)

)
− 4Rr

= 2R
∑
cyclic

(
2R2

r
cosB cosC + 2R cosA− (R+ r)

)
− 4Rr

= 2R

(
2R2

r

(
(2R+ r)r

2R2
+ cosA cosB cosC

)
+ 2R · R+ r

R
− 3(R+ r)

)
− 4Rr

= 2R2 − 4Rr +
4R3

r
cosA cosB cosC.

We make use of a formula of Scheer [2]. For an arbitrary point P ,

ΩP 2 = αAP 2 + βBP 2 + γCP 2 − (βγa2 + γαb2 + αβc2).

Applying this to P = O and P = I respectively, we have

ΩO2 − ΩI2 = (αAO2 + βBO2 + γCO2)− (αAI2 + βBI2 + γCI2)

= R2 − (αAI2 + βBI2 + γCI2)

= R2 − (2R2 − 4Rr +
4R3

r
cosA cosB cosC)

= −R2 + 4Rr − 4R3

r
cosA cosB cosC.

�
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Now we complete the proof of Theorem 1.
(a) For the distance from Ω to the circumcenter:

ΩO2 = (2ΩO2 − ΩI2)− (ΩO2 − ΩI2)

=

(
4Rr − 4R4

r2
cosA cosB cosC

)

−
(
−R2 + 4Rr − 4R3

r
cosA cosB cosC

)

= R2 − 4R3

r2
(R− r) cosA cosB cosC.

(b) For the distance from Ω to the incenter:

ΩI2 = ΩO2 − (ΩO2 − ΩI2)

=

(
R2 − 4R3

r2
(R− r) cosA cosB cosC

)

−
(
−R2 + 4Rr − 4R3

r
cosA cosB cosC

)

= 2R2 − 4Rr − 4R3

r2
(R− 2r) cosA cosB cosC.

(c) For the distance from Ω to the orthocenter:

ΩH2 = 2ΩO2 − (2ΩO2 − ΩH2)

= 2

(
R2 − 4R3

r2
(R− r) cosA cosB cosC

)

−
(
4Rr + 2r2 − 4R2

r2
(
R2 + 2Rr − 3r2

)
cosA cosB cosC

)

= 2R2 − 4Rr − 2r2 − 4R2

r2
(
R2 − 4Rr + 3r2

)
cosA cosB cosC.

The proof of Theorem 1 is now complete.
Since the centroid G and the nine-point center N divide the segment OH in the

ratio OG : ON : OH = 2 : 3 : 6, further applications of the Apollonius theorem
yield the distances from Ω to G and N .

Corollary 9.
(a) ΩG2 = 2

9(5R
2 − 6Rr − 3r2)− 4R2

9r2

(
9R2 − 18Rr + 5r2

)
cosA cosB cosC.

(b) ΩN2 = 5
4R

2 − 2Rr − r2 − 2R2

r2

(
2R2 − 5Rr + 2r2

)
cosA cosB cosC.

Remarks. (1) Since 4R2 cosA cosB cosC = s2 − (r + 2R)2, these distances can
all be expressed in terms of R, r, s.

(2) We also note the two simple relations:
(i) ΩO2 +OI2 = R(R−r)

r2
HI2;

(ii) ΩI = OI×HI
r .
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4. The cyclcocevian conjugate of the Nagel point

Since the circumcircle of the extouch triangle is the pedal circle of I ′ = X(40),
it is also the pedal circle of I

′∗ = X(84). The pedals of X(84) are the vertices of
the cyclocevian conjugate of the Nagel point Na = X(8). It is interesting to note
that this is also a point on the line I ′Na. In ETC, this is X(189) with homogeneous
barycentric coordinates are(

1

cosB + cosC − cosA− 1
:

1

cosC + cosA− cosB − 1
:

1

cosA+ cosB − cosC − 1

)
.

A
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Proposition 10. The first absolute barycentric coordinate of the cyclocevian con-
jugate of the Nagel point is

α189 =
R sinA

rs
((2R cosA− r) + k(2R cosB cosC − r)) ,

where

k =
(4R+ r)r + 4R2 cosA cosB cosC

r2 + 4R2 cosA cosB cosC
.

Proof. The point X(189) divides I ′Na in the ratio

NaX(189) : X(189)I ′ = t : 1− t
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for t = −4Rr
r2+4R2 cosA cosB cosC

. From this,

α189 = tα40 + (1− t)α8

=
R sinA

rs
(t(2R cosA− r) + (1− t)(2R cosB cosC + 2R cosA− 2r))

=
R sinA

rs
((2R cosA− r) + (1− t)(2R cosB cosC − r)) .

The coefficient 1− t is k given in the statement of the proposition. �

5. The centroid and orthocenter of the extouch triangle

The centroid of the extouch triangle is very easy to determine: It is the triangle
center

X + Y + Z

3
=

1

3

(
(0, c+ a− b, a+ b− c)

2a
+

(b+ c− a, 0, a+ b− c)

2b

+
(b+ c− a, c+ a− b, 0)

2c

)

=
(a(b+ c)(b+ c− a), b(c+ a)(c+ a− b), c(a+ b)(a+ b− c))

6abc
.

This is the triangle center X(210) in ETC. Clearly,

α210 =
a(b+ c)(b+ c− a)

6abc
.

By expressing this in the form

α210 =
R sinA

rs

(
R

3
· (sinB + sinC)(sinB + sinC − sinA)

)
, (1)

we easy determine also the orthocenter of the extouch triangle:

Proposition 11. The orthocenter of the extouch triangle has first absolute barycen-
tric coordinate

α′ =
R sinA

rs

(
R((sinB + sinC)(sinB + sinC − sinA)− 4 cosA)

− 4R2

r
cosB cosC + 2(R+ r)

)
.

Proof. Since the orthocenter divides the centroid X(210) and the circumcenter
Ω in the ratio 3 : −2, we have the first absolute barycentric coordinate equal to
α′ = 3α210 − 2α. The result follows from Proposition 5 and (1) above. �

Remark. In terms of a, b, c, the orthocenter of the extouch triangle has homoge-
neous barycentric coordinates

(af(a, b, c)g(a, b, c) : bf(b, c, a)g(b, c, a) : cf(c, a, b)g(c, a, b))
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where

f(a, b, c) = a3(b+ c)− a2(b− c)2 − a(b+ c)(b− c)2 + (b2 − c2)2,

g(a, b, c) = a5 − a4(b+ c)− 2a3(b− c)2 + 2a2(b+ c)(b2 + c2)

+ a(b4 − 4b3c− 2b2c2 − 4bc3 + c4)− (b− c)2(b+ c)3.

It is not in the current edition of ETC and has (6−9−13)-search number 52.7618273660 · · · .

6. The incenter of the extouch triangle

Lemma 12. Let a′, b′, c′ be the sidelengths of the extouch triangle XY Z.

a′2 = a2(1−sinB sinC), b′2 = b2(1−sinC sinA), c′2 = c2(1−sinA sinB).

Proof. It is enough to establish the expression for a′2. Since AY = s − c and
AZ = s− b, applying the law of cosines to triangle AY Z, we have

a′2 = (s− b)2 + (s− c)2 − 2(s− b)(s− c) cosA

= (s− b)2 + (s− c)2 − 2(s− b)(s− c)

(
2 cos2

A

2
− 1

)

= (s− b)2 + (s− c)2 + 2(s− b)(s− c)− 4(s− b)(s− c) · s(s− a)

bc

= ((s− b) + (s− c))2 − 4Δ2

bc

= a2 − 4Δ2

bc

= a2(1− sinB sinC)

since Δ = 1
2ca sinB = 1

2ab sinC. �

Proposition 13. The incenter of the extouch triangle has homogeneous barycentric
coordinates

(sinB + sinC − sinA)(
√
1− sinC sinA+

√
1− sinA sinB) : · · · : · · · ).

Proof. With reference to triangle XY Z, this incenter has homogeneous barycen-
tric coordinates (a′ : b′ : c′). The absolute barycentric with reference to ABC is
therefore

a′X + b′Y + c′Z
a′ + b′ + c′

.

In homogeneous coordinates, this can be taken as

a′X + b′Y + c′Z

=
a′(0, c+ a− b, a+ b− c)

2a
+

b′(b+ c− a, 0, a+ b− c)

2b
+

c′(b+ c− a, c+ a− b, 0)

2c

=
1

2

(
(b+ c− a)

(
b′

b
+

c′

c

)
, (c+ a− b)

(
c′

c
+

a′

a

)
, (a+ b− c)

(
a′

a
+

b′

b

))
.

The result follows from the law of sines and an application of Lemma 12. �
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We conclude by giving the coordinates of the incenter of the extouch triangle in
terms of a, b, c. Using the Heron formula

Δ2 =
2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4

16
,

we have

a′2 =
4a2bc− 16Δ2

4bc

=
4a2bc− 2b2c2 − 2c2a2 − 2a2b2 + a4 + b4 + c4

4bc

=
a4 − 2a2(b− c)2 + (b2 − c2)2

4bc
.

Therefore,
a′

a
=

√
bc(a4 − 2a2(b− c)2 + (b2 − c2)2)

2abc
;

similarly for b′
b and c′

c . This leads to(
(b+ c− a)

(√
ca(b4 − 2b2(c− a)2 + (c2 − a2)2) +

√
ab(c4 − 2c2(a− b)2 + (a2 − b2)2)

)
: · · · : · · · ) .

This is a triangle center not in the current edition of ETC. It has (6 − 9 − 13)-
search number 4.66290502201 · · · .
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