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Inversions in an Ellipse

José L. Ramı́rez

Abstract. In this paper we study the inversion in an ellipse which generalizes
the classical inversion with respect to a circle and some properties. We also study
the inversive images of lines, ellipses and other curves. Finally, we generalize
the Pappus chain theorem to ellipses.

1. Introduction

In this paper we study inversions in an ellipse, which was introduced in [2],
and some related properties to the distance of inverse points, cross ratio, harmonic
conjugates and the images of various curves. This notion generalizes the classical
inversion, which has a lot of properties and applications, see [1, 3, 4].

Definition. Let E be an ellipse centered at a pointO with foci F1 and F2 in R
2, the

inversion in E is the mapping ψ : R2 \ {O} → R
2 \ {O} defined by ψ(P ) = P ′,

where P ′ lies on the ray
−−→
OP and OP ·OP ′ = OQ2, where Q is the intersection of

the ray OP with the ellipse.
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Figure 1

The point P ′ is said to be the inverse of P in the ellipse E . We call E the ellipse
of inversion, O the center of inversion, and the number w := OQ the radius of
inversion (see Figure 1). Unlike the classical case, the radius of inversion is not
constant. Clearly, ψ is an involution, i.e., ψ(ψ(P )) = P for every P �= O. The
fixed points are the points on the ellipse E . Indeed, P is in the exterior of E if
and only if P ′ is in the interior of E . By introducing a point at infinity O∞ as the
inversive image of O, we regard ψ as an involution on the extended inversive plane
R
2∞.
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2. Basic properties

Proposition 1. The inverse of P in an ellipse E is the intersection of the line OP
and the polar of P with respect to E . More precisely, if E is the ellipse x2

a2
+ y2

b2
= 1,

then the inverse of the point (u, v) in the ellipse is the point(
a2b2u

b2u2 + a2v2
,

a2b2v

b2u2 + a2v2

)
.
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Figure 2

Proof. If P = (u, v), the ray
−−→
OP intersects E at Q = (tu, tv) for t > 0 satisfying

t2
(
u2

a2
+ v2

b2

)
= 1. Now, the polar of P is the line ux

a2
+ vy

b2
= 1. This intersects

the line OP (with equation vx − uy = 0) at the point (u′, v′) = (ku, kv) for

k satisfying k
(
u2

a2
+ v2

b2

)
= 1. Comparison gives k = t2. Hence OP · OP ′ =

OQ2, and (u′, v′) is the inverse of P in E . Explicitly, u′ = a2b2u
b2u2+a2v2

and v′ =
a2b2v

b2u2+a2v2
. �

Theorem 2. Let P and T be distinct points with inversion radii w and u with re-
spect to E . If P ′ and T ′ are the inverses of P and T in E ,

P ′T ′ =

⎧⎪⎨
⎪⎩

w2·TP
OP ·OT , if O, P , T are collinear,

√
(w2−u2)(w2·OT 2−u2·OP 2)+w2u2·PT 2

OP ·OT , otherwise.

Proof. If O, P , T are collinear, the line containing them also contains Q, P ′ and
T ′. Clearly,

P ′T ′ = OT ′ −OP ′ =
OQ2

OT
− OQ2

OP
=
w2(OP −OT )

OP ·OT =
w2 · TP
OP ·OT .

Now suppose O, P , T are not collinear. Then neither are O, P ′, T ′ (see Figure
3). Let α be the measure of angle P ′OT ′. By the law of cosines, we have, in
triangle POT ,

cosα =
OP 2 +OT 2 − PT 2

2 ·OP ·OT .
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Figure 3.

Also, in triangle P ′OT ′,

P ′T ′2 = OP ′2 +OT ′2 − 2 ·OP ′ ·OT ′ · cosα

=

(
w2

OP

)2

+

(
u2

OT

)2

− 2 · w
2

OP
· u

2

OT
· OP

2 +OT 2 − PT 2

2 ·OP ·OT
=

w4 ·OT 2 + u4 ·OP 2 − w2u2(OP 2 +OT 2 − PT 2)

OP 2 ·OT 2

=
(w2 − u2)(w2 ·OT 2 − u2 ·OP 2) + w2u2 · PT 2

OP 2 ·OT 2
.

From this the result follows. �

3. Cross ratios and harmonic conjugates

Let A, B, C and D be four distinct points on a line �. We define the cross ratio

(AB,CD) :=
AC ·BD
AD ·BC ,

where AB denotes the signed distance from A to B. We say that C, D divide A,
B harmonically if the cross ratio (AB,CD) = −1. In this case we say that C and
D are harmonic conjugates with respect to A and B. The cross ratio is an invariant
under inversion in a circle whose center is not any of the four points A, B, C, D
(see [1]). However, the inversion in an ellipse does not preserve the cross ratio.
Nevertheless, in the case of harmonic conjugates, we have the following theorem.

Theorem 3. Let E be an ellipse with center O, and Q1Q2 a diameter of E . Two
points on the lineQ1Q2 are harmonic conjugates with respect toQ1 andQ2 if and
only if they are inverse to each other with respect to E .

Proof. Let P and P ′ be two points on a diameter Q1Q2. Since

Q1P ·Q2P
′ = (Q1O +OP ) · (Q2O +OP ′)

= (w +OP )(−w +OP ′)

= −w2 − w(OP −OP ′) +OP ·OP ′,

Q1P
′ ·Q2P = −w2 + w(OP −OP ′) +OP ·OP ′,
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the points P and P ′ are harmonic conjugates with respect toQ1 andQ2 if and only
if OP ·OP ′ = w2, i.e., P and P ′ are inverse with respect to E . �

4. Images of curves under an inversion in an ellipse

Theorem 4. Consider the inversion ψ in an ellipse E with center O.
(a) Every line containing O is invariant under the inversion.
(b) The image of a line not containing O is an ellipse containing O and homo-

thetic to E .

O

Figure 4

Proof. (a) This is clear from definition.
(b) Consider a line � not containing O, with equation px + qy + r = 0 with

r �= 0. (x, y) is the inversive image of a point on �, then the image of (x, y) lies on
�. In other words,

p · a2b2x

b2x2 + a2y2
+ q · a2b2y

b2x2 + a2y2
+ r = 0.

a2b2(px+ qy) + r(b2x2 + a2y2) = 0. (1)

This is clearly an ellipse containing O(0, 0). Indeed, by rearranging its equation
as (

x+ a2p
2r

)2

a2
+

(
y + b2q

2r

)2

b2
=
a2p2 + b2q2

4r2
,

we note that this is the ellipse with center
(
−a2p

2r , − b2q
2r

)
, and homothetic to E

with ratio 2r√
a2p2+b2q2

. �

Corollary 5. Let �1 and �2 be perpendicular lines intersecting at a point P .
(a) If P = O, then ψ(�1) and ψ(�2) are perpendicular lines.
(b) If �1 does not contain O but �2 does, then ψ(�1) is an ellipse through O

orthogonal to ψ(�2) = �2 at O.
(c) If none of the lines contains O, then ψ(�1) and ψ(�2) are ellipses containing

P ′ and O, and are orthogonal at O.
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Proof. (a) The lines �1 and �2 are invariant.
(b) Let �1 be the line px+ qy+ r = 0 (with r �= 0). Its image in E is the ellipse

given by (1). The tangent atO is the line whose equation is obtained by suppressing
the x2 and y2 terms, and replacing x and y by 1

2x and 1
2y. This results in the line

1
2a

2b2(px+ qy) = 0, or simply px+ qy = 0, parallel to �1 and orthogonal to �2 at
O.

(c) Let �1 and �2 be the orthogonal lines p(x − h) + q(y − k) = 0 and q(x −
h)− p(y − k) = 0 intersecting at P = (h, k) �= O. Their inverse images in E are
ellipses intersecting atO and P ′. By (b) above, the tangents atO are the orthogonal
lines px+ qy = 0 and qx− py = 0. �

Remark. In (c), the images are not necessarily orthogonal at P ′.

O

H′

H

Figure 6.
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Corollary 6. (a) If P �= O, the inverse images of the pencil of lines through P are
coaxial ellipses through O and P ′ (see Figure 6).

(b) The inverse images of a system of straight lines parallel to �0 through O are
ellipses homothetic to E tangent to �0 at O (see Figure 7).

O

Figure 7.

Theorem 7. Let E be the ellipse of inversion with center O, and E ′ an ellipse
homothetic to E . The image of E ′ is
(a) an ellipse homothetic to E if E ′ does not pass through O,
(b) a line if E ′ passes through O.

O

Figure 8

O

Figure 9

Proof. An ellipse E ′ homothetic to E has equation

x2

a2
+
y2

b2
+ px+ qy + r = 0.

The ellipse E ′ passes through O if and only if r = 0.
(a) If E does not pass through O, then r �= 0. The inversive image consists of

points P (x, y) for which P ′ lies on the ellipse, i.e.,(
a2b2x

b2x2+a2y2

)2

a2
+

(
a2b2y

b2x2+a2y2

)2

b2
+p

(
a2b2x

b2x2 + a2y2

)
+q

(
a2b2y

b2x2 + a2y2

)
+r = 0.

(2)
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Simplifying, we obtain

(b2x2 + a2y2)

(
x2

a2
+
y2

b2
+
p

r
· x+

q

r
· y + 1

r

)
= 0.

Since b2x2 + a2y2 �= 0, we must have

x2

a2
+
y2

b2
+
p

r
· x+

q

r
· y + 1

r
= 0.

This is an ellipse homothetic to E (see Figure 8).
(b) If E ′ passes through O, then r = 0. Equation (2) reduces to px+ qy+1 = 0

(see Figure 9). �

Corollary 8. Let E ′ be an ellipse with center O′ homothetic to E with center O. If
E ′ is invariant under inversion in E , and P is a common point of the ellipses, then
O′P and OP are tangent to E and E ′ respectively.

P ′

P

O

O′

Figure 10

Proof. Comparing the equations of E ′ and its image under inversion in E in the
proof of Theorem 7 above, we conclude that the ellipse E ′ is invariant if and only
if its equation is of the form

(E ′) :
x2

a2
+
y2

b2
+ px+ qy + 1 = 0.

Note that the center O′ of E ′ has coordinates
(
−pa2

2 , − qb2

2

)
.

Let P = (x0, y0) be a common point of the two ellipses. Clearly,

x20
a2

+
y20
b2

= 1, (3)

px0 + qy0 + 2 = 0. (4)

The tangents to E and E ′ at (x0, y0) are the lines

(t) :
x0x

a2
+
y0y

b2
− 1 = 0,
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and

(t′) :
x0x

a2
+
y0y

b2
+

1

2
p(x+ x0) +

1

2
q(y + y0) + 1 = 0.

Substitution of (x, y) by the coordinates O′ into (t) and (0, 0) into (t′) lead to
∓ (px0

2 + qy0
2 + 1

)
respectively. By (4), this is zero in both cases. This shows that

O′P is tangent to E and OP is tangent to E ′. �

Theorem 9. Given an ellipse E with center O, the image of a conic C not homo-
thetic to E is
(i) a cubic curve if C passes through O,
(ii) a quartic curve if C does not pass through O.

In Figures 11, 12, 13 below, we show the inversive images of a circle, a parabola,
and a hyperbola in an ellipse.

O

Figure 11

O

Figure 12

O

Figure 13

Note that the inversion in an ellipse is not conformal.
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5. Pappus chain of ellipses

The classical inversion has a lot of applications, such as the Pappus chain the-
orem, Feuerbach’s Theorem, Steiner Porism, the problem of Apollonius, among
others [1, 3, 4]. We conclude this note with a generalization of the Pappus chain
theorem to ellipses.

Theorem 10. Let E be a semiellipse with principal diameter AB, and E ′, E0
semiellipses on the same side of AB with principal diameters AC and CB re-
spectively, both homothetic to E (see Figure 14). Let E1, E2, . . . , be a sequence
of ellipses tangent to E and E ′, such that En is tangent to En−1 and En+1 for all
n ≥ 1. If rn is the semi-minor axis of En and hn the distance of the center of En
from AB, then hn = 2nrn.

E0

E′

E1

E2

A B

Figure 14.

Proof. Let ψi be the inversion in the ellipse Ei. (In Figure 14 we select i = 2).
By Theorem 7, ψi(E) and ψi(E0) are lines perpendicular to AB and tangent to

the ellipse Ei. Hence, the ellipses ψi(E1), ψi(E2), . . . will be inverted to tangent
ellipses to parallel lines to ψi(E) and ψi(E0). Hence, hi = 2iri. �
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