Two Pairs of Archimedean Circles in the Arbelos

Dao Thanh Oai

Abstract. We construct four circles congruent to the Archimedean twin circles in the arbelos.

Consider an arbelos formed by semicircles \((O_1), (O_2),\) and \((O)\) of radii \(a, b,\) and \(a + b.\) The famous Archimedean twin circles associated in the arbelos have equal radii \(\frac{ab}{a+b}\) (see [2, 3]).

Let \(CD\) be the dividing line of the smaller semicircles, and extend their common tangent \(PQ\) to intersect \((O)\) at \(T_a\) and \(T_b.\)

Theorem 1. Let \(A'\) and \(B'\) be the orthogonal projections of \(D\) on the tangents to \((O)\) at \(T_a\) and \(T_b\) respectively. The circles with diameters \(DA'\) and \(DB'\) are congruent to the Archimedean twin circles.

Proof. Let the tangents at \(T_a\) and \(T_b\) intersect at \(T.\) Since \(OT\) is the perpendicular bisector of \(T_aT_b,\) it intersects the semicircle \((O)\) at the midpoint \(D\) of the arc \(T_aT_b\) (see [3, §5.2.1]). Since \(O_1P, OM\) and \(O_2Q\) are parallel, and \(O_1P = OO_2 = a,\) \(O_2Q = O_1O = b,\)

\[
OM = \frac{a}{a+b} \cdot O_1P + \frac{b}{a+b} \cdot O_2Q = \frac{a^2 + b^2}{a+b} \quad \Rightarrow \quad DM = OD - OM = \frac{2ab}{a+b}.
\]
Now, \(\angle DT_aT = \angle DT_bT_a = \angle DT_bT_b \). Therefore, \(T_aD \) bisects angle \(TT_aT_b \). Similarly, \(T_bD \) bisects angle \(TT_bT_a \), and \(D \) is the incenter of triangle \(TT_aT_b \). It follows that \(DA' = DB' = DM \), and the circles with \(DA' \) and \(DB' \) are congruent to the Archimedean twin circles.

Remark. The circle with \(DM \) as diameter is the Archimedean circle \((A_3) \) in [2] (or \((W_4) \) in [1]).

Theorem 2. Let \(A_1A_2 \) and \(B_1B_2 \) be tangents to the smaller semicircles with \(A_1 \), \(B_1 \) on the line \(AB \) and \(A_1A_2 = a, B_1B_2 = b \). If \(H \) and \(K \) are the midpoints of the semicircles \((O_1) \) and \((O_2) \) respectively, and \(A'' = CH \cap A_1B_2, B'' = CK \cap B_1A_2 \), then the circles through \(C \) with centers \(A'' \) and \(B'' \) are congruent to the Archimedean twin circles.

Proof. Clearly, \(\angle A''CA_1 = \angle HCO_1 = 45^\circ \). Since \(B_1B_2 = O_2B_2 = b\), \(\angle B_2B_1O_2 = 45^\circ \), the lines \(CA'' \) and \(B_1B_2 \) are parallel. Also, \(B_1O_2 = \sqrt{2}b \). Similarly, \(A_1O_1 = \sqrt{2}a \), and \(A_1B_1 = (\sqrt{2} + 1)(a + b) \). Therefore,

\[
CA'' = B_1B_2 \cdot \frac{A_1C}{A_1B_1} = b \cdot \frac{(\sqrt{2} + 1)a}{(\sqrt{2} + 1)(a + b)} = \frac{ab}{a + b}.
\]

Similarly, \(CB'' = \frac{ab}{a + b} \). Therefore, the circles through \(C \) with centers \(A'' \) and \(B'' \) are congruent to the Archimedean twin circles.

References

Dao Thanh Oai: Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Viet Nam

E-mail address: daothanhoai@hotmail.com