A Purely Synthetic Proof of Dao’s Theorem on Six Circumcenters Associated with a Cyclic Hexagon

Telv Cohl

Abstract. We present a purely synthetic proof of Dao’s theorem on six circumcenters associated with a cyclic hexagon.

Nikolaos Dergiades [4] has given an elegant proof using complex numbers of the following theorem.

Theorem (Dao [2]). Let six points A, B, C, D, E, F lie on a circle, and $U = AF \cap BC$, $V = AB \cap CD$, $W = BC \cap DE$, $X = CD \cap EF$, $Y = DE \cap FA$, $Z = EF \cap AB$. Denote by O_1, O_2, O_3, O_4, O_5, O_6 the circumcenters of the six triangles ABU, BCV, CDW, DEX, EFY, FAZ. The three lines O_1O_4, O_2O_5, O_3O_6 are concurrent.

In this note we present a purely synthetic proof.

Lemma 1. Let A, B, C, A', B', C' be six points (in cyclic order) on a circle (O), and $X = AB \cap A'C'$, $X' = A'B' \cap AC'$. Let O_1, O_1' be the circumcenters of (XBC), $(X'B'C')$ respectively. The lines O_1O_1', BB', CC' are concurrent (see Figure 2).
Lemma 1. The points \(O \) and \(P \) have \((\text{the triangles } XY, X'Y') \) of \((\text{the circles})\). Clearly, \(XY, X'Y' \) are parallel, and \(XX', YY' \) intersect at a point \(P \) that divides these segments in the ratio of the radii of the circles. Clearly, \(P \) also lies on the segment \(O_1O'_1 \). The lines \(XB, X'B' \) and their perpendiculars \(YB, Y'B' \) meet at the points \(Z', Z \) respectively. If \(AA_0 \) is a diameter of \((O)\), then \(A'A_0 \perp A'A \). Since the points \(Z, B, B', Z' \) are concyclic, we have \(ZZ'||A'A_0 \) because they are both antiparallels to \(BB' \) relative to \(A_0Z, A'Z' \). Hence \(XY'||X'Y'||ZZ' \), and are perpendicular to \(A'A \). By Desargues’ theorem, the triangles \((XYB)\) and \((X'Y'B')\) are perspective. Hence, \(BB' \) passes though \(P \). Similarly we prove that \(CC' \) passes through \(P \). \(\square \)

We reformulate and prove Dao’s theorem in the following form.

Theorem 2. Divide a circle in six consecutive arcs \(c_2, a_1, b_2, c_1, a_2, b_1 \) with the arbitrary points \(A, B, C, A', B', C' \). Let the chords of the arcs \(a_2, b_2, c_2 \) bound a triangle \(A_1B_1C_1 \), and those of the arcs \(a_1, b_1, c_1 \) bound a triangle \(A_2B_2C_2 \). If \(O_1, O_1', O_2, O_2', O_3, O_3' \) are the circumcenters of the circles \((A_1BC), (A_2B'C'), (B_1C'A), (B_2CA'), (C_1A'B'), (C_2AB)\) respectively, then the lines \(O_1O_1', O_2O_2', O_3O_3' \) are concurrent (see Figure 3).

Proof. Let \(A_3 = BB' \cap CC', B_3 = CC' \cap AA', \) and \(C_3 = AA' \cap BB' \). By Lemma 1 the points \(A_3, B_3, C_3 \) lie on the lines \(O_1O_1', O_2O_2', O_3O_3' \) respectively. Denote

\[
\angle O_1B_3A = A_b, \quad \angle O_2C_3B_3 = B_c, \quad \angle O_3A_3C_3 = C_a,
\]

\[
\angle O_1C_3A_3 = A_c, \quad \angle O_2A_3B_3 = B_a, \quad \angle O_3B_3C_3 = C_b.
\]
We have \(A_b = \angle O_1 BC + \angle CBA_3 = 90^\circ - \angle CA_1 B + \angle CBB' \) or
\[
A_b = 90^\circ - \frac{a_2 + b_1 + c_1 - a_1}{2} + \frac{b_2 + c_1}{2} = 90^\circ + \frac{a_1 + b_2 - a_2 - b_1}{2}.
\]
Similarly,
\[
B_a = 90^\circ - \frac{b_2 + c_1 + a_1 - b_1}{2} + \frac{a_2 + c_1}{2} = 90^\circ - \frac{a_1 + b_2 - a_2 - b_1}{2}.
\]
From these, \(A_b + B_a = 180^\circ \), and \(\sin A_b = \sin B_a \). Similarly, \(\sin B_c = \sin C_b \) and \(\sin C_a = \sin A_c \).

Consider \(O_1 A_3 O'_1 \), \(O_2 B_3 O'_2 \), and \(O_3 C_3 O'_3 \) as lines through the vertices of triangle \(A_3 B_3 C_3 \). Let \(R_1 \) be the radius of the circle \((O_1) \). Since
\[
\frac{\sin A_b}{\sin C_3 A_3 O'_1} = \frac{\sin A_b}{\sin B A_3 O_1} = \frac{O_1 A_3}{R_1} = \frac{\sin A_c}{\sin O_1 A_3 C} = \frac{\sin A_c}{\sin O'_1 A_3 B_3},
\]
we have \(\frac{\sin C_3 A_3 O'_1}{\sin O'_1 A_3 B_3} = \frac{\sin A_b}{\sin A_c} \). Similarly, \(\frac{\sin A_3 B_3 O'_2}{\sin O'_2 B_3 C_3} = \frac{\sin B_c}{\sin B_a} \), and \(\frac{\sin B_3 C_3 O'_3}{\sin O'_3 C_3 A_3} = \frac{\sin C_a}{\sin C_b} \). Therefore,
\[
\frac{\sin C_3 A_3 O'_1}{\sin O'_1 A_3 B_3} \cdot \frac{\sin A_3 B_3 O'_2}{\sin O'_2 B_3 C_3} \cdot \frac{\sin B_3 C_3 O'_3}{\sin O'_3 C_3 A_3} = \frac{\sin A_b}{\sin A_c} \cdot \frac{\sin B_c}{\sin B_a} \cdot \frac{\sin C_a}{\sin C_b} = 1.
\]
By the converse of Ceva’s theorem, we conclude that the lines \(O_1 O'_1, O_2 O'_2, O_3 O'_3 \) are concurrent. \(\square \)
References

Telv Cohl: National Chiayi Senior High School, Chiayi, Taiwan
*
E-mail address: telvcohtinasprout@gmail.com*