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Heronian Triangles of Class K:
Congruent Incircles Cevian Perspective

Frank M. Jackson and Stalislav Takhaev

Abstract. We relate the properties of a cevian that divides a reference triangle
into two sub-triangles with congruent incircles to the system of inner and outer
Soddy circles of the same reference triangle. We show that if constraints are
placed on the reference triangle then relationships exist between the Soddy cir-
cles, the incircle of the reference triangle and the congruent incircles of the sub-
triangles. In particular, we show that a class of Heronian triangles exists with
inradius equal to integer multiples of their inner and outer Soddy circle radii.

1. Congruent incircles cevian

It has been shown by Yiu [4, pp.127–132] that if a triangle ABC (with side-
lengths a, b, c) is divided by a cevian through A into two subtriangles with con-
gruent incircles of radius ρ, then the length of the congruent incircles cevian AD
is
√
s(s− a), and

ρ =
r

1 +
√
tbtc

=
r

a
(s−

√
s(s− a)), (1)

where s is the semiperimeter and r the inradius of triangleABC, and ta = tan A
2 =

r
s−a , tb = tan B

2 = r
s−b , tc = tan C

2 = r
s−c are the tangents of the half angles of

the triangle (see Figure 1). These numbers satisfy the basic relation

tatb + tbtc + tcta = 1. (2)
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Figure 1.
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Proposition 1. If θ denotes angle ADB for the congruent incircle cevian AD,
then

cos θ =
tb − tc
tb + tc

=
b− c

a
, (3)

sin θ =
2
√
tbtc

tb + tc
=

2
√
(s− b)(s− c)

a
. (4)

Proof. This follows from the formula tan θ
2 =

√
tc
tb

in [4, p.131], and the identities

cos θ = 1−t2

1+t2
and sin θ = 2t

1+t2
where t = tan θ

2 . �
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Figure 2.

Now consider the triad of mutually tangent circles with centers at the vertices
A, B, C. These have radii s − a, s − b, s − c respectively. Without loss of
generality we may assume b ≥ c. If the external common tangent of the B- and
C- circles on the same side of A touches these circles at P and Q respectively,
then cosPY Q = (s−c)−(s−b)

(s−c)+(s−b) = b−c
a (see Figure 2). It follows from (3) that PQ

is perpendicular to the congruent incircle cevian AD. This leads to a simple ruler
and compass construction of the congruent incircles cevian.

Theorem 2. The congruent incircle cevian AD is the perpendicular through A to
external common tangent of the B- and C- circles (of the triad of mutually tangent
circles with centers at the vertices) on the same side of BC as vertex A.

2. Radii of Soddy circles

The standard configuration for the Soddy circles of a reference triangle is shown
in Figure 3. It has been shown by Dergiades [3] that the radii of S(ri) and S′(ro)
are given by the formulas:

ri =
Δ

4R+ r + 2s
and ro =

Δ

4R+ r − 2s
. (5)
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where Δ is the area of the reference triangle, R its circumradius and r its inradius.

s− b s− c

s− c
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s− b
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Figure 3.

Here are two well-known identities associated with the radii of the Soddy circles:

1

s− a
+

1

s− b
+

1

s− c
+

2

r
=

1

ri
, (6)

1

s− a
+

1

s− b
+

1

s− c
− 2

r
=

1

ro
. (7)

If we write K := ta + tb + tc, these can be put in the form
r

ri
= K + 2,

r

ro
= K − 2.

From these,
ro
ri

=
K + 2

K − 2
. (8)

3. Soddyian triangles

The case K = 2 has been considered by Jackson [2]. In this case, the outer
Soddy circle has degenerated into a straight line, and the triangle is called Sod-
dyian. It has the property that if the sides are a ≥ b ≥ c, then

1√
s− a

=
1√
s− b

+
1√
s− c

.

By multiply through by
√
r and converting to tangent half angles we get:

ta = 1 +
√
tbtc.
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Figure 4.

Comparing this with the radius of the congruent incircles in (1), we obtain the
following theorem.

Theorem 3. In the triad of mutually tangent circles with centers at the vertices
of a Soddyian triangle, the smallest circle is congruent to the incircles of the sub-
triangles divided by the congruent incircle cevian through its center (see Figure
4).

We prove another interesting property of the congruent incircles cevian triangle
of a Soddyian triangle.

Theorem 4. In a Soddyian triangle ABC with a ≥ b ≥ c, the congruent incircle
cevianAD is parallel to the Soddy line (joining the incenter to the Gergonne point);
see Figure 5.

Proof. Set up a rectangular coordinate system with B as the origin, and positive
x-axis along the lineBC, so the the coordinates of the vertices and the incenter are

A = (c cosB, c sinB), B = (0, 0), C = (a, 0), I = (s−b, r) =
(
r

tb
, r

)
.

The Gergonne point has homogeneous barycentric coordinates

Ge =

(
1

s− a
:

1

s− b
:

1

s− c

)
= (ta : tb : tc).

Since ta + tb + tc = 2, this has Cartesian coordinates
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Ge =
1

2
(ta ·A+ tb ·B + tc · C) =

(
tac cosB + tca

2
,
tac sinB

2

)

=

⎛
⎝ ta

(
r
ta

+ r
tb

)
· 1−t2b
1+t2b

+ tc

(
r
tb
+ r

tc

)
2

,
ta

(
r
ta

+ r
tb

)
· 2tb
1+t2b

2

⎞
⎠

=

(
r · (ta + tb)(1− t2b) + (tb + tc)(1 + t2b)

2tb(1 + t2b)
, r · ta + tb

1 + t2b

)

=

(
r

(
1− t2b

2tb(tb + tc)
+
tb + tc
2tb

)
,

r

tb + tc

)
.

Let ψ be the angle between the Soddy line and the base line BC.

tanψ = −
r

tb+tc
− r

r
(

1−t2b
2tb(tb+tc)

+ tb+tc
2tb

)
− r

tb

=
2tb(tb + tc − 1)

(1− t2b) + (tb + tc)(tb + tc − 2)

=
2tb(tb + tc − 1)

(1− t2b)− ta(tb + tc)

=
2tb(tb + tc − 1)

(1− t2b)− (1− tbtc)

=
2(1− ta)

tc − tb
=

2(ta − 1)

tb − tc
.
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However, from Proposition 1, we have

tan θ =
2
√
tbtc

tb − tc
=

2(ta − 1)

tb − tc
.

This shows that the Soddy line is parallel to the congruent incircles cevian. �

4. Heron triangles from Soddy circles

Soddyian triangles with integer sides are always Heronian [2, §4].
We shall say that a triangle has class K if the sum of the tangents of its half

angles is equal to K. Thus, Soddyian triangles have class 2. Heronian triangles of
class 2 are constructed in [2]. Let K be a positive integer. An integer triangle of
class K is Heronian if and only if the tangents of its half angles are rational. Let
θ be the angle ADB for the congruent incircle cevian AD. We have tb − tc =
(tb + tc) cos θ. Together with ta + tb + tc = K and the basic relation (2), we have

ta =
K(1 + cos2 θ) + 2ε

√
K2 − 3− cos2 θ

3 + cos2 θ
,

tb =
(1 + cos θ)(K − ε

√
K2 − 3− cos2 θ)

3 + cos2 θ
, (9)

tc =
(1− cos θ)(K − ε

√
K2 − 3− cos2 θ)

3 + cos2 θ

for ε = ±1. Clearly, ta, tb, tc are rational if and only if K2 − 3 − cos2 θ = v2

for a rational number v, i.e., K2 − 3 is a sum of two squares of rational numbers.
Equivalently, K2 − 3 is a sum of squares of two integers.

Lemma 5. An integer is a sum of two squares of rational numbers if and only if it
is a sum of squares of two integers.

Proof. We need only prove the necessity part, for square-free integers. Let n =
u2 + v2 for two rational numbers. Writing u = h

q and v = k
q for integers h, k,

q, we have nq2 = h2 + k2 for integers h, k, q. Here, h and k must be relatively
prime, since any common divisor must be prime to q, and so its square must divide
n, contrary to the assumption that n is square-free. Let p be a prime divisor of n.
Modulo p, h2 + k2 ≡ 0. Since at least one of h and k, say, k, is nonzero modulo
p, we have −1 is a quadratic residue modulo p, and p ≡ 1 (mod 4). Thus, p is a
sum of two squares of integers. This being true for every prime divisor of n, the
number n is itself a sum of two squares of integers. �

Theorem 6. Let K > 1 be a positive integer. Heronian triangles of class K exists
if and only if K2 − 3 is a sum of two squares of integers.

The necessity part follows from Lemma 5 above. We shall construct Heronian
triangles of class 4 in the next section. The construction clearly applies to class K
with K2 − 3 equal to a sum of two squares of integers.
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5. Heronian triangles of class 4

The ratio of the radii of the Soddy circles of a triangle is given by (8). For integer
values of K := ta + tb + tc, this ratio is an integer only when K = 3, 4, 6, and is
equal to 5, 3, 2 respectively. By Theorem 6 above, there is no Heronian triangle of
class K = 3, 6.

We construct Heronian triangles withK = 4. Without loss of generality, assume
a ≥ b ≥ c. The parameters ta, tb, tc are given in (9) with K = 4. Here, K2 − 3 =
13, and we require cos θ and v :=

√
13− cos2 θ to be rational numbers. Since

13 = 32 + 22, we rewrite v2 = 13− cos2 θ as

(3− cos θ)(3 + cos θ) = (v − 2)(v + 2).

Since all factors involved are rational, we assume 3 − cos θ = w(v + 2) for a
rational number w. It follows that w(3 + cos θ) = v − 2. Solving these for cos θ
and v, we have

cos θ =
3− 4w − 3w2

1 + w2
, v =

2 + 6w − 2w2

1 + w2
. (10)

Note that tb = tc if and only if cos θ = 0. In this case, w cannot be rational.
We shall assume b > c, so that θ is an acute angle, and 0 < cos θ < 1. For this,√

3−1
2 < w <

√
13−2
3 . Substitution of cos θ and v =

√
13− cos2 θ given in (10)

into (9) (with K = 4), we obtain, for ε = 1,

ta =
3w2 + 12w + 11

w2 + 3w + 3
, tb =

−w2 − 2w + 2

w2 + 3w + 3
, tc =

2w2 + 2w − 1

w2 + 3w + 3
, (11)

and, for ε = −1,

ta =
11w2 − 12w + 3

3w2 − 3w + 1
, tb =

−w2 − 2w + 2

3w2 − 3w + 1
, tc =

2w2 + 2w − 1

3w2 − 3w + 1
. (12)

In the latter case, ta cannot be greater than both tb and tc forw ∈
(√

3−1
2 ,

√
13−2
3

)
.

Therefore, Heronian triangles of class 4 are given by (11). Writing w = m
n for

relatively prime integers m and n, and using s − a : s − b : s − c = 1
ta

: 1
tb

: 1
tc

,
we may take

s− a = (2m2 + 2mn− n2)(−m2 − 2mn+ 2n2),

s− b = (2m2 + 2mn− n2)(3m2 + 12mn+ 11n2),

s− c = (−m2 − 2mn+ 2n2)(3m2 + 12mn+ 11n2).

This gives

a = (m2 + n2)(3m2 + 12mn+ 11n2),

b = (−m2 − 2mn+ 2n2)(5m2 + 14mn+ 10n2),

c = (2m2 + 2mn− n2)(2m2 + 10mn+ 13n2).

For integers m,n ≤ 15 giving w in the range, we obtain primitive Heronian
triangles of class 4 by dividing a, b, c by their greatest common denominator, as
presented in the table below. An example is shown in Figure 6.
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m n a b c s Δ r R

1 2 355 219 148 361 8094 426
19

13505
38

2 5 11803 10660 1299 11881 3460314 31746
109

2574185
218

3 7 47444 38963 9515 47961 92616414 422906
219

20795465
438

3 8 74387 72491 2180 74529 39502554 144698
273

40620485
546

4 9 132987 103156 33235 134689 856373214 2333442
367

97695005
734

5 11 301636 225235 84747 305809 4767644154 8621418
553

333914045
1106

5 12 2379 2035 388 2401 197274 4026
49

233285
98

5 13 526516 498675 31867 528529 3971806014 5463282
727

765749525
1454

6 13 595115 432452 179891 603729 19430005434 25006442
777

925691645
1554

7 15 1063668 757315 338059 1079521 63941458494 61541346
1039

2212473965
2078

8 15 1186923 620500 608179 1207801 94234794654 85745946
1099

2611873625
2198

θ

Si

A

D

So

Figure 6.

References

[1] N. Dergiades, The Soddy circles, Forum Geom., 7 (2007) 191–197.
[2] F. M. Jackson, Soddyian triangles, Forum Geom., 13 (2013) 1–6.
[3] C. Kimberling, Encyclopedia of Triangle Centers, available at

http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[4] P. Yiu, Notes on Euclidean Geometry, Florida Atlantic University, 1998; available at

http://math.fau.edu/Yiu/Geometry.html

Frank M. Jackson: Aldebaran, Mixbury, Northamptonshire NN13 5RR United Kingdom
E-mail address: fjackson@matrix-logic.co.uk

Stalislav Takhaev: Prybrezhnay Street, 4 KV.313, 192076 Saint-Petersburg, Russia
E-mail address: stalislavt@mail.ru


