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Volumes of Solids Swept Tangentially Around Cylinders

Tom M. Apostol and Mamikon A. Mnatsakanian

Abstract. In earlier work ([1]-[5]) the authors used the method of sweeping tan-
gents to calculate area and arclength related to certain planar regions. This paper
extends the method to determine volumes of solids. Specifically, take a region
S in the upper half of the xy plane and allow the plane to sweep tangentially
around a general cylinder with the x axis lying on the cylinder. The solid swept
by S is called a solid tangent sweep. Its solid tangent cluster is the solid swept
by S when the cylinder shrinks to the x axis. Theorem 1: The volume of the
solid tangent sweep does not depend on the profile of the cylinder, so it is equal
to the volume of the solid tangent cluster. The proof uses Mamikon’s sweeping-
tangent theorem: The area of a tangent sweep to a plane curve is equal to the
area of its tangent cluster, together with a classical slicing principle: Two solids
have equal volumes if their horizontal cross sections taken at any height have
equal areas. Interesting families of tangentially swept solids of equal volume
are constructed by varying the cylinder. For most families in this paper the solid
tangent cluster is a classical solid of revolution whose volume is equal to that
of each member of the family. We treat forty different examples including fa-
miliar solids such as pseudosphere, ellipsoid, paraboloid, hyperboloid, persoids,
catenoid, and cardioid and strophoid of revolution, all of whose volumes are ob-
tained with the extended method of sweeping tangents. Part II treats sweeping
around more general surfaces.

1. FAMILIES OF BRACELETS OF EQUAL VOLUME

In Figure 1a, a circular cylindrical hole is drilled through the center of a sphere,
leaving a solid we call a bracelet. Figure 1b shows bracelets obtained by drilling
cylindrical holes of a given height through spheres of different radii. A classical
calculus problem asks to show that all these bracelets have equal volume, which is
that of the limiting sphere obtained when the radius of the hole shrinks to zero.

It comes as a surprise to learn that the volume of each bracelet depends only on
the height of the cylindrical hole and not on its radius or the radius of the drilled
sphere! This phenomenon can be explained (and generalized) without resorting to
calculus by referring to Figure 2.

In Figure 2a, a typical bracelet and the limiting sphere are cut by a horizon-
tal plane parallel to the base of the cylinder. The cross section of the bracelet is
a circular annulus swept by a segment of constant length, tangent to the cutting
cylinder. The corresponding cross section of the limiting sphere is a circular disk
whose radius is easily shown (see Figure 3) to be the length of the tangent segment
to the annulus. Thus, each circular disk is a tangent cluster of the annulus which,
by Mamikon’s sweeping-tangent theorem, has the same area as the annulus. (See
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(a) (b)

Figure 1. (a) Bracelet formed by drilling a cylindrical hole through a
sphere. (b) The volume of each bracelet is the volume of a sphere whose
diameter is the height of the hole.

(a) (b)

Figure 2. (a) Corresponding horizontal cross sections of bracelet and
sphere have equal areas. (b) Solid slices cut by two parallel planes have
equal volumes.

[2; Ch. 1], or [3].) Consequently, if the bracelet and sphere are sliced by two par-
allel planes as in Figure 2b, the slices have equal volumes because of the following
slicing principle, also known as Cavalieri’s principle:

Slicing principle. Two solids have equal volumes if their horizontal cross sec-
tions taken at any height have equal areas.

Thus, the equal volume property holds not only for all bracelets in Figure 1b,
which are symmetric about the equatorial plane, but also for any family of horizon-
tal slices of given thickness.
Generating bracelets by sweeping a plane region tangentially around a cylinder. An-
other way to generate the bracelets in Figure 1 is depicted in Figure 3a. A vertical
section of the sphere cut by a plane tangent to the cylindrical hole is a circular disk
whose diameter is the height of the hole. When half this disk, shown with horizon-
tal chords, is rotated tangentially around the cylinder it sweeps out a bracelet as in
Figure 3a. The tangent segment to the annulus in Figure 2a is a chord of such a
semicircle, so the circular disk in Figure 2a is the planar tangent cluster of the cor-
responding annulus, hence the annulus and disk have equal areas. By the slicing
principle, the bracelet and sphere in Figure 3a have equal volumes, as do arbitrary
corresponding slices in 3b. We refer to each swept solid as a solid tangent sweep
and to the corresponding portion of the limiting sphere as its solid tangent cluster.

Ellipsoidal bracelets. Figure 4 shows ellipsoidal bracelets swept by a given semiel-
liptical disk rotating tangentially around circular cylinders of equal height but of
different radii. The same bracelets can also be produced by drilling circular holes
of given height through similar ellipsoids of revolution. The reasoning used above
for spherical bracelets shows that each ellipsoiodal bracelet has the same volume
as the limiting case, an ellipsoid of revolution. Moreover, horizontal slices of these
bracelets of given thickness also have equal volume.
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(a) (b)

Figure 3. (a) Vertical section of sphere cut by a plane tangent to the cylin-
drical hole is a circular disk whose diameter is the height of the hole. (b)
Arbitrary horizontal slice of (a).

similar ellipsoids of revolution

Figure 4. Ellipsoidal bracelets of equal height have the same volume as
the limiting ellipsoid.

Paraboloidal bracelets. In Figure 5a a paraboloid of revolution is cut by a verti-
cal plane, and half the parabolic cross section of height H is rotated tangentially
around a circular cylinder of altitude H to sweep out a paraboloidal bracelet as
indicated. The volume of this bracelet is equal to that of its solid tangent cluster, a
paraboloid of revolution of altitude H . Figure 5b shows a family of paraboloidal
bracelets, all of height H , cut from a given paraboloid of revolution by parallel
equidistant planes. The bracelets have different radii, but each has the volume of
the leftmost paraboloid of revolution of altitude H because it is easily shown that
all the sweeping parabolic segments are congruent.

H

H

H
H H H

(a) (b)

Figure 5. (a) Paraboloidal bracelet has the volume of the solid tangent
cluster. (b) Family of paraboloidal bracelets of equal height and equal
volume.

Hyperboloidal bracelets. Figure 6 shows a new family of bracelets, formed by
drilling a cylindrical hole of given height through the center of a solid hyperboloid
of one sheet (twisted cylinder). The generator of each hyperboloid makes the same
angle with the vertical generator of the cylinder. The cylinder is tangent to the hy-
perboloid at its smallest circular cross section. The bracelets in Figure 6 have equal
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(a) twisted cylinder (b)  similar hyperboloids, swept by double triangle

Figure 6. (a) Bracelet formed by drilling a solid hyperboloid of one sheet.
(b) The volume of each bracelet equals the volume of the limiting cone
of the same altitude.

volume, that of the limiting cone. The same bracelets can be obtained by tangen-
tial sweeping. In Figure 6b, a vertical section of the hyperboloid tangent to that
cylinder is a symmetric double triangle, shown shaded. When this double triangle
is rotated tangentially around the cylinder, the solid tangent sweep is a bracelet as
in Figure 6b, and the limiting cone is its solid tangent cluster.

Figure 7 shows other hyperboloidal bracelets produced by tangential sweeping,
but the type of bracelet depends on the relation between the radius r of the cylin-
drical hole and the length b of semitransverse axis of the hyperbola. In Figure 7a,
r > b, and the outer surface of the bracelet is a hyperboloid of one sheet somewhat

b

(a) (b)

b

r r

r > b

r < br = b

(c)

b

r

Figure 7. (a) Hyperboloidal bracelet with r > b. (b) Hyperboloidal
bracelet with r = b is a cone. (c) Hyperboloidal bracelet with r < b.

like those in Figure 6, except that the drilling cylinder is not tangent to the hyper-
boloid as in Figure 6, but intersects it. In Figure 7b, r = b, and the outer surface is
that of a cone (a degenerate hyperboloid). In Figure 7c, r < b and the outer surface
is a hyperboloid of two sheets (only one sheet is shown). All hyperbolas in Figure
7 have the same asymptotes.

Figure 8 shows families of hyperboloidal bracelets of equal volume. Those in
(a) are of one sheet; those in (b) are of two sheets (with only one sheet shown).
General oval bracelets. Figure 9a shows a bracelet swept by a semicircular disk
moving tangentially around a general oval cylinder. Figure 9b shows a typical
horizontal cross section of the bracelet, an oval ring swept by tangent segments of
constant length. Such a ring is traced for example by a moving bicycle [1]. As in
the foregoing examples, the volume of each bracelet is the volume of the limiting
sphere obtained when the oval cylinder shrinks to a point. In Figure 9c, a double
triangle moves tangentially around the oval cylinder to sweep out a bracelet whose
outer surface is a ruled surface resembling the hyperboloid of one sheet in Figure
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H

(a) (b) (c)similar hyperboloids
r  > b r  = b r  < b

Figure 8. Hyperboloidal bracelets of one sheet in (a) and of two sheets
in (b), all having equal height and equal volume, that of the limiting case
in (c).

6b. A typical cross section is an oval ring, as in Figure 9b. The volume of the
bracelet is that of the limiting cone as in Figure 6b.

(a) (b) (c)

Figure 9. (a) Bracelet formed by semicircular disk swept tangentially
around an oval cylinder. The volume of the solid tangent sweep is the
same as that of its solid tangent cluster, a sphere. (b) Typical horizontal
cross section of the bracelet in (a). (c) Bracelet formed by right triangle
swept tangentially around an oval cylinder. A typical horizontal cross
section is like that in (b).

2. TANGENTIAL SWEEPING AROUND A GENERAL CYLINDER

The tangentially swept solids treated above can be generalized as shown in Fig-
ure 10a. Start with a plane region S between two graphs in the same half-plane. To
be specific, let S consist of all points (x, y) satisfying the inequalities

f(x) ≤ y ≤ g(x), a ≤ x ≤ b

where f and g are nonnegative piecewise monotonic functions related by the in-
equality 0 ≤ f(x) ≤ g(x) for all x in an interval [a, b]. In Figure 10a, the x axis is
oriented vertically, and S is in the upper half-plane having the x axis as one edge.
If we rotate S around the x axis we obtain a solid of revolution swept by region S
as indicated in the right portion of Figure 10a.

More generally, place the x axis along the generator of a general cylinder (not
necessarily circular or closed) and, keeping the upper half-plane tangent to the
cylinder, move it along the cylinder as suggested in Figure 10a. Then S gener-
ates a tangentially swept solid we call a solid tangent sweep. The corresponding
solid tangent cluster is that obtained by rotating S around the x axis. When the
smaller function f defining S is identically zero, the swept solid is called a bracelet.
Clearly, by Figure 10b, any swept solid can be produced by removing one bracelet
from another. We now have:
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Figure 10. (a) The volume of the solid tangent sweep is the same as that
of its solid tangent cluster. (b) Region S lies between two ordinate sets.
(c) Top view of a typical cross section.

Theorem 1. The volume of the solid tangent sweep does not depend on the profile
of the cylinder, so it is equal to the volume of the solid tangent cluster, a portion of
a solid of revolution.

Figure 10 provides a geometric proof. A typical cross section cut by a plane
perpendicular to the x axis is shown in Figure 10c. The area of the shaded band
outside the cylinder is the difference of areas of two tangent sweeps of the profile
of the cylinder. The area of the portion of the adjacent circular annulus swept
about the x axis is the difference in areas of the corresponding tangent clusters.
Therefore, by Mamikon’s theorem, the shaded band and annulus in Figure 10c
have equal areas. Apply the slicing principle to the solids in Figure 10a to obtain
Theorem 1. �

In Section 1 we treated families of bracelets with a common property: all mem-
bers of the family have the same height and the same volume, because when a
given family is cut by a horizontal plane, all planar sections have equal areas.

Consequently, by simply slicing any such family by two horizontal planes at a

Figure 11. A family of bracelets obtained by parallel slicing of another
family of bracelets. The slices also have equal height and equal volume.

given distance apart we obtain infinitely many new families with the same property
because corresponding horizontal slices have equal volume. In particular, parallel
slicing of families that have a horizontal plane of symmetry leads to many new
families of solids with equal height and equal volume that have no horizontal plane
of symmetry, as depicted in Figure 11. This greatly increases the range of applica-
bility of our results.

3. APPLICATIONS TO TOROIDAL SOLIDS

Persoids of revolution. A torus is the surface of revolution generated by rotating a
circle about an axis in its plane. The curve of intersection of a torus and a plane
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parallel to the axis of rotation is called a curve of Perseus, examples of which are
shown in Figure 12. Classical examples include ovals of Cassini and leminscates of
Booth and Bernoulli. Each such curve of Perseus has an axis of symmetry parallel
to the axis of rotation. When the persoidal region, bounded by a curve of Perseus,
is rotated about this axis of symmetry it generates a solid that we call a persoid of
revolution.

(a) (b)

(c) (d)

Figure 12. Each persoidal region (left) generates a solid persoid of revo-
lution (right).

How can we calculate the volume of a persoid of revolution? We use the exam-
ple in Figure 12a to illustrate a method that applies to all persoids of revolution.

When half the persoidal region in Figure 12a is swept tangentially around a
circular cylinder it generates a solid tangent sweep which, by Theorem 1, has the
same volume as its solid tangent cluster, in this case the persoid of revolution. To
calculate this volume, we observe that the same solid can be swept by a circular
segment normal to the cylinder as indicated in Figure 13a and in Figure 14a.

(a) (b)

S

Figure 13. A tangentially swept solid with the same volume as the persoid
of revolution. The same solid is swept by a circular segment normal to
the cylinder.

Figure 14b shows a typical horizontal cross section of the solid, a circular an-
nulus swept by tangential segments and by normal segments. By Pappus’ theorem
on solids of revolution, the volume of the solid is equal to Ad, where A is the
area of the circular segment and d is the distance through which the centroid of
the segment moves in sweeping out the solid. Both A and d can be determined by
elementary geometry, thus giving an elementary calculation of the volume of the
solid, hence also of the volume of the persoid of revolution. Moreover, according
to Theorem 1, all solids tangentially swept by a given persoidal region around a
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cylinder of any shape have the same volume as the persoid of revolution. Only one
of these solids is a solid torus.

cylinder

hole

normal
sweep

tangent
sweep

r
Rβ

c C

segment
circular

(a) (b) (c)

Figure 14. Calculating the volume of a swept solid using Pappus’ theorem.

Volumes of classical persoids generated by ovals of Cassini and the Bernoulli
lemniscate can be calculated by finding equations of the Perseus curves and using
integral calculus. The foregoing discussion provides an elementary derivation that
does not require equations or integration. In particular, the curve of Perseus in
Figure 12c, known as a Booth lemniscate (with a cusp), generates a persoid of
revolution whose volume is equal to that of the entire solid torus, 2π2r2R. Here r
is the radius of the circle that generates the torus as its center moves around a circle
of radius R. Cassinian ovals can be defined as sections cut by a plane at a distance
r from the axis of the torus. Their shapes are represented by the examples in Figure
12. When R > 2r, the oval consists of two symmetric disconnected pieces as in
Figure 12d, and again the persoid of revolution has volume equal to that of the
torus. When R = 2r, the Cassinian oval and the Booth lemniscate in Figure 12c
become a Bernoulli lemniscate, and the persoid of revolution has volume 4π2r3.
We summarize as follows:

Proposition. When R ≥ 2r the persoid of revolution has volume 2π2r2R, which
is that of the solid torus.

When R < 2r, as in Figures 12a and b, the persoidal region consists of one
piece, and the volume V of the persoid of revolution is given by Pappus’ theorem
as

V = 2πCA, (1)

where A is the area of the circular segment shaded in Figure 14c, and C is the
centroidal distance of the segment from the axis of rotation. We show now that this
volume is given by the explicit formula

V =
4

3
π(r sinβ)3 + πRr2(2β − sin 2β). (2)

Here r is the radius of the circle that generates the torus as its center moves around
a circle of radius R, and β is half the angle that subtends the circular segment of
radius r. In our geometric proof we assume that 0 ≤ β ≤ π/2, but formula (2) is
valid for all β. The area A of the segment is

A = r2(β − sinβ cosβ). (3)
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Figure 14c shows that C = c+R, where c is the centroidal distance of the segment
from the center of the circle of radius r. Hence CA = cA + RA. But 2πcA =
4
3π(r sinβ)

3, the volume of a spherical bracelet of height r sinβ, so (1) and (3)
give (2).

For a Cassinian oval as depicted in Figures 12b and c, we have R+ r cosβ = r,
which gives cosβ = 1−R/r. This determines the value of β to used in (2).

Hierarchy of toroidal solids. We can construct a hierarchy of toroidal solids as fol-
lows. Start with a plane oval region and rotate it around an axis at a positive dis-
tance from the oval to generate a toroidal solid, which we call the initial toroid. Cut
this toroid through its hole by planes parallel to the axis at varying distances from
it. Each cut produces two new oval sections with an axis of symmetry between
them. Rotation of one them about the axis of symmetry generates a new toroidal
solid, and the family of such toroidal solids obtained by all possible cuts we call
toroids of the 1st generation. By analogy to the persoid of revolution treated in
Figure 12d, each solid in this generation has the same volume as the initial toroidal
solid. This extends the result for initial circular toroids described in the foregoing
Proposition.

Now we repeat the process, taking as initial toroid any member of the 1st gen-
eration. For each such member we can produce a new family of toroids of the 2nd
generation. Each member of the 2nd generation can also be taken as initial toroid
to produce a 3rd generation, and so on. Remarkably, all toroids so produced have
the same volume as the initial toroid we started with. It seems unbelievable that
so many families exist sharing the same volume property as the classical family of
drilled bracelets in Figure 1.

The next section describes another principle that aids in calculating volumes of
solid clusters (hence of solid sweeps) without using calculus.

4. VOLUME OF SOLID CLUSTERS VIA CONICAL SHELLS

Conical shell principle. Figure 15a shows a triangle with its base on a horizontal
axis. The area centroid of the triangle is at a distance one-third its altitude from the
base, which we denote by c. When the same triangle is translated so that the upper
vertex is on the axis, its centroid is at distance 2c from the axis.

By rotating each triangular configuration about the horizontal axis we form two
solids of revolution, called conical shells, shown in Figure 15b. By a theorem of

c

2c

1
2

(a) (b) (c)

Figure 15. A conical shell principle for volumes of solids of revolution.
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Pappus, the volume of each shell is the area of the triangle times the length of the
path of the centroid of the triangle. Apply this to the solids in Figure 15b to obtain:

Conical shell principle. The solid on the right of Figure 15b has twice the
volume of that on the left.

This principle implies that the punctured cylinder in Figure 15c has volume 2/3
that of the cylinder. It also leads to a basic theorem (Theorem 2 below) concerning
tangent sweeps and tangent clusters that we turn to next.

Figure 16a shows the graph of a monotonic function we use as a tangency curve.
Tangent segments (not necessarily of the same length) from this curve to the hor-

(a) (b)

1
2

PC
2C

sweep

cluster

x

Figure 16. Geometric meaning of Theorem 2.

izontal axis generate the tangent sweep of this curve. Figure 16a also shows the
tangent cluster obtained by translating all the tangent segments so the points of tan-
gency are brought to a common point P on the horizontal axis. Consider the region
between any two tangent segments in the tangent sweep, and the corresponding
portion of the tangent cluster, both shown shaded in Figure 16a. We know from
Mamikon’s sweeping-tangent theorem that these two shaded regions have equal
areas.

Now we obtain a simple relation connecting their area centroids and also the
volumes of the two solids they generate by rotation about the axis. Decompose
each region into tiny triangles akin to those shown in Figure 15a. We deduce that
if C is the centroidal distance of the tangent sweep from the horizontal axis, then
the centroidal distance of the tangent cluster from the same axis is 2C, as indicated
in Figure 16a. This proves part (a) of Theorem 2. Part (a), together with Pappus’
theorem, gives part (b) of Theorem 2.

Theorem 2. (a) If C is the centroidal distance of the tangent sweep from a hori-
zontal axis, then the centroidal distance of the tangent cluster from the same axis
is 2C.

(b) The volume of the solid obtained by rotating the tangent sweep about the
horizontal axis is one-half the volume of the solid obtained by rotating the corre-
sponding tangent cluster about the same axis.

Now we apply Theorem 2 to several examples of solids of revolution.

Tractrix and pseudosphere. When the tangent sweep of the entire tractrix shown in
Figure 17a is rotated about the x axis it generates a solid of revolution which is half
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a pseudosphere. If the cusp of the tractrix is at height H above its asymptote, the

1
2

tractrix sweep

(a) (b)

pseudosphere

circular
spheresector hemi-

Figure 17. Determining the volume of a portion of a pseudosphere with-
out calculus.

volume of half the pseudosphere is 2
3πH

3, half the volume of a sphere of radius
H , a result known from integral calculus. We shall obtain the same result and more
(without calculus) as a direct application of Theorem 2b. Because all tangent seg-
ments to the tractrix cut off by the x axis have constant length, the tangent cluster
shown in Figure 17a is a circular sector, and each small triangle contributing to the
tangent sweep has a corresponding translated triangle in the tangent cluster. There-
fore, Theorem 2b tells us that the volume of any portion of the half pseudosphere
is half that of the corresponding portion of the hemisphere, as indicated in Figure
17b.
Exponential. Next we rotate the tangent sweep of an exponential function, shaded
in Figure 18a, around the x axis to form a solid of revolution shown in Figure
18b. To determine its volume, refer to Figure 18a which shows the corresponding
tangent cluster, a right triangle whose base is the constant length of the subtangent

1
2

(a) (b)

exponential

P

sweep

cluster

b
b

b

b

Figure 18. The volume of the solid generated by rotating an exponential
ordinate set is half that of a cylinder whose altitude is the length of the
constant subtangent.

to the tangency curve indicated as b in Figure 18a. (See [2; p. 16] or [3]). When this
tangent sweep is rotated about the x axis it generates a solid of revolution whose
volume, according to Theorem 2, is half that of the solid cluster of revolution.
Consequently, the volume of the solid obtained by rotating the ordinate set of the
exponential (which includes the unshaded right triangle) is equal to half the volume
of the circular cylinder whose altitude is the length b of the constant subtangent.
Generalized pursuit curve. Figure 19a shows a tangency curve with tangent seg-
ments cut off by a horizontal axis. At each point, a tangent segment of length t cuts
off a subtangent of length b. For a tractrix, t is constant, and for an exponential, b
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conic
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Figure 19. (a) Tangent cluster of a generalized pursuit curve is bounded
by a portion of a conic section. (b) Solid obtained by rotating the gener-
alized pursuit curve has half the volume of the solid of revolution of the
conic.

is constant. If a convex combination of t and b is constant, say μt + νb = C for
some choice of nonegative μ and ν, with μ+ ν = 1, the tangency curve is called a
generalized pursuit curve. We know (see [2; p. 348], or [3]) that the tangent cluster
of a generalized pursuit curve is bounded by a conic section with eccentricity ν/μ
and a focus at the common point F to which each tangent segment is translated, as
shown in Figure 19a. For example, when μ = ν the pursuit curve is the classical
dog-fox pursuit curve. A fox runs along the horizontal line with constant speed
and is chased by a dog running at the same speed. In this case, the tangent cluster
is bounded by part of a parabola.

When the general pursuit curve is rotated about the horizontal axis, its tangent
sweep generates a solid of revolution as depicted in Figure 19b. By Theorem 2,
the volume of this solid is half that of the solid generated by rotating the tangent
cluster.

Paraboloidal segment. Figure 20a shows the parabola y = x2 with the tangent
sweep consisting of tangent segments cut off by the y axis. A corresponding tan-
gent cluster is shaded in Figure 20b, whose curved boundary is easily shown to
be the vertically dilated parabola y = 2x2. Now we form two solids by rotating
the tangent sweep and tangent cluster about the y axis. According to Theorem 2,

(c)

y

(b)(a)

y=xk

y y

v

V Y

2Y

 power 

clustersweep

function
Y

kY
x

seg

x

2v

2Vseg
x

Vseg

Figure 20. Volume of a paraboloidal segment.

the volume v of the solid obtained by rotating the sweep is one-half the volume
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V obtained by rotating the cluster. This enables us to determine the volume Vseg

of the paraboloidal segment obtained by rotating the parabola y = x2 about the y
axis. The volume of the paraboloidal segment in Figure 20b is 2Vseg. Both Figures
20a and 20b show the same cone of volume Vcone. From Figure 20a we see that
Vseg = Vcone − v, and from Figure 20b we find 2Vseg − Vcone = 2v. Eliminating v
we find 4Vseg = 3Vcone. But 3Vcone is twice the volume of the circumscribing cylin-
der shown in Figure 20a. Consequently, we find Archimedes’ result: The volume
Vseg of a paraboloidal segment is one-half that of its circumscribing cylinder. In
other words, the surface of revolution obtained by rotating the parabola around the
y axis divides its circumscribing cylinder into two pieces of equal volume. Theo-
rem 2 also yields a corresponding result for the power function y = xk in Figure
20c. The surface of revolution about the y axis divides the circumscribing cylinder
into two solids whose volumes are in the ratio k : 2.

5. MODIFIED TREATMENT FOR VOLUMES OF SOLID CLUSTERS

The next theorem modifies the conical shell principle for treating volumes of
solids obtained by rotating the ordinate set of a monotonic function about the x
axis.

ccc

2c2c

1 32

2 1

(a)

tt1
2

t1

2c3

t2

(b) (c) (d)
x1 x2

P 2c

c

Figure 21. An abscissa set in (d) formed from the ordinate set in (a). They
have equal areas and centroidal distances in the ratio 2:1.

Figure 21a shows the graph of a monotonic function and part of its tangent
sweep between the graph and the x axis determined by two tangential segments t1
and t2 as shown. We are interested in the ordinate set above the interval [x1, x2].
This ordinate set can be formed from the tangent sweep by adding the right trian-
gle with hypotenuse t1 and subtracting the right triangle with hypotenuse t2. The
tangency points of t1 and t2 are brought to the same point P on the tangent cluster.
From the corresponding tangent cluster we form its abscissa set shown in Figure
21d in two steps: add right triangle with hypotenuse t1 as in Figure 21b, and sub-
tract right triangle with hypotenuse t2 as in Figure 21c. The resulting abscissa set
in Figure 21d has the same area as the ordinate set in Figure 21a above [x1, x2].
The 2:1 relation of centroidal distances in Figure 15a yields the same relation for
the components in Figures 21 a, b, and c. Now rotate the ordinate set about the x
axis, and rotate the abscissa set about the polar axis p (the axis through P parallel
to the x axis) to produce the two solids in Figure 22a. Argue as in Theorem 2 to
get:
Theorem 3. (a) The area of the ordinate set of any monotonic graph is equal to
the area of the abscissa set of the corresponding tangent cluster.
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(b) If C is the centroidal distance of the ordinate set from the horizontal axis,
then the centroidal distance of the abscissa set of the corresponding tangent cluster
from the polar axis is 2C.

(c) The volume of the solid obtained by rotating the ordinate set about the hori-
zontal axis is one-half the volume of the solid obtained by rotating the abscissa set
of the corresponding tangent cluster about the polar axis.

1
2

C
2C

(a) (b)

1
2

Figure 22. (a) Theorem 3a, b and c. (b) Special case where graph touches
the x axis.

The geometric meaning of Theorem 3 is shown in Figure 22a. Figure 22b illus-
trates the special case where the graph touches the x axis.
Cut pseudosphere. When Theorem 3 is applied to a cut portion of a pseudosphere
and its mirror image obtained from Figure 17b, it reveals that the volume of that
portion of a pseudosphere is half the volume of a spherical bracelet, as indicated
in Figure 23.

1
2

x p

Figure 23. Cut pseudosphere has half the volume of a spherical bracelet.

Paraboloidal solid funnel. The shaded region in Figure 24a is a parabolic segment
between the curve y = x2 and the interval [0, X]. Figure 24b shows a tangent
sweep of the parabola and a corresponding tangent cluster, whose curved boundary
is part of the parabola y = (2x)2. This figure was used in [2; p. 476] and in [3] to
calculate the area of the parabolic segment in Figure 24a by Mamikon’s sweeping
tangent method. Now we use it to determine the volume v of the paraboloidal
funnel in Figure 24c which is obtained by rotating the ordinate set in Figure 24a
about the x axis. The upper shaded region in Figure 24b is the abscissa set of
the cluster. By Theorem 3, v is one-half the volume V of the solid obtained by
rotating the upper shaded region about the x axis. This implies that v is one-fourth
the volume of the solid obtained by rotating the unshaded region in Figure 24a
around the x axis. Hence the curved surface of the funnel divides its circumscribing
cylinder into two pieces whose volumes are in the ratio 4 : 1. Therefore the volume
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Figure 24. Volume of a paraboloidal solid funnel.

of the paraboloidal funnel is 1/5 that of its circumscribing cylinder. In the same
manner, Theorem 3 shows that if we rotate the curve y = xk in Figure 24d about
the x axis, the surface of revolution divides the circumscribing cylinder into two
pieces whose volumes are in the ratio 2k : 1
Rotated cycloidal cap. Figure 25 shows one arch of a cycloid generated by a point
on the boundary of a rolling circular disk, together with a circumscribing rectangle.
The disk rolls along the base of this rectangle, and a tangent sweep is the “cap”
formed by drawing tangent segments from the cycloid to the upper edge of the

1
2

base

Figure 25. Solid of revolution swept by cycloidal cap.

rectangle as indicated. It is known that the area of the cap is equal to that of the
disk because the disk is the tangent cluster of this tangent sweep (see [2; p. 35],
or [4]). By Theorem 3, the horn-shaped solid obtained by rotating the cycloidal
cap about the upper edge has volume equal to half that of the toroidal-type solid
obtained by rotating the disk about the same edge. If the disk has radius a this
volume is π2a3.
A family generalizing the cycloid and tractrix. Figure 26 shows a cycloid (flipped
over) and a tractrix, with tangent clusters to each obtained in similar fashion. For
the cycloid the tangent cluster segments emanate from a common point P at one

p

p

P

Pcycloid
tractrix

x x

Figure 26. Common method for generating cycloid and tractrix.
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end of the vertical diameter of a circle; for the tractrix they emanate from the center
P of a circle.

Figure 27 shows how to produce a family of curves generalizing the cycloid and
tractrix by allowing the tangent segments of the cluster to emanate from a common
point P anywhere on the diameter. We consider the symmetric solids of revolution

x

p

x

p

P

Psweep
sweep

cluster cluster

generalizing cycloid and tractrix

Figure 27. Family that includes cycloid and tractrix.

swept by rotating about the x axis the ordinate sets of these curves together with
their mirror images through the y axis. Figure 28 shows how Theorem 3 determines
the volume of a symmetrically cut portion of such solids. Each volume is half that
of a toroidal bracelet, the corresponding rotated abscissa set of the cluster, whose
volume can be easily found by Pappus’ rule as was done earlier for persoids of
revolution.

1
2

1
2

x xp p

Figure 28. Volume relations for solids obtained by rotating the ordinate
sets in Figure 27.

6. VOLUMES SWEPT BY COMPLEMENTARY REGIONS

According to Pappus, the solid of revolution obtained by rotating a plane region
of area A around an axis has volume V = 2πcA, where c is the centroidal distance
of the region from the axis of rotation. Therefore, for a region of given area A,
determining V is equivalent to determining centroidal distance c. We exploit this
fact to derive a surprising and useful comparison lemma for volumes swept by two
complementary regions whose union is a rectangle.

Figure 29a shows a rectangle divided into two complementary regions of areas
A1 and A2. In Figure 29b, the region of area A1 has been rotated about the lower
edge l1 of the rectangle to generate a solid of revolution of volume V1. In Figure
29c, the complementary region of area A2 has been rotated about the upper edge l2
of the rectangle to generate another solid of revolution of volume V2. Both solids
are circumscribed by a cylinder of volume V = πRH obtained by rotating the
rectangle of area R and height H around either horizontal edge. Let a1 = A1/R
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Figure 29. Solids obtained by rotating complementary parts of a rectangle
around its lower and upper edges.

and a2 = A2/R denote the fractional areas relative to the rectangle, so that a1 +
a2 = 1. Similarly, let v1 = V1/V and v2 = V2/V denote the fractional volumes
relative to the cylinder. (Relative areas and relative volumes are dimensionless.)
Then we have the following surprising relation, which we state as a lemma:

Comparison Lemma for Complementary Regions. The difference of relative
volumes is equal to the corresponding difference of relative areas:

v2 − v1 = a2 − a1. (4)

To prove (4), let c1 denote the distance of the area centroid of A1 from the lower
axis l1, and let c2 denote the centroidal distance of area A2 from the upper axis
l2. Then c = H/2 is the centroidal distance of the area R of the rectangle from
either axis. By equating area moments about the lower axis l1 we find c1a1+(2c−
c2)a2 = c, which can be rewritten as follows:

c1a1 − c2a2 = c(1− 2a2) = c(a1 − a2). (5)

From Pappus’ theorem we have

v2 − v1 =
2π

V
(c2A2 − c1A1) =

2

H
(c2a2 − c1a1) =

1

c
(c2a2 − c1a1),

which, together with (5), gives (4).

Examples: Cycloidal and paraboloidal solids. To illustrate how this can be used
in practice, refer to Figure 30. Figure 30a shows the solid swept by rotating one
arch of a cycloid around its base. If the rolling disk generating the cycloid has
radius a, then the volume Vcap of the solid of revolution swept by the cycloidal cap
in Figure 25 is Vcap = π2a3. The arch and cap are complementary regions with
relative areas 3/4 and 1/4, whose difference is 1/2. The cylinder has volume 8π2a3

so the volume of the cap relative to that of the cylinder is vcap = 1/8. By (4) in
the comparison lemma, the volume of the arch relative to that of the cylinder is
varch = vcap + 1/2 = 5/8. Therefore Varch = 5π2a3.

Now we use the lemma again to determine the relative volume v2 of the solid
in Figure 30b obtained by rotating the complement of the parabolic segment in
Figure 24a about the upper edge of the circumscribing rectangle. In Figure 24c we
found that the volume v1 of a paraboloidal funnel is 1/5 that of the circumscribing
cylinder, so by (4) we have v2 = v1+a2−a1 = 1/5+2/3−1/3 = 8/15. In Figure
30b, the volume of the shaded solid is 8/15 that of its circumscribing cylinder.
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Figure 30. (a) Cycloidal arch rotated about its base has volume 5/8 that
of its circumscribing cylinder. (b) Solid obtained by rotating a parabolic
region around the upper edge has volume 8/15 that of the circumscribing
cylinder. (c) Paraboloidal funnel has volume 1/6 that of its circumscrib-
ing cylinder.

Finally, we use the lemma once more to determine the relative volume v2 of the
paraboloidal funnel in Figure 30c obtained by rotating the parabolic segment in
Figure 24a around axis l2. In Figure 20 we found that the relative volume v1 of the
complementary paraboloidal segment rotated around l1 is 1/2, so by (4) we have
v2 = 1/2 + a2 − a1 = 1/2 + 1/3− 2/3 = 1/6. In other words, in Figure 30c the
volume of the paraboloidal funnel is 1/6 that of the circumscribing cylinder.

The lemma has a surprising consequence. For the special case in which a1 = a2
we find v1 = v2. In other words:

If the rectangle is divided into two regions of equal area, then the two solids
obtained by rotating one region about the upper edge and the other about the lower
edge have equal volumes!

Figure 31 shows three interesting examples. In Figure 31a, a cycloid generated
by a rolling disk of radius 1 divides the shaded rectangle of altitude 3/2 into two
regions of equal area. Hence the solid obtained by rotating the portion of the rec-
tangle above the arch around the upper edge of this rectangle has the same volume
as the solid obtained by rotating the cycloidal arch around the lower edge, which
was treated in Figure 30a.

In Figure 31b a parabolic segment of height 1 is inside a rectangle of altitude
4/3. The parabola divides the shaded rectangle into two regions of equal area, so the
solid obtained by rotating one region around the upper edge has the same volume
as the solid obtained by rotating the complementary region around the lower edge.
Figure 31c is similar, with the regions rotated about the right and left edge of the
rectangle.
Examples. Generalized strophoidal solids.

(a) Solid of revolution generated by tangent sweep to unit circle. The shaded region
in Figure 32a is the tangent sweep to a unit circle, where each tangent segment is
cut off by a horizontal line p through the center of the circle. The corresponding
tangent cluster is shown in Figure 32b. Now we rotate each of these regions about
the horizontal axis to produce two solids of revolution. The volume Va of the solid
in Figure 32a (inside the cone and outside the sphere) is easy to find. It is equal to
that of the cone minus the volume of the inscribed spherical segment. The volume
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Figure 31. Three examples of solids of equal volume obtained by rotating
complementary regions of equal area around opposite edges of a rectan-
gle.

r(θ) = tan θ
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p

Figure 32. Solids swept by (a) tangent sweep to unit circle, and by (b) its
tangent cluster. (c) Calculating the volume of the full solid in (b).

Vb of the solid in Figure 32b (outside the cone) is twice Va, according to Theorem
2, so Vb is twice the volume of the cone minus twice that of the spherical segment
in Figure 32a. The cones in Figures 32a and 32b are congruent. Therefore, if we
adjoin the inside cone to the solid of volume Vb in Figure 32b, we obtain a solid
whose volume is three times that of the cone minus twice that of the spherical
segment in Figure 32a. But three times the volume of cone is the volume of its
circumscribed cylinder, shown in Figure 32c. Consequently, the volume of the
full solid is that of the circumscribing cylinder minus twice that of the spherical
segment.

The full solid in Figure 32b can be generated another way. It is part of the
solid of revolution obtained by rotating the plane curve with polar equation r =
tan θ around its horizontal axis of symmetry. The volume of that solid can also be
calculated by using integral calculus, but the foregoing calculation is simpler and
more revealing.

(b) Solid of revolution generated by strophoid. Figure 33a shows a tangent sweep
like that in Figure 32a, except that the tangent segments to the unit circle are cut off
by a horizontal line p tangent to the circle at point P . The corresponding tangent
cluster, with the points of tangency brought to the common point P , is shown in
the lower part of Figure 33a. This cluster is bounded by a curve which, as we will
show later, is a classical right strophoid. The strophoid consists of two parts, a
loop and a leftover portion with a horizontal asymptote. The region bounded by
the loop is the tangent cluster of the portion of the tangent sweep circumscribed by
the rectangle in Figure 33b. Therefore the loop area is 2− π/2. Tangent sweeping
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Figure 33. (a) Tangent sweep to a circle and its tangent cluster. (b) Por-
tion of sweep in (a) corresponding to the loop. (c) Volume relation for
solids obtained by rotating regions in (b). (d) Generalized strophoid.

can also be used to show that the area of the region between the strophoid and its
asymptote is 2 + π/2.

Now we determine the volume of the solid obtained by rotating the loop about
the horizontal axis p. According to Theorem 2, its volume is twice that of a toroidal
cavity (the solid obtained by rotating the corresponding tangent sweep around p).
To find that volume, in turn, we apply the Comparison Lemma. Rotation of the
complementary region about the upper edge of the rectangle in Figure 33b gives
a sphere of volume 4π/3, which means that the relative volume v1 is 2/3 that of
its circumscribing cylinder. The relative areas of the complementary regions are
a1 = π/4 and a2 = 1− π/4, so a2 − a1 = 1− π/2 and (4) gives v2 = 5/3− π/2
as the relative volume of the rotated tangent sweep. Therefore the absolute volume
of the solid on the left of Figure 33c is 2π(5/3−π/2) = π(10/3−π). The volume
of the solid obtained by rotating the loop is twice that.

The volume of the solid generated by rotating, about the asymptote, the region
in Figure 33a between the strophoid and its asymptote can also be determined, but
we omit the details.

An infinite family of generalized strophoids can be constructed by parallel mo-
tion of the line p which cuts off the tangent segments to the circle, as indicated in
Figure 33d. Tangent sweeping can be used to determine corresponding areas and
volumes of revolution, but we shall not present the details.

Different descriptions of the classical strophoid. The classical strophoid has been
described in three different ways by Roberval, Barrow, and Newton. Figure 34a
shows Newton’s description as the locus of corner A of a carpenter’s square, as
the end point B of edge BA slides along a horizonal line while the perpendicular
edge touches a fixed peg P at distance AB above B. Figure 34b shows that our
description of the strophoid in Figure 33a is equivalent to that of Newton. And
Figure 34c leads to a known polar description of the right strophoid.

7. APPLICATIONS TO HYPERBOLOIDS

Hyperboloid of two sheets. Figure 35a shows the lower half of right circular cone
with a cylindrical hole drilled through its axis. A tangent plane to the cylinder
intersects the cone along one branch of a hyperbola, forming a hyperbolic cross
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Figure 34. (a) Newton’s description of strophoid. (b) Tangent sweep to a
unit circle used to describe strophoid. (c) Polar equation describing
strophoid.

section that generates a bracelet by tangential sweeping. The volume of the hyper-
boloidal bracelet shown is equal to the volume of the solid of revolution generated
by the hyperbolic cross section.
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(a) (b)
t

tt
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tt

Figure 35. (a) Bracelet cut from a cone by an axial hole has the same
volume as that of a hyperboloid of revolution. (b) Diagram for proving
Archimedes’ volume relation in (6).

Archimedes showed in [6; On Conoids and Spheroids, Prop. 25] that this vol-
ume (call it V ) bears a simple relation to the volume Vcone of the inscribed right
circular cone in Figure 35a with the same base and axis. This cone has altitude h
and base t, the base radius of the hyperboloid of revolution. Archimedes showed
that

V

Vcone
=

3H + h

2H + h
, (6)

where H , indicated in Figure 35b, is the length of the semimajor axis of the hyper-
bola. A simple proof of (6) can be given from our observation that the bracelet can
be swept by rotating tangentially around the cylindrical hole the shaded triangle of
base b and altitude h in Figure 35b. The area of the triangle is bh/2, and the area
centroid of the triangle is at distance r + b/3 from the axis of rotation, where r is
the radius of the cylindrical hole.

By Pappus, volume V is the product of the area of the triangle and the distance
its centroid moves in one revolution, giving us

V = 2π(r +
b

3
)
bh

2
=

π

3
(b+ 3r)bh. (7)
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The cone with the same base and axis has altitude h and base t, where t is the length
of the tangent to the hole in Figure 35b. By similar triangles, b/t = t/(2r + b), so
t2 = (b+ 2r)b. Hence

Vcone =
π

3
t2h =

π

3
(b+ 2r)bh. (8)

Now divide (7) by (8) and use the similarity relation r/b = H/h to obtain (6).

Equilateral hyperbola rotated about an asymptote. Figure 36a shows an equilateral
hyperbola and its orthogonal asymptotes. The portion of any tangent to the hyper-
bola between the asymptotes is bisected at the point of tangency. As the point of
tangency moves to the right, the lower half of the tangent segment forms a tangent
sweep with the hyperbola as tangency curve. A corresponding tangent cluster is
formed by translating each tangent segment so the point of tangency is at the ori-

c
2c

(a) (b) (c)

Figure 36. Hyperboloid of revolution and attached cylinder of equal volume.

gin. The free end of the translated segment traces the mirror image of the original
hyperbola, as suggested in Figure 36b. By Theorem 2, the volume of the solid
obtained by rotating the tangent sweep about the horizontal axis is one-half the
volume of the solid obtained by rotating the corresponding tangent cluster about
the same axis. As the point of tangency moves from some initial position to ∞, the
swept solid is a hyperboloid of revolution of volume Vhyp, say, punctured by a right
circular cone of volume Vcone generated by rotating the initial tangent segment.
On the other hand, the cluster solid is the same hyperboloid together with a cone
congruent to the puncturing cone. Consequently, Vhyp + Vcone = 2(Vhyp − Vcone),
hence Vhyp = 3Vcone, which, in turn, is the volume of the cylinder attached to the
hyperboloid, as shown in Figure 36c.

Figure 37 shows an interesting interpretation of the foregoing result. The hyper-
boloid of revolution can be regarded as a “monument” of infinite extent supported
by a cylindrical pedestal whose base rests on a plane through the other asymptote.
We have just shown that the volume of such a monument is equal to the volume of
its pedestal. It seems appropriate to refer to this as a “monumental result.” It can,
of course, also be easily verified by integration.
General hyperbola rotated about one asymptote. An even deeper monumental result
will be obtained for a general hyperbola rotated about one of its asymptotes. The
volume of the solid hyperboloid is again equal to the volume of its pedestal, but
now the more general pedestal consists of two parts, a cylindrical part together with
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Figure 37. Each hyperbolic monument has the same volume as its cylin-
drical pedestal.
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Figure 38. Hyperboloid of revolution and attached pedestal of equal volume.

an attached conical part whose shape depends on the angle between the asymptotes,
as illustrated in Figure 38b. The conical part disappears when the asymptotes are
orthogonal as in Figure 38a, and the cylindrical part disappears when the monu-
ment touches the ground, as in Figure 38c.
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Figure 39. (a) Centroidal distance to upper tangent sweep is 5 times that
to the lower tangent sweep. (b) and (c) Hyperboloid of revolution and
attached pedestal of equal volume.

Figure 39a shows one branch of the hyperbola oriented so that the asymptote of
rotation is along the x axis, together with a tangent segment at a point P = (x, y)
cut off by the two asymptotes at points G and M in Figure 39b. The asymptotes
intersect at O. For any hyperbola, the point of tangency P bisects segment GM .



36 T. M. Apostol and M. A. Mnatsakanian

We wish to determine the volume of the solid of revolution obtained by rotating
about the x axis the ordinate set of this hyperbola above the interval [x,∞).

The ordinate set consists of two parts, a lower tangent sweep generated by mov-
ing PM from x to ∞, plus the triangle between the initial tangent PM and its
subtangent. Figure 39a shows a small triangle contributing to the lower tangent
sweep; its centroid is at height c = y/3 above the x axis. The corresponding
triangle cut off by the other asymptote, which is part of the another (upper) tan-
gent sweep, has its centroid at height y + 2y/3 = 5c above the x axis. The ratio
5 to 1 of these centroidal distances for the hyperbola has the following profound
consequence which we state as a lemma:

Lemma. The solid obtained by rotating the upper tangent sweep of the hyper-
bola about the x axis has volume 5 times that of the solid obtained by rotating the
lower tangent sweep about the same axis.

The lemma follows from Pappus’ theorem. The volume of the conical shell
generated by rotating each small triangle in the lower tangent sweep is 2πc times
the area of the triangle. The corresponding triangle in the upper tangent sweep has
the same area, so the corresponding conical shell has volume 5 times as great.

The lemma now follows from the fact that each solid of rotation is the union of
such conical shells.

Now we show that the volume of the hyperboloid of revolution is equal to the vol-
ume of the composite pedestal, cone plus cylinder. First, we express each of these
volumes in terms of the volume Vhyp of the hyperboloid of revolution and various
related cones. The volume generated by the lower tangent sweep is Vhyp − Vcone,
where Vcone is the volume of the cone of slant height PM swept by the right tri-
angle below the initial tangent segment. The volume generated by the upper tan-
gent sweep is equal to that generated by the lower tangent sweep plus the volume
Vdouble of the double cone generated by rotating triangle OGM in Figure 39b. By
the lemma we have

(Vhyp − Vcone) + Vdouble = 5(Vhyp − Vcone),

which gives us

4Vhyp = Vdouble + 4Vcone. (9)

From Figure 39b it is easy to see that Vdouble = 8Vcone + VO, where VO is the
volume of the cone with slant height OG. But VO = 4Vbase, where Vbase is the
volume of the base cone with vertex O and radius y. Hence (9) implies

Vhyp = VO + 3Vcone = VO + Vcyl, (10)

where Vcyl is the volume of the cylinder joining the bases of the base cone and
the cone with slant height PM . This completes the proof that the volume of the
hyperboloid of revolution is equal to the volume of the composite pedestal, cone
plus cylinder.
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8. FURTHER EXAMPLES OF TANGENTIALLY SWEPT SOLIDS

Cardioid. In the next example we rotate one lune of a cardioid about the axis of
the cardioid to generate a solid of revolution. Here the cardioid is a pedal curve as
described in [2; p. 24]. (Point P is the pedal point and F denotes the foot of the
perpendicular from P to an arbitrary tangent line to the large circle. The cardioid
is the locus of all such points F constructed for all tangent lines.) One lune of the
cardioid is swept by tangents to the large circle as indicated in Figures 40a and b.
The left half of the small disk is the tangent cluster of that part of the lune swept

α

(a) (b) (c)

P
F

P

F

O O
R

R

Figure 40. (a) and (b): Tangential sweeping of one lune of a cardioid. (c)
Solid of revolution.

by tangents from the horizontal position at P to the vertical position in Figure 40a.
The right half of the small disk is the tangent cluster of the remaining part of the
lune as in Figure 40b. Hence, the area of the lune is equal to the area of the small
disk.

When we rotate the cardioid about its axis of symmetry it generates an apple-
like solid depicted in Figure 40c. Classical integration in polar form shows that
its volume is twice the volume of the large central sphere. In other words, the
punctured apple (the shaded portion between the sphere and the apple) has the
same volume as the sphere. We shall give a geometric proof of this result.

In Figure 41 a thin shaded triangle of altitude t of the tangent sweep of the upper
part of the lune makes an angle α with the axis of rotation. The corresponding
triangle of the same altitude for the lower part of the lune that makes the same angle
α is also shown. The two triangles have equal area (which we denote by ΔA) and
the sum of their centroidal distances from the axis of rotation is (R cosα − c) +
(R cosα + c) = 2R cosα, where R is the radius of the large central circle. When
rotated together around the axis they sweep a solid of volume 4π(R cosα)ΔA,
according to a theorem of Pappus.

The two thin triangles can be combined to form a rectangle shown in Figure 41a
as a thin horizontal slice of the large semicircular disk. The area of the rectangle is
2ΔA and its centroidal distance from the axis is 1

2R cosα. Two symmetric copies
of this rectangle are shown. When the rectangles are rotated around the axis they
generate two symmetric slices of the sphere which together, by Pappus, have the
same volume as the solid swept by the two thin triangles. As α varies from 0 to π/2,
the rotated triangles sweep the punctured apple, and the corresponding rectangles
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Figure 41. Diagram showing that punctured apple has same volume as the sphere.

sweep the large interior sphere. This shows that the punctured apple has the same
volume as the sphere.

We can gain further insight by regarding the punctured apple as a piece of pottery
with two parts, an upper one (the cap) shown in Figure 42a, and a lower one shown
in Figure 42b. We will show that the volume Vupper of the cap is equal to that of the
large hemisphere minus that of the small sphere obtained by rotating the tangent
cluster disk in Figure 42 whose area is that of the lune. Consequently, the volume
Vlower of the lower part is that of the large hemisphere plus the volume of the small
sphere.

R

R

(a) (b) (c)

Figure 42. Upper part (a) and lower part (b) of punctured apple. Volume
of upper part is that of the large hemisphere in (c) minus that of small
sphere. Volume of lower part is that of large hemisphere plus that of
small sphere.

Volume of the upper part: Figure 41b shows a thin triangle in the tangent sweep
of the upper part of the lune and its counterpart in the tangent cluster, which makes
an angle α with the axis of rotation. The triangles have equal area (which we
call ΔA), and the sum of their centroidal distances from the axis of rotation is
R cosα. The triangles of this part of the tangent sweep generate the cap and those
of the tangent cluster generate the small interior sphere. The two thin triangles
can be combined to form the familiar rectangle shown in Figure 41b as a thin
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horizontal slice of the large semicircular disk. The area of the rectangle is 2ΔA
and its centroidal distance from the axis is 1

2R cosα. When all these rectangles are
rotated around the axis they sweep a hemispherical solid whose volume is equal
that of the volume swept by all the above triangles. This shows that Vupper is the
volume of the large hemisphere minus the volume of the small sphere.
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Figure 43. Analysis for cardioid modified for the Limaçon of Pascal.

Limaçon. Not surprisingly, a similar argument works when the cardioid is replaced
by any Limaçon of Pascal, an example of which is shown in Figure 43. In this case,
the volume of the punctured apple is equal to that of an ellipsoid of revolution
obtained by rotating an ellipse of semiaxes R and d around the major axis, as
indicated in Figure 43b. We also note that volume Vupper of the upper part is equal to
that of the large semiellipsoid minus that of the small sphere of diameter d in Figure
43b. The volume Vlower of the lower part is that of the same semiellipsoid plus that
of the small sphere of diameter d. For the proof observe that the thin triangles now
have area smaller than the area ΔA for the cardioid by a factor (d/R)2, where d is
the diameter of the small circle in Figure 43c. The rest of the argument is like that
for the cardioid.
Catenoid. Figure 44a shows a portion of a catenary, the graph of a hyperbolic co-
sine, y = coshx, for 0 ≤ x ≤ X . When the ordinate set of this graph is rotated
about the x axis the solid of revolution is a catenoid whose volume, expressed as
an integral, is Vch = π

∫ X
0 cosh2 x dx. The corresponding volume of the solid ob-

tained by rotating the ordinate set (Figure 44b) of a hyperbolic sine, y = sinhx,
over the same interval is Vsh = π

∫ X
0 sinh2 x dx. But cosh2 x − sinh2 x = 1, so

the difference of the volumes is

Vch − Vsh = πX. (11)

The result in (11) can be obtained without integration by using sweeping tan-
gents to show geometrically that the difference of volumes Vch − Vsh is the volume
of the cylinder of altitude X and radius 1 shown in Figure 44c.

The method of sweeping tangents also reveals the nonobvious result that the sum
of the volumes is the same as the volume of another solid of revolution, shown in
Figure 45a. This solid is generated by rotating the rectangle in Figure 45b with
vertex X about the x axis. That rectangle appears in [2; p. 346] and in [5; p. 413]
where its area is shown by tangent sweeping to be equal to that of the ordinate set



40 T. M. Apostol and M. A. Mnatsakanian

(a) (b)
(c)
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Figure 44. The difference of volumes Vch − Vsh is the volume of a cylinder.

of the catenary. The rectangle has base 1, altitude L and diagonal of length H .

tractrix

catenary

(b)

X0

(a)

0X X X
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L

H 1
LL

1

cosh x
sinh x

Figure 45. The sum of volumes Vch+Vsh is the volume of a solid obtained
by rotating the rectangular region in (b).

Here L = sinhX is the arclength of the catenary, and H = coshX . The rectangle
reveals that H2 = L2 + 1. An easy calculation shows that the solid has volume

Vch + Vsh = πLH. (12)

From (11) and (12) we obtain Vch and Vsh separately without integration:

Vch =
π

2
(LH +X), Vsh =

π

2
(LH −X). (13)

9. VERTICAL SECTIONS OF SOLID SWEEP AND CLUSTER
We know that a solid tangent sweep and its solid tangent cluster have equal

volumes because corresponding horizontal cross sections of these solids have equal
areas. We turn next to surprising properties relating their vertical cross sections.

Area balance of axial sections. Figure 46 shows vertical cross sections of bracelets
in Figures 1, 4, 5a, 6 and 8 taken through the axis of revolution, indicated by the
arrow. The section of the solid tangent cluster is shown on the right of the axis, and
a section of a typical solid tangent sweep is shown on the left.

From Pappus’ rule for volumes, we obtain the following balance-revolution prin-
ciple (introduced in [2; p. 410].) The areas of two plane regions are in equilibrium
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(a) circles (b) similar ellipses (c) parabolas (d) hyperbolas with same asymptotes (e)

Figure 46. Area equilibrium of axial sections of bracelets with respect to
the axis of rotation.

with respect to a balancing axis if, and only if, the solids of revolution generated
by rotating them about the balancing axis have equal volumes. Applying this to
the solids in Figure 1, we find that the semicircular disk in Figure 46a is in area
balance with the circular segment on the left of the axis. The same holds true
for the semielliptical disk in Figure 46b, the semiparabolic segment in Figure 46c,
and the hyperbolic segments in Figures 46d and e. Because any slice of a family
of bracelets has the equal height-equal volume property, each area equilibrium in
Figure 46 holds slice-by-slice and, in the limiting case, chord-by-chord.

(a) general (b) circle and lemniscate (c) perseus curve

Figure 47. Area equilibrium of axial sections of more general sweeps and clusters.

Figure 47a shows the same principle applied to vertical cross sections of a more
general tangentially swept solid and its solid cluster. Figures 47b and c are spe-
cial cases obtained by vertical cross sections in Figure 13. We were pleasantly
surprised to learn that the circular disk and lemniscate in Figure 47b are in chord-
by-chord equilibrium. Tangential sweeping reveals unexpected area balancing rela-
tions without knowing the areas themselves, their centroids, or cartesian equations
representing the boundary curves.

Congruent sections. Figure 48 reveals a new fact concerning vertical sections of a
solid sweep around a circular cylinder of radius a and its solid cluster, for a general
sweeping region S.

Each vertical section of the solid cluster at distance d from its rotation axis is
geometrically congruent to the vertical section of the solid sweep at distance D
from its rotation axis, where D = (d2 + a2)1/2.

To prove this it suffices to show that their corresponding chords PQ and P ′Q′
in a typical two-dimensional horizontal section of the two vertical sections are
congruent.

Figure 48 shows a typical horizontal section of (a) a solid sweep, and (b) it solid
cluster. In (a) the inner circle is the profile of the tangency cylinder, and AT is the
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horizontal section of the tangent plane to the cylinder. Point A is the outer edge of
the tangent segment of the sweeping region S. Its inner edge B, where the vertical

T

T

A

AB

B

P

Q

P'

Q'

a d

d

(a) (b)

B

(c)

B AD T
O

O

rotated 
sweep in (a)

Figure 48. Chord PQ in (a) and P ′Q′ in (b) are congruent because they
sweep out annuli of equal area. (c) Matching congruent vertical sections
of the sweep and cluster.

section intersects AT , and can be anywhere on AT . In (b), the circle through A
has as radius the translated segment AT , with the position of B at distance d from
T . In (a) and (b), the points B of all horizontal sections lie on a vertical line, which
is an axis of symmetry of the corresponding vertical section. The outer edge A and
corresponding inner edge can vary from layer to layer.

To prove congruency of chords PQ and P ′Q′, we note that the annulus swept
by AT in (a) has the area of the circle of radius AT in (b). Also, the annulus
swept by BT in (a) has the area of the circle of radius BT in (b). Hence their
area differences (those of the lighter shaded annuli) are also equal. Therefore the
tangent segments BP in (a) and BP ′ in (b) are congruent (otherwise the areas they
sweep would not be equal). Because B is the midpoint of PQ in Figure 48a, and
of P ′Q′ in Figure 48b, chords PQ and P ′Q′ are congruent. Figure 48c shows how
to match directly any two congruent vertical sections of the sweep and cluster.
Example: Bernoulli lemniscate. A Bernoulli lemniscate (see Section 3) is the bound-
ary of a vertical cross section internally tangent to a solid torus generated by a
circular disk S of radius r rotated around an axis at distance 2r from the center
of S. Using the axis as the edge of a half-plane as in Figure 10a, rotate the same
disk S tangentially around any circular cylinder to produce a solid tangent sweep
whose solid cluster is the solid torus. When the solid sweep is cut by a vertical
plane internally tangent to the sweep, its cross section is a region congruent to that
bounded by the Bernoulli lemniscate. Because the radius of the tangency cylinder
is arbitrary, this process produces infinitely many congruent Bernoulli lemniscates,
all generated by the same disk S.

10. CONCLUDING REMARKS

We began this paper with the classical calculus result that all bracelets obtained
by drilling cylindrical holes of given height through solid spheres of different radii
have equal volume. We derived this result without calculus, and then showed that
the same bracelets can be produced differently by a method of tangential sweep-
ing of plane regions around general cylinders. Tangential sweeping, in turn, leads
to infinitely many new families of solids that share the equal height-equal volume



Volumes of solids swept tangentially around cylinders 43

property and also gives a new way of calculating volumes of many solids of revolu-
tion, some familiar and some unfamiliar, without the use of calculus. A knowledge
of the volume of a solid of revolution, in turn, also gives the centroidal distance
from the axis of the planar sweeping region if its area is known, which is the case
in most of our examples. Some results of this paper also appear in [7].

Another view of swept solids and their clusters. Figure 49 shows another way to
see visually why a solid tangent sweep has the same volume as its solid cluster.
In Figure 49a we take a solid of revolution and slice it into wedges by vertical
planes passing through its axis. The vertical faces are shown there as rectangles,
but they could have a more general shape like that in Figure 10a, as suggested by
the shading. Now slide the wedges radially away from the axis in such a way that
common faces continually touch each other. The new configuration is a prismatic

(a) (b) (c)

cluster cluster clustersweep sweep sweep

Figure 49. (a) Solid of revolution sliced into wedges that are spread tan-
gentially around a cylinder. Sliced upper hemisphere in (b), lower hemi-
sphere in (c).

solid of the same volume, surrounding a prismatic cavity. As the number of wedges
increases indefinitely, the cavity becomes more like a cylinder along which the
prismatic solid is swept tangentially. The original solid of revolution is its tangent
cluster. Figure 49 also reveals that the volume centroids of any solid tangent sweep
and its cluster lie in the same horizontal plane.

Extensions to n-space. Many results in this paper can be readily extended to higher
dimensions. For example, to extend the results for the family of spherical bracelets
in Figure 1, we puncture an n-sphere by a coaxial n-cylinder to produce an n-
dimensional bracelet. As in Figure 1, those bracelets of equal height also have
equal volume, that of the n-sphere with diameter equal to the height of the cylin-
drical hole. We can also regard the general n-dimensional tangent sweep as being
swept tangentially by an (n− 1)-dimensional hemisphere as in Figure 3.
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