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Abstract. Assume that a triangle is defined by the triple (R, r, s) fulfilling the
conditions (1) and (2) (R - the circumradius, r - the inradius, s - the semiperime-
ter). We find some bounds for the trigonometric functions of the angles and for
the sides of the triangle expressed by R and r (see the formulas (3) and (7) -
(13)).

It is well-known that the positive numbers R, r, s may be the circumradius,
the inradius, and, respectively, the semi-perimeter of a triangle if and only if these
numbers satisfy Euler’s inequality

R ≥ 2r, (1)

and the fundamental double inequality

2R2 + 10Rr − r2 − 2 (R− 2r)
√

R2 − 2Rr

≤ s2 ≤ 2R2 + 10Rr − r2 + 2 (R− 2r)
√
R2 − 2Rr. (2)

This double inequality was found in 1851 and it was subsequently rediscovered in
many different forms. It often appears in the literature under the name of Blundon’s
inequality. A history of this inequality can be found in [2, pp.1–5].

In the following, we consider that the triangles are given by triples (R, r, s) that
verify (1) and (2). The objective of this note is to find some bounds (expressed
by R, r) for the sides and trigonometric functions of angles of the triangle. We
recall a well-known result on the conditions in which the inequalities in (2) become
equalities. There is a rich literature on this subject. In a recent short paper [1], we
have presented a simple geometrical proof of Theorem 1 below.

We say that a triangle is wide-isosceles if it is isosceles with the base greater
than or equal to the congruent sides, and is tall-isosceles if it is isosceles with the
congruent sides greater than or equal to the base. The equilateral triangle is both
wide-isosceles and tall-isosceles (see Figure 1).

Theorem 1. In the fundamental double inequality,
(a) the first inequality is an equality if and only if the triangle is wide-isosceles;
(b) the second inequality is an equality if and only if the triangle is tall-isosceles;
(c) both inequalities are equalities if and only if the triangle is equilateral.

We now state and prove our first result.
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Figure 1

Proposition 2. In any triangle ABC,

1

2

(
1−

√
1− 2r

R

)
≤ sin

A

2
≤ 1

2

(
1 +

√
1− 2r

R

)
. (3)

Moreover,
(a) the first inequality is an equality if and only if the triangle is tall-isosceles;
(b) the second inequality is an equality if and only if the triangle is wide-isosceles;
(c) both inequalities are equalities if and only if the triangle is equilateral.

Proof. Let O and I be the circumcenter and the incenter of the triangle ABC.
Applying the triangle inequality for the triangle AOI , we have

AO −OI ≤ AI ≤ AO +OI. (4)

The left-side of (4) is positive because I is contained in the circumcicle of tri-
angle ABC. Taking into account the formulas OA = R, OI2 = R2 − 2Rr, and
AI = r

sin A
2

, we can write (4) in the form

R−
√
R2 − 2Rr ≤ r

sin A
2

≤ R+
√
R2 − 2Rr

or
R−√

R2 − 2Rr

2R
≤ sin

A

2
≤ R+

√
R2 − 2Rr

2R
.

Therefore, the inequalities (3) are valid.
To prove the assertion (a) (resp. (b)) is equivalent to the fact that the right (re-

spectively left) inequality of (4) becomes an equality if and only if the triangle
ABC is tall-isosceles (respectively wide-isosceles).

(a) The equality AI = AO + OI is equivalent with the fact that the triangle
ABC is isosceles, with AB = AC, and O lying in the segment AI . Obviously, O
and I coincide if and only if ABC is an equilateral triangle.

In the remaining case, we have AO < AI, i.e., R < r
sin A

2

. Let a and l denote the

lengths of the base and congruent sides of the isosceles triangle. Then, using the
formulas 4RΔ = abc and Δ = rs, we easily derive R = l2√

4l2−a2
, r = a

√
4l2−a2

2(2l+a) ,

and sin A
2 = a

2l . Consequently, we find that R < r
sin A

2

is equivalent to a < l. Thus,

in the second case the triangle ABC is tall-isosceles.
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(b) If AI = AO − OI , then A, O, I are collinear and I ∈ (AO]. We proceed
similarly. Again, we have to consider two cases. If O and I coincide, the triangle
ABC is equilateral. If I ∈ (AO),then AO > AI , and R > r

sin A
2

, i.e., a > l. In

this case, ABC is wide-isosceles.
(c) follows from (a) and (b). �

We restate Proposition 2 in a symmetrical form.

Corollary 3. In triangle ABC,

max (sin
A

2
, sin

B

2
, sin

C

2
) ≤ 1

2

(
1 +

√
1− 2r

R

)
, (5)

min (sin
A

2
, sin

B

2
, sin

C

2
) ≥ 1

2

(
1−

√
1− 2r

R

)
. (6)

Moreover,
(a) equality holds in (5) if and only if the triangle is wide-isosceles;
(b) equality holds in (6) if and only if the triangle is tall-isosceles.

Starting from (3), we shall obtain new inequalities by using appropriate formulas
in trigonometry. Thus, we obtain from (3), after squaring and simplifying, the
following inequalities:

1

2

(
1− r

R
−
√
1− 2r

R

)
≤ sin2

A

2
≤ 1

2

(
1− r

R
+

√
1− 2r

R

)
. (7)

Also, taking into account the identity cos2 t+ sin2 t = 1, we deduce that

1

2

(
1 +

r

R
−
√
1− 2r

R

)
≤ cos2

A

2
≤ 1

2

(
1 +

r

R
+

√
1− 2r

R

)
. (8)

Because the left-side term in (8) is positive, it follows that

√
2

2

√
1 +

r

R
−
√
1− 2r

R
≤ cos

A

2
≤

√
2

2

√
1 +

r

R
+

√
1− 2r

R
. (9)

From (7) or (8), using the identities 2 sin2 A
2 = 1 − cosA or 2 cos2 A

2 = 1 +
cosA, we obtain the following inequalities:

r

R
−
√
1− 2r

R
≤ cosA ≤ r

R
+

√
1− 2r

R
. (10)

Remark. As it is natural, the left-side term of (10) is not always positive. We

have r
R −

√
1− 2r

R ≥ 0 if and only if r − √
R2 − 2Rr ≥ 0, that is r ≥ OI .

(Geometricaly, O is in the interior or on the incircle of the triangle ABC).
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By using the double angle formula, we obtain from (3) and (9),
√
2

2

(
1−

√
1− 2r

R

)√
1 +

r

R
−
√
1− 2r

R

≤ sinA ≤
√
2

2

(
1 +

√
1− 2r

R

)√
1 +

r

R
+

√
1− 2r

R
(11)

or, by squaring,

2− 2r

R
− r2

R2
− 2

√
1− 2r

R
≤ sin2A ≤ 2− 2r

R
− r2

R2
+ 2

√
1− 2r

R
. (12)

From (11) and (12), and taking into account the law of sines, we easily obtain
upper bounds and lower bounds for the lengths of the sides. Thus, we have

8R2−8Rr−4r2−8R
√

R2 − 2Rr ≤ a2 ≤ 8R2−8Rr−4r2+8R
√
R2 − 2Rr.

(13)
Because the inequality in previous section has been found by simple transforma-

tions of the inequalities (3), we can obtain the necessary and sufficient conditions
for equality to occur in the inequalities (7) - (13) as immediate consequences of
those specified in Proposition 2. Next we state some results along this order of
ideas, leaving the details to the reader.

Proposition 4. (a) Equality occurs in the first inequality of (7) if and only if trian-
gle ABC is tall-isosceles.
(b) Equality occurs in the second inequality of (7) if and only if triangle ABC is
wide-isosceles.
(c) Equality occurs in both cases if and only if triangle ABC is equilateral.

Proposition 5. (a) Equality occurs in the first inequality of (8), (9), (10) if and
only if triangle ABC is wide-isosceles.
(b) Equality occurs in the second inequality of (8), (9), (10) if and only if triangle
ABC is tall-isosceles.
(c) Equality occurs in both cases if and only if triangle ABC is equilateral.

Proposition 6. In each of the double inequalities (11), (12) and (13), equality
occurs in one or both side if and only if the triangle is equilateral.

Remarks. (1) We can formulate the inequalities (7) - (13) in a symmetrical form as
we have made in Corollary 3 with the inequalities (3).

(2) Of course, one can obtain further inequalities by proceeding in the same way
as above. But, it appears the risk of complicated expressions in R and r for the
leftmost and rightmost sides of the derived inequalities. For example, using the
formula 1 + tan2 t = cos−2 t, it is possible to obtain some inequality for tan A

2 ,
tanA starting from (9), (10).

Finally, we turn our attention to the left-side of the inequalities (13), i.e., to the
inequality

a2 ≥ 8R2 − 8Rr − 4r2 − 8R
√

R2 − 2Rr, (14)
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with equality if and only if ABC is equilateral.
If ABC is an acute triangle, this inequality can be improved. Indeed, by (10)

we have

cosA ≤ r

R
+

√
1− 2r

R
.

In our hypothesis, cosA � 0. Thus, after squaring we obtain

sin2A ≥ 2r

R
− r2

R2
− 2

r

R

√
1− 2r

R

or, equivalently,
a2 ≥ 8Rr − 4r2 − 8r

√
R2 − 2Rr. (15)

As in (10), the equality in (15) holds if and only if the acute triangle ABC is
tall-isosceles.

It is easy to see that (15) improves (14). Indeed, it is straightforward to verify
that

8Rr − 4r2 − 8r
√
R2 − 2Rr ≥ 8R2 − 8Rr − 4r2 − 8R

√
R2 − 2Rr,

as well as the fact that the equality sign holds only if ABC is equilateral. Conse-
quently, apart from (14), the equality sign holds for (15) not only for equilateral
triangles but also for tall-isosceles ones.
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