Equilateral Triangles and Kiepert Perspectors in Complex Numbers

Dao Thanh Oai

Abstract

We construct two equilateral triangles associated with an arbitrary hexagon, and show that they are perspective.

1. Two equilateral triangles associated with a hexagon

Consider a hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ with equilateral triangles $B_{j} A_{j} A_{j+1}$ constructed on the six sides externally. Here we take the subscripts modulo 6. Let G_{j} be the centroid of triangle $B_{j} A_{j} A_{j+1}$. We first establish the following interesting result.

Theorem 1. The midpoints of the segments $G_{1} G_{4}, G_{2} G_{5}, G_{3} G_{6}$ form an equilateral triangle.

Figure 1.
We prove this theorem by using complex number coordinates of the points. Suppose the hexagon is in the complex plane. Each of the vertices $A_{j}, j=1,2, \ldots, 6$, has a complex affix α_{j}. We shall often simply identify a point with its complex

[^0]affix. Throughout this note, ω denotes a complex cube root of unity. It satisfies $1+\omega+\omega^{2}=0$. The other complex cube root of unity is ω^{2}.

Lemma 2. (a) A triangle with vertices z_{1}, z_{2}, z_{3} is equilateral if and only if $z_{1}+$ $\omega z_{2}+\omega^{2} z_{3}=0$ for a complex cube root of unity ω.
(b) The center of an equilateral triangle with $\alpha_{j} \alpha_{j+1}$ as a side is γ_{j}, where

$$
(1-\omega) \gamma_{j}=-\omega \alpha_{j}+\alpha_{j+1}
$$

for a complex cube root of unity ω.
Proof of Theorem 1. Let M_{1}, M_{2}, M_{3} be the midpoints of $G_{2} G_{5}, G_{3} G_{6}, G_{1} G_{4}$ respectively. These have complex affixes $z_{j}=\frac{1}{2}\left(\gamma_{j+1}+\gamma_{j+4}\right)$ for $j=1,2,3$. By Lemma 2(b),

$$
\begin{aligned}
& 2(1-\omega)\left(z_{1}+\omega^{2} z_{2}+\omega z_{3}\right) \\
= & (1-\omega)\left(\left(\gamma_{2}+\gamma_{5}\right)+\omega^{2}\left(\gamma_{3}+\gamma_{6}\right)+\omega\left(\gamma_{4}+\gamma_{1}\right)\right) \\
= & \left(-\omega \alpha_{2}+\alpha_{3}\right)+\left(-\omega \alpha_{5}+\alpha_{6}\right)+\omega^{2}\left(-\omega \alpha_{3}+\alpha_{4}\right) \\
& +\omega^{2}\left(-\omega \alpha_{6}+\alpha_{1}\right)+\omega\left(-\omega \alpha_{4}+\alpha_{5}\right)+\omega\left(-\omega \alpha_{1}+\alpha_{2}\right) \\
= & 0 .
\end{aligned}
$$

Therefore, $z_{1}+\omega^{2} z_{2}+\omega z_{3}=0$, and by Lemma 2(a), z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle.

This completes the proof of Theorem 1.
By replacing ω by ω^{2} in Lemma 2(b), we have an analogous result of Theorem 1 with the equilateral triangle constructed on the sides of the given hexagon internally. In other words, if for $j=1,2, \ldots, 6, G_{j}^{\prime}$ is the reflection of G_{j} in the side $A_{j} A_{j+1}$, then the midpoints M_{1}^{\prime} of $G_{2}^{\prime} G_{5}^{\prime}, M_{2}^{\prime}$ of $G_{3}^{\prime} G_{6}^{\prime}$, and M_{3}^{\prime} of $G_{1}^{\prime} G_{4}^{\prime}$ also form an equilateral triangle (see Figure 2).

What is more interesting is that the two equilateral triangles $M_{1} M_{2} M_{3}$ and $M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}$ are perspective. We shall prove this by explicitly computing the complex affix of the point of concurrency (Theorem 6 below).
Lemma 3. The line joining α, β and the line joining γ, δ intersect at

$$
\theta=\frac{(\bar{\gamma} \delta-\bar{\delta} \gamma)(\alpha-\beta)-(\bar{\alpha} \beta-\bar{\beta} \alpha)(\gamma-\delta)}{(\overline{\gamma-\delta})(\alpha-\beta)-(\overline{\alpha-\beta})(\gamma-\delta)} .
$$

Proof. Note that the denominator of θ is purely imaginary. Rewrite the numerator as

$$
\begin{aligned}
& (\bar{\gamma} \delta-\bar{\delta} \gamma)(\alpha-\beta)+\bar{\beta}(\gamma-\delta) \alpha-\bar{\alpha}(\gamma-\delta) \beta \\
= & (\bar{\gamma} \delta-\bar{\delta} \gamma+\bar{\beta}(\gamma-\delta)) \alpha-(\bar{\gamma} \delta-\bar{\delta} \gamma+\bar{\alpha}(\gamma-\delta)) \beta \\
= & (\bar{\gamma} \delta-\bar{\delta} \gamma+\bar{\beta}(\gamma-\delta)-(\overline{\gamma-\delta}) \beta) \alpha-(\bar{\gamma} \delta-\bar{\delta} \gamma+\bar{\alpha}(\gamma-\delta)-(\overline{\gamma-\delta}) \alpha) \beta .
\end{aligned}
$$

This is a linear combination of α and β with purely imaginary coefficients. It follows that θ is a real linear combination of α and β with coefficient sum equal to 1. It represents a point on the line joining α and β. Since θ is invariant under the

Figure 2.
permutation $(\alpha, \beta) \leftrightarrow(\gamma, \delta)$, it also represents a point on the line joining γ and δ. Therefore, it is the intersection of the two lines.

We omit the proof of the next lemma.
Lemma 4. Given two segments $\alpha \beta$ and $\alpha^{\prime} \beta^{\prime}$, let $\gamma(t)$ and $\gamma^{\prime}(t)$ be the points dividing the segments $\alpha \beta$ and $\alpha^{\prime} \beta^{\prime}$ in the same ratio

$$
\alpha \gamma(t): \gamma(t) \beta=\alpha^{\prime} \gamma^{\prime}(t): \gamma^{\prime}(t) \beta^{\prime}=t: 1-t
$$

the locus of the midpoint of $\gamma(t) \gamma^{\prime}(t)$ is a straight line.
Consider the segments $A_{2} A_{3}$ and $A_{5} A_{6}$ with midpoints $\alpha=\frac{\alpha_{2}+\alpha_{3}}{2}$ and $\alpha^{\prime}=$ $\frac{\alpha_{5}+\alpha_{6}}{2}$. Let $\beta=\alpha+\frac{1}{2}\left(\alpha_{2}-\alpha_{3}\right) i$ and $\beta^{\prime}=\alpha^{\prime}+\frac{1}{2}\left(\alpha_{5}-\alpha_{6}\right) i$. These are vertices of isosceles right triangles constructed on the segments $A_{2} A_{3}$ and $A_{5} A_{6}$. Clearly, G_{2} and G_{5} divide the segment $\alpha \beta$ and $\alpha^{\prime} \beta^{\prime}$ in the same ratio; so do G_{2}^{\prime} and G_{5}^{\prime}. An application of Lemma 4 identifies the line joining the midpoints of $G_{2} G_{5}$ and $G_{2}^{\prime} G_{5}^{\prime}$.
Corollary 5. The line $M_{1} M_{1}^{\prime}$ is the same as the line joining $\frac{\alpha_{2}+\alpha_{5}+\alpha_{3}+\alpha_{6}}{4}$ and $\frac{\alpha_{2}+\alpha_{5}+\alpha_{3}+\alpha_{6}}{4}+i \cdot \frac{\alpha_{2}+\alpha_{5}-\alpha_{3}-\alpha_{6}}{4}$.

Theorem 6. The lines $M_{1} M_{1}^{\prime}, M_{2} M_{2}^{\prime}$, and $M_{3} M_{3}^{\prime}$ are concurrent at the point

$$
\frac{\left|\alpha_{1}+\alpha_{4}\right|^{2}\left(\alpha_{2}+\alpha_{5}-\alpha_{3}-\alpha_{6}\right)+\left|\alpha_{2}+\alpha_{5}\right|^{2}\left(\alpha_{3}+\alpha_{6}-\alpha_{1}-\alpha_{4}\right)+\mid\left(\alpha_{3}+\left.\alpha_{6}\right|^{2}\left(\alpha_{1}+\alpha_{4}-\alpha_{2}-\alpha_{5}\right)\right.}{2\left(\left(\overline{\alpha_{1}+\alpha_{4}}\right)\left(\alpha_{2}+\alpha_{5}-\alpha_{3}-\alpha_{6}\right)+\left(\overline{\alpha_{2}+\alpha_{5}}\right)\left(\alpha_{3}+\alpha_{6}-\alpha_{1}-\alpha_{4}\right)+\left(\overline{\alpha_{3}+\alpha_{6}}\right)\left(\alpha_{1}+\alpha_{4}-\alpha_{2}-\alpha_{5}\right)\right)} .
$$

Proof. Let $w_{j}=\frac{\alpha_{j}+\alpha_{j+3}}{2}$ for $j=1,2,3$. By Corollary 5, $M_{1} M_{1}^{\prime}$ is the line joining $\frac{w_{2}+w_{3}}{2}$ and $\frac{w_{2}+w_{3}}{2}+i \cdot \frac{w_{2}-w_{3}}{2}$. Similarly, $M_{2} M_{2}^{\prime}$ is the line joining $\frac{w_{3}+w_{1}}{2}$

Figure 3.
and $\frac{w_{3}+w_{1}}{2}+i \cdot \frac{w_{3}-w_{1}}{2}$, and $M_{3} M_{3}^{\prime}$ is the one joining $\frac{w_{1}+w_{2}}{2}$ and $\frac{w_{1}+w_{2}}{2}+i \cdot \frac{w_{1}-w_{2}}{2}$. By Lemma 3, the intersection of these last two lines is

$$
Q=\frac{\left|w_{1}\right|^{2}\left(w_{2}+w_{3}\right)+\left|w_{2}\right|^{2}\left(w_{3}+w_{1}\right)+\left|w_{3}\right|^{2}\left(w_{1}+w_{2}\right)}{\overline{w_{1}}\left(w_{2}+w_{3}\right)+\overline{w_{2}}\left(w_{3}+w_{1}\right)+\overline{w_{3}}\left(w_{1}+w_{2}\right)} .
$$

The cyclic symmetry of Q in w_{1}, w_{2}, w_{3} shows that it lies also on the line $M_{1} M_{1}^{\prime}$, and is therefore the point of concurrency of the three lines. Explicitly in terms of α_{j} for $j=1,2, \ldots, 6$, this is given in the statement of the theorem above.

2. Kierpert perspectors

2.1. Theorem 1 is a generalization of Napoleon's theorem. If we put $A_{1}=A_{4}=$ $A, A_{2}=A_{5}=B$, and $A_{3}=A_{6}=C$, then $B_{1}=B_{4}, G_{1}=G_{4}=M_{1}$. Similarly, $G_{2}=G_{5}=M_{2}$ and $G_{3}=G_{6}=M_{3}$. In this case, $M_{1} M_{2} M_{3}$ is the Napoleon triangle of triangle $A_{1} A_{2} A_{3}$. The vertices of the other Napoleon equilateral triangle $M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}$ are the reflections of M_{1}, M_{2}, M_{3} in $B C, C A, A B$ respectively. The two equilateral triangles are perspective at the circumcenter O.

On the other hand, if we put $A_{1}=A_{2}=A, A_{3}=A_{4}=B$, and $A_{5}=A_{6}=C$, then $M_{1} M_{2} M_{3}$ and $M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}$ are the inferior of the Napoleon triangles of $A B C$. They are perspective at the nine-point center.
2.2. Let $A B C$ be a given triangle. Assume the circumcircle the unit circle in the complex plane, so that the vertices are unit complex numbers α, β, γ.

$$
\alpha_{1}=\alpha, \quad \alpha_{2}=\frac{\alpha+\gamma}{2}, \quad \alpha_{3}=\gamma, \quad \alpha_{4}=\frac{\beta+\gamma}{2}, \quad \alpha_{5}=\beta, \quad \alpha_{6}=\frac{\beta+\alpha}{2}
$$

For $j=1,2 \ldots, 6$, let G_{j} be the apex of an isosceles triangle with base $A_{j} A_{j+1}$ and base angle θ. Thus,

$$
G_{j}=\frac{\alpha_{j}+\alpha_{j+1}}{2}+\tan \theta \cdot \frac{\alpha_{j}-\alpha_{j+1}}{2} i .
$$

In this case,

$$
\begin{aligned}
M_{1} & =\frac{1}{2}\left(G_{2}+G_{5}\right) \\
& =\frac{1}{2}\left(\frac{\alpha+3 \gamma}{4}+\tan \theta \cdot \frac{\gamma-\alpha}{4} i+\frac{\alpha+3 \beta}{4}+\tan \theta \cdot \frac{\alpha-\beta}{4} i\right) \\
& =\frac{1}{8}(2 \alpha+3 \beta+3 \gamma-\tan \theta(\beta-\gamma) i) \\
& =\frac{1}{4} \alpha+\frac{3}{4}\left(\frac{\beta+\gamma}{2}-\frac{\tan \theta}{3} \cdot \frac{\beta-\gamma}{2} i\right)
\end{aligned}
$$

Note that $\frac{\beta+\gamma}{2}-\frac{\tan \theta}{3} \cdot \frac{\beta-\gamma}{2} i$ is the affix of the vertex of the isosceles triangle on $B C$ with base angle $\arctan \left(\frac{1}{3} \tan \theta\right)$, on the same side as A. Similarly, M_{2} and M_{3} lie respectively on the lines joining B, C to the vertices of similar isosceles triangles on $C A$, and $A B$, constructed on the same sides of the vertices (see Figure 4).

Figure 4.

Proposition 7. (a) The triangle $M_{1} M_{2} M_{3}$ is perspective with $A B C$ at the Kiepert perspector $K\left(-\arctan \left(\frac{1}{3} \tan \theta\right)\right)$.
(b) The triangle $M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}$ is perspective with $A B C$ at the Kiepert perspector $K\left(\arctan \left(\frac{1}{3} \tan \theta\right)\right)$ (see Figure 5).

Figure 5.
Finally, we identify the perspector Q of the equilateral triangles $M_{1} M_{2} M_{3}$ and $M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}$ (see Figure 6). The lines in question are

By Theorem 6, the perspector Q has complex affix $\frac{1}{4}(\alpha+\beta+\gamma)$. Since the orthocenter H of triangle $A B C$ has complex affix $\alpha+\beta+\gamma$ (see, for example, [3, p.74]), Q is the point dividing $O H$ in the ratio $O Q: O H=1: 4$. In terms of the nine-point center N and the centroid G, this satisfies $N G: G Q=2: 1$. Therefore, Q is the nine-point center of the inferior (medial) triangle. This is the triangle center $X(140)$ in [2] (see Figure 6).
2.3. Given triangle $A B C$, consider points X, X^{\prime} on $B C, Y, Y^{\prime}$ on $C A$, and Z, Z^{\prime} on $A B$ such that

$$
B X: X X^{\prime}: X^{\prime} C=C Y: Y Y^{\prime}: Y^{\prime} A=A Z: Z Z^{\prime}: Z^{\prime} B=t: 1-2 t: t
$$

for some real number t. Construct similar isosceles triangles of base angles θ on the sides $X X^{\prime}, X^{\prime} Y, Y Y^{\prime}, Y^{\prime} Z, Z Z^{\prime}, Z^{\prime} X$, all outside or inside the hexagon according as θ is positive or negative. Denote the new apices of the isosceles

Figure 6.
triangles by $A^{\prime}, C^{\prime \prime}, B^{\prime}, A^{\prime \prime}, C^{\prime}, B^{\prime \prime}$ respectively. If the complex affixes of A, B, C are α, β, γ respectively, then

$$
\begin{aligned}
& A^{\prime}=\frac{\beta+\gamma}{2}+(1-2 t) \tan \theta \cdot \frac{\beta-\gamma}{2} i, \\
& A^{\prime \prime}=(1-t) \alpha+t \cdot \frac{\beta+\gamma}{2}-t \tan \theta \cdot \frac{\beta-\gamma}{2}
\end{aligned}
$$

The midpoint of the segment $A^{\prime} A^{\prime \prime}$ is

$$
\begin{aligned}
M_{a} & =\frac{1-t}{2} \alpha+\frac{1+t}{2} \cdot \frac{\beta+\gamma}{2}+\frac{1-3 t}{2} \tan \theta \cdot \frac{\beta-\gamma}{2} i \\
& =\frac{1-t}{2} \alpha+\frac{1+t}{2}\left(\frac{\beta+\gamma}{2}+\frac{1-3 t}{1+t} \tan \theta \cdot \frac{\beta-\gamma}{2} i\right)
\end{aligned}
$$

Note that $\frac{\beta+\gamma}{2}+\frac{1-3 t}{1+t} \tan \theta \cdot \frac{\beta-\gamma}{2} i$ is the apex of the isosceles triangle on $B C$ with base angle $\arctan \left(\frac{1-3 t}{1+t} \tan \theta\right)$. Similar expressions hold for the coordinates of the midpoints M_{b} of $B^{\prime} B^{\prime \prime}$ and M_{c} of $C^{\prime} C^{\prime \prime}$. From these we conclude that the triangles $M_{a} M_{b} M_{c}$ and $A B C$ are perspective at the Kiepert perspector $K\left(\arctan \left(\frac{1-3 t}{1+t} \tan \theta\right)\right)$. (see Figure 7).

By reversing the sign of θ, we obtain $M_{a}^{\prime} M_{b}^{\prime} M_{c}^{\prime}$ perspective with $A B C$ at the Kiepert perspector $K\left(-\arctan \left(\frac{1-3 t}{1+t} \tan \theta\right)\right)$. The line joining these two perspectors passes through the symmedian point of $A B C$.

These two triangles are equilateral if $\theta= \pm \frac{\pi}{6}$.
2.4. Given triangle $A B C$ and an angle θ, consider the Kiepert triangle $A^{\prime} B^{\prime} C^{\prime}:=$ $\mathcal{K}(\theta)$. On the sides of the hexagon $B A^{\prime} C B^{\prime} A C^{\prime}$, construct, similar isosceles triangles of base angles ϕ. Let X_{b} be the apex of the triangle on $C B^{\prime}$ and X_{c} the one

Figure 7
on $C^{\prime} B$. The midpoint of $X_{b} X_{c}$ has affix

$$
\begin{aligned}
& \frac{\beta+\gamma}{2}+\frac{1}{8}(1-\tan \theta \tan \phi)(2 \alpha-\beta-\gamma)-\frac{1}{8}(\tan \theta+\tan \phi)(\beta-\gamma) i \\
= & \frac{1-\tan \theta \tan \phi}{4} \alpha+\frac{3+\tan \theta \tan \phi}{4}\left(\frac{\beta+\gamma}{2}-\frac{\tan \theta+\tan \phi}{3+\tan \theta \tan \phi} \cdot \frac{\beta-\gamma}{2} i\right)
\end{aligned}
$$

Figure 8
With similar expressions of the midpoints of the two other segments, we conclude that the midpoints of the three segments are perspective with $A B C$ at the

Kiepert perspector

$$
K\left(-\arctan \left(\frac{\tan \theta+\tan \phi}{3+\tan \theta \tan \phi}\right)\right) .
$$

3. Generalizations

Proposition 8 (Fritsch and Pickert [1]). Given a quadrilateral $A B C D$, let A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} be the centers of squares on the sides $A B, B C, C D, D A$, all constructed externally or internally of the quadrilateral. The midpoints of the diagonals of $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ form a square.

Proposition 9 (van Aubel's theorem). Given an octagon $A_{1} A_{2} \cdots A_{8}$, let $C_{j}, j=$ $1,2, \ldots, 8$ (indices taken modulo 8), be the centers of the squares on $A_{j} A_{j+1}$, all externally or internally of the octagon. The midpoints of $C_{1} C_{5}, C_{2} C_{6}, C_{3} C_{7}$, $C_{4} C_{8}$ form a quadrilateral with equal and perpendicular diagonals (see Figure 9).

Figure 9

Proposition 10 (Thébault's theorem). Given an octagon $A_{1} A_{2} \cdots A_{8}$, let B_{j} be the midpoint of $A_{j} A_{j+1}$ for indices $j=1,2, \ldots, 8$ (modulo 8). If $C_{j}, j=1,2, \ldots, 8$, are the centers of the squares on $B_{j} B_{j+1}$, all externally or internally of the octagon, then the midpoints of $C_{1} C_{5}, C_{2} C_{6}, C_{3} C_{7}, C_{4} C_{8}$ are the vertices of a square (see Figure 10).

Figure 10
Proposition 8 is a special case of Proposition 10 with $A_{1}=A_{2}, A_{3}=A_{4}$, $A_{5}=A_{6}, A_{7}=A_{8}$.

References

[1] R. Fritsch and G. Pickert, A quadrangle's centroid of vertices and van Aubel's square theorem, Crux Math., 39 (2013) 362-367.
[2] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[3] P. Yiu, Euclidean Geometry, Florida Atlantic University Lecture Notes, 1998; available at http://math.fau.edu/Yiu/Geometry.html

Dao Thanh Oai: Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Viet Nam
E-mail address: daothanhoai@hotmail.com

[^0]: Publication Date: April 10, 2015. Communicating Editor: Paul Yiu
 The author thanks Dr. Paul Yiu for his help in the preparation of this paper.

