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Isogonal Conjugates in a Tetrahedron
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Abstract. The symmedian point of a tetrahedron is defined and the existence of
the symmedian point of a tetrahedron is proved through a geometrical argument.
It is also shown that the symmedian point and the least squares point of a tetra-
hedron are concurrent. We also show that the symmedian point of a tetrahedron
coincides with the centroid of the corresponding pedal tetrahedron. Furthermore,
the notion of isogonal conjugate to tetrahedra is introduced, with a simple for-
mula in barycentric coordinates. In particular, the barycentric coordinates for the
symmedian point of a tetrahedron are given.

1. Introduction

The symmedian point of a triangle is one of the 6,000 known points associated
with the geometry of a triangle [4]. To define the symmedian point, we begin with
the concept of isogonal lines. Two lines AR and AS through the vertex A of an
angle are said to be isogonal if they are equally inclined from the sides that form
∠A. The lines that are isogonal to the medians of a triangle are called symme-
dian lines [3], pp. 75-76. Figure 1 (a) shows that the symmedian line AP of the
triangle ABC is obtained by reflecting the median AM through the corresponding
angle bisector AL. The symmedian lines intersect at a single point K known as the
symmedian point, also called the Lemoine point. It turns out that the symmedian
point of a triangle coincides with the point at which the sum of the squares of the
perpendicular distances from the three sides of the triangle is minimum (the least
squares point, LSP), [1]. Another property of the symmedian point of a triangle is
described below. As shown in Figure 1 (b), let A′B′C ′ the pedal triangle of K (i.e.,
the triangle obtained by projecting K onto the sides of the original triangle). Then
the symmedian point of the triangle ABC and the centroid of the triangle A′B′C ′
are concurrent.

The existence of symmedian point of a triangle was proved by the the French
mathematician Emile Lemoine in 1873 ([3], Chapter 7). Later the symmedian point
was defined by Marr for equiharmonic tetrahedrons in 1919 [5]. In the present
work we provide the definition and prove the existence of the symmedian point of
an arbitrary tetrahedron. Then we show that the symmedian point of a tetrahedron
coincides with the LSP of that tetrahedron and the centroid of the corresponding
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petal tetrahedron. Furthermore, we will demonstrate the utility of least squares
solution for determining the location of the least squares points and hence the sym-
median points.

The rest of this paper is organized as follows. In section 2, the existence of
the symmedian point of a tetrahedron is proved. In section 3, it is shown that
the symmedian point and LSP of a tetrahedron are concurrent. In section 4, the
concurrency of the symmedian point and the centroid of the corresponding petal
tetrahedron is proved. In section 5, a discussion of the main results is provided.
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Figure 1. (a) The symmedian lines of triangle ABC intersect at the symmedian
point K. (b) The symmedian point K of the ABC triangle coincides with the
centroid ̂C of its pedal triangle, which is the A′B′C′ triangle formed by con-
necting the intersection points of the perpendicular lines L1, L2 and L3 from K
to the sides of the ABC triangle.

2. Symmedian point of a tetrahedron and barycentric coordinates

Let ABCD be a tetrahedron. Two planes (P ) and (Q) through AB, for in-
stance, are said to be isogonal conjugates if they are equally inclined from the
sides that form the dièdre angle between the planes of the triangles ABC and
ABD. (P ) is called the isogonal conjugate of (Q) and vice versa. If a point X of
ABCD is joined to vertex A and vertex B, the plane through XA and XB has an
isogonal conjugate at A. Similarly, joining X to vertices B and D, D and C, A
and C, B and C, C and D, produce five more conjugate planes. There is no imme-
diately obvious reason why these six conjugates should be concurrent. However,
that this is always the case will follow from lemma 2 below. Let M be the mid-
point of CD. The plane containing AB and that is isogonal to the plane of triangle
ABM is called a symmedian plane of tetrahedron ABCD. Taking the midpoints
of the six sides of the tetrahedron ABCD and forming the associated symmedian
planes, we call the intersection point of these symmedian planes the symmedian
point of the tetrahedron. In this section we show that all six symmedian planes are
indeed concurrent at a point. This definition of the symmedian point differs from
the one given in [5], which was only defined for equiharmonic tetrahedrons [6].
For the existence of the symmedian point of an arbitrary tetrahedron, we first need
the following two lemmas.
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Lemma 1. All six median planes obtained from a side of a tetrahedron and the
midpoint of its opposite side are concurrent.

Proof.
As shown in Figure 2 (a), let M1 and M2 be the midpoints of the opposite sides
CD and AB, respectively. The two median planes constructed from M1 and AB,
and from M2 and CD intersect at the line containing the points M1 and M2. Sim-
ilarly, the other median planes constructed from AC and M3, BD and M4 contain
M3M4, and the planes formed with BC and M5, and AD and M6, contain M5M6,
where M3,M4,M5, and M6, are the midpoints of BD,AC,AD, and BC, respec-
tively. Thus it is enough to show that the line segments M1M2, M3M4, and M5M6

are concurrent. This can be shown by noticing that M1M4 and M2M3 are parallel
to AD, and M2M4 and M1M3 are both parallel to BC. Thus the quadrilateral
M1M3M2M4 is a parallelogram. It follows that the diagonals M3M4 and M1M2

cross each other at their midpoints. Similar argument shows that the quadrilateral
M3M5M4M6 ia a parallelogram with diagonals M5M6 and M3M4 crossing each
other at their midpoints. The desired result follows.�

Lemma 2. Consider the tetrahedron ABCD.

(i): If L and T are two points on two isogonal planes (P1) and (P2), respec-
tively, through AB, and if LR,LS, TP , TQ, are the perpendiculars from
L and T to the triangles ABC, and ABD, respectively, then

LR

LS
=

TQ

TP
(1)

(ii): If L is on (P1) and LR/LS = TQ/TP , then T is on (P2), where (P1)
and (P2) are isogonal planes through AB.

Proof.
To show (i) it is enough to show that the two triangles LRS and TQP are similar
(see Figure 2 (b)). In fact, ∠RLS = ∠PTQ = 180◦ − ∠(�ABC,�ABD),
where ∠(�ABC,�ABD) is the dièdre angle between the planes of �ABC and
�ABD. Also, ∠TPQ = ∠TNQ = ∠(�ABD, (P2)), where ∠(�ABD, (P2))
is the dièdre angle between (P2) and the plane of the triangle ABD, and N is the
projection of P onto AB. To see why notice that TP and PN are both perpendic-
ular to AB. Thus AB is also perpendicular to TN . But, AB is also perpendicular
to TQ. Hence AB is perpendicular to the planes of the triangles QNT and PNT ,
and so these two triangles are in the same plane. Since the angles at its vertices
P and Q are 90◦, the quadrilateral TPNQ is a circumscribed quadrilateral (ver-
tices are located on the same circle) and so the equality ∠TPQ = ∠TNQ holds.
Similarly, ∠LSR = ∠LOR = ∠(�ABC, (P1)), where O is the projection of R
onto AB. But ∠(�ABD, (P2)) = ∠(�ABC, (P1)). So ∠TPQ = ∠LSR. The
similarity of the triangles TQP , and LRS now follows. (ii) follows easily since in
the triangles LRS and TQP , ∠(PTQ) = ∠(RLS) and LR/LS = TQ/TP .�
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(a) (b)

Figure 2. (a) All six median planes obtained from a side of the ABCD tetrahe-
dron and the midpoint Mi(1 ≤ i ≤ 6) of its opposite side are concurrent. (b)
A representation of the isogonal planes (P1) and (P2), and the perpendicular
lines from L and T to the triangles ABC and ABD, respectively.

Now we are ready to show the existence of the symmedian point of a tetrahedron.

Theorem 3. The symmedian planes are concurrent at a unique point K, the sym-
median point of the tetrahedron.

Proof.
Using Lemma 1, let M be the intersection point of all six median planes. Denote
by SEF the symmedian plane through a side EF and by PX

EFG the orthogonal
projection of a point X onto the plane formed by the three points E,F, and G (no
three vertices are located on the same line). Let K be the intersection point of the
symmedian planes SAB , SBC , and SAC , and let W be the intersection of SAB with
SBC and SAD. We will show that W ∈ SAC . In view of (ii) of Lemma 2, it suffices
to show that
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.

Since W is in SAD, SAB , Lemma 2 (i) implies
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and
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Using (2), (3) we have
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Thus W coincides with K. Similar argument shows that the symmedian planes
through BD and CD also pass through K.�

Remark. An identical argument to the proof of Theorem 1 shows that if six planes
are concurrent at X , where X is a point in the tetrahedron ABCD, then the six
conjugate planes are also concurrent at a point X∗, the conjugate of X . In addi-
tion, as is in the triangle case, the restriction that X is a point inside ABCD is
unnecessary.

Now we explore the relationship between the barycentric coordinates of a point
X and its isogonal conjugate X∗. Recall that in general, if x1, · · · , xn are the
vertices of a simplex in affine space A and if (a1 + · · · + an)X = a1x1 + · · · +
anxn and at least one of the a′is does not vanish, then we say that the coefficients
(a1 : · · · : an) are barycentric coordinates of X , where x ∈∈ A [7]. Also, the
barycentric coordinates are homogeneous:

(a1, · · · , an) = (µa1 : · · · : µan) µ �= 0.

Analogous to the triangle case [2], we have the following property for the tetra-
hedron. Let X be a point in the space. Joining X to each vertex A, B, C,
and D, four tetrahedra can be constructed. Let X = (u : v : w : t) and
X∗ = (u∗ : v∗ : w∗ : t∗) be the barycentric coordinates of X and X∗, respectively,
with respect to ABCD. Since the volumes of these tetrahedra are proportional to
the barycentric coordinates of X , using lemma 2, and an argument similar to the
proof of Theorem 1, one can establish the following

u∗u
|ΔBDC|2 =

w∗w
|ΔABC|2 =

v∗v
|ΔADC|2 =

t∗t
|ΔABD|2 = µ,

where |ΔXY Z| denote the area of ΔXY Z. It follows that

X∗ = (u∗ : v∗ : w∗ : t∗) = (µ
|ΔBDC|2

u
: µ

|ΔABC|2
w

: µ
|ΔADC|2

v
: µ

|ΔABD|2
t

)

= (
|ΔBDC|2

u
:
|ΔABC|2

w
:
|ΔADC|2

v
:
|ΔABD|2

t
). (4)

(4) gives an extension of isogonal conjugates to tetrahedra with a simple formula
in barycentric coordinates. Applying (4) to the centroid (1 : 1 : 1 : 1), we obtain
the coordinates of the symmedian point (|ΔBDC|2 : |ΔABC|2 : |ΔADC|2 :
|ΔABD|2).

3. Concurrency of the Symmedian Point and the Least Squares Point

The LSP of a given tetrahedron ABCD is the point from which the sum of the
squares of the perpendicular distances to the four sides of the tetrahedron ABCD
is minimized. Now we show that the symmedian point and the LSP of a tetrahedron
are concurrent. We start with the following lemma.
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Lemma 4. For a tetrahedron ABCD, let M be the midpoint of CD and MP
and MQ be the perpendicular line segments from M to ΔABC and ΔABD,
respectively. Then we have

MQ

MP
=

area(�ABC)

area(�ABD)
(5)

Similar equalities hold if M is replaced with the midpoints of the other sides of the
tetrahedron ABCD.

Proof.
Let AH be the perpendicular from A to �BCD. Now note that

1

3
MQ× area(�ABD) = volume(ABMD)

=
1

3
AH × area(�BMD)

=
1

3
AH × area(�BMC)

= volume(ABCM)

=
1

3
MP × area(�ABC),

which gives rise to equation (5). �

Now we can prove the concurrency of the symmedian point and the LSP of a tetra-
hedron.

Theorem 5. The symmedian point K of tetrahedron ABCD coincides with its
LSP.

Proof.
First, Lemma 2 (i) together with Lemma 4 imply

x

area(�ABC)
=

y

area(�ABD)
=

z

area(�ACD)
=

w

area(�BCD)
, (6)

where x, y, z, w are the distances from the the symmedian point to the triangles
ABC, ABD, ACD,BCD, respectively.
Second, let area(�ABC) = a, area(�ABD) = b, area(�ACD) = c, area(�BCD) =
d. By Lagrange’s identity,

(x2 + y2 + z2 + w2)(a2 + b2 + c2 + d2)− (ax+ by + cz + dw)2

= (bx− ay)2 + (cx− az)2 + (dx− aw)2 (7)

+(cy − bz)2 + (dy − bw)2 + (dz − cw)2.

Since a2 + b2 + c2 + d2 is constant for all x, y, z, w, and ax + by + cz + dw =
3vol(ABCD), (x2 + y2 + z2 + w2) is minimum if and only if the right hand side
of (7) is zero. This occurs only when

bx = ay, cx = az, dx = aw, cy = bz, dy = bw, dz = cw.
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In view of (6), this occurs at the symmedian point K. So the symmedian point
coincides with the LSP. �

4. Concurrency of the Symmedian Point and the Centroid of the Correspond-
ing Petal Tetrahedron

In this section we show that the symmedian point of a tetrahedron coincides with
the centroid of the corresponding pedal tetrahedron.

Theorem 6. The symmedian point of a tetrahedron coincides with the centroid of
the corresponding pedal tetrahedron.

Proof.
Let K be the symmedian point of the tetrahedron ABCD. Drop the perpendiculars
from K to the four sides of the tetrahedron ABCD and let their intersection with
ΔABC,ΔABD,ΔACD,ΔBCD be the points V1, V2, V3, V4, respectively. Let
Ĉ be the centroid of the pedal tetrahedron V1V2V3V4 of K. It is well known that
Ĉ minimizes the sum of the squares of the distances to four vertices V1, V2, V3, V4.
So we have

4∑
i=1

(ĈVi)
2 ≤

4∑
i=1

(XVi)
2 for any X ∈ R3. (8)

Suppose Ĉ �= K. Drop the perpendiculars from Ĉ to the four sides of the tetra-
hedron ABCD and let their intersection with ΔABC, ΔABD, ΔACD, ΔBCD
be the points W1,W2,W3,W4, respectively. Since K is also the LSP of the tetra-
hedron ABCD

4∑
i=1

(KVi)
2 <

4∑
i=1

(ĈWi)
2. (9)

Note also that we have ĈWi ≤ ĈVi for each i. So using (8) with X = K, we have
4∑

i=1

(ĈWi)
2 ≤

4∑
i=1

(ĈVi)
2 ≤

4∑
i=1

(KVi)
2,

which contradicts (9). So we must have Ĉ = K. �
Corollary 7. The symmedian point and hence the LSP of a tetrahedron belongs to
its interior.

Proof.
Since K = Ĉ and Ĉ is in the interior of the petal tetrahedron and the pertal tetra-
hedron is in the interior of the given tetrahedron, the symmedian point K of the
given tetrahedron belongs to its interior. �

5. Discussion

In this section we show that our symmedian point of a tetrahedron ABCD is
different from the symmedian point defined by Marr [5]. Marr’s symmedian point
of an equiharmonic tetrahedron (that is, AD × BC = AB × CD = AC × BD)
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can be defined as the point of intersection of the lines joining the vertices to the
symmedian points of the opposite faces. Now we give an example that shows that
our symmedian point is different from Marr’s symmedian point.

Example 1. Consider the tetrahedron ABCD such that A(0, 0, 0), B(1, 0, 0, C(0, 1, 0)
and D(0, 0, 1). Note that the tetrahedron ABCD is equiharmonic and one can
compute Marr’s symmedian point K̃ = (1/5, 1/5, 1/5). Our symmedian point is
K(1/6, 1/6, 1/6). So K̃ �= K.

In summary, the merit of the present work is twofold. First, the definition of the
symmedian point of a tetrahedron is a true generalization of the symmedian point of
a triangle, because they both coincide with their corresponding least square points.
Second, the notion of isogonal conjugate has been extended to tetrahedra, with a
simple formula in barycentric coordinates. In particular, a formula for the symme-
dian point of a tetrahedron has been given in terms of the barycentric coordinates.
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