Another Synthetic Proof of Dao’s Generalization of the Simson Line Theorem

Nguyen Van Linh

Abstract. We give a synthetic proof of Dao’s generalization of the Simson line theorem.

In [3], Dao Thanh Oai published without proof a remarkable generalization of the Simson line theorem.

Theorem 1 (Dao). Let ABC be a triangle with its orthocenter H, let P be an arbitrary point on the circumcircle. Let l be a line through the circumcenter and AP, BP, CP meet l at A_1, B_1, C_1, respectively. Denote A_2, B_2, C_2 the orthogonal projections of A_1, B_1, C_1 onto BC, CA, AB, respectively. Then A_2, B_2, C_2 are collinear and the line passing through A_2, B_2, C_2 bisects PH.

Note that when l passes through P, the line coincides with the simson line of P with respect to triangle ABC. Two proofs, by Telv Cohl and Luis Gonzalez, can be found in [2]. Nguyen Le Phuoc and Nguyen Chuong Chi have given a synthetic proof in [4]. In this note we give another synthetic proof of Theorem 1 by considering the reformulation.

Theorem 1’. Let $ABCD$ be a quadrilateral inscribed in circle (O). An arbitrary line l through O intersects the lines AB, BC, CD, DA, AC, BD at X, Y, Z, T.
Denote by \(X_1, Y_1, Z_1, T_1, U_1, V_1\) the orthogonal projections of \(X, Y, Z, T, U, V\) onto \(CD, AD, AB, BC, BD, AC\) respectively.

(a) The six points \(X_1, Y_1, Z_1, T_1, U_1, V_1\) all lie on a line \(L\).

(b) If \(H_a, H_b, H_c, H_d\) are the orthocenters of triangles \(BCD, CDA, DAB, ABC\) respectively, then \(AH_a, BH_b, CH_c, DH_d\) share a common midpoint \(K\) which lies on the line \(L\).

We shall make use of two lemmas.

Lemma 2 ([1, Theorem 475]). The locus of a point the ratio of whose powers with respect to two given circles is constant, both in magnitude and in sign, is a circle coaxal with the given circles.

Lemma 3. Let \(M, N, P, Q\) be the midpoints of \(AB, BC, CD, DA\) respectively, and \(d_M, d_N, d_P, d_Q\) the perpendiculars from \(M, N, P, Q\) to \(CD, DA, AB, BC\) respectively. The eight lines \(AH_a, BH_b, CH_c, DH_d, d_M, d_N, d_P, d_Q\) are concurrent.

Proof. Since the distance between one vertex of a triangle and its orthocenter is twice the one between circumcenter and the opposite side, we have \(AH_b = 2OP = BH_a\). But \(AH_b \parallel BH_a\), then \(AH_bH_aB\) is a parallelogram. This means \(AH_a\) and \(BH_b\) share a common midpoint \(K\). The actually applies to every pair among the four segments \(AH_a, BH_b, CH_c, DH_d\). Therefore, \(K\) is the common midpoint of the four segments. Moreover, \(MK\) is a midline of triangle \(ABH_a\), then \(MK \parallel BH_a\), and is perpendicular to \(CD\). It is the line \(d_M\). Similarly, \(d_N, d_P, d_Q\) are the lines \(NK, PK, QK\) respectively.

Proof of Theorem 1’

Denote \(Z'_1, X'_1\) the intersections of \(Y'_1T_1\) with \(AB, CD\), respectively.

We will show that the ratios of powers of four points \(Z'_1, X, X'_1, Z\) with respect to \((O)\) and the circle with diameter \(YT\) are equal.
By simple angle chasing, we have
(i) \(\angle Z_1'Y_1A = \angle TY_1T_1 = \angle TYT_1 = \angle BYX \),
(ii) \(\angle Z_1'AY_1 + \angle XAT = 180^\circ \),
(iii) \(\angle Z_1'T_1B = \angle ATX \),
(iv) \(\angle Z_1'BT_1 + \angle YBX = 180^\circ \).
From these,
\[
\frac{\sin \angle Z_1'Y_1A}{\sin \angle Z_1'AY_1} \cdot \frac{\sin \angle Z_1'T_1B}{\sin \angle Z_1'BT_1} = \frac{\sin \angle XTA}{\sin \angle XAT} \cdot \frac{\sin \angle XYB}{\sin \angle XBY}
\]
\[
\Rightarrow \frac{Z_1'A \cdot Z_1'B}{Z_1'Y_1 \cdot Z_1'T_1} = \frac{X_1A \cdot X_1B}{XY \cdot XT}
\]
\[
\Rightarrow \frac{\mathcal{P}_O(Z_1')}{\mathcal{P}_{YT}(Z_1')} = \frac{\mathcal{P}_O(X_1)}{\mathcal{P}_{YT}(X)}.
\]
The same reasoning actually gives
\[
\frac{\mathcal{P}_O(Z_1')}{\mathcal{P}_{YT}(Z_1')} = \frac{\mathcal{P}_O(X_1)}{\mathcal{P}_{YT}(X)} = \frac{\mathcal{P}_O(X_1')}{\mathcal{P}_{YT}(X_1')} = \frac{\mathcal{P}_O(Z)}{\mathcal{P}_{YT}(Z)}.
\]
By Lemma 2, the four points \(X, Z, X_1', Z_1' \) lie on a circle \(\omega \) which is coaxal with \((O) \) and the circle with diameter \(YT \). The center of \(\omega \) obviously lies on \(t \). Therefore, \(XZ \) is a diameter of \(\omega \). It follows that \(Z_1' \) and \(X_1' \) are the orthogonal projections of \(Z, X \) onto \(AB \) and \(CD \) respectively. This means \(X_1' \) and \(Z_1' \) coincide with \(X_1 \) and \(Z_1 \) respectively. Hence, \(X_1, Y_1, Z_1, T_1 \) are collinear on a line \(\mathcal{L} \). By a similar reasoning the same line \(\mathcal{L} \) also contains \(U_1 \) and \(V_1 \).
On the other hand, by Lemma 3, QK is parallel to ON, and NK is parallel to OQ. Thus, $ONKQ$ is a parallelogram. From this, $\frac{KN}{TY} = \frac{OQ}{TY} = \frac{OT}{TY} = \frac{T_N}{TY}$. By Thales’ theorem, T_1, K, Y_1 are collinear. Therefore, the line L containing the six points $X_1, Y_1, Z_1, T_1, U_1, V_1$ also passes through K. This completes the proof of Theorem 1’.

The Simson line theorem has a well-known property which states that the angle between the Simson lines of two point P and P' is half the angle of the arc PP'. In Theorem 1, if we choose another point P' on (O) and define A_2', B_2', C_2' analogously to A_2, B_2, C_2 respectively, then the angle between the lines through A_2, B_2, C_2 and A_2', B_2', C_2' is also half the angle of the arc PP'.
Proof. Let \(Y \) be the intersection of \(l \) and \(AC \), \(Y_1, Y'_1 \) be the orthogonal projections of \(Y \) onto \(PB, P'B \), respectively; \(d \) and \(d' \) the lines through \(A_2, B_2, C_2 \) and \(A'_2, B'_2, C'_2 \), respectively. Let \(d \) meets \(d' \) at \(L \).

From the second form of Theorem 1, \(Y_1 \) lies on \(d \) and \(Y'_1 \) lies on \(d' \).

We have the directed angle between the lines \(d \) and \(d' \) given by

\[
(d, d') = \angle B'_2 LB_2 \\
= 180^{\circ} - \angle LB_2 B'_2 - \angle LB'_2 B_2 \\
= \angle Y'_1 B'_1 B_1 - \angle Y_1 B_1 Y \\
= \angle Y'_1 B'_1 B_1 - \angle Y_1 B_1 Y \\
= \angle B'_1 BB_1 \\
= \angle P'BP,
\]

which is half the angle of the arc \(PP' \). \(\square \)

References

E-mail address: lovemathforever@gmail.com