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Regular Polytopic Distances

Poo-Sung Park

Abstract. Let M be an n-dimensional regular polytope of simplices, hyper-
cubes, or orthoplexes and r be the circumscribed radius of M . If q4 is the aver-
age of fourth powers of distances between a point and vertices of M and s2 is
the average of squares of those distances, then

q4 +
4(n+ 1)

n2
r4 =

(
s2 +

2

n
r2
)2

.

1. Introduction

In his book Mathematical Circus, Martin Gardner posed a beautifully symmetric
formula satisfied by distances between an arbitrary point and vertices of an equi-
lateral triangle. That is, if a, b, and c are the distances between a point P and three
vertices of an equilateral triangle of side d, the relation

3(a4 + b4 + c4 + d4) = (a2 + b2 + c2 + d2)2

holds (Figure 1).
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3(a4 + b4 + c4 + d4)
= (a2 + b2 + c2 + d2)2

Figure 1. Equilateral triangle

This result was generalized in two ways by J. Bentin [1, 2]. One is about (n−1)-
dimensional simplices of side d0. In this case, if the n distances are denoted by
d1, d2, . . . , dn, then

n(d40 + d41 + · · ·+ d4n) = (d20 + d21 + · · ·+ d2n)
2

holds (Figure 2).
Another way of Bentin’s generalizations is about regular polygons. If we de-

note the average of fourth powers of distances by q4 and the average of squares of
distances by s2, then

q4 + 3r4 = (s2 + r2)2

Publication Date: May 23, 2016. Communicating Editor: Paul Yiu.
This research was supported by Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2010614).



228 P.-S. Park

d0

P

d1d2

d3

d4
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= (d20 + d21 + d22 + d23 + d24)

2

Figure 2. Regular tetraheron

for arbitrary regular polygon of circumscribed radius r (Figure 3). This formula
for equilateral triangles coincides with the above one introduced by Gardner.
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Figure 3. Square

It is natural to ask whether similar formulas might be obtained for other regular
polytopes. We can find ones for cubes and octahedrons. Besides, the results are
extended to the higher dimension, that is, hypercubes and orthoplexes.

2. Main results

It is well known that there are only five regular polyhedrons. In dimension 4
there are 6 kinds of regular polytopes. But, dimension 5 or higher allows only
three kinds of regular polytopes: n-simplex, n-cube, n-orthoplex. These regular
polytopes are denoted by using Schläfli symbols (see [3]).

n = 2 : {k},where k ≥ 3 is an arbitrary integer
n = 3 : {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}
n = 4 : {3, 3, 3}, {3, 3, 4}, {4, 3, 3}, {3, 4, 3}, {3, 3, 5}, {5, 3, 3}
n ≥ 5 : {3d−1}, {3d−2, 4}, {4, 3d−2}

We find distance relations for n-simplex, n-cube, n-orthoplex with n ≥ 2. Note
that 2-simplex is an eqilateral triagle, 2-cube is a square, and 2-orthogonal is also
a square.

Theorem 1. For n-dimensional regular simplices, let q4 be the average of fourth
power of distances between n + 1 vertices and a point and s2 be the average of
squares of those distances. If r is the circumscribed radius, then

q4 +
4(n+ 1)

n2
r4 =

(
s2 +

2

n
r2
)2

.
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Proof. Just restatement of Bentin’s. �
Theorem 2. For n-dimensional cubes, let q4 be the average of fourth power of
distances between 2n vertices and a point and s2 be the average of squares of
those distances. If r is the circumscribed radius, then

q4 +
4(n+ 1)

n2
r4 =

(
s2 +

2

n
r2
)2

.
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Figure 4. Cube

Proof. The number of vertices of an n-dimensional cube is 2n. We may assume
that the vertices are represented by ±ae1 ± ae2 ± · · · ± aen in R

n, where ei is the
elementary unit vector. Then the circumscribed radius is r =

√
na.

Each vertex is determined by the sequence of 1 or −1. Using functions σi :
{1, 2, . . . , n} → {1,−1} for i = 1, . . . , 2n, we may write each vertex Vi as

(σi(1)a, σi(2)a, . . . , σi(n)a) .

Let P = (x1, . . . , xn) and �2 = x21 + · · ·+ x2n. Then,

d2i = ‖P − Vi‖2 =
n∑

k=1

(xk − σi(k)a)
2

=
n∑

k=1

(
x2k − 2xkσi(k)a+ a2

)

= �2 + na2 − 2a
n∑

k=1

σi(k)xk

Summing up all d2i , we obtain

2ns2 = d21 + · · ·+ d22n

=
2n∑
i=1

(
�2 + na2 − 2a

n∑
k=1

σi(k)xk

)

= 2n(�2 + na2)− 2a

n∑
k=1

2n∑
i=1

σi(k)xk.

Since
∑2n

i=1 σi(k) = 0,

ns2 + 2r2 = n(�2 + na2) + 2na2 = n(�2 + (n+ 2)a2).
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Now, consider d4i . Note that

d4i =

(
�2 + na2 − 2a

n∑
k=1

σi(k)xk

)2

= �4 + n2a4 + 4a2

(
n∑

k=1

σi(k)xk

)2

+ 2�2na2 − 4na3
n∑

k=1

σi(k)xk − 4�2a
n∑

k=1

σi(k)xk.

Then,

2nq4 = d41 + · · ·+ d42n

= 2n
(
�4 + n2a4 + 2�2na2

)
+ 4a2

2n∑
i=1

(
n∑

k=1

σi(k)xk

)2

− (4na3 + 4�2a)
2n∑
i=1

n∑
k=1

σi(k)xk.

Since (
n∑

k=1

σi(k)xk

)2

=

n∑
k=1

x2k +
∑
k �=j

σi(k)σi(j)xkxj

and
2n∑
i=1

σi(k)σi(j) = 0 with j �= k,

we obtain

2nq4 = 2n(�4 + n2a4 + 2�2na2 + 4a2�2)

and thus

n2q4 + 4(n+ 1)r4 = n2(�4 + n2a4 + 2�2na2 + 4a2�2) + 4(n+ 1)n2a4

= n2(�4 + n2a4 + 2�2na2 + 4a2�2 + 4(n+ 1)a4)

= n2(�4 + 2(n+ 2)�2a2 + (n+ 2)2a4)

= (ns2 + 2r2)2,

which is the required result. �

Theorem 3. For n-dimensional orthoplexes, let q4 be the average of fourth power
of distances between 2n vertices and a point and s2 be the average of squares of
those distances. If r is the circumscribed radius, then

q4 +
4(n+ 1)

n2
r4 =

(
s2 +

2

n
r2
)2

.
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Figure 5. Octahedron

Proof. An n-dimensional orthoplex has 2n vertices. We may assume that the ver-
tices are represented by Vi,+ = aei and Vi,− = −aei for i = 1, 2, . . . , n. Then the
circumscribed radius is r = a.

Let P = (x1, . . . , xn) and �2 = x21 + · · ·+ x2n. Then,

d2i,+ = ‖P − Vi,+‖2
= x21 + · · ·+ x2i−1 + (xi − a)2 + x2i+1 + · · ·+ x2n

= x21 + · · ·+ x2i−1 + x2i + x2i+1 + · · ·+ x2n − 2xia+ a2

= �2 − 2xia+ a2

and

d2i,− = ‖P − Vi,−‖2
= x21 + · · ·+ x2i−1 + (xi + a)2 + x2i+1 + · · ·+ x2n

= �2 + 2xia+ a2

Thus,

2ns2 =
n∑

i=1

(d2i,+ + d2i,−) = 2n�2 + 2na2

and

ns2 + 2r2 = n�2 + na2 + 2a2 = n�2 + (n+ 2)a2.

Since

d4i,+ =
(
�2 − 2xia+ a2

)2
= �4 + 4x2i a

2 + a4 − 4�2xia− 4xia
3 + 2�2a2

and

d4i,− =
(
�2 + 2xia+ a2

)2
= �4 + 4x2i a

2 + a4 + 4�2xia+ 4xia
3 + 2�2a2,
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we obtain

2nq4 =
n∑

i=1

(d4i,+ + d4i,−)

= 2n�4 + 8(x21 + · · ·+ x2n)a
2 + 2na4 + 4n�2a2

= 2n�4 + 8�2a2 + 2na4 + 4n�2a2.

Thus,

n2q4 + 4(n+ 1)r4 = n2�4 + 4n�2a2 + n2a4 + 2n2�2a2 + 4(n+ 1)a4

= n2�4 + 2n�2(n+ 2)a2 + (n+ 2)2a4

= (ns2 + 2r2)2.

We are done. �
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