Cevian Projections of Inscribed Triangles
and Generalized Wallace Lines

Gotthard Weise

Abstract. Let \(\Delta = ABC \) be a reference triangle and \(\Delta' = A'B'C' \) an inscribed triangle of \(\Delta \). We define the cevian projection of \(\Delta' \) as the cevian triangle \(\Delta_P \) of a certain point \(P \). Given a point \(P \) not on a sideline, all inscribed triangles with common cevian projection \(\Delta_P \) form a family \(D_P = \{ \Delta(t) = A_tB_tC_t, \ t \in \mathbb{R} \} \). The parallels of the lines \(A_tA_t, B_tB_t, C_tC_t \) through any point of a certain circumconic \(C_P \) intersect the sidelines \(a, b, c \) in collinear points \(X, Y, Z \), respectively. This is a generalization of the well-known theorem of Wallace.

1. Notations

Let \(\Delta = ABC \) be a positive oriented reference triangle with the sidelines \(a, b, c \). A point \(P \) in the plane of \(\Delta \) is described by its homogeneous barycentric coordinates \(u, v, w \) in reference to \(\Delta \):
\[
P = (u : v : w)
\]
by \(\ell = [u : v : w] \).

For a point \(P = (u : v : w) \) not on a sideline, denote by \(\Delta_P = P_aP_bP_c \) its cevian triangle with the vertices
\[
P_a = (0 : v : w), \quad P_b = (u : 0 : w), \quad P_c = (u : v : 0),
\]
and the sidelines
\[
p_a = [−vw : uw : uv], \quad p_b = [vw : −wu : uv], \quad p_c = [vw : wu : −wv].
\]
The directions of these sidelines (as points of intersection with the infinite line) are
\[
L_a = (u(v − w) : −v(w + u) : w(u + v)) \quad L_b = (u(v + w) : v(w − u) : −w(u + v)) \quad L_c = (−u(v + w) : v(w + u) : w(u − v)).
\]
The medial operator \(m \) on points maps \(P \) to the point
\[
mP = (v + w : w + u : u + v) =: M
\]
so that the centroid \(G \) divides the segment \(PM \) in the ratio 2 : 1 (see, for example, [4]).

Publication Date: June 2, 2016. Communicating Editor: Paul Yiu.

Thanks are due to Paul Yiu for his lively interest in the paper, for valuable suggestions and especially for the examples in section 3.
The circumconic \(pyz + qzx + rxy = 0 \) with perspector \((p : q : r)\) has the center
\[
(p(q + r - p) : q(r + p - q) : r(p + q - r)) \tag{5}
\]
(see, for example, [5]).

2. Cevian projection of an inscribed triangle

Let \(\mathcal{T} \) be the set of all inscribed triangles \(\Delta' = A'B'C' \) and \(\mathcal{T}_{cev} \) the set of all cevian triangles of \(\Delta \). We define a map \(\text{cevpro} : \mathcal{T} \rightarrow \mathcal{T}_{cev} \) with \(\text{cevpro}(\Delta') = \Delta \) by the following geometrical construction.

Construction 1. Given an inscribed triangle \(\Delta' = A'B'C' \), which is not perspective to \(\Delta \), suppose the lines \(AA', BB', CC' \) bound a nondegenerate triangle \(\Delta^* := A^*B^*C^* \) (with \(A^* = BB' \cap CC' \) etc). The parallels of the sidelines \(a^*, b^*, c^* \) of \(\Delta^* \) through \(A^*, B^*, C^* \) intersect \(a, b, c \) at the points \(A'', B'', C'' \), respectively. Let \(P_a, P_b, P_c \) be the midpoints of the segments \(A'A'', B'B'', C'C'' \). We define \(\text{cevpro}(\Delta') := P_aP_bP_c \), and call it the cevian projection of \(\Delta' \) (see Figure 1).

![Figure 1](image)

Proposition 2. If \(A'B'C' \) is not a cevian triangle, \(P_aP_bP_c \) is a cevian triangle, i.e., the lines \(AP_a, BP_b, CP_c \) are concurrent.

Proof. Let us describe the vertices of \(\Delta' \) by homogeneous barycentric coordinates:
\[
A' = (0 : d : 1 - d), \quad B' = (1 - e : 0 : e), \quad C' = (f : 1 - f : 0), \tag{6}
\]
for real numbers \(d, e, f \). From this it follows
\[
AA' = a^* = [0 : d - 1 : d], \quad BB' = b^* = [e : 0 : e - 1], \quad CC' = c^* = [f - 1 : f : 0], \tag{7}
\]
and
\[
A^* = BB' \cap CC' = (f(1 - e) : (1 - e)(1 - f) : ef)
B^* = CC' \cap AA' = (fd : d(1 - f) : (1 - f)(1 - d)) \tag{8}
C^* = AA' \cap BB' = ((1 - d)(1 - e) : de : e(1 - d)).
\]
The directions of a^*, b^*, c^* are the infinite points
\[L_{a^*} = (1 : -d : d - 1), \quad L_{b^*} = (e - 1 : 1 : -e), \quad L_{c^*} = (-f : f - 1 : 1). \] (9)

With the abbreviations
\[p = 1 - e + ef, \quad q = 1 - f + fd, \quad r = 1 - d + de, \] (10)
the parallels of a^*, b^*, c^* through A^*, B^*, C^* respectively, have the representation1
\[l_{A^*} = A^* L_{a^*} = [\odot : -fr : (1 - e)q] \] \[l_{B^*} = B^* L_{b^*} = [(1 - f)r : \odot : -dp] \] \[l_{C^*} = C^* L_{c^*} = [-eq : (1 - d)p : \odot]. \] (11)
They intersect a, b, c at the points
\[A'' = (0 : (1 - e)q : fr), \] \[B'' = (dp : 0 : (1 - f)r), \] \[C'' = ((1 - d)p : eq : 0). \] (12)
As midpoints of the segments $A'A''$, $B'B''$, $C'C''$ we obtain
\[P_a = (0 : p + (q - r) : p - (q - r)), \] \[P_b = (q - (r - p) : 0 : q + (r - p)), \] \[P_c = (r + (p - q) : r - (p - q) : 0), \] (13)
and the lines AP_a, BP_b, CP_c are
\[AP_a = [0 : -p + (q - r) : p + (q - r)], \] \[BP_b = [q + (r - p) : 0 : -q + (r - p)], \] \[CP_c = [-r + (p - q) : r + (p - q) : 0]. \] (14)
It is obvious that the column sums of $\det(AP_a, BP_b, CP_c)$ vanish. Thus, the lines are concurrent at the point
\[P = \left(\frac{1}{q + r - p} : \frac{1}{r + p - q} : \frac{1}{p + q - r} \right) \] \[= \left(\frac{1}{p^2 - (q - r)^2} : \frac{1}{q^2 - (r - p)^2} : \frac{1}{r^2 - (p - q)^2} \right). \] (15)
Triangle $P_aP_bP_c$ is the cevian triangle of P. \hfill \Box

3. Examples

Construction 1 does not apply when the inscribed triangle $A'B'C'$ is a cevian triangle. Now, $A'B'C'$ is a cevian triangle if and only if $(1 - d)(1 - e)(1 - f) = def$. If $A'B'C'$ is the cevian triangle of Q, then formulas (15) and (10) give $P = Q$.

$^1\odot$ means: There is no necessity to calculate this coordinate.
3.1. Cevian projection of a pedal triangle. Let \(Q = (x : y : z) \) be a point not on the Darboux cubic (\(K\,004 \) in [1])

\[
\sum_{cyclic} (S_{AB} + S_{CA} - S_{BC})x(c^2y^2 - b^2z^2) = 0
\]

so that its pedal triangle \(A'B'C' \) is not a cevian triangle. The cevian projection of \(A'B'C' \) is the cevian triangle of the point

\[
P = \left(\frac{1}{f(x, y, z)} : \frac{1}{f(y, z, x)} : \frac{1}{f(z, x, y)} \right),
\]

where

\[
f(x, y, z) = S^2(a^2yz + b^2zx + c^2xy) + 2a^2(S_A y + b^2 z)(S_A z + c^2 y).
\]

If \(Q \) lies on the Darboux cubic and \(A'B'C' \) is the cevian triangle of \(P' \), then formulas (15) and (10) gives \(P = P' \).

3.2. Cevian projection of a degenerate inscribed triangle. Since we do not assume \(A'B'C' \) to be a cevian triangle, \(A^*B^*C^* \) is perspective with \(ABC \) if and only if

\[
(1 - d)(1 - e)(1 - f) = -def, \text{ i.e., the triangle } A'B'C' \text{ is degenerate. If the line containing } A', B', C' \text{ is the trilinear polar of a point } Q = (x : y : z), \text{ then}
\]

(i) \(A^*B^*C^* \) is the anticevian triangle of \(Q \),

(ii) \(A'', B'', C'' \) are collinear, and the line containing them is the trilinear polar of the cevian quotient \(G/Q = (x(y + z - x) : y(z + x - y) : z(x + y - z)) \),

(iii) \(P_aP_bP_c \) is the cevian triangle of the point \(P \) with homogeneous barycentric coordinates \(\left(\frac{x}{y-z} : \frac{y}{z-x} : \frac{z}{x-y} \right) \), which is the fourth intersection of the circumconics with centers \(Q \) and \(G/Q \) (see Figure 2).
For example, if A', B', C' are the intersections of the sidelines with the Lemoine axis $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0$, then

(i) $A^*B^*C^*$ is the tangential triangle,
(ii) A'', B'', C'' are the intersections of the sidelines with the trilinear polar of the circumcenter O,
(iii) $P_aP_bP_c$ is the cevian triangle of the Euler reflection point on the circumcircle, which is the common point of the reflections of the Euler line in the three sidelines of Δ.

3.3. Wallace lines. Suppose A', B', C' are the pedals of a point

$$Q = \left(\frac{a^2}{(S_B - S_C)(S_A + t)} : \frac{b^2}{(S_C - S_A)(S_B + t)} : \frac{c^2}{(S_A - S_B)(S_C + t)} \right)$$

on the circumcircle, the cevian projection of the (degenerate) pedal triangle of Q is the cevian triangle of

$$P = \left(\frac{S_A(S_{BB} + S_{CC}) - S_{BC}(S_B + S_C) + (S_{AB} + S_{AC} - 2S_{BC})t}{(S_B - S_C)^2(S_A + t)^2} : \ldots : \ldots \right)$$

As Q varies on the circumcircle, the locus of P is the quintic

$$\sum_{\text{cyclic}} x^3(S_By - S_Cz)^2 + 3xyz \sum_{\text{cyclic}} a^2(b^2 + c^2)yz = 0.$$
Proposition 4. For every triangle Δ is the set of all inscribed triangles with the common cevian projection $\text{cevpro}(v)$:

Remarks.

(1) The cevian triangle itself is in the family $\Delta(0) = \Delta$.

(2) The reflections of A_t in P_b and C_t in P_c are respectively

$$B_{-t} = (uw - t : vw + t) \quad \text{and} \quad C_{-t} = (wu + t : vw - t).$$

Here are some further details: the infinite points of $A_{A_t}, B_{B_t}, C_{C_t}$ are

$$L_{a^*} = (-u(v + w) : uv - t : uw + t),$$

$$L_{b^*} = (uv + t : -v(u + v) : vw - t),$$

$$L_{c^*} = (wu - t : vw + t : -w(u + v)).$$

Proposition 3. The family $\mathcal{D}_P = \{\Delta(t) : t \in \mathbb{R}\}$ with $\Delta(t) = A_t B_t C_t$ given by

$$A_t = (0 : uw - t : wu + t),$$

$$B_t = (uv + t : 0 : vw - t),$$

$$C_t = (wu - t : vw + t : 0),$$

is the set of all inscribed triangles with the common cevian projection Δ_P.

Proof. With $A_t = (0 : uw - t : wu + t), t \in \mathbb{R}$, one can represent every point on the sideline a. Then $A_{-t} = (0 : uw + t : wu - t)$ is the reflection of A_t in P_a. An easy computation shows that the parallel of $P_a P_b$ through A_{-t}, that is the line $A_{-t} L_a$, intersects the sideline b at $B_t = (uv + t : 0 : vw - t)$. Similarly $C_t = (wu - t : vw + t : 0)$.

Remarks. (1) The cevian triangle itself is in the family \mathcal{D}_P: $\Delta(0) = \Delta_P$.

(2) The reflections of B_t in P_b and C_t in P_c are respectively

$$B_{-t} = (uw - t : 0 : vw + t) \quad \text{and} \quad C_{-t} = (wu + t : vw - t : 0).$$

Proof. The segments $A_t A_{-t}$ and $A_t B_t$ are divided by the parallel $P_a P_b$ of $A_{-t} B_t$ through P_a in the ratio $\frac{A_t P_a}{P_a A_{-t}} = \frac{A_t F}{F B_t}$ (see Figure 4).
5. Generalized Wallace lines

Let $P = (u : v : w)$ be a point not on the sidelines, $D_P = \{ \Delta(t) : t \in \mathbb{R} \}$ the family of inscribed triangles with common cevian projection Δ_P, and C_P the circumconic (of ABC) with center m_P.

Proposition 5. For all $\Delta(t) \in D_P$ and all points $Q \in C_P$ holds true: The intersections X, Y, Z of the parallels of AA_t, BB_t, CC_t through Q with a, b, c, respectively, are collinear.

The line containing X, Y, Z we call a *generalized Wallace line* (see Figure 5).

![Figure 5](image)

Proof. Let $Q = (x : y : z)$. Then the parallels of AA_t, BB_t, CC_t through Q are respectively the lines $l_a = QL_{a^*}$, $l_b = QL_{b^*}$, $l_c = QL_{c^*}$ (with $L_{a^*}, L_{b^*}, L_{c^*}$ given in (17)):

\[
\begin{align*}
 l_a &= [(wu + t)y - (uv - t)z : -u(v + w)z - (wu + t)x : (uv - t)x + u(v + w)y], \\
 l_b &= [(vw - t)y + v(w + u)z : (uv + t)z - (vw - t)x : -v(w + u)x - (uv + t)y], \\
 l_c &= [-w(u + v)y - (vw + t)z : (wu - t)z + w(u + v)x : (vw + t)x - (wu - t)y].
\end{align*}
\]

These lines intersect a, b, c respectively at the points X, Y, Z:

\[
\begin{align*}
 X &= (0 : (wv - t)x + u(v + w)y : u(v + w)z + (wu + t)x), \\
 Y &= (v(w + u)x + (uv + t)y : 0 : (vw - t)y + v(w + u)z), \\
 Z &= ((wu - t)z + w(u + v)x : w(u + v)y + (vw + t)z : 0).
\end{align*}
\]

The points X, Y, Z are collinear if and only if the determinant of (X, Y, Z) vanishes. After a longer calculation we find from (19):

\[
\det(X, Y, Z) = (x + y + z)(t^2 + uvw(u + v + w))(u(v + w)yz + v(w + u)zx + w(u + v)xy).
\]
Now, the last factor defines the circumconic \(C_P \) with center \(m_P = (v + w : w + u : u + v) \), with equation
\[
u(v + w)yz + v(w + u)zx + w(u + v)xy = 0.
\]
Therefore, for \(Q \) in \(C_P \), the points \(X, Y, Z \) are collinear. \(\square \)

Remark. It is easy to verify that the reflections of \(P \) in \(P_a, P_b, P_c \) are points of \(C_P \).

Let \(H \) be the orthocenter of \(\Delta \). In the case \(\{ P = H, t = 0 \} \) we have the well-known theorem of Wallace. The special cases \(\{ P \) arbitrary, \(t = 0 \} \) and \(\{ P = G, t \in \mathbb{R} \} \) are dealt with by O. Giering in the papers [2] and [3].

References

http://bernard.gibert.pagesperso-orange.fr/ctc.html

http://math.fau.edu/yiu/YIUIntroductionToTriangleGeometry130411.pdf

Gotthard Weise: Buchloer Str. 23, D-81475 München, Germany
E-mail address: gotthard.weise@tele2.de