Some Collinearities in the Heptagonal Triangle

Abdilkadir Altintaş

Abstract

With the methods of barycentric coordinates, we establish several collinearities in the heptagonal triangle, formed by a side and two diagonals of different lengths of a regular heptagon.

1. The regular heptagon

Consider a regular heptagon $A A^{\prime} C^{\prime} A^{\prime \prime} B C B^{\prime}$ inscribed in a circle, each side of length a. The diagonals are of two kinds. Those with 3 vertices on the defining minor arc have the same length b, and those with 4 vertices on the defining minor arc have the same length c. There are seven of each kind. The lengths a, b, c satisfy some simple relations.

Lemma 1. (a) $a^{2}=c(c-b)$,
(b) $b^{2}=a(c+a)$,
(c) $c^{2}=b(a+b)$,
(d) $\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$.

Figure 1(a)

Figure 1(b)

Figure 1(c)

Figure 1(d)

Proof. Applying Ptolemy's theorem to the quadrilaterals
(a) $A^{\prime \prime} B^{\prime} A C^{\prime}$, we obtain $c^{2}=a^{2}+b c \Longrightarrow a^{2}=c(c-b)$;
(b) $B C B^{\prime} A^{\prime \prime}$, we obtain $b^{2}=a(c+a)$;
(c) $B C A C^{\prime}$, we obtain $c^{2}=b(a+b)$;
(d) $B C B^{\prime} A^{\prime}$, we obtain $b c=c a+a b \Longrightarrow \frac{1}{a}=\frac{1}{b}+\frac{1}{c}$.

Corollary 2. The roots of the cubic polynomial $t^{3}-2 t^{2}-t+1$ are $-\frac{b}{c}$, $\frac{c}{a}$, and $\frac{a}{b}$.
(a) $b^{3}+2 b^{2} c-b c^{2}-c^{3}=0$,
(b) $c^{3}-2 c^{2} a-c a^{2}+a^{3}=0$,
(c) $a^{3}-2 a^{2} b-a b^{2}+b^{3}=0$.

2. The heptagonal triangle

Consider the triangle $A B C$ imbedded in the regular heptagon $A A^{\prime} C^{\prime} A^{\prime \prime} B C B^{\prime}$. We call this the heptagonal triangle. It has angles $A=\frac{\pi}{7}, B=\frac{2 \pi}{7}, C=\frac{4 \pi}{7}$, and sidelengths $B C=a, C A=b, A B=c$ satisfying the relations given in Lemma 1. Basic properties of the heptagonal triangle can be found in [1]. We establish several collinearity relations in the triangle $A B C$ by the method of barycentric coordinates. A basic reference is [2]. The paper [3] contains results on the heptagonal triangle obtained by complex number coordinates.

In the heptagonal triangle $A B C$, let
(i) $A X, B Y, C Z$ be the angle bisectors, concurrent at the incenter I,
(ii) $A D, B E, C F$ be the medians, concurrent at the centroid G, and
(iii) $A D^{\prime}, B E^{\prime}, C F^{\prime}$ be symmedians, concurrent at the symmedian point K.

In homogeneous barycentric coordinates with reference to the heptagonal triangle $A B C$,

$$
\begin{array}{llll}
X=(0: b: c), & Y=(a: 0: c), & Z=(a: b: 0), & I=(a: b: c) ; \\
D=(0: 1: 1) & E=(1: 0: 1), & F=(1: 1: 0), & G=(1: 1: 1) ; \\
D^{\prime}=\left(0: b^{2}: c^{2}\right), & E^{\prime}=\left(a^{2}: 0: c^{2}\right), & F^{\prime}=\left(a^{2}: b^{2}: 0\right), & K=\left(a^{2}: b^{2}: c^{2}\right) .
\end{array}
$$

Proposition 3. (a) Y, Z, G are collinear.
(b) $E^{\prime}, F^{\prime}, I$ are collinear.
(c) G, I, D^{\prime} are collinear.
(d) E, X, K are collinear.

Figure 2

Proof. (a) The equation of the line $Y Z$ is

$$
0=\left|\begin{array}{lll}
x & y & z \\
a & 0 & c \\
a & b & 0
\end{array}\right|=-b c x+c a y+a b z=a b c\left(-\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right) .
$$

This is clearly satisfied if $(x: y: z)=(1: 1: 1)$ by Lemma 1(d). Therefore, the line $Y Z$ contains the centroid G of triangle $A B C$.
(b) The equation of the line $E^{\prime} F^{\prime}$ is

$$
0=\left|\begin{array}{ccc}
x & y & z \\
a^{2} & 0 & c^{2} \\
a^{2} & b^{2} & 0
\end{array}\right|=-b^{2} c^{2} x+c^{2} a^{2} y+a^{2} b^{2} z=a^{2} b^{2} c^{2}\left(-\frac{x}{a^{2}}+\frac{y}{b^{2}}+\frac{z}{c^{2}}\right) .
$$

By Lemma 1 (d) again, this is clearly satisfied if $(x: y: z)=(a: b: c)$. Therefore, the line $E^{\prime} F^{\prime}$ contains the incenter I of triangle $A B C$.
(c) The equation of the line $G I$ is

$$
0=\left|\begin{array}{lll}
x & y & z \\
1 & 1 & 1 \\
a & b & c
\end{array}\right|=(b-c) x+(c-a) y+(a-b) z
$$

With $(x, y, z)=\left(0, b^{2}, c^{2}\right)$, we have $(c-a) b^{2}+(a-b) c^{2}=(b-c)(b c-c a-a b)=0$ by Lemma 1 (d). Therefore, G, I, D^{\prime} are collinear.
(d) The equation of the line $E X$ is

$$
0=\left|\begin{array}{ccc}
x & y & z \\
0 & b & c \\
1 & 0 & 1
\end{array}\right|=b x+c y-b z
$$

With $(x, y, z)=\left(a^{2}, b^{2}, c^{2}\right)$, we have

$$
b x+c y-b z=a^{2} b+b^{2} c-b c^{2}=b\left(a^{2}-c(c-b)\right)=0
$$

by Lemma 1(a). Therefore, E, X, K are collinear.
Proposition 4. (a) O, Z, D are collinear.
(b) O, F, Y are collinear.
(c) Let the median $B E$ intersect the bisector $C Z$ at T.
(i) The points F^{\prime}, T, Y are collinear
(ii) The points O, T, K are collinear.

Proof. (a) Since $\angle Z C B=\angle Z B C=\frac{2 \pi}{7}, Z B=Z C$. Clearly, $O B=O C$. Therefore, the line $O Z$ is the perpendicular bisector of $B C$, and passes through its midpoint D (see Figure 3).
(b) The equation of the line $F Y$ is

$$
0=\left|\begin{array}{lll}
x & y & z \\
1 & 1 & 0 \\
a & 0 & c
\end{array}\right|=-c x+c y+a z
$$

With $(x, y, z)=\left(a^{2}\left(b^{2}+c^{2}-a^{2}\right), b^{2}\left(C^{2}+a^{2}-b^{2}\right), c^{2}\left(a^{2}+b^{2}-c^{2}\right)\right)$, we have

$$
-c x+c y+a z=c\left(a^{2}+b^{2}-c^{2}\right)\left(a(c+a)-b^{2}\right)=0
$$

Figure 3
by Lemma 1 (b). Therefore, the points O, F, Y are collinear.
(c) The intersection of the median $B E$ and the bisector $C Z$ is $T=(a: b: a)$.
(i) The equation of $Y F^{\prime}$ is

$$
0=\left|\begin{array}{ccc}
x & y & z \\
a & 0 & c \\
a^{2} & b^{2} & 0
\end{array}\right|=-b^{2} c x+a^{2} c y+a b^{2} z .
$$

With the coordinates of T, we have

$$
-b^{2} c a+a^{2} c b+a b^{2} a=a b(-b c+c a+a b)=0
$$

by Lemma 1 (a). Therefore, Y, T, F^{\prime} are collinear.
(ii) The equation of the Brocard axis $O K$ is

$$
\frac{b^{2}-c^{2}}{a^{2}} x+\frac{c^{2}-a^{2}}{b^{2}} y+\frac{a^{2}-b^{2}}{c^{2}} z=0,
$$

(see [2, p. 111]). With $(x, y, z)=(a, b, a)$, the left hand side becomes

$$
\frac{b^{2}-c^{2}}{a}+\frac{c^{2}-a^{2}}{b}+\frac{a\left(a^{2}-b^{2}\right)}{c^{2}}=\frac{-a b}{a}+\frac{b c}{b}+\frac{a \cdot(-c a)}{c^{2}}=\frac{c(c-b)-a^{2}}{c}=0
$$

by Lemma 1 . Therefore, the points O, T, K are collinear.

Let the line $A I$ intersect the circumcircle at J. This is the point $J=\left(-\frac{a^{2}}{b+c}: b: c\right)=$ $\left(-a^{2}: b(b+c): c(b+c)\right)$.
Proposition 5. Let H and N be the orthocenter and nine-point center of the heptagonal triangle $A B C$.
(a) B, J, H are collinear.
(b) E^{\prime}, Z, N are collinear.

Figure 4
Proof. (a) The line $B J$ has equation

$$
0=\left|\begin{array}{ccc}
x & y & z \\
0 & 1 & 0 \\
-a^{2} & b(b+c) & c(b+c)
\end{array}\right|=c(b+c) x+a^{2} z .
$$

If $(x: y: z)$ are the homogeneous barycentric coordinates of H, then $x: z=$ $a^{2}+b^{2}-c^{2}: b^{2}+c^{2}-a^{2}$. Since

$$
\begin{aligned}
& c(b+c)\left(a^{2}+b^{2}-c^{2}\right)+a^{2}\left(b^{2}+c^{2}-a^{2}\right) \\
= & -a^{4}+a^{2}\left(b^{2}+b c+2 c^{2}\right)-c(b+c)\left(c^{2}-b^{2}\right) \\
= & -\left(a^{4}-a^{2}\left((b+c)^{2}+c(c-b)\right)+c(c-b)(b+c)^{2}\right) \\
= & -\left(a^{2}-(b+c)^{2}\right)\left(a^{2}-c(c-b)\right) \\
= & 0
\end{aligned}
$$

by Lemma 1 (a). Therefore, B, J, H are collinear.
(b) The line $E^{\prime} Z$ has equation

$$
0=\left|\begin{array}{ccc}
x & y & z \\
a^{2} & 0 & c^{2} \\
a & b & 0
\end{array}\right|=-b c^{2} x+a c^{2} y+a^{2} b z .
$$

The nine-point center N has coordinates

$$
\left(a^{2}\left(b^{2}+c^{2}\right)-\left(b^{2}-c^{2}\right)^{2}: b^{2}\left(c^{2}+a^{2}\right)-\left(c^{2}-a^{2}\right)^{2}: c^{2}\left(a^{2}+b^{2}\right)-\left(a^{2}-b^{2}\right)^{2}\right) .
$$

Substituting these into $-b c^{2} x+a c^{2} y+a^{2} b z$, we obtain

$$
\begin{aligned}
& \left(c^{2}-a^{2}\right) b^{5}-2\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}\right) b^{3}+c^{2} a\left(c^{2}+a^{2}\right) b^{2}+\left(c^{2}-a^{2}\right)\left(c^{4}+a^{4}\right) b \\
& -c^{2} a\left(c^{2}-a^{2}\right)^{2} \\
= & \left(c^{2}-a^{2}\right)\left(b^{5}-2\left(c^{2}+a^{2}\right) b^{3}+\left(c^{4}+a^{4}\right) b-c^{2} a\left(c^{2}-a^{2}\right)\right)+a b^{2} c^{2}\left(c^{2}+a^{2}\right) \\
= & b c\left(b^{5}-2\left(c^{2}+a^{2}\right) b^{3}+\left(c^{4}+a^{4}\right) b-c^{2} a(b c)+a b c\left(c^{2}+a^{2}\right)\right) \\
= & \left.b c\left(b^{5}-2\left(c^{2}+a^{2}\right) b^{3}+\left(c^{2}+a^{2}\right)^{2} b-2 a^{2} b c^{2}+a b c \cdot a^{2}\right)\right) \\
= & b^{3} c\left(\left(c^{2}+a^{2}-b^{2}\right)^{2}-a^{2} c(2 c-a)\right) \\
= & b^{2} c\left(\left(c^{2}+a^{2}-a(c+a)\right)^{2}-a^{2} c(2 c-a)\right) \\
= & b^{2} c\left(c^{2}(c-a)^{2}-a^{2} c(2 c-a)\right) \\
= & b^{2} c^{2}\left(c(c-a)^{2}-a^{2}(2 c-a)\right) \\
= & b^{2} c^{2}\left(c^{3}-2 c^{2} a-c a^{2}+a^{3}\right) \\
= & 0
\end{aligned}
$$

by Corollary 2 (b). Therefore, E^{\prime}, Z and N are collinear.
The Jerabek hyperbola
$a^{2}\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right) y z+b^{2}\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right) z x+c^{2}\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right) x y=0$
of a triangle $A B C$ is the circum-rectangular hyperbola through the circumcenter O and the orthocenter H (see [2, p.110]). It also contains the symmedian point K. Consider the intersections P and Q of the hyperbola with the median $C F$ and the bisector $C Z$ respectively. These are the points

$$
\begin{align*}
P= & \left(2 a^{2} b^{2}-c^{2}\left(a^{2}+b^{2}-c^{2}\right): 2 a^{2} b^{2}-c^{2}\left(a^{2}+b^{2}-c^{2}\right): c^{2}\left(a^{2}+b^{2}-c^{2}\right)\right), \tag{1}\\
Q= & \left(a\left(a^{3} b+a^{2}\left(2 b^{2}-c^{2}\right)+a b\left(b^{2}-c^{2}\right)-c^{2}\left(b^{2}-c^{2}\right)\right)\right. \\
& : b\left(a^{3} b+a^{2}\left(2 b^{2}-c^{2}\right)+a b\left(b^{2}-c^{2}\right)-c^{2}\left(b^{2}-c^{2}\right)\right) \\
& \left.:(a+b) c^{2}\left(a^{2}+b^{2}-c^{2}\right)\right) . \tag{2}
\end{align*}
$$

Figure 5 shows the Jerabek hyperbola of the heptagonal triangle.

Figure 5

Proposition 6. Let $B Y_{1}$ and $C Z_{1}$ be altitudes of the heptagonal triangle $A B C$.
(a) H, E^{\prime}, P are collinear.
(b) O, E, Q are collinear.
(c) K, Y_{1}, Q are collinear.
(d) D^{\prime}, Z_{1}, Q are collinear.

Proof. (a) The equation of the line $E^{\prime} H$ is

$$
\begin{aligned}
& c^{2}\left(a^{2}+b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right) x+\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)^{2} y \\
& \quad-a^{2}\left(a^{2}+b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right) z=0 .
\end{aligned}
$$

With the coordinates of P given in (1), we have

$$
\begin{aligned}
& -2\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)\left(a^{2} b^{2}\left(b^{2}-a^{2}\right)+\left(a^{4}-a^{2} b^{2}-b^{4}\right) c^{2}+\left(b^{2}-a^{2}\right) c^{4}\right) \\
& =-2\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right) \cdot a b(a+b)\left(a^{3}-2 a^{2} b-a b^{2}+b^{3}\right) \\
& =0
\end{aligned}
$$

by Lemma 1 (c) and Corollary 2(c). Therefore, the points H, E^{\prime}, P are collinear.
(b) The equation of the line $O E$ is

$$
-b^{2} x+\left(c^{2}-a^{2}\right) y+b^{2} z=0 .
$$

With the coordinates of Q given in (2), we have

$$
b\left(c^{2}-a^{2}\right)(a+b+c)(a+b-c)\left(b(a+b)-c^{2}\right)=0
$$

by Lemma 1 (c). Therefore, O, E, Q are collinear.
In homogeneous barycentric coordinates,

$$
\begin{aligned}
& Y_{1}=\left(a^{2}+b^{2}-c^{2}: 0: b^{2}+c^{2}-a^{2}\right), \\
& Z_{1}=\left(c^{2}+a^{2}-b^{2}: b^{2}+c^{2}-a^{2}: 0\right)
\end{aligned}
$$

(c) The equation of the line $K Y_{1}$ is

$$
b^{2}\left(b^{2}+c^{2}-a^{2}\right) x+\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right) y-b^{2}\left(a^{2}+b^{2}-c^{2}\right) z=0 .
$$

With the coordinates of Q given in (2), we have

$$
b\left(c^{2}-a^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)\left(b(a+b)-c^{2}\right)=0
$$

by Lemma 1 (c). Therefore, K, Y_{1}, Q are collinear.
(d) The equation of the line $D^{\prime} Z_{1}$ is

$$
c^{2}\left(b^{2}+c^{2}-a^{2}\right) x-c^{2}\left(c^{2}+a^{2}-b^{2}\right) y+b^{2}\left(c^{2}+a^{2}-b^{2}\right) z=0 .
$$

With the coordinates of Q given in (2), we have

$$
c^{2}\left(b(a+b)-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)\left((b-a) c^{2}+a^{3}+a^{2} b+a b^{2}-b^{3}\right)=0
$$

by Lemma 1 (c) again. Therefore, D^{\prime}, Z_{1}, Q are collinear.

References

[1] L. Bankoff and J. Garfunkel, The heptagonal triangle, Math. Mag., 46 (1973) 7-19.
[2] P. Yiu, Introduction to the Geometry of the Triangle, Florida Atlantic University Lecture Notes, 2001; with corrections, 2013, http://math. fau.edu/Yiu/Geometry.html
[3] P. Yiu, Heptagonal triangles and their companions, Forum Geom., 9 (2009) 125-148.
Abdilkadir Altintaş: Emirdag Anadolu Lisesi, 03600 Emirdag Afyon - Turkey
E-mail address: archimedes26@yandex.com

