

Some Golden Sections in the Equilateral and Right Isosceles Triangles

Dao Thanh Oai

Abstract. Associated with the equilateral triangle and the right isosceles triangles and their circumcircles, we exhibit some segments that are divided in the golden ratio.

1. Equilateral triangles

A segment AB is said to be divided in the golden ratio by a point P if $\frac{AB}{AP} = \frac{AP}{PB}$. In this case, the division ratio is the golden ratio $\varphi := \frac{\sqrt{5}+1}{2}$, which satisfies

$$\varphi^2 = \varphi + 1. \tag{1}$$

Proposition 1. Consider an equilateral triangle ABC with its sides AC and AB divided into five equal parts by points E_k , F_k , k = 1, 2, 3, 4, so that $AE_k = AF_k = \frac{k}{5} \cdot BC$. If the circle (AE_4F_4) intersects BC at G and H (see Figure 1), then G divides HB in the golden ratio.

Proof. Suppose each side of the equilateral triangle has length 5. If BG = x, then BH = 5 - x. By Ptolemy's theorem,

 $BG \cdot BH = BF_4 \cdot BA \implies x(5-x) = 1 \cdot 5 \implies x^2 - 5x + 5 = 0,$

and $x = \frac{5-\sqrt{5}}{2}$. It follows that $GH = 5 - 2x = \sqrt{5}$, and

$$\frac{HG}{GB} = \frac{5-2x}{x} = \frac{2\sqrt{5}}{5-\sqrt{5}} = \frac{2}{\sqrt{5}-1} = \frac{\sqrt{5}+1}{2} = \varphi.$$

Publication Date: June 20, 2016. Communicating Editor: Paul Yiu.

Proposition 2. Let E be the point on the side AC of an equilateral triangle ABC such that $AE = \frac{1}{4} \cdot AC$. The perpendicular from E to AB intersects (i) the perpendicular to BC at C at F, and (ii) the circle with center B and radius BC at G and H (see Figure 2).

- (a) G divides EF in the golden ratio.
- (b) E divides HF in the golden ratio.

Proof. Suppose each side of the equilateral triangle ABC has length 4. Triangle FCE is isosceles with base angle 30°, CE = 3, and $FC = \frac{CE}{2\cos 30^\circ} = \sqrt{3}$. If the line *HF* intersects *AB* at *K*, then $EK = AE \sin 60^\circ = \frac{\sqrt{3}}{2}$.

If FG = y, then $GE = \sqrt{3} - y$ and $GK = GE + EK = \frac{3\sqrt{3}}{2} - y$. Since K is the midpoint of the chord GH, $FH = FG + GH = FG + 2GK = y + 3\sqrt{3} - 2y + 3\sqrt{3} - 2y = y + 3\sqrt{3} - 2y + 3\sqrt{3} - 3\sqrt{3}$ $3\sqrt{3} - y$. By Ptolemy's theorem,

$$FG \cdot FH = FC^2 \implies y(3\sqrt{3} - y) = 3 \implies y^2 - 3\sqrt{3}y + 3 = 0,$$

and

$$y = \frac{3\sqrt{3} - \sqrt{15}}{2} = \frac{\sqrt{3}(3 - \sqrt{5})}{2} = \frac{\sqrt{3}(6 - 2\sqrt{5})}{4} = \frac{\sqrt{3}(\sqrt{5} - 1)^2}{4} = \frac{\sqrt{3}}{\varphi^2}.$$

(a) $EG = EF - FG = \sqrt{3} - y = \sqrt{3} \left(1 - \frac{1}{\varphi^2}\right) = \sqrt{3} \cdot \frac{\varphi^2 - 1}{\varphi^2} = \sqrt{3} \cdot \frac{\varphi}{\varphi^2} = \frac{\sqrt{3}}{\varphi}.$ Therefore, $\frac{EF}{EG} = \varphi$, and G divides EF in the golden ratio. (b) $HF = 3\sqrt{3} - y = \sqrt{3} \left(3 - \frac{1}{\varphi^2}\right)$ and $HE = HF - \sqrt{3} = 2\sqrt{3} - y = \frac{1}{2}$

 $\sqrt{3}\left(2-\frac{1}{\varphi^2}\right)$. Therefore,

$$\frac{HF}{HE} = \frac{3\varphi^2 - 1}{2\varphi^2 - 1} = \frac{2\varphi^2 + (\varphi + 1) - 1}{2(\varphi + 1) - 1} = \frac{\varphi(2\varphi + 1)}{2\varphi + 1} = \varphi$$

and E divides HF in the golden ratio.

2. Isosceles right triangles

Figure 3 shows a right isosceles triangle ABC with the equal sides AC and AB divided into five equal parts, at E_k , F_k , k = 1, 2, 3, 4, so that $AE_k = AF_k = \frac{k}{5} \cdot AB$. The circle (AE_3F_3) intersect BC at F and G.

Proposition 3. *G divides HC in the golden ratio.*

Proof. In a Cartesian coordinate system with A = (0,5), B = (-5,0), and C = (5,0), the division points are $E_k = (k, 5 - k)$ and $F_k = (-k, 5 - k)$ for k = 1, 2, 3, 4. The circle AE_3F_3 has center (0,2) and radius 3; it has equation $x^2 + (y-2)^2 = 9$ and intersects the line BC at $G = (\sqrt{5}, 0)$ and $H = (-\sqrt{5}, 0)$. Therefore, $HG = 2\sqrt{5}$ and $GC = 5 - \sqrt{5} = \sqrt{5}(\sqrt{5} - 1)$. The point G divides HC in the golden ratio since

$$\frac{HG}{GC} = \frac{2\sqrt{5}}{\sqrt{5}(\sqrt{5}-1)} = \frac{2}{\sqrt{5}-1} = \frac{\sqrt{5}+1}{2} = \varphi.$$

Extend E_1F_1 to intersect the circumcircles of AE_3F_3 and ABC at G' and H' respectively (see Figure 4). Tran [2] has found that F_1 divides E_1G' in the golden ratio. It is also true that G' divides F_1H' in the golden ratio.

Figure 4

Figure 5 shows a right isosceles triangle ABC with $\angle ACB = 90^{\circ}$, and the sides AC, AB trisected at E, F respectively. The segment EF is extended to intersect the quadrant of the circumcircle at G and the perpendicular from B at H.

Figure 5

Proposition 4. *G divides FH in the golden ratio.*

Proof. Suppose AC = BC = 3. Then FH = EH - EF = 3 - 1 = 2, and $FG = EG - EF = \sqrt{CG^2 - CF^2} - EF = \sqrt{3^2 - 2^2} - 1 = \sqrt{5} - 1$. Therefore, $\frac{FH}{FG} = \frac{2}{\sqrt{5}-1} = \varphi$, and G divides FH in the golden ratio.

References

- [1] G. Odom and J. van de Craats, Elementary Problem 3007, *Amer. Math. Monthly*, 90 (1983) 482; solution, 93 (1986) 572.
- [2] Q. H. Tran, The golden section in the inscribed square of an isosceles right triangle, Forum Geom., 15 (2015) 91–92.

Dao Thanh Oai: Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Viet Nam *E-mail address*: daothanhoai@hotmail.com